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Benchmark calculations of chemical reactions in density functional theory:
Comparison of the accurate Kohn–Sham solution with generalized
gradient approximations for the H 21H and H21H2 reactions
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Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam,
The Netherlands

~Received 11 February 1999; accepted 9 June 1999!

The Kohn–Sham~KS! solution is constructed from an accurate CI density and the KS exchange and
correlation energiesEx and Ec , as well as the corresponding exchange and exchange-correlation
energy densitiesex(r ) andexc(r ), which are obtained for the hydrogen abstraction reaction H1H2

and the symmetrical four-center exchange reaction H21H2. The KS quantities are compared with
those of the standard GGAs. Comparison shows that the GGA exchange functional represents both
exchange and molecular nondynamical left–right correlation, while the GGA correlation functional
represents only the dynamical part of the correlation. This role of the GGA exchange functional is
especially important for the transition states~TS! of the reactions where the left–right correlation is
enhanced. Standard GGAs tend to underestimate the barrier height for the reaction H1H2 and to
overestimate it for the reaction H21H2. For H21H2 the Kohn–Sham orbital degeneracy in the
square TS is represented with an equi-ensemble KS solution for both accurate KS/CI and GGA,
while near the TS ensemble solutions with unequal occupations of the degenerate highest occupied
orbitals are obtained. For the GGA ensemble solution a special ensemble formula for the GGA
exchange functional is proposed. Application of this formula to the H21H2 reaction reduces
appreciably the reaction barriers calculated with GGAs and leads to much better agreement with the
accurate value. The too low GGA barriers for the H1H2 reaction are attributed to overestimation of
the dynamical correlation in the TS by the GGA correlation functionals. In order to correct this
error, it is recommended to modify the dependence of the approximate correlation functionals on the
local polarization z with the purpose of reducing the approximate correlation energy for
intermediatez values, which are expected to characterize the TS’s of radical abstraction reactions.
© 1999 American Institute of Physics.@S0021-9606~99!30733-9#
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I. INTRODUCTION

With the advent of the generalized gradient approxim
tions ~GGAs!,1–4 density functional theory~DFT! has be-
come a powerful tool for computational chemistry. GGA
are successfully applied to the calculation of various mole
lar properties such as atomization energies and equilibr
geometries. However, the quality of the GGA calculations
potential energy surfaces of chemical reactions appears t
nonuniform. For certain types of reactions, most notably
the hydrogen abstraction reactions, it was established in
literature that the standard GGAs yield too low reacti
barriers.5–8 None of these studies compares GGAs with
essentially accurate Kohn–Sham~KS! solution, which can
be obtained from an accurateab initio electron densityr~r !.
Previously, such solutions have been obtained for a num
of atoms9–12 and molecules.13–20

In this paper the KS solution is constructed from anab
initio r and the KS exchange and correlation energiesEx and
Ec , as well as the corresponding exchange and excha
correlation energy densitiesex(r ) andexc(r ), are calculated
for a number of points@including the transition state~TS!#
along the paths of the simplest collinear hydrogen abst
tion reaction H1H2 and the symmetry-forbidden four-cent
exchange reaction H21H2. Theab initio densities have bee
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obtained with high quality configuration interaction~CI! cal-
culations at many points of the two-dimensional poten
energy surface~PES! of the symmetrical H21H2 reaction
and the collinear path of the H1H2 reactions. In Sec. II the
computational details are discussed and the method of
struction of the KS solution is characterized.

In Sec. III the PES for the reaction H21H2 is presented
and the construction of the KS solution around the square
of D4h symmetry is discussed. In this region the proper K
and GGA solutions are represented with an ensemble of
generate determinants similar to the case of the C2 molecule
considered in our previous paper.18 In Sec. IV the CI results
and the accurate KS exchange and correlation energy de
ties for the reaction H21H2 are compared with those o
GGAs. The standard GGAs appreciably overestimate the
action barrier. It is proposed to use for the GGA ensem
solution around the TS a special ensemble formula forEx .
Application of this formula reduces the reaction barriers c
culated with GGAs and leads to much better agreement w
the accurate value. In Sec. V the CI results and the KS
change and correlation energy densities for the reac
H1H2 are compared with the GGA ones. In agreement w
previous studies, GGAs are found to underestimate the
rier of this reaction. To improve the performance of the GG
6 © 1999 American Institute of Physics
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for H1H2 without worsening its results for H21H2, it is
proposed to modify the spin-polarization dependence of
GGA correlation energy functional in order to reduce t
Coulomb correlation of the electrons with like spins, whi
is overestimated by the GGA. In Sec. VI conclusions
drawn. One conclusion is that, owing to its localized mo
Fermi hole, the GGA exchange functional represents ef
tively both exchange and molecular left–right nondynami
correlation. The GGA correlation functional, in its turn, re
resents only the dynamical short-range correlation. The s
trend has been observed in our previous work for diato
molecules Li2, N2, F2,

16,17 and for H2.
21,22 Comparison of

the KS and GGA energy densitiesex(r ) andexc(r ) supports
this conclusion.

II. CALCULATION OF THE KS QUANTITIES

The iterative procedure used in this paper to obtain
Kohn–Sham orbitalsc i(r ) and potentialvs(r ) from an ab
initio densityr~r ! has been developed recently in Ref. 23.
starts from a trial potentialvs

0(r ):

vs
0~r !5vext~r !1vH~r !1vXa~r;r !12ex,nl

B ~r,u¹ru;r !

12ec
VWN~r;r !, ~2.1!

which produces the starting densityr0(r ) built from the or-
bitals c i

0(r ). In Eq. ~2.1! vext(r ) is the external potential o
the nuclei,vH(r ) is the Hartree potential of the electrosta
electron repulsion calculated with a suitable initial dens
vXa(r ) is the exchange-correlationXa potential,24 ex,nl

B is
the exchange energy density gradient correction of Bec3

and ec
VWN is the local density approximation~LDA ! of

Vosko, Wilk and Nusair25 for the correlation energy. At the
n11-th iteration a change of the potentialdvs

n(r )
5vs

n11(r )2vs
n(r ) is calculated using the totalrn(r ) and or-

bital r i
n(r )5 f i uc i

n(r )u2 densities obtained at the previous
eration as well as the targetr~r !:

dvs
n~r !5

1

4rn~r ! H ¹2r~r !2
r~r !

rn~r !
¹2rn~r !

2
1

rn~r ! S ¹r~r !•¹rn~r !2
r~r !

rn~r !
U¹rn~r !U2D J

1 (
i 51

N21

dvsi
n

r i
n~r !

rn~r !
, ~2.2!

wheredvsi
n 5^c i

nudvs
nuc i

n&, the diagonal matrix elements o
dvs

n , are calculated from a set of independent linear eq
tions

(
i 51

N S E r j
n~r !r i

n~r !

rn~r !
dr2 f jd j i 2 f id iND dvsi

n

52E r j
n~r !

4rn~r ! H ¹2@r~r !2rn~r !#

2¹•S @r~r !2rn~r !#¹rn~r !

rn~r ! D J dr . ~2.3!

To derive Eqs.~2.2!,~2.3!, the response of the KS orbitals t
the potential changedvs is considered within linear respons
loaded 11 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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theory and an approximation for the orbital density respo
dr i(r )'dr(r )r i(r )/r(r ) is employed.23 An updated poten-
tial vs

n11(r )5vs
n(r )1dvs

n(r ) is used to calculate a new se
of orbitalsc i

n11(r ) and the iterative procedure continues u
til convergence is reached. The accuracy of the resultant
solution can be characterized by the values of the abso
integral errorDr for the calculated densityrm(r )

Dr5E urm~r !2r~r !udr . ~2.4!

The magnitude ofr depends on the quality of the targetab
initio r as well as on the system considered. For the m
accurate target densities, typical errors are small, with
maximal errors being onlyDr50.0002e for the H3 TS and
Dr50.001e for the H4 TS. In general, the procedure of Eq
~2.1!–~2.3! provides a higher accuracy of the KS solutio
with fewer iterations compared to that of van Leeuwen a
Baerends26 employed in our previous work.

To obtainab initio correlated wave functions and dens
ties, the HF and subsequent CI calculations of the tw
dimensional PES of the H21H2 reaction and the collinea
H1H2 reaction have been performed by means of theATMOL

package.27 A basis of contracted Gaussian functions has b
used for the calculations. A high quality quintuple zeta ba
set ~cc-pV5Z!28 has been used for a number of points alo
the reaction paths. For the larger H21H2 system theg-type
polarization function has been omitted from the basis a
two f-type functions have been replaced with onef-function
taken from the quadruple cc-pVQZ basis. The extensive m
tireference CI~MRCI! calculations have been carried o
within the direct CI approach with the reference configu
tions produced by the inclusion of all excitations in an inte
nal space of 24 orbitals. All single and double excitatio
from each reference configuration have been included in
MRCI. For the bulk of the calculations for the PES a smal
~though also large enough! augmented triple zeta~aug-cc-
pVTZ! basis has been used. In this case the single refere
CI calculations have been carried out with all single a
double excitations from the HF configuration. The high qu
ity of our CI calculations can be illustrated by the fact th
they yield as barrier height of the hydrogen abstraction re
tion EB59.64 kcal/mol, which is even closer to the expe
mental valueEexp

B 59.7 kcal/mol5,29 than a high-quality quan-
tum Monte Carlo result of 9.61 kcal/mol.5,30

The Kohn–Sham exchange energy densityex(r1) has
been calculated according to the conventional expressio

ex~r1!52
1

2r~r1! (i 51

N

(
j 51

N E dr2

3
c i* ~r1!c j~r1!c j* ~r2!c i~r2!

ur12r2u
~2.5!

from the KS orbitalsc i(r ) obtained with the iterative proce
dure Eqs.~2.1!–~2.3!. The KS exchange-correlation energ
densityexc(r1) is defined according to Refs. 21, 31 as t
sum

exc~@r#;r !5vc,kin~@r#;r !1 1
2vxc

hole~@r#;r ! ~2.6!

of the potential of the exchange-correlation holevxc
hole
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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vxc
hole~r !5E r2~r1 ,r2!2r~r1!r~r2!

ur12r2ur~r1!
dr2 ~2.7!

and the kinetic partvc,kin

vc,kin~r1!5
¹18¹1@r~r18 ,r1!2rs~r18 ,r1!#ur

185r1

2r~r1!
. ~2.8!

To constructexc(r1) via Eqs.~2.6!–~2.8!, the first-order den-
sity matrix r(r18 ,r1) and the diagonal partr2(r1 ,r2) of the
two-electron density matrix have been calculated from
MRCI wave function by means of a Gaussian orbital dens
functional code13,32 based on theATMOL package. The KS
first-order density matrixrs(r18 ,r1) in Eq. ~2.8! has been
calculated from the orbitalsc i(r ).

The GGA functionals considered in this paper are
exchange-correlation functional of Perdew and Wang~PW
91!,4,33,34 the combination BP of the exchange functional
Becke3 and the correlation functional of Perdew~P86!1 and
the combination of the same exchange functional of Be
with the correlation functional of Lee, Yang, and Pa
~LYP!.2 The GGA calculations have been performed bo
self-consistently and with the CIr~r !. The GGA exchange
ex

GGA and exchange-correlationexc
GGA energy densities defin

according to the expressions

Ex
GGA@r#5E r~r !ex

GGA~@r#;r !dr , ~2.9!

Exc
GGA@r#5E r~r !exc

GGA~@r#;r !dr , ~2.10!

the corresponding exchangeEx
GGA and exchange-correlatio

Exc
GGA energies. In this paper the accurate KS energy dens

Eqs.~2.5! and~2.6! are compared with the GGA ones calc
lated with the CIr~r !. In particular, for the open-shell H1H2

system the total GGA exchange energy dens
ex

GGA(r↑,r↓;r ) has been calculated from the CI spi
densitiesr↑(r ) andr↓(r ) as follows:

ex
GGA~r↑,r↓;r !5

r↑~r !ex
GGA~r↑;r !1r↓~r !ex

GGA~r↓;r !

r~r !
.

~2.11!

III. POTENTIAL ENERGY SURFACE AND THE
ENSEMBLE SOLUTION FOR THE TS OF THE H 21H2
REACTION

Figure 1 presents the two-dimensional PES from a
calculation for the symmetry-forbidden four-center exchan
reaction H21H2. Each point of the figure corresponds to
rectangle H4 with sidesx and y, so thatr 5min(x,y) is the
bond distance in each H2 fragment andR5max(x,y) is the
distance between the fragments. Along the reaction path
the larger intermolecular separationsR.3.0 a.u. the bond
distancer in each H2 is close to its equilibrium valuer
51.4 a.u. for the individual H2 molecule. For the shorte
separationsr gradually increases until the system reaches
square transition state~TS! with r 5R52.32 a.u. This pro-
duces a monotonous increase of the total energy and a
reaction barrierEB5147.6 kcal/mol. The TS is unstable wit
respect to dissociation into a H2 molecule and two H atoms
loaded 11 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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being 38 kcal/mol higher than (H212H). Still, due to the
formation of ~formally! four relatively weak H–H bonds in
the TS, it is stable with respect to dissociation to four
atoms, with a corresponding atomization energy of 71 kc
mol.

The construction of the Kohn–Sham solution from t
ab initio CI r~r ! for H21H2 deserves special discussion, d
to the strong near-degeneracy correlation effects when
TS state with its high symmetryD4h is approached. On one
side of the reaction barrier~for the reagents! r~r ! is repre-
sented with the full-symmetry~in D2h! KS orbitalc(ag) and
the orbitalc(b2u), which has antibonding character with re
spect to new bonds~see Fig. 2!

r~r !52uc~ag!~r !u212uc~b2u!~r !u2. ~3.1!

This corresponds to the pure state KS determinantCs1:

Cs15detuc~ag!~r1!ac~ag!~r1!bc~b2u!~r2!ac~b2u!

3~r2!bu. ~3.2!

FIG. 1. The two-dimensional potential surface for the reaction H21H2.

FIG. 2. The orbital correlation diagram for the reaction H21H2.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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On the side of the productsr~r ! is represented withc(ag)
and the orbitalc(b3u), which has an antibonding charact
with respect to the old bonds

r~r !52uc~ag!~r !u212uc~b3u!~r !u2. ~3.3!

This corresponds to the pure state KS determinantCs2:

Cs25detuc~ag!~r1!ac~ag!~r1!bc~b3u!~r2!ac~b3u!

3~r2!bu. ~3.4!

These two determinants are similar to the HF determina
that would play the main role in the description of the wa
function in a CI calculation, which we may denoteCHF1 and
CHF2. When TS is approached theb2u orbital is destabilized
and theb3u orbital is stabilized and the mixing of the tw
determinants in the CI wave function increases. In the TS
b2u and theb3u orbitals become the degenerateeu2x , eu2y

pair of orbitals belonging to theEu irreducible representation
of D4h . The wave function will be predominantly the1B1g

CSF

C~TS!5
1

&
~ ueu2xa~1!eu2xb~2!u

2ueu2ya~1!eu2yb~2!u!. ~3.5!

In cases of strong configuration mixing, the KS solution m
no longer correspond to a single determinant, but it may
necessary to represent the exact density with an ensemb
KS determinants. The KS potential in that case leads t
degenerate HOMO; see the discussion in Ref. 18 and re
ences therein. This is what we have observed in the pre
case: as can be seen in Fig. 2, the KSb2u orbital becomes
degenerate with theb3u orbital before the TS is reached.
one would continue to occupy theb2u orbital and leave the
b3u orbital empty, a non-Aufbau situation would result. Th
non-Aufbau solution with a hole below the Fermi level
inadmissible in the KS theory, since it corresponds to
excited state of the noninteracting KS system.35 As a matter
of fact, we have observed that it becomes increasingly d
cult to generate a local potential that is such that the den
of the non-Aufbau determinant is equal to~close to! the ex-
act density.18 This local potential@which is not the KS po-
tential since its ground state~Aufbau! determinantal density
is not the exact density# starts to exhibit strange, unphysica
features. In the neighborhood of the TS, the KS solution t
properly reproduces the CIr~r ! corresponds to a KS poten
tial with degenerateb2u and b3u orbitals. The density is an
ensemble density of the noninteracting KS electron sys
with unequal fractional occupations of the orbitalsc(b2u)
andc(b3u)

r~r !52uc~ag!~r !u212duc~b2u!~r !u2

12~12d!uc~b3u!~r !u2, ~3.6!

which corresponds to the KS ensemble density matrixM̂ s

M̂ s5duCs1&^Cs1u1~12d!uCs2&^Cs2u. ~3.7!

Occupationd is determined with the procedure of Ref. 3
from the requirement, that for the KS solution with the de
loaded 11 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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sity Eq. ~3.6! the energies of the orbitalsc(b2u) andc(b3u)
should be equal to each other, thus defining the Fermi le
energyeF

e~c~b2u!!5e~c~b3u!!5eF . ~3.8!

The ground-state KS ensemble Eq.~3.7! does not contain a
hole below the Fermi level, as follows from Eqs.~3.6! and
~3.8!. Since Eq.~3.8! is an exact property of the unique K
solution, which reproduces,r, the occupationd is uniquely
determined by Eq.~3.8!.

In the square TS theD4h symmetry dictates forr~r ! the
form

r~r !52uc~a1g!~r !u21uc~eu2x!~r !u21uc~eu2y!~r !u2
~3.9!

with the singly occupied degenerate orbitalsc(eu2x) and
c(ee2y), which correlate with the orbitalsc(b3u) and
c(b2u), respectively. In this case the KS solution is d
scribed by the density matrixM̂ s representing a mixture~en-
semble! of the determinants

M̂ s50.5uCs3&^Cs3u10.5uCs4&^Cs4u, ~3.10!

Cs35detuc~a1g!~r1!ac~a1g!~r1!bc~eu2x!

3~r2!ac~eu2x!~r2!bu, ~3.11!

Cs45detuc~a1g!~r1!ac~a1g!~r1!bc~eu2y!

3~r2!ac~eu2y!~r2!bu. ~3.12!

This density is identical to the one resulting from a KS1B1g

CSF similar to Eq.~3.5! but built from the KS determinants
Cs3 andCs4 . We prefer to useMs for the representation o
the density and for the calculation of the KS energy com
nents for reasons to be discussed below.

Table I presents the occupationsd calculated for the
points along the reaction path in the neighborhood of the
The ensemble KS solution Eq.~3.6! with d,1 is found for
the segment 2.32<R<2.50 a.u.~the second column of Table
I!. For larger intermolecular separations the KS solution
the pure state Eq.~3.2!, while with R approaching the TS
valueR52.32 a.u., the ensemble solution turns to the eq
ensemble Eq.~3.10!. It represents a strong nondynamic
correlation between the electrons which in the wave funct
would become manifest as strong mixing of the configu
tions (ag)2(b2u)2 and (ag)2(b3u)2. The self-consistent GGA
calculations also produce the ensemble solution Eq.~3.6!
nearR52.32 a.u. and the equi-ensemble Eq.~3.9! in the TS

TABLE I. Occupationsd @Eqs.~3.6! and ~3.7!# for the KS and GGA solu-
tions near the transition state atR5r 52.32 bohr of the reaction H21H2. At
eachR the H–H distancer is as indicated by the crosses in Fig. 1. BP a
BLYP mean Becke~Ref. 3! exchange and Perdew 1986~Ref. 1! and LYP
~Ref. 2! correlation, respectively. PW means Perdew–Wang 1991~Refs. 4,
33, 34! exchange and correlation.

R KS PW BP BLYP

2.32 1.00 1.00 1.00 1.00
2.35 1.36 1.79 1.83 1.80
2.40 1.86 2.00 2.00 2.00
2.50 2.00 2.00 2.00 2.00
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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~see Table I!. In this case occupationd is obtained variation-
ally in the sense that the GGA energy is minimized under
constraint of anAufbautype of electron occupation, i.e., n
holes below the Fermi level and fractional occupation for
highest occupied orbitals such that they have equal ener
cf. Eq. ~3.8!. Note that GGA makes the ensemble regi
2.32<R<2.40 a.u. smaller compared to the accurate
solution.

We consider the definition of exchange and correlat
energies, and the proper evaluation of these quantities in
proximate treatments like LDA and GGA, in case of an
teracting electron system for which the corresponding
system is an ensemble

M̂s5(
i

di uCsi&^Csiu, ~3.13!

r~r !5(
i

dir i~r !. ~3.14!

The total energy has the form

E5(
i

diTsi1E drr~r !vext~r !

1
1

2 E dr1 dr2

r~r1!r~r2!

ur12r2u
1(

i
diExi1Ec, ~3.15!

whereTsi and Exi are the kinetic and exchange energies
the individual one-determinantal componentCsi of the en-
semble

Tsi5(
j

ni j E drc j* ~r !S 2
1

2
¹2Dc j~r !, ~3.16!

Exi52
1

4 (
j

(
k

ni j nik

3E dr1 dr2

c j* ~r1!ck~r1!ck* ~r2!c j~r2!

ur12r2u
~3.17!

@the orbital occupationsni j in Eqs.~3.16!, ~3.17! are either 1
or 0#. Equations~3.15!–~3.17! define the total correlation
energyEc as the difference between the exact total ene
and the other KS energy terms which can all be calcula
from the KS orbitals. Two comments are in order.

First we note that the difference between the definit
of exchange and correlation in the KS theory and the s
dard quantum chemistry definition31,37,38 is particularly rel-
evant in cases like the present one. Along the reaction c
dinate before and after the TS, there will be stro
configuration interaction between (ag)2(b2u)2 and
(ag)2(b3u)2, leading to a large~nondynamical! correlation
energy. In the TS, however, the higher symmetry leads to
restricted Hartree–Fock wave function Eq.~3.5!, in which
energy lowering due to this mixing is already accounted f
so only dynamical correlation remains. There is therefor
somewhat artificial discontinuity in the conventional corre
tion energy. As a corrollary, there is similar discontinuity
the RHF exchange energy, since the one-electron en
terms and the Hartree energy will not change strongly at
TS, so the remaining term, which is by definition the e
loaded 11 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
e

e
es,

S

n
p-

-
S

f

y
d

n
n-

r-

e

r,
a
-

gy
e

-

change energy of the RHF model, will in the TS becom
much larger~more negative! since it will incorporate the
near-degeneracy correlation. In the KS case such a disc
nuity does not arise in either the exchange or correlat
energy when we use the ensemble representation along
complete reaction coordinate, including the TS point. T
crucial point is that we continue to take for the exchan
energy a weighted sum of single-determinantal exchange
ergies. In principle, just at the single point of the D4h sym-
metry ~but nowhere else in the ensemble region! this sum
depends on the transformation of the degenerateeu-x and
eu-y orbitals, which changes the degree of their localizat
~this problem is a common one for the application of vario
one-electron methods to high-symmetry states49!. However,
our results show continuity of the energies~3.15! obtained at
the high-symmetry point and in its neighborhood whe
~3.15! is unambigously defined in terms of the canonical K
orbitals. This means that the degenerate orbitals of the
high-symmetry point we use are the delocalized contin
tions of the canonical KS orbitals at the adjacent points.

In the second place we note that, in case of an ensem
KS solution, GGAs encounter a problem with the choice
the proper formula for the GGA exchange energy function
In approximate treatments~LDA, GGA! the exchange energ
is not calculated from orbitals but from the density. One c
in the conventional way, insert the total ensemble density
~3.14! into a certain GGA exchange energy function
Ex

GGA@r#

Ex
GGA5Ex

GGAF(
i

dir i G
5(

i
diE drr i~r !exS F(

i
dir i G ;r D . ~3.18!

Alternatively, in analogy with Eqs.~3.15!, ~3.17!, one can
insert the densityr i of the individual ensemble componen
into Ex

GGA@r# and sum up the resulting energies over t
ensemble

Ex
GGA~e!5(

i
diEx

GGA@r i #5(
i

diE drr i~r !ex~r i ;r !.

~3.19!

Evidently, the energies Eqs.~3.18! and ~3.19! are not equal
to each other. Indeed, each component of Eq.~3.19! repre-
sents the exchange interaction ofr i(r ) with itself, while in
Eq. ~3.18! this interaction is partially replaced with the inte
action with other componentsr j Þ i of the ensemble. The lat
ter interaction is smaller than that ofr i(r ) with itself, so one
can expect that the energy Eq.~3.19! is lower ~more nega-
tive! than Eq.~3.18!. In a different context~the approximate
calculation of excited multiplet energies!39 arguments have
been given for the exclusive use of the available approxim
exchange functionals for single KS determinants only. O
single determinants will obey with certainty the conditio
for the exchange hole that have been used to derive m
expressions for the exchange functional. So we use as
proximate GGA exchange energy a weighted sum of sing
determinantal GGA exchange energies. As will be shown
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the next section, the difference between Eqs.~3.18! and
~3.19! is of importance for proper estimation of the H21H2

reaction barrier by GGAs.

IV. COMPARISON OF THE KS AND GGA RESULTS
FOR H21H2

Table II compares the total energies calculated along
reaction path of H21H2 by the CI and GGAs. The third
column of the table contains the CI total energies~in Har-
trees!, while other columns contain differences betwe
these CI values and those of the GGA approximations~pre-
sented in kcal/mol and the sign defined asDGGA5EGGA

2ECI.! The columns labeled SCF contain energies from
SCF GGA calculation. The column labeledrCI uses the KS
orbitals determined from the CI density for the kinetic e
ergy andrCI for the electron-nuclear and Hartree energi
and in addition usesrCI in the GGA exchange and correla
tion energies. The standard formula Eq.~3.18! is employed
for the exchange energy in both cases. The differences in
kinetic, electron-nuclear and Hartree terms are individua
not small, but the summed values are rather close; so are
exchange and correlation energies withrSCF andrCI, there-
fore the total energies are close to each other for all fu
tionals and all points considered. All GGAs reproduce
monotonous increase of the CI total energy toward the

TABLE II. CI total energies~a.u.! and the differences between the GGA a
CI total energies~kcal/mol! for the path of the reaction H21H2. ColumnrCI

is calculated with the KS orbitals for the kinetic energy andrCI for all other
energy terms. The standard expression Eq.~3.18! for the GGA exchange
energy has been used.

R r CI

DPW DBP DBLYP

SCF rCI SCF rCI SCF rCI

2.32 2.32 22.113 15.5 17.7 7.1 9.2 20.4 22.7
2.35 2.29 22.115 13.9 16.8 5.4 8.3 18.7 21.7
2.40 2.21 22.127 6.6 10.8 21.9 2.2 11.4 15.8
2.50 2.06 22.166 2.1 2.9 26.4 25.6 6.6 7.9
2.75 1.68 22.263 1.3 1.9 27.0 26.6 5.1 6.1
3.00 1.44 22.308 2.8 3.4 25.4 25.0 7.7 6.6
4.00 1.41 22.341 3.7 4.4 24.7 24.3 5.5 6.6
5.00 1.40 22.347 3.8 4.5 24.8 24.4 5.2 6.3

10.0 1.40 22.348 4.0 4.7 25.4 25.0 4.7 5.8
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Compared to the total increase in the CI energy of 0.2
Hartree~147.6 kcal/mol!, the ‘‘errors’’ are modest, the dif-
ference between the SCF and therCI cases being almost a
order smaller still.

The CI reaction barrierEB, the accurate KS contribu
tions toEB from exchangeEx

B and correlationEc
B as well as

the KS exchange and correlation energies~all in kcal/mol!
for the TS and well-separated H2 molecules atR510 a.u. are
presented in the second column of Table III. Note thatEx

B

and Ec
B are KS quantities; they are calculated with Eq

~3.15!–~3.17! using the accurate KS orbitals and the e
semble weightsdi . The exchange brings a large positiv
contributionEx

B5129 kcal/mol toEB, while the correlation
makes an appreciable negative contributionEc

B

5237.4 kcal/mol. This may be understood from the e
change~Fermi! and correlation~Coulomb! hole functions
rx(r2ur1) andrc(r2ur1), from which the exchange energyEx

and the electron–electron potential energy part of the co
lation energy,Wc , can be obtained:

Ex5
1

2 E r~r1!rx~r2ur1!

ur12r2u
dr1 dr2 , ~4.1!

Wc5
1

2 E r~r1!rc~r2ur1!

ur12r2u
dr1 dr2 . ~4.2!

In the separated molecule limit the exchange and correla
in each H2 molecule are represented with exchange and c
relation holes which are localized within a single molecu
~the molecule where the reference electron is located!. For
the exchange hole this can easily be understood from the
that the exchange hole has approximately the shape of
localized orbital with large amplitude at the referen
position.40,41The approach to the TS causes delocalization
the exchange hole over all four H atoms. The exchange
ergy is the weighted average of the exchange energies o
determinantsCs1 andCs2 and in both determinants the ex
change hole delocalizes when the interaction between
orbitals on the two monomers becomes strong~orbital local-
ization will be less effective!. Delocalization of the exchang
hole charge of one electron produces a decrease of the
change energy~it becomes less negative!, hence the observed
positive contributionEx

B to the barrier. The correlation con
tribution to the barrier is on the contrary negative, since
n
ibu-
m

TABLE III. Reaction barriers for H21H2 @EB5E(R52.32)2E(R510)# and the exchange and correlatio
energies for the transition state andR510 a.u. together with the resulting exchange and correlation contr
tionsEx

B andEc
B ~kcal/mol! to the barrier energyEB. The entries in the CI/KS column have been obtained fro

CI energies~for EB! and from the accurate KS model obtained from the CI density, cf. Eqs.~3.15!–~3.17! for
all other energies. TheDGGA columns contain the differences between the GGA and CI/KS quantities~in
kcal/mol!, DGGA(s) uses the standard formula Eq.~3.18! for the exchange part,DGGA(e) the ensemble
formula Eq.~3.19!. For the correlation energy alwaysEc

GGA@rC# is used.

CI/KS DPW(s) DPW(e) DBP(s) DBP(e) DBLYP(s) DBLYP(e)

EB 147.56 13.04 3.21 14.16 3.93 16.85 6.63
Ec(TS) 288.48 28.44 25.16 38.63
Ec(10) 251.06 26.53 27.82 2.96
Ec

B 237.42 34.97 32.98 35.67
Ex(TS) 2701.10 210.71 220.53 215.97 226.20 215.97 226.20
Ex(10) 2830.07 11.22 11.22 2.85 2.85 2.85 2.85
Ex

B 128.97 221.93 231.75 218.82 229.05 218.82 229.05
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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electron correlation effects will be stronger in the we
bonds between the H atoms in the TS than in the strong H
bonds in each of the two separated monomers. When a
erence electron is near one H nucleus, one expects a m
strongly localized Coulomb hole surrounding it in the T
state than in an H2 molecule at equilibrium geometry, cf. Fig
1 in Ref. 31. The strengthening of the Coulomb correlat
in the TS due to the increased nondynamical interato
~‘‘left–right’’ ! correlation produces the observed negat
contribution of the correlation toEB.

In Table III the differences between the exact KS e
change and correlation contributions and the GGA ones~us-
ing rCI! are given. TheDGGA numbers for the total barrie
EB are just the sum of the exchange and correlation con
butions, assuming for this comparison that total ‘‘GGA’’ e
ergies would be calculated with the KS orbitals forTs and
rCI in all other terms, in particular inExc

GGA@r# ~cf. column
rCI in Table II!. We note in Table III that the GGA exchang
energies have a less repulsive contributionEx

B than the exact
exchange energy of CI/KS. The difference is ca.220 kcal/
mol for the standard GGA energies, Eq.~3.18!, and some
210 kcal/mol more for the ensemble expression Eq.~3.19!.
The GGA correlation energy contribution to the barrier d
viates in the opposite~positive! direction from the exact
quantity Ec

B . In fact, the difference of1352136 kcal/mol
is almost as large as the exactEc

B of 237.4 kcal/mol, imply-
ing an almost zeroEc

B(GGA). In order to understand thes
trends we refer to Refs. 16, 17 where it was established
the case of the dimers Li2,N2,F2 that the exchange GGA
functionals with their localized model holes represent eff
tively just the combination of exchange and molecular n
dynamical left–right correlation. This interpretation does n
contradict the fact that the GGA exchange function
~Becke’s functional,3 in particular! are fitted to reproduce
only the atomic exchange energies. Indeed, the atomic
change effects arise from a localized exchange hole, so
approximation that uses atomic results will correspond t
localized hole. In a molecule, however, it is only the com
nation of exchange and correlation holes, which are indivi
ally delocalized, that produces a localized hole that can
modeled as an atomic exchange hole. In their turn, the G
correlation functionals represent only dynamical correlati
which is also described by a localized hole. Taken toget
the GGA exchange and correlation functionals cover all
exchange-correlation effects, which explains the succes
GGAs in molecular calculations.

The results for the H21H2 reaction confirm this interpre
tation of the GGA exchange and correlation. We start
analysis with the correlation functionals. For the separa
molecules atR510 a.u., where the correlation energy
each H2 is close to the energy of the dynamical correlation
the isoelectronic He atomEc

He520.042 H5226.4 kcal/mol,
the GGA correlation energiesEc

GGA for H21H2 are close to
the KS valueEc

KS5251.1 kcal/mol@e.g.,Ec(10) with PW is
at 257.6 kcal/mol only 6.5 kcal/mol lower thanEc

KS #. How-
ever, while the exactEc becomes much more negative in th
TS ~288.5 kcal/mol!, the GGA correlation energies do no
follow this trend and stay much closer to the values at la
separation@Ec

PW(TS) for instance is260 kcal/mol, a differ-
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ence now of128.4 kcal/mol withEc
KS#. So all GGAs fail to

reproduce the strengthening of correlation in the TS due
the nondynamical correlation~note the large positive differ-
ences betweenEc

B(GGA) and Ec
B in Table III!. This agrees

with the interpretation that the GGA correlation functiona
represent only dynamical correlation.

Both exchange GGA functionals considered~Becke and
Perdew-Wang! underestimate exchange slightly for the sep
rated molecules, the corresponding error is small~12.85
kcal/mol! for the Becke functional and it is somewhat larg
~111.2 kcal/mol! for the Perdew-Wang one. However, in th
TS they appreciably overestimate exchange with the stan
formula Eq. ~3.18!; the overestimation increases by ca.
kcal/mol when the ensemble formula Eq.~3.19! is used. The
net effect is a considerable negative deviation of the G
exchange contribution to the barrier. It is remarkable that t
negative deviation compensates the missing effect of
nondynamical correlation in the GGA correlation functio
als, so that the GGA errors for the total barrierEB are con-
siderably smaller than those for the individual compone
Ec

B and Ex
B . Thus the exchange GGA functionals represe

both exchange and, effectively, molecular nondynamical c
relation.

This interpretation finds further support from the com
parison of the exchangeex(r ) and exchange-correlatio
exc(r ) energy densities constructed for the accurate KS
lution with those calculated with GGAs. The energy den
ties of the LDA are also presented for comparison. In Fig
all energy densities are plotted as functions of the distancx
from the bond midpoint along the molecular axis of the2
molecule~the H atom is atx50.7 a.u.! separated by 5 a.u
from another H2 molecule. In spite of the fact that for well
separated molecules bothex(r ) andexc(r ) are integrated to
nearly the same energies as the GGA functions, their form
very different. This seems to be an exceptional feature
systemsHn with light H atoms, since for systems of heavi
elements the KS and GGA energy densities look much m
alike.17 In particular, due to the fact that the KS exchan
hole is delocalized over both H atoms of the small H2 mol-
ecule, the corresponding functionex(r ) has its minimum at
the bond midpoint, whileex

GGA(r ) exhibits a well around the
H atom @see Fig. 3~a!#. Note also the clear difference be
tween two GGA exchange energy densities at largerx: ex

B(r )
has the proper Coulombic asymptotics, so it followsex(r )
rather closely in this region, whileex

PW(r ) decays much
faster. The exchange-correlation functionexc(r ) has a very
shallow descent when going from the bond midpoint to the
atom@see Fig. 3~b!#; still the overall picture is similar to tha
for the exchange-only functions, since in this case the
change clearly dominates over the correlation. All appro
mate functions are appreciably more negative thanex(r ) and
exc(r ) around the nucleus and they are higher at largerx, so
that the good agreement between the KS and GGA ener
emerges as a result of the cancellation of the GGA lo
errors in these regions.

Note that the comparison of the GGA energy densit
with the KS ones can be criticized,42 because~1! the GGA
and KS functions might have different definitions due to t
nonuniqueness of the energy density and~2! depending on its
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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actual structure, a certain GGA energy density can be tra
formed within the procedure of partial integration, whic
preserves the resulting energy, but changes the form of
energy density function. These reasons, however, canno
plain the observed differences between the KS and G
functions. It is the exchange that dictates the form of
curves in Fig. 3, but both GGA and KS exchange ene
densities are based on the same definition Eq.~2.5!. Further-
more, the GGA exchange energy densities behave like
LDA one and, indeed, they contain the LDA part. The latt
however, is a trivial functioncr1/3.

FIG. 3. The Kohn–Sham and GGA energy densities for the H2 unit of the
H21H2 at R55 a.u. ~a! Exchange energy densities and~b! exchange-
correlation energy densities.
loaded 11 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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In Fig. 4 the GGA and KS energy densities for the T
are also plotted as functions of the distancex from the mid-
point of the bond between two H atoms with the H ato
placed atx51.16 a.u. Due to the delocalization of the e
change hole over all four H atoms, the KSex(r ) in Fig. 4~a!
remains a shallow function in the bonding region. Here,
difference betweenex(r ) and the corresponding GGA func
tions becomes even larger than in Fig. 3~a!, which reflects
the abovementioned effective inclusion of the strong non
namical correlation in the TS into the GGA exchange fun
tionals. Note the pronounced bond midpoint peak of b

FIG. 4. The Kohn–Sham and GGA energy densities for the transition s
of the H21H2 reaction.~a! Exchange energy densities and~b! exchange-
correlation energy densities.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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LDA and GGA functions, which brings them to higher ene
gies thanex(r ). Remarkably, with the inclusion of the non
dynamical correlation at the KS level, the form of the to
exchange-correlation KS functionexc(r ) becomes much
closer to that of the corresponding GGA functions@see Fig.
4~b!#. Now, exc(r ) possesses the same pronounced pea
the GGA exchange-only functions, which indicates that
GGA exchange functionals attempt to simulate not only
effect of the nondynamical correlation on the integrated
ergies, but also its local influence on the form of the ene
density functions.

The most important result of this section is the go
performance of the ensemble formula Eq.~3.19! for the
GGA exchange energy. Indeed, the GGA reaction barr
calculated with the standard formula Eq.~3.18! are apprecia-
bly higher than the CI one~by 13–17 kcal/mol, see Tabl
III !. However, the employment of the ensemble formula i
proves considerably the performance of the GGAs. In p
ticular, the barrier error reduces to 3.2 kcal/mol for the P
functional and to 3.9 kcal/mol for BP, while BLYP produce
a somewhat larger error of 6.6 kcal/mol. To improve t
quality of the reaction barriers calculated with approxim
DFT methods, it was proposed in the literature8 to use the
hybrid schemes,43,44 in which standard LDA and GGA
exchange-correlation functionals are combined with
KS/HF exchange functional built from the LDA orbitals.
has also been proposed5,45 to improve density functional re
sults for TS barriers by the use of the self-interaction corr
tion ~SIC!,46 where a part of the LDA/GGA exchange
correlation functional is replaced with minus the sum of t
exact self-interaction terms for the occupied orbitals. In
effect SIC is, to some extent, similar to the hybrid schem
since the inserted self-interaction terms constitute a m
part of the KS/HF exchange. Both schemes can help in c
where the standard GGA methods underestimate barrier~as
in the case of the H1H2 reaction studied in the next section!,
otherwise the use of the hybrid schemes or SIC may wor
the results as well. As one can see from Table III, in the c
of H21H2 any mixture of the KS exchange with the GG
exchange-correlation functional can only increase the alre
too high barrier and therefore worsen the agreement with
accurate CI value.

Based on the comparison between GGAs and the a
rate KS/CI performed in this section, we recommend to
the exchange energy expression Eq.~3.19! in cases of sym-
metry ~or near-symmetry! degeneracy as well as in cases
the accidental degeneracy18 when GGA produces an en
semble KS solution Eq.~3.7! with fractional occupations o
the degenerate KS orbitals at the Fermi level.

V. COMPARISON OF THE KS AND GGA RESULTS
FOR H1H2

Table IV compares the total CI energies calculated alo
the collinear reaction path of the hydrogen abstraction re
tion H1H2 with GGA energies. It is organized in the sam
manner as Table II—the CI energies are presented in H
trees and the differences between the GGA and CI ener
are presented in kcal/mol. The energies are given for a n
ber of distancesR between the incoming H atom and th
loaded 11 Mar 2011 to 130.37.129.78. Redistribution subject to AIP licens
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neighboring atom of the H2 molecule; the bond distancer of
the latter is optimized for eachR. In the transition state H3
with R5r 51.76 a.u. the H–H bond of the isolated H2 mol-
ecule is replaced with a three-center bond, which is rep
sented with the full-symmetry KS orbitalc(1sg), while the
unpaired electron occupies the nonbonding orbitalc(1su),
which has a node on the central H atom. The bonding in
TS is only slightly weaker than in H2, so that the CI energy
of H1H2 slowly increases toward TS and the reaction barr
is only 9.64 kcal/mol. Again, the GGA energies calculat
self-consistently and with the CIr~r ! and corresponding KS
orbitals are close to each other, which allows us to conc
trate our analysis on the latter results.

Table V is organized in the same way as Table III.
presents in the first row the CI reaction barrierEB, and the
deviations of the GGA barrier heights from the CI barrie
The deviations are all negative and appreciable, i.e.,
GGA barriers are 50% and more reduced compared to th
barrier. Table V also lists in the CI/KS column the accura
KS contributions toEB from exchangeEx

B and correlationEc
B

~all in kcal/mol!, as well as the KS exchange and correlati
energies for the TS and forR55 a.u. from which the values
for the corresponding contributions to the barrier height
derived. As in the case of the H21H2 TS of the previous
section, the KS exchange brings a large positive contribu
Ex

B529.7 kcal/mol, while the correlation makes an app
ciable negative contributionEc

B5214.5 kcal/mol. For the
exchange this can be explained again as a result of the d
calization of the unit charge of the exchange hole in the T

TABLE IV. CI total energies~a.u.! and the differences between the GG
and CI total energies~kcal/mol! for the path of the reaction H1H2.

R r CI

DPW DBP DBLYP

SCF rCI SCF rCI SCF rCI

1.76 1.76 21.659 25.2 23.3 211.5 29.9 22.9 20.8
1.80 1.71 21.659 25.1 23.3 211.5 29.9 22.9 20.8
1.90 1.62 21.659 24.8 23.0 211.1 29.5 22.6 20.4
2.00 1.57 21.660 24.4 22.5 210.6 28.9 22.2 0.0
2.25 1.49 21.662 23.1 21.1 29.1 27.3 20.9 1.3
2.50 1.45 21.665 22.0 0.1 27.6 25.9 0.3 2.5
3.00 1.42 21.669 20.3 1.4 25.3 23.9 2.1 3.9
4.00 1.41 21.673 0.9 2.0 23.2 22.4 3.6 4.8
5.00 1.40 21.674 1.09 2.0 22.6 22.0 3.9 5.0

TABLE V. Reaction barriersEB for the reaction H1H2 with the exchange
and correlation contribution~kcal/mol!, the exchange and correlation ene
gies for the transition state andR55 a.u. calculated with CI/KS, and the
differences between the GGA and CI/KS quantities~in kcal/mol! ~see also
caption to Table II!.

CI/KS DPW DBP DBLYP

EB 9.64 25.4 28.0 25.8
Ec(TS) 240.79 20.50 22.08 7.04
Ec(5) 226.32 26.71 25.11 1.85
Ec

B 214.47 6.2 3.0 5.2
Ex(TS) 2581.31 22.85 27.86 27.86
Ex(5) 2611.01 8.72 3.15 3.15
Ex

B 29.70 211.6 211.0 211.0
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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which leads to a decrease of the exchange energy. As fo
negative correlation contribution to the barrier, the wea
bond in the TS leads to a larger~more negative! correlation
effect in the TS due to the stronger nondynamical left–ri
correlation.

The other columns of Table V exhibit the differences
the GGA quantities from the corresponding CI/KS ones~sign
of DGGA quantities defined asEGGA2ECI/KS!. The differ-
ences for the separate energy components—excha
correlation—allow us to analyze what causes the GGA e
in the barrier height~first row of Table V!. We note that the
GGA exchange energy contribution to the barrier is ca.
kcal/mol less positive than the KS one. Again, this is to
attributed to the fact that GGA exchange incorporates
nondynamical correlation effect. Indeed, the differenc
Ex

B(PW)2Ex
B5211.6 kcal/mol and Ex

B(B)2Ex
B5211.0

kcal/mol between the GGA and KS exchange contributio
to the barrier approach the KS result214.5 forEc

B , which of
course also contains a small dynamical correlation contr
tion. This is analogous to to the H21H2 case, where the
Ex

B(GGA) differed ca.230 kcal/mol from the KS exchang
barrier, to be compared to the KS result of237.4 kcal/mol
for Ec

B in that case.
The performance of the GGA correlation functionals

this case, however, differs from that for H21H2. In the latter
case the GGA correlation energies yield only small nega
Ec

B(GGA) of a few kcal/mol~theDGGA numbers forEc
B are

ca.135 kcal/mol, canceling most of the237.4 kcal/mol for
Ec

B!. This is consistent with the assumption that the nega
Ec

B is mostly a nondynamical correlation effect, whereas
GGA correlation functionals only represent the dynami
correlation, which differs little between the TS and separa
systems. However, for the H3 Ec

B the DGGA numbers, al-
though being positive, by no means cancel the KSEc

B . In
fact, the GGAs bring appreciable~compared to the height o
the barrier! negative contributions to the barrierEc

B(GGA)
5Ec

B1D(GGA), i.e.; Ec
B(PW91)528.3 kcal/mol,Ec

B(P86)
5211.5 kcal/mol and Ec

B(LYP)529.3 kcal/mol. If the
GGAs for correlation do not represent the nondynamical c
relation in the TS~which causes the negative KSEc

B of
214.5 kcal/mol!, but do describe dynamical correlation, th
apparently overestimate the dynamical correlation in the3

TS. In the TS the lack of nondynamical correlation in t
GGAs for correlation should cause appreciable posit
DGGA values~as is the case in the H21H2 TS, see Table
III !, but the correlation energiesEc(TS) of the GGA PW91
and P86 functionals are similar to@actually 0.5–2 kcal/mol
larger ~more negative! than# the KS one, and only the LYP
energy is somewhat smaller, but it is also smaller for
separated H and H2 ~see Table V!.

Thus, a possible reason of the too low GGA barriers
the hydrogen abstraction reactions is the overestimation
the GGA correlation functionals of the dynamical correlati
in open-shell systems~such as the H3 TS!, for which a typi-
cal absolute value of the local polarizationz(r )5@r↑(r )
2r↓(r )#/r(r ) is in between 0 and 1. By construction, all th
GGA correlation functionals considered yield only a sm
artificial correlation energy for the separated H atom w
z(r )51. In particular, it equals 2 kcal/mol for P86,1 it is 0.07
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kcal/mol for PW91,34 and the LYP functional by
construction2 has the correct zero correlation energy for
However, the GGA correlation functionals may well overe
timate slightly the dynamical correlation for the intermedia
polarizations 0,uz(r )u,1. This appears to be the case f
the H3 TS where the unpaired electron is localized on t
terminal H atoms, so that for these atomsuz(r )u is in be-
tween 0 and 1. This conclusion is supported by the fact t
generally, GGAs tend to underestimate barriers of rad
abstraction reactions in open-shell systems. Based on
comparison between GGAs and the accurate KS/CI p
formed in this section, we recommend to modify th
z-dependence of the approximate correlation functionals
order to reduce the correlation for the intermediatez values
and, as a result, to increase the barriers calculated for rad
abstraction reactions.

It is also possible to try to correct the GGA resu
straightforwardly by trying to develop an exchange fun
tional that gives results close to the exact~KS! exchange, and
a correlation functional that agrees closely with the KSEc ,
both in the TS and in the separated systems. It has in
been proposed in the literature5,8,45to improve the calculated
barriers by using the hybrid ‘‘KS exchange1GGA/LDA
exchange-correlation’’ schemes or the self-interaction c
rection~SIC!. Of course developing functionals for the exa
KS exchange and correlation are perfectly valid and wou
if such functionals can be found, provide the desired solut
to the GGA error for the barrier. In fact, such a schem
would, by construction, also provide an exact description
the simplest molecular open-shell system H2

1 , for which the
LDA and GGA exchange functionals make a large er
compared to the exact~KS! exchange at long bond distanc
Recently, this system was discussed in the literature in c
nection with the failure of GGA for weak three-electron tw
center bonds.47 We here propose an alternative remed
which is based on our observation16,17 that the present GGA
‘‘exchange’’ functionals do not in fact describe ‘‘exact e
change’’ very well, but describe the exchange plus non
namical correlation quite accurately. Since this also appe
to hold in the H1H2 transition state, that leaves the GG
‘‘correlation’’ functional as the only functional to be cor
rected for its overestimation of the dynamical correlation
cases of intermediate spin polarization.

In Figs. 5 and 6 the exchangeex(r ) and exchange-
correlationexc(r ) energy densities constructed for the acc
rate KS solution are compared with those calculated w
GGAs and LDA. All energy densities are plotted along t
main axis of the reaction system H3 with the origin placed at
the central H atom. In particular, Fig. 5~a!, 5~b! shows the H
atom and H2 molecule separated atR55 a.u. Evidently, their
H2 portions display the same picture as that in Fig. 3~a!, 3~b!
for the separated H2 fragment of the H21H2 system dis-
cussed in the previous section. The separated H atom is
resented with a well, which describes the excluded s
interaction of the 1s-electron. For both H and H2 all GGA
functions are too low around the nuclei and too high at lar
electron-nuclear distances.

Figure 6 shows the H3 TS. The shallow form of the KS
ex(r ) reflects delocalization of the exchange hole over
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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three H atoms, while the GGA exchange functionals exh
rather sharp wells around all H atoms. These wells of cou
persist in theexc

GGA functions in Fig. 6~b!, becoming actually
slightly deeper than inexc

GGA. As in the case of H21H2, the
inclusion of the nondynamical left–right correlation at t
KS level brings more pronounced wells around the nuc
and peaks in the bond midpoint regions inexc(r ), which
therefore is closer toexc

GGA(r ). Still, the corresponding loca
differences are large, withexc

GGA(r ) being too low in the
whole interior region of the H3 TS and too high foruzu
.2.4 a.u. In spite of these local differences, a remarka

FIG. 5. The Kohn–Sham and GGA energy densities for the H1H2 at R
55 a.u.~a! Exchange energy densities and~b! exchange-correlation energ
densities.
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good agreement between the integrated KS and G
exchange-correlation energies~cf. Table V! emerges as a re
sult of cancellation of the differences between the cor
sponding energy densities.

VI. CONCLUSIONS

In this paper the KS solution has been constructed fr
the CI density and the KS exchangeEx and correlationEc

energies; as well, the corresponding exchangeex(r ) and
exchange-correlationexc(r ) energy densities have been o
tained for the simplest hydrogen abstraction reaction H1H2

FIG. 6. The Kohn–Sham and GGA energy densities for the transition s
of the H1H2 reaction.~a! Exchange energy densities and~b! exchange-
correlation energy densities.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Down
and the four-center exchange reaction H21H2. The KS/CI
quantities and functions have been compared with thos
the standard GGAs. The comparison corroborates our ea
finding16,17 that within GGA the exchange functional repr
sents both exchange and molecular nondynamical left–r
correlation, while the correlation functional represents o
the dynamical part of the correlation. This role of the GG
exchange functional is especially important for the transit
states of the reactions where the left–right correlation is
hanced.

The standard GGAs tend to underestimate the bar
height for the reaction H1H2 and to overestimate it for the
reaction H21H2. For the latter reaction the Kohn–Sham o
bital symmetry degeneracy in the TS is represented w
equi-ensemble KS solutions for both accurate KS/CI a
GGA, while near the TS ensemble solutions with uneq
occupations of the degenerate orbitals have been obtaine
the general case of the GGA ensemble solution it has b
proposed to use a corresponding ensemble formula for
GGA exchange functional. Application of this formula to th
H21H2 reaction reduces appreciably the reaction barr
calculated with GGAs and leads to a much better agreem
with the accurate value.

The too low GGA barriers for the H1H2 reaction have
been attributed to the overestimation of the dynamical co
lation in the TS by the GGA correlation functionals. In ord
to correct this error and, in general, the too low GGA barri
for radical abstraction reactions, it has been recommende
modify the dependence of the approximate correlation fu
tionals on the local polarizationz with the purpose to reduc
the correlation for intermediatez values, which are expecte
to characterize transition states of these reactions. It has
proposed in the literature5,8,45 to improve the calculated bar
riers by using the hybrid KS ‘‘exchange1GGA/LDA
exchange-correlation’’ schemes or the self-interaction c
rection ~SIC!. However, this approach, which will increas
the barrier, would not work in cases where the barrier
already too high, and we have identified the reaction H21H2

considered in Sec. IV as such a case. So, rather than tryin
correct the GGA exchange so as to bring it closer to the e
~KS! exchange, we consider the GGA ‘‘exchange’’ fun
tional as an approximation to exchange plus nondynam
correlation. This is based on our earlier observation16,17 that
the GGA ‘‘exchange’’ in fact does provide a good appro
mation to exchange plus nondynamical correlation. It is th
the overestimation of dynamical correlation by the GG
‘‘correlation’’ functionals in cases of intermediate spi
polarization that has to be corrected. The recommendat
developed in this paper do not interfere with each other. T
ensemble formula for the exchange energy which is ap
cable in the H21H2 case and other cases48 can be naturally
incorporated into existing DFT models and improveme
using thez-dependence of approximate correlation functio
als, which are relevant for radical reactions like H1H2, can
be developed independently.
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