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COINTEGRATION TESTING USING
PSEUDOLIKELIHOOD RATIO TESTS

ANDR£ LUCAS
Free University Amsterdam

This paper considers pseudomaximum likelihood estimators for vector auto-
regressive models. These estimators are used to determine the cointegration rank
of a multivariate time series process using pseudolikelihood ratio tests. The
asymptotic distributions of these tests depend on nuisance parameters if the
pseudolikelihood is non-Gaussian. This even holds if the likelihood is correctly
specified. The nuisance parameters have a natural interpretation and can be
consistently estimated. Some simulation results illustrate the usefulness of the
tests: non-Gaussian pseudolikelihood ratio tests generally have a higher power
than the Gaussian test of Johansen if the innovations demonstrate leptokurtic
behavior.

1. INTRODUCTION

The cointegration literature has been rapidly developing over the last decade.
Much effort has been put into the construction of statistics for determining
the number of cointegrating relationships and the exact form of these rela-
tionships (see, e.g., Engle and Granger, 1987; Phillips and Durlauf, 1986;
Park and Phillips, 1988; Phillips, 1988, 1991; Johansen, 1988, 1989, 1991;
Park, 1992; Boswijk, 1992; Bierens, 1994; Kleibergen and van Dijk, 1994;
Stock, 1994). In all of these procedures the ordinary least-squares (OLS)
estimator plays an important role. Skimming the empirical literature for
applications of cointegration testing procedures, one finds that the likelihood-
based testing procedure of Johansen (1988, 1991) is mostly used. This pro-
cedure of Johansen also heavily relies on the OLS estimator through the
(OLS) residuals of certain preliminary regressions.

The OLS estimator has several advantages. First, the estimator has a closed
form and is, therefore, easy to compute. It is also available in most statisti-
cal computer packages. Second, because of its simple form, an asymptotic
analysis of the properties of the OLS estimator is analytically tractable.
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Third, the estimator has some optimality properties (e.g., minimum variance)
if the disturbances in the model are normally distributed.

The OLS estimator, however, also has certain disadvantages, especially
from a sensitivity point of view. In the standard linear regression model with
stationary variables, the variance of the OLS estimator quickly increases if
the disturbances become more fat-tailed. Moreover, outliers and influential
observations have a large impact on the estimates. For both issues, see Huber
(1981) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

This sensitivity of OLS can be avoided by considering alternative classes
of estimators, such as maximum likelihood-type (M) estimators (Huber,
1981) and pseudomaximum likelihood (PML) estimators (White,. 1982;
Gourieioux, Monfort, and Trognon, 1984). These alternative classes contain
estimators that are less sensitive than OLS and, at the same time, have a rea-
sonable efficiency if the errors are normally distributed. Some of these esti-
mators outperform the OLS estimator in terms of efficiency if the errors in
the model are non-Gaussian. The possible efficiency gain of using non-OLS
estimators when the error process is non-Gaussian also holds in a context
with nonstationary variables. Moreover, non-OLS estimators can provide
protection against outliers and influential observations in the nonstationary
setting as well (see, e.g., Lucas, 1995a; Hoek, Lucas, and van Dijk, 1995).

The main objective of this paper is to develop a cointegration testing pro-
cedure based on PML estimators (see Gourieroux et al., 1984) and to study
the properties of this procedure by means of an asymptotic analysis and sim-
ulations. The considered test is a generalization of the Gaussian likelihood
ratio test of Johansen (1988,1991) and uses the ratio of two, possibly non-
Gaussian, pseudolikelihoods. The motivation for this approach is twofold.
First, in many economic applications, for example, in finance (de Vries,
1994), the normality assumption for the error term is untenable. This leaves
some room for improving the power properties of the cointegration test of
Johansen. Second, dealing with outliers and influential observations in the
data is a common feature of empirical econometric model building. A test
that automatically corrects for some of these atypical observations seems a
useful tool for the applied researcher.

This paper only considers vector autoregressive (VAR) time series mod-
els. This implies that the parametric approach of Johansen (1988,1991) is
used to test the cointegration hypothesis, in contrast to the semiparametric
approach of, for example, Phillips (1987,1988,1991) and Phillips and Dur-
lauf (1986). In the parametric framework, one can easily construct test sta-
tistics that, like those of Johansen, are based on the (pseudo)likelihood ratio
principle.

The results in this paper include the following. First, new cointegration
tests are developed based on the (pseudo)likelihood ratio principle. The rela-
tion of these tests to the likelihood ratio test of Johansen is established.
Moreover, it is shown that the asymptotic distributions of the new cointegra-
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tion tests depend on nuisance parameters if the pseudolikelihood is non-
Gaussian. This holds even if the pseudolikelihood happens to coincide with
the true likelihood. Some results on the optimal choice of the pseudolikeli-
hood are also briefly mentioned. Second, a small simulation experiment is
provided, illustrating that the new cointegration tests outperform the likelihood
ratio test of Johansen in terms of power if the innovations are fat-tailed.

The paper is set up as follows. Section 2 discusses the model, the hypoth-
eses of interest, and the class of PML estimators. Section 3 develops an
asymptotic theory for the test statistic that is formulated in Section 2. It also
establishes the relation between the asymptotic distribution of the new test
and that of Johansen's test statistic. Section 4 contains a small simulation
experiment, illustrating the performance of the different tests. Section 5
briefly discusses the problems of introducing deterministic regressors or addi-
tional nuisance parameters in the regression model. Concluding remarks are
found in Section 6. The Appendix contains the proofs of all theorems in the
main text.

The following notational conventions are adopted. Let r < k. Given a
(k X r) matrix A of full column rank, A± denotes a {k X (k — r)) matrix of
full column rank, such that A\A = 0. Moreover, AT denotes the transpose
of A. The limiting distributions of the test statistics in this paper are function-
als of stochastic processes. If W(s), s £ [0,1], is a stochastic process (e.g.,
a Brownian motion), then stochastic integrals of the form Jo' W(s) dW(s)
are denoted by / WdW. Integrals with respect to Lebesgue measure are de-
noted analogously; for example, jWWT denotes Jo' W(s)W(s)Tds. Finally,
the symbol => denotes weak convergence of probability measures (see Billings-
ley, 1968).

2. THE MODEL AND TEST STATISTICS

Consider the VAR model of order p + 1,

Ay, = n>-,_, + <t>, Aj,_, + • • • + <*>„ Ay,.p + e,, (1)

where y, and e, are column vectors of dimension k, A is the first difference
operator, Ay, = y, — y,_x, and II, $ i , . . . , $ p , are parameter matrices. The
random vectors e, are assumed to satisfy the following assumption.

Assumption 1.

(0 I £/)£<>IS a n independent and identically distributed (i.i.d.) process with den-
sity function/(e,).

(ii) £(£o) = 0.
(iii) Qu = £(eoeo) is positive definite.

In empirical applications, deterministic functions of time are usually added
to (1). The complexities induced by these additional regressors are not of
prime interest here. Therefore, their introduction is delayed until Section 5.
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This paper concentrates on the determination of the rank of II. The fol-
lowing assumption is maintained throughout the paper.

Assumption 2.

(i) | 7 - (/+ II)z - Sf=i */d - z)z'| = 0 implies either \z\ > 1 or z = 1.
(ii) The elements of y, are integrated to at most order one.

Assumption 2 guarantees that the rank of II coincides with the number of
stationary relations among the elements of y, (see Johansen, 1988, 1991).
Part (i) of Assumption 2 implies that the nonstationary behavior of y, can
be removed by differencing. Part (ii) states that first-order differencing suf-
fices for obtaining stationarity. An important consequence of Assumption
2 is that II can be decomposed as II = ABT, with A and B two matrices of
full column rank r, with r denoting the number of cointegrating relations.
The matrices A and B and their orthogonal complements frequently show up
in the asymptotic distribution theory in Section 3.

To determine the rank of II, estimates of the parameters in (1) are needed.
Johansen (1988,1991) assumes that the errors e, are i.i.d. and follow a
Gaussian distribution. One can then use the conditional Gaussian maximum
likelihood estimation to obtain the required estimates. In fact, this amounts
to running several OLS regressions and solving a generalized eigenvalue prob-
lem. Due to both its computational ease and its theoretical foundation in the
likelihood principle, the procedure of Johansen has become very popular.

As mentioned in Section 1, the normality assumption for the error term
is questionable in many empirical applications. If the errors are non-
Gaussian, one expects to gain efficiency by exploiting the distributional prop-
erties of the innovations. Therefore, we consider the class of PML estimators
as an alternative to the Gaussian maximum likelihood estimator of Johan-
sen. The pseudolikelihood is assumed to be of the form

£ r ( 0 ) « I I |fii1|-1/2-exp(-p(fin1/2er)). (2)

where p(-) is a function that satisfies Assumption 3 in Section 3, later, Qu

is defined in Assumption 1, e, = Ay, — Ily,-, - $, A^,_, - • • • - $pAy,-p,
and 8 is the vector of unknown parameters. The matrix Qn is estimated
along with the parameters in (1). The pseudolikelihood is allowed to be
improper in the sense that /exp(-p(12n1/2e/))fife, need not exist. In this way,
pseudolikelihoods with a redescending1 score function are also covered by
the results in this paper. The PML estimator is given by the vector 6r that
maximizes tT(d) = ln(£r(0)). Note that (2) comprises most likelihood
functions that are used in the literature. The Gaussian maximum likeli-
hood estimator of Johansen (1988,1991), for example, is obtained by setting
p(e) = eTe/2. Also, the Student / maximum likelihood estimator, as dis-
cussed by Prucha and Kelejian (1984), and the class of maximum likeli-
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hood-type, or M, estimators (see Hampel et al., 1986; Huber, 1981) are con-
tained as special cases of (2).

The hypotheses of interest concern the number of cointegrating relation-
ships. As this number can range from 0 to k, there are k hypotheses of inter-
est. The rth hypothesis postulates that there are at most r cointegrating
relationships, //r:rank(II) < r, with r = 0,...,k - 1. The alternative
hypothesis in each case is Hk: rank (II) = k. In the framework of Johansen
(1991), testing Hr versus Hk leads to his trace test statistic. Alternatively, the
hypothesis Hr could be tested against the alternative Hr+1. This would pro-
duce the test given in formula (2.14) of Johansen (1991). In the present
paper, we only discuss the first set of null hypotheses and alternatives. The
results can, however, easily be extended to tests of Hr versus Hr+l.

Using the pseudo-log likelihood, iV(0)> we can use the likelihood ratio
principle2 to test Hr versus Hk. Let 9T<r and 6T denote the PML estimates
under the null hypothesis, Hr, and under the alternative hypothesis, Hk,
respectively. The pseudolikelihood ratio (PLR) test is given by

PLRr = 2{lT(er)-h(er,r)) (3)

(see White, 1982). A subscript r is added to the test statistic in order to indi-
cate the null hypothesis that is tested. If no confusion is caused, this subscript
is omitted. The limiting distribution of PLRr is derived in the next section.

3. ASYMPTOTIC DISTRIBUTION THEORY

In this section, the asymptotic distribution of the PLR test statistic is dis-
cussed under the null hypothesis. Apart from the conditions on the behav-
ior of e, stated in Assumption 1, some regularity conditions are needed for
the function p ( ) used in the definition of the pseudolikelihood in (2).
Assume that the following conditions are satisfied.

Assumption 3.

(i) p(-) is twice continuously differentiable; the first- and second-order deriva-
tives with respect to e, are denoted by ^(Qfjl/2e,) = 3p(fifj1/2e,)/3e, and
^'(nn1/2e,) = a^(nri1/2e,)/3ey, respectively,

(ii) ^'(fln1/2e,) is first-order Lipschitz.
(iii) £(^(n,l1/2eo)) = 0.
(iv) £(^'(nn1/2eo)) = C,, with |C, | * 0.
(v) The random vector ^(Qn

l/2Eo) ® Eo has finite second moments,
(vi) £(^'(iin'/2eo) ® £o) = 0.

Parts (i) and (ii) of Assumption 3 impose some smoothness conditions on
the pseudolikelihood. These conditions can be weakened. Discontinuities in
the function I/-, for example, can be coped with if the density of e, is suffi-
ciently smooth. This is seen by comparing the results of Herce (1994) for the
least absolute deviations estimator with those of Lucas (1995b) for smooth
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M estimators. If allowance is made for these types of discontinuities, the
methods of proof have to be changed considerably. Therefore, attention in
this paper is restricted to smooth versions of p. Part (iii) of Assumption 3
is another centering condition in order to guarantee the consistency of the
PML estimator. Part (iv) implies that the PML estimator can be approxi-
mated using a first-order Taylor series expansion of the first-order condition
that defines the estimator. Part (v) is a moment condition. For the Gauss-
ian PML estimator, it states that fourth-order moments of the errors exist.
The condition is somewhat too strict and is mainly used to facilitate the
proofs of the theorems. It can, for example, be replaced by the conditions
that ^(Qfjl/2eo) has finite second-order moments and that dlT(d)/diln has
finite + first-order moments. Note that part (v) implies that the second-Order
moment of ^(fifil/2eo) exists and is finite. Finally, part (vi) implies that we
can abstract from the fact that fiM is estimated rather than known. If this
part of Assumption 3 is not met, the limiting distribution of the PLR test
changes. Note that part (vi) is satisfied if both p(-) and/(-) are even, that
is, /(e,) =/(-£,)> and if the appropriate moments exist.

The next lemma follows directly from Johansen (1988) and Phillips and
Durlauf (1986). Therefore, its proof is omitted.

LEMMA 1. Given Assumptions 1-3,

U7"J
/2e<)T) ~ W{s)T,W2(s)T),

with (Wi(.s)T, W2(s)T)T a multivariate Brownian motion with covariance
matrix

Oj, n22

with s E [0,1], fi22 = £(^(Qn1/2eo)^(nir1/2eo)T), and Q12 = fij, =
£(eo^(On1/2eo)T). Moreover, if we define * = Ef=,' /II,,II, = Ik + II + #,,
IIP+1 = - * p , a/irf 11/ = *, - $,_,/or i = 2,...,p, then

T~W2(BlB±)~lBly^T) =» i/(^) a ( / ix^B^)" 1 ^ ^ ( j ) .

To establish the limiting behavior of the PLR statistic, it is useful to define
the matrix

QaCrlAAAlCr1Q2iCrlAJ.r
V2, (4)

which is the correlation matrix between A[z, and A\C\ li(Qn 1/2£/)- Let
Si RSl denote the singular value decomposition of So, with Sj and S2 two
orthogonal matrices and R a diagonal matrix containing the absolute values
of the canonical correlations between A]_t, and A[C{~'^(nn1/2e»)- We can
now obtain the limiting behavior of the PLR statistic.
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THEOREM 1. Let I, and I, denote the residuals calculated at 6T and dr> T,
respectively. Given Assumptions 1-3, and t, - t, = op(l) and e, - e, = op(\)
uniformly in t, then PLR =» PLR, with

where tr(-) is the trace operator, Vx (s) and V2(s) are two standard Brownian
motions with diagonal correlation matrix R (defined immediately after (4)),
and

•"0 ~
1/2 v V-1/2

Remark 1. The additional two conditions in Theorem 1 ensure that the
correct optimum of (2) is chosen from the (possibly large) set of local optima.
In fact, the conditions imply that A,$lf...,$p, and fi,, be consistently esti-
mated, while the actual unit root parameters and the cointegrating vectors
(022 and /3 in the Appendix) are consistently estimated at a rate higher than
Tu2. Low-level conditions for consistency in a (possibly) nonlinear context
can be found in, for example, Gallant (1987). Note that it is nontrivial to
check the additional conditions in practice. One way to circumvent the whole
consistency problem associated with local optima is to use a simple consis-
tent estimator as a starting value for a one-step Newton-Raphson improve-
ment of the objective function in (2). Such a one-step estimator would have
the same asymptotic properties as its fully iterated counterpart. As a starting
value, one could, for example, use the Gaussian-based estimator of Johan-
sen (1988).

Remark 2. Theorem 1 gives the asymptotic distribution under the null
hypothesis Hr. It is also possible to derive the asymptotic distribution of the
PLR test under local alternatives as in Johansen (1989) and Rahbek (1994).
This is done in Lucas (1996).

Remark 3. A question that is not addressed explicitly in the present paper
concerns the optimal choice of the pseudolikelihood. In the present context
of cointegration testing, it is nontrivial to find a satisfactory definition of
optimality that allows us to solve for the optimal pseudolikelihood. Follow-
ing Cox and Llatas (1991), Lucas (1996) uses the criterion of asymptotic
mean squared error (AMSE) of the estimators for the unit root parameters
(ate in the Appendix) in order to determine the optimal pseudolikelihood.
His results show that the optimal pseudoscore from an AMSE perspective
is a linear combination of the Gaussian score and the true likelihood score.
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The weight of the Gaussian pseudoscore in this linear combination decreases
if either the innovations e, become more fat-tailed or one gets farther away
from the null hypothesis of no cointegration. This clearly suggests that the
use of non-Gaussian pseudolikelihoods can improve the power properties of
the PLR cointegration test in situations with fat-tailed innovations.

It is illustrative to consider the two main differences between Theorem 1,
earlier, and Theorem 3 of Johansen (1988). Johansen assumes Gaussian error
terms, thus imposing ^(Qn1/2e,) = flfi'e,. It then follows that the Brown-
ian motion W2(s) is a linear transformation of the Brownian motion W\ (s);
in particular, W2(s) = Ofi' W\{s). Moreover, So = R = /*_,-, where./*_,.
denotes the unit matrix of order {k — r). The two Brownian motions V\ and
V2 of Theorem 1 are then perfectly correlated. If a different specification is
chosen for \j/, Vx and V2 are imperfectly correlated, which leads to a more
complicated expression for the asymptotic distribution of PLR. Note that for
^(fifi1/2e,) = fif,'e, it also follows that C, = 0,"]', and thus Ko = /*_,..

Another way to explicate the difference between the general PLR test
and the Gaussian one follows by defining the Brownian motion Vz{s) =
V2(s) - RVi(s). Note that V3(s) and V{(s) are independent. The stochas-
tic integral JVX dV2 in Theorem 1 can now be split into two parts. The first
part is jVx dVx R, which is a Gaussian functional (see Phillips, 1991). The
second part is \VX dV^ and is mixed normally distributed with zero mean.
Given Vx(s), the variance of $VxdV? is ( / - R2) (g> ( / ^ , T ) . From this
decomposition of jVx dV2, it can be seen that for smaller values of R the
Gaussian functional becomes less important in the limiting distribution of
the PLR test, while the mixed normal random variate becomes more impor-
tant. As mentioned in the previous paragraph, for the Gaussian PLR test R
is at its maximum: R = I. By definition, it then follows that /K, dV3(s)Tis
identically equal to zero. In contrast, if R is at its minimum R = 0, then the
Gaussian functional vanishes and the limiting distribution of the PLR test
becomes x2 with (k — r)2 degrees of freedom. This happens, for example,
if \{/(-) is bounded and if e, has infinite variance (for the univariate case, cf.
Knight, 1989).

An important result that follows from Theorem 1 is that the limiting dis-
tribution of the PLR test depends on nuisance parameters, namely, Ko and
R. The nuisance parameters in Ko reflect the discrepancy between the
pseudolikelihood and the true likelihood. As was already noted in White
(1982), misspecification of the likelihood causes a breakdown of the infor-
mation matrix equality. In the present setting, this implies Cx * 2̂2 if the
pseudolikelihood does not coincide with the true likelihood. Therefore, the
matrix Ko reduces to the identity matrix if the likelihood is correctly speci-
fied. The second set of nuisance parameters, present in the matrix R, reflects
the effect of using a non-Gaussian PML estimator. It is interesting to note
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that both sets of nuisance parameters disappear if one uses the Gaussian
PML estimator of Johansen (1988). One of the peculiar findings in this paper
is that nuisance parameters remain present in the limiting distribution of PLR
even if the pseudolikelihood coincides with the true likelihood. This result
is presented in the following corollary.

COROLLARY 1. If z, has a density fU,) = c|fi,,|-|/2exp(-p(fin1/2e,)).
where c is such that J/(e,) de, = 1, then

with Vx and V2 two standard Brownian motions such that E( K, (s) V2 (s)T) =
sR, where R is defined immediately after (4).

Corollary 1 states that if the pseudolikelihood is correctly specified,
then the asymptotic distribution of the PLR statistic depends on nuisance
parameters only through the canonical correlations between A]_e, and
^lCTV(firi1/2Ef)- For the Gaussian pseudolikelihood, these correlations
are equal to unity. In most other circumstances, however, the correlations
are less than unity, which results in a more complicated asymptotic distribu-
tion of the test statistic.3

Corollary 1 can be used to simulate critical values of LR cointegration tests
for (correctly specified) non-Gaussian likelihoods. A procedure for obtain-
ing consistent estimates of these critical values is fairly straightforward. For
given parameter estimates, the matrix So in (4) can be consistently estimated:
replace 0,, by T~x 2JL, M7, C, by 7"1 ZJ"=1 i/-'(nn1/2e,), and so on, with
e, denoting the tth regression residual. The estimate of So can then be used
to estimate the canonical correlations R by means of a singular value decom-
position. Let R denote a diagonal matrix containing the estimated singular
values of 50. Then the critical values of PLR can be simulated in the usual
way by generating random walks V\ and V2 with correlation matrix R and
replacing the integrals in Corollary 1 by sums. Note that this methodology
can be extended to simulate the critical values of the PLR test for misspeci-
fied pseudolikelihoods. In that case, a consistent estimate of Ko is also
needed. Such an estimate can be constructed in the same way as above using
the residuals e,.

The above procedure for computing critical values has two major draw-
backs. First, critical values have to be simulated for every estimate of R. This
might prove too time consuming for useful practical purposes. Second and
more important, the critical values of PLR provide poor approximations
to the critical values of the PLR test in finite samples (see Lucas, 1996).
Therefore, Section 4 proceeds by directly simulating the PLR test in order
to obtain the critical values.
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4. SIMULATION RESULTS

In this section, we present the results of a small simulation experiment. The
experiment only serves as an illustration of the properties of some simple
PLR tests relative to the Johansen test.

We start by simulating the distribution of the PLR statistic under the null
hypothesis in order to obtain the critical values of the test. As was mentioned
in Section 3, this can be done by approximating the distribution of PLR in
Theorem 1. Lucas (1996), however, shows that the critical values of PLR
provide poor approximations to the critical values of the PLR test in finite
samples. Therefore, we compute the PLR test directly for many simulated
time series and use the computed values to approximate the distribution of
the test. Note that this involves solving two (possibly) nonlinear maximiza-
tion problems for each simulation, which makes the whole experiment very
time consuming. The setup is as follows. For several values of k, we gener-
ate a £-variate random walk y,, t = 0 T, with standard Gaussian inno-
vations. Using the generated time series yt, we compute PLR0, which tests
the hypothesis of 0 cointegrating relations versus k cointegrating relations.
This is done over N Monte Carlo simulations. We set 7"= 100 and N= 1,000.

To illustrate the properties of the PLR test, we only consider a very sim-
ple pseudolikelihood, namely, the multivariate Student t:

p(fi,l1/2e,) = i(v + *)In(l + eTf i f iV^ - 2)).

We restrict our attention to v = 1,3,5,10,». Note that setting v = » yields
the Gaussian PML estimator of Johansen. Also note that setting v = 1 and
v = 3 only determines the form of the pseudolikelihood that is used and not
the distribution of the innovations. The results of the level simulations are
summarized in Table 1.

One feature that appears from Table 1 is that the distribution of the PLR
test shifts to the right if either the degrees of freedom parameter, v, decreases
or the dimension of the time series, k — r, increases. The effect of a decrease
in v is larger in higher dimensions.

Note that the quantiles of the non-Gaussian PLR tests depend on the nui-
sance parameters in KQ, because the true (Gaussian) likelihood does not
coincide with the postulated (Student /) pseudolikelihood. This problem can
be solved by generating the random walks for the Monte Carlo simulations
using Student /-distributed innovations. This would generally shift the quan-
tiles of the non-Gaussian PLR tests to the left. As is argued next, however,
the critical values in Table 1 are safer to use in empirical analyses than crit-
ical values based on Student / random walks. When using the critical values
from Table 1, the tests have approximately the correct size for thin-tailed
observations. For fat-tailed observations, the tests are generally conservative,
although their power behavior is still superior to that of the Gaussian PLR
test for a large range of (local) alternatives.
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TABLE 1. Critical values of the PLR test for
the Student / pseudolikelihood0

V

oo

10

5

3

1

k-r

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

0.500

0.59
5.81

14.89
28.16

0.59
5.85

15.46
28.72

0.59
6.05

16.09
29.80

0.62
6.39

16.81
30.96

0.88
7.50

19.28
34.33

0.600

0.91
6.66

16.23
29.99

0.90
6.89

16.73
30.60

0.94
7.11

17.48
31.68

0.99
7.36

18.32
33.00

1.36
9.03

21.22
36.85

0.700

1.38
7.60

17.89
32.06

1.33
7.91

18.42
32.95

1.38
8.25

19.17
33.82

1.47
8.66

20.12
35.20

2.02
10.73
23.75
39.85

Quantile

0.800

1.98
8.71

20.02
34.38

2.02
9.10

20.44
35.58

2.15
9.54

21.35
36.79

2.34
10.36
22.33
38.25

2.96
12.88
26.42
43.58

0.900

3.05
10.76
22.63
38.65

3.28
11.10
23.27
39.70

3.38
11.81
24.42
41.36

3.59
12.71
25.42
43.53

5.14
15.63
30.11
48.98

0.950

4.10
12.68
25.03
41.57

4.20
13.37
25.88
43.00

4.65
13.88
26.97
45.06

4.85
14.81
28.34
46.83

6.88
18.84
33.26
54.27

0.975

5.61
14.55
27.56
43.96

5.52
15.17
28.56
46.22

5.99
16.07
29.79
48.00

6.87
17.50
31.65
50.56

8.47
21.28
37.43
57.86

0.990

7.82
17.09
29.26
47.45

8.21
17.65
32.03
49.21

8.62
18.22
33.79
51.09

9.17
19.22
35.03
54.03

12.06
24.65
42.10
61.61

"The degrees of freedom parameter of the Student / pseudolikelihood is denoted by v. k is the dimension of
the time series and r is the cointegrating rank. The critical values were obtained using 1,000 Monte Carlo
simulations with multivariate Gaussian random walks of length 100.

To illustrate the power of the Student /-based PLR test relative to the
Gaussian one, consider the following simple data-generating process:

: ; : ) •

where c2 is a positive constant. The two roots of the VAR polynomial in (5)
are 1 and (1 - c2/T)~l, respectively. For 0 s c 2 < 27", both roots lie on or
outside the unit circle. If c2 = 0, then the system has two unit roots and
there is no cointegration. If 0 < c2 < IT, there is one cointegrating relation-
ship. Models such as (5) are often used in an analysis of cointegration tests
under local alternatives (see Phillips, 1988; Johansen, 1989; Rahbek, 1994;
Lucas, 1996).
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We consider three different test statistics, namely, the Gaussian PLR test
and the Student /-based PLR test with 5 degrees and 1 degree of freedom,
respectively. We simulate the rejection frequencies of these tests in the usual
way. After generating a time series using (5), we compute each of the pre-
ceding test statistics and compare them with their 5% and 10% critical val-
ues from Table 1. The simulations use time series of length T = 100, while
N = 1,000 Monte Carlo replications are performed. Therefore, the standard
errors of the rejection frequencies are smaller than or equal to 0.5N~U2 ~
0.016.

Using the data-generating process in (5), two experiments are performed.
In the first experiment, the e, are drawn from a bivariate normal distribu-
tion with mean zero and covariance matrix I2. The restriction of the covari-
ance matrix to be the unit matrix is unimportant in the present setup because
of the presence of the scaling matrix Qn in the pseudolikelihood. For Gauss-
ian e,, it follows from Lucas (1996) that the optimal pseudoscore function
from a minimum mean squared error perspective is the Gaussian score func-
tion, ^(fln1/2e/) — flfT'Cf. Therefore, we expect the Johansen or Gaussian
PLR test to have the highest power in this case.

In the second experiment, the Gaussian distribution for e, is replaced by
the truncated bivariate Cauchy distribution. The Cauchy was truncated to
the set [e], + el, < Fo.95(2,l)}, where F0.95(2,l) is the 95th percentile of the
/"distribution with 2 degrees and 1 degree of freedom, respectively. The trun-
cation is introduced in order to guarantee the existence of a sufficient num-
ber of moments (cf. Assumption 1). As mentioned in Remark 3, one can
expect that a power gain for the PLR test can be realized by exploiting the
non-Gaussian form of the truncated Cauchy distribution. Note, however,
that for the truncated Cauchy distribution the critical values in Table 1 are
in fact inappropriate, as they were generated using the Gaussian distribution.
This is discussed in more detail later.

The results of these two experiments are given in Table 2. We first discuss
the experiment with the Gaussian innovations. At c2 — 0, the rejection fre-
quency should be equal to the size of the test. It appears that all tests are a
bit undersized, but this is probably due to the limited number of Monte Carlo
replications used for both Tables 1 and 2. For departures from the null
hypothesis, the number of rejections increases. As expected, the rejection fre-
quencies for the Gaussian PLR test are higher than those of the other tests.
Furthermore, for c2 ^ 5, the rejection frequencies are increasing in the
degrees of freedom parameter v. This follows from the fact that the efficiency
of the Student t PML estimators relative to the optimal (Gaussian) estima-
tor is increasing in the degrees of freedom parameter v.

We now turn to the results of the second experiment, the one with the trun-
cated Cauchy innovations. The first thing to notice is that the non-Gaussian
PLR tests have an actual size below the nominal size. This is due to the fact
that the critical values in Table 1 are based on Gaussian innovations. As
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TABLE 2. Rejection frequencies of the PLR tests"

0
1
5

10
20

0
1
5

10
20

PLRC

0.077
0.103
0.295
0.734
0.994

0.031
0.048
0.185
0.571
0.973

Gaussian

PLRi

0.065
0.110
0.280
0.662
0.982

0.034
0.053
0.177
0.502
0.937

PLRX

10%
0.069
0.123
0.243
0.502
0.865

5%
0.024
0.060
0.133
0.337
0.763

PLRC

Level
0.103
0.103
0.287
0.689
0.984

Level
0.044
0.052
0.170
0.549
0.957

Truncated Cauchy

PLRi

0.026
0.031
0.458
0.905
0.999

0.010
0.009
0.302
0.795
0.998

PLR,

0.021
0.041
0.594
0.921
0.999

0.003
0.018
0.441
0.860
0.998

"The table contains the rejection frequencies of the Gaussian-based PLR test (PLRO) and the Student
M>ased PLR tests with 5 degrees (PLRS) and 1 degree (PLRt) of freedom. The hypothesis of no
cointegrating relationships (Ho) is tested against the alternative of stationarity (H2). The data-generating
process is (5) with either Gaussian or truncated Cauchy innovations e,. The entries are based on 1,000 Monte
Carlo simulations with time series of length T = 100.

was mentioned earlier for the level simulations, the critical values of non-
Gaussian PLR tests in situations with fat-tailed innovations are to the left
of the ones in Table 1. As a result, the use of the critical values from Table 1
in this case leads to a conservative cointegration testing procedure.

Despite the low rejection frequencies under the null, the power of the non-
Gaussian PLR tests very rapidly exceeds the power of the Johansen test if
we consider local departures from the null hypothesis. For c2 = 5, the rejec-
tion frequencies of PLR5 and PLR, are already, respectively, 1.5 and 2.5
times as high as that of PLRC. This demonstrates that it is worthwhile to
exploit the nonnormality of the innovations in order to increase the power
of cointegration tests. The power can be increased further if the discrepancy
between the actual and nominal sizes of the tests is eliminated, by, for exam-
ple, generating critical values using Student / innovations. The use of such
alternative critical values, however, would also severely distort the size of the
non-Gaussian tests in situations with thin-tailed observations. Therefore, we
choose to use the values in Table 1. This gives us testing procedures with
approximately the correct size for thin-tailed innovations. For fat-tailed inno-
vations, the tests are conservative, but the power behavior of the tests is still
better than that of the Gaussian test for a large range of local alternatives.
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5. MODEL EXTENSIONS

This section briefly discusses two possible model extensions and their effect
on the asymptotic distribution of the PLR statistic. First, we treat the conse-
quences of including deterministic functions of time as additional regressors
in (1). Second, we discuss the effect of incorporating additional unknown
nuisance parameters in the pseudoiikelihood (2).

It is well-known that the incorporation of deterministic time trends in
(1) complicates the asymptotic analysis. For example, if the data-generating
process is (1) and if we use a regression model that contains a constant term
in addition to the regressors in (1), then the Brownian motion V\ (s) in
Theorem 1 has to be replaced by the demeaned stochastic process V\ (5) -
/„' Vx (s) ds. Similarly, the presence of a linear time trend as an additional
regressor causes the entrance of detrended stochastic processes in the limit-
ing distribution of PLR. The results get even more complicated if we allow
for deterministic components to be present in the data-generating process in
(1) instead of in the fitted regression model only. A well-known example of
such a process is the random walk with nonzero drift. For such processes,
the interpretation of the deterministic components and their effect on the
asymptotic distributions is a delicate matter (see Johansen, 1994).

All of the preceding points have been addressed in the literature for multi-
variate time series in the context of Gaussian PML estimators. These results
carry over in a straightforward manner to the present context of non-Gaussian
PML estimators. This is illustrated by the results in Lucas (1996). Conse-
quently, the results of Rahbek (1994) for the power of the Gaussian PLR test
in the presence of nonzero drift terms in (1) also go through. This leaves us
with the dilemma of choosing the appropriate additional deterministic regres-
sors. If one chooses too few of them, inference is, in general, asymptotically
biased. If one chooses the correct regressors, the test statistics are not asymp-
totically similar (see Johansen, 1991, Theorems 2.1 and 2.2). Finally, if one
incorporates too many deterministic functions of time as additional regres-
sors, the power of the PLR test diminishes (see Rahbek, 1994).

A second type of model extension concerns the presence of additional nui-
sance parameters in the pseudoiikelihood. So far, we have only dealt with
the presence of a scaling matrix Qt|. This matrix could be estimated along
with the other parameters under suitable regularity conditions (see Assump-
tion 3 and the Appendix). From the proof of Theorem 1, it is seen that the
appropriately normalized Hessian of the pseudoiikelihood is asymptotically
block diagonal between Jin and the parameters of interest for constructing
the PLR test. Consequently, we could also use a consistent preliminary esti-
mate of fin in the construction of the PLR test without altering the asymp-
totic distribution of the test. This finding can easily be generalized toward
cases where additional nuisance parameters are present in the pseudoiikeli-
hood. A simple example is given by the Student / pseudoiikelihood, where
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the degrees of freedom parameter v is unknown. In the extreme case, one can
treat the density of the innovations as an (infinite-dimensional) nuisance
parameter. This would result in an adaptive cointegration test (cf. Manski,
1984, and note 3).

One can think of three strategies for dealing with unknown nuisance
parameters. First, one can set the nuisance parameters to some user-defined
values. This strategy may prove useful if one only uses the PLR test for pro-
tection against outliers and leptokurtosis or for checking the results of a
Gaussian-based modeling exercise (see Franses and Lucas, 1995). The nui-
sance parameters can then be regarded as a type of tuning constants. This
way of tackling the problem is often encountered in robust statistics. Second,
one can use preliminary consistent estimates of the parameters in order to
eliminate them. Third, one may want to estimate the nuisance parameters
along with the other parameters in (1) by formulating the relevant pseudo-
score equations. Such estimators are consistent under conventional regular-
ity conditions (cf. Assumption 3 and the Appendix).

If one uses the first of these three strategies, the asymptotic distribution
of the PLR test remains unaltered. For each of the other two strategies, it
is often sufficient that £(32^(Qn1/2e/)/deTdv) = 0, where v now denotes the
complete vector of nuisance parameters. This condition is met for a large
class of pseudolikelihoods of the form in (2). For example, the Student /
pseudolikelihood obviously satisfies this condition if the distribution of e, is
spherically symmetric.

6. CONCLUSIONS

In this paper, we have studied the properties of likelihood ratio-type tests
for testing the cointegration hypothesis. Instead of using the Gaussian like-
lihood, we have based our inference on a certain class of pseudolikelihoods.
This class contained several well-known densities — for example, the Gauss-
ian and the Student /. The asymptotic distribution of the PLR test was
derived and was shown to depend on two types of nuisance parameters,
arising from the possible misspecification of the pseudolikelihood and from
the use of a non-Gaussian pseudolikelihood. Even if the likelihood was cor-
rectly specified, nuisance parameters remained present if the likelihood was
non-Gaussian.

Using a simulation experiment, we investigated the properties of the tests
and found that the choice of the pseudolikelihood can have a great influence
on both the level and power of the PLR test. The power simulations in this
paper demonstrated that the Johansen trace test is optimal if the innovations
are Gaussian, whereas for innovations that are truncated Cauchy the Student
/-based PLR tests perform better in terms of power.

Several interesting directions for future research remain. First, one can try
to get rid of the nuisance parameters in the asymptotic distribution of the
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PLR test that are due to the misspecification of the likelihood. One solution
would be to construct adaptive cointegration tests, as mentioned in note 3.
Alternatively, following White (1982), one could investigate generalizations
of the Wald and Lagrange multiplier-type tests instead of likelihood ratio-
type tests. This line is followed in Lucas (1996). Second, one can investigate
the possibilities of bootstrap procedures for constructing accurate estimates
of p-values of the PLR test in finite samples. The construction of automatic
procedures for obtaining critical values and p-values of the PLR tests seems
a valuable contribution for the applied researcher. In this respect, the Bart-
lett corrections put forward in Lucas (1996) might also prove useful. Third,
more simulation evidence can be gathered in order to demonstrate the advan-
tages and disadvantages of the non-Gaussian PLR test over the Gaussian one
in situations that are of practical interest. This especially concerns the inclu-
sion of deterministic functions of time in the regression model as well as non-
zero drift terms in the data-generating process. Fourth, it is interesting to
study the effects of dynamic misspecification of the regression model on the
asymptotic distribution of the PLR test. One can then proceed by designing
methods for correcting for these effects. Some interesting possibilities for this
approach can be found in Phillips (1991), who uses the Whittle likelihood
for the Gaussian PML estimator, and in Bierens (1994), who constructs a
nonparametric cointegration test. As a final point for future research, it
remains to be shown how well non-Gaussian PLR tests perform on empiri-
cal data. One of the chief difficulties is to construct fast iteration schemes
in order to maximize the pseudolikelihood. As this likelihood is, in general,
highly nonlinear, this might prove a nontrivial task.

NOTES

1. A function ifr( •) is called redescending if I inv.» \p(x) = 0 and/or Iim^.. , , \j/(x) = 0. It
is called strongly redescending if there exists a finite vector of constants c, such that, for all
x s - c and/or for all x a c, $(x) = 0.

2. There are, of course, two other well-known testing principles, namely, the Wald and the
Lagrange multiplier (LM) test. The Wald and the LM test for cointegration based on Gauss-
ian PML estimators are dealt with in, for example, Kleibergen and van Oijk (1994). Lucas (1996)
deals with the Wald and LM test for a class of M estimators.

3. As one of the referees pointed out, Corollary 1 shows that one set of nuisance parameters
present in the asymptotic distribution of the PLR test in Theorem 1, namely, Ko, can be elim-
inated using a nonparametric density estimator. Such an estimator can be used to estimate the
density of £,. Based on this density estimate, one can estimate the model parameters in (1) by
means of maximum likelihood and compute a likelihood ratio test. If the density estimate con-
verges sufficiently fast to the true density, Corollary 1 shows that the'Ar - r elements of the matrix
R are the only nuisance parameters that enter the limiting distribution of this adaptive cointe-
gration testing procedure. More research in this area is needed.
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APPENDIX

This Appendix contains the proofs of Theorem 1 and Corollary 1.
To prove Theorem 1, we introduce some further notation. First, we normalize the

matrix B of cointegrating vectors, such that BT = (/r,/3
T), with 0 a ((k - r) x r)

matrix. Note that under the null hypothesis, Hr, such a normalization is always pos-
sible, because rank(fi) = r. The choice of the leading submatrix in BT to be the unit
matrix, however, may require a reordering of the elements of y,. As the (pseudo)like-
lihood ratio test is invariant under such reparameterizations, no generality is lost
by imposing this condition. Next, we let AT = (a^.aJi)- We also introduce the
(k x (k - r)) matrix K6, which has the property that A = (A,K6) has full rank.
Under the hypothesis Hk, the matrix II can be decomposed as

II = ABr + K6an(Q,Ik_r) = A(Ir,0) + A(p,aJ2)
T(0,Ik.r), (A.I)

with a22 a {(k - r) x (k - r)) matrix. The number of parameters in A, /?, and a22

equals the number of elements in n, namely, k2. Therefore, the parametric decom-
position of II in (A.I) can be used to estimate model (1) under the hypothesis Hk.
Note that (A.I) can also be used to estimate model (1) under the null hypothesis Hr.
This is seen by setting a22 = 0, which results in II = ABT, with A and B of full col-
umn rank. Therefore, (A.I) can be used to reformulate the hypotheses of interest as
H'r: a22 = 0 versus H'k: a22 * 0. Similar decompositions are found in Phillips (1991)
and Kleibergen and van Dijk (1994), who both use Kj = (0,/t_r).

Define the vector of parameters 8 to be vec((/3,aJ2)T,/l,r,Qii), where T =
(* i , . . . ,$p). Now the hypothesis a22 — 0 can be formulated as H6 = 0, with H =
(/*_,.,0) ® (0,/*_,-)- Let 6r>T denote the estimator of 6 under the hypothesis a22 = 0,
and let 8T denote the estimator under the alternative. Furthermore, let 60 denote the
true parameter vector. The key convergence results are given in the following lemma.

LEMMA A.I. Given the conditions of Theorem 1,

( [u®dArW2\
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where £1 = Op(l),Zl = OP(\), U(s) is the Brownian motion defined in Lemma I, and

t-r)'T 0
0 I/Tl

Proof. It is straightforward to verify that

where ^, = ^(flfi1/2e,), j ^ - i contains the last k - r rows of y,_{, Zj, = (yj_, B,
&yJ-\, • • • ,&yj-p)> and

T _ 1 _, x x 1/2 T dvec(fifjl/2)
21 ~ 2 " ' " ' * <3(vec(fl,,))T'

Note that Z,, and Z2/ only contain stationary elements, which, together with the
i.i.d. assumption for e, and the existence of the appropriate moments, implies that
7"~1/2 Sf=i (ZJ, <g> \I>J,ZJ,) = Op(\). Furthermore, we have that

^2./ = (0,/*-,).)', = (0,Ik-r)(B(BrB)-lBr + Bx(BlB±)-tBj)y,,

where Bj = (-/3,lk-r). From Lemma 1 and the stationarity of BTy,, it follows that
i.[ST\ /TW2 =» U(s). The first part of the lemma now follows directly from Phil-

lips and Durlauf (1986) and Hansen (1992).
Let V, = ^'(fiu1/2e,); then,

Qw.t Q\i.i Qn

D
dddd''

Qn,i Qa.t

(A.3)

with

Q.2., = "
/2.,-lZj,

vec(i),,)T

It is easily checked that under the present conditions EjL, (Qn.i.Qn.i) converges to
zero for T-+ » . Furthermore, the weak convergence of 2r=i Qii./ follows from Phil-
lips and Durlauf (1986) and Hansen (1992). The convergence of the remaining blocks
in (A.3) follows directly by applying the law of large numbers. Joint convergence obvi-
ously also holds. •
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The next lemma gives the appropriate convergence for the Hessian of the
pseudolikelihood.

LEMMA A.2. Let 8T with corresponding residuals I, be such that tt^ni, —
n,"J1/2e, = 0^(1) uniformly in t; then,

ddddT d8d6T J

•with D as defined in Lemma A.I.

Proof. This follows straightforwardly from the Lipschitz continuity of ^'and the
convergence of (A.3) (cf. Lucas, 1995b). •

One of the major results of Lemmas A. 1 and A.2 is that the appropriately normal-
ized Hessian of the pseudo-log likelihood is asymptotically block diagonal between
the parameters /? and a22, on the one hand, and the parameters A, T, and Q,,, on
the other hand. This simplifies the proof of Theorem 1, because we can now disre-
gard the effect of estimating flM. Moreover, without loss of generality, we can
restrict our attention to the case;? = 0, that is, to the VAR(l) model. With a slight
abuse of notation, we therefore consider the case p = 0 with fixed and known scal-
ing matrix 0,,.

Proof of Theorem 1. We have vec(o22> = H6, with 8 as defined above Lemma A. 1.
Following Gallant (1987, Ch. 3, Theorems 13 and 15), we obtain

2((T(6) - tTi6)) = ^ ^ - J-W{HJ-*jr)-*HJ-' ^ T > + °*W' <A.4)
00 00

where J = d2lT(60)/(d8ddT). Note that HD = H/T. Using this fact and Lem-
mas A.I and A.2, we establish that -H(DJD)~lDdeT(80)/d8 converges weakly to

(/*-, ® (0, /*_,)

As a result, the right-hand side in (A.4) weakly converges to

((jUUT)® o) ( / ® i r ^

) ' ( j 1 j) ( A . 5 )
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Now replacing U and A[C^~l W2 in (A.5) by

Vt(s) = Sj(Ar
±QnAL)-W2(Al*B±)U{s),

and

V2(s) = S^AlC^QnCr'A^-^AlC1

respectively, we obtain

It is easily checked that £(K,(s)V2(s)T) = SjSQS2 - R.

( A ' 6 )

Proof of Corollary 1. Under the conditions stated in Corollary 1, the information
matrix equality holds, meaning that

E{d2 ln(/(E>))/(rfe,dcT)) = -E((dlM/(el))/dE,)(dln(f(e,))/dcl)
T).

For the specific form of/(•) given in the corollary, this implies that C, = fl22. The
result then follows easily from Theorem 1. •


