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Random laser action in self-organized para-sexiphenyl nanofibers grown
by hot-wall epitaxy
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We report on the observation of amplified spontaneous emission and random lasing in self-organized
crystalline para-sexiphenyl nanofibers. Using subpicosecond excitation, a lasing threshold is
observed on the 0—1 emission band near 425 nm at excitation fluences as lowaH¥db (6

X 10'® cm™3 equivalent density near the onset of density-dependent recombination processes. The
dependence of the nonlinear emission spectrum on both the pump intensity and position of the
excitation area are attributed to the interplay between random lasing and amplified spontaneous
emission occurring along the nanofibers. 2004 American Institute of Physics.
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Conjugated polymers and oligomers have become innearly the same in all domains—practically parallel to the
creasingly interesting materials for applications in differentsubstrate and perpendicular to the fiber directi&hSuch a
optoelectronic devices, such as field-effect transistors, photaniform alignment of molecules reflects in very high di-
voltaic cells, light-emitting diodes, and potentially, laser di- chroic ratios ofp-6P nano-fibers—up to 14 in absorption
odes. In the perspective to achieve electrical pumping irand emissior,as well as in waveguiding behavior of single
light-amplifying organic devices, the research on new or-nanofibers3
ganic active materials has been focused on the study of am- Samples with different quantities of deposited material
plified spontaneous emissiofASE) and lasing processes are grown, resulting in nanofibers with different average
with photopumping techniques. ASE and laser action havéeights, ranging from 100 to 400 nm. The6P nanocrystals
been reported so far in a number of polymeric and dye-dopedre photoexcited with the frequency-doubled pul&es380
organic thin films embedded in optical waveguides with dif-nm) of a Ti:Sapphire regenerative amplifier delivering 150 fs
ferent solutions for the laser cavity mirrdrs! Oligomers  long pulses at 1 kHz repetition rate. Laser spot sizes 20
offer clear advantages over polymers for applications involv-um (diametey are used for photoexcitation. The samples are
ing highly ordered structures. ASE has been observed imounted in a recirculating-loop cold-finger cryostat for low-
oligo-thiophen€, oligo-(phenylene vinyleng® and related temperature measurements. The optical emission is collected
co-oligomef single crystals; however, it has not been re-at different angles with respect to the normal to the substrate,
ported in the case of polycrystalline films with small do- then dispersed in a 46 cm single spectrometer and detected
mains, due to high optical losses occurring at the interfaceby a cooled charge-coupled device.
between different grain domaifisin recent years, various Figure 1 shows the surface morphology of the sample
groups have fabricated self-organized crystalline nanofibergsed to obtain the results presented in this letter. A line pro-
of oligo-phenylenes with the potential for future applicationsfile made nearly diagonalliso as to intersect the fibers per-

in photonics as nanoscale laser soufté8investigations of pendicularly shows an average base width) and height
the nonlinear optical response of oligo-phenylene nanofibers

have shown so far only evidence of spectral narrowing.

In this letter, we report on the observation of random
laser action in crystallin@ara-sexiphenyl p-6P). Crystal-
line nanofibers ofp-6P are grown by hot-wall epitaxy
(HWE) on freshly cleaved mica substrates, under a dynamic
vacuum of 10° mbar, at a substrate temperature of 130 °C.
Under these conditionsp-6P molecules self-organize in
very long (more than~100 um)® needle-shaped nanofibers,
which in turn consist of crystalline domains showing three
different epitaxial relationships to the mica substratém-
portantly, the alignment of thp-6P long molecular axes is

FIG. 1. 10<10 um AFM topography image of the surface morphology of a
3Electronic mail: francesco.quochi@dsf.unica.it p-6P film grown by HWE at 130 °C on mica.
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FIG. 2. Main panel: Emission spectra taken at different values of the pump 0.1 1 10 4&0 430
fluence® (uJd/cnt per pulse at T=30 K. Inset: Emission spectra measured AcI)/cI)th A (nm)

in two different positions across the sample surface at the same excitation

level above thresholdT(=300 K). FIG. 3. Panel(a): SI emission intensity vs photoexcited density, for

pump intensities below threshol@ €30 K). The solid dots are the experi-

. mental points and the solid line is a fit to the data using #g.Panel(b):
(h) of the nanofibers of about 220 nm and 110 nm, respecs; random lasing plus stimulated emission intensity versus normalized pump
tively. The fraction of substrate surface covered with fibers isxcess fluenca®/®, (T=300 K). Panel(c): Emission spectra recorded

estimated to be=50%. Based on the results of recent calcu-atA®/®»=0.58 and 9.0 =300 K).
lations of the propagation modes pf6 P waveguide$® we
hereafter assume that the6P emission near 425 nm propa- tween the nanofibers is negligible, we attribute the optical
gates with possible amplification only in tlieides) fibers  feedback responsible for laser action to efficiér@ndom
with b>200-250 nm. multiple scattering of light propagating along the nanofibers
The sample is photoexcited at normal incidence with thecaused by fiber inhomogeneities. Feedback is possibly pro-
laser beam polarization set parallel to the long axis of thevided also by well defined end facets with good optical qual-
p-6P molecules, so that a maximum material absorption ofty.
~60% is achieved. The emission is found to be rather iso- Figure 3a) shows the spectrally integrat¢8l) emission
tropic, due to both light diffraction at the exit of the nanofi- intensity as a function of the estimated densiy) excited
bers and disorder-induced light scattering. Nevertheless, thgy the ultrafast laser pulses, for densities below threshold.
emission features a degree of polarizatigarallel to the The data actually refer to a position on the sample with a
long molecular axis>7 dB. Figure 2 displays a set of time- threshold densit\,=2x 10" cm™2. The sublinear depen-
integrated emission spectra for different values of the excidence of the signal versud, indicates that threshold is
tation fluence. The emission is collected nearly perpendicuachieved in the regime ghonradiative bimolecular recom-
larly to the plane of the mica substrate, but the emissiorbination for the photoexcited density. An estimate of the bi-
collected at different angles yields similar results. When themolecular recombination rate can be obtained by data fitting.
pump fluence reaches a given threshold value, very sharghe time-integrated emission intensit) has the form:
randomly spaced lines arise at wavelengths across the 0-1 kN
emission band ofp-6P near 425 nm. Lines having a STlocf N(t)dt~In| — 0
resolution-limited width2 A) are observed. The line spectral Ko
distribution is strongly dependent on the excitation positionwherek andk, are the bimolecular recombination rate and
on the sample surfad@nset of Fig. 2. However, the spectral the (low-intensity inverse photoluminescence lifetime, re-
pattern is well reproduced in different acquisitions taken akpectively. From data fitting using the expression given in
different times, so that we exclude that the narrow lines argq. (1) and k,=1.8x10° s, we find ke=(0.9+0.2)
experimental artifacts. The threshold fluendey is as low X107 cm®/s. By comparing data sets obtained in different
as 0.5uJ/cn? per pulse(incident on the samplechanges in  positions on the sample, we determine that the valuk,gf
the sample location yield variations of a factor of three inlies in the interval (0.3—1.2 10’ cm®/s. The bimolecular
®y,. Assuming an internal conversion efficiency of 100%, recombination ratéand so the exciton diffusion coefficignt
for ®,,=0.5 wJ/cnt, we estimate a threshold densityf) of crystallinep-6P are thus found to be of the same order of
of 6x10 cm™3. All the above-mentioned characteristics magnitude as that reported in literature for crystalline
are found to be independent of temperature in the 30—300 ketracené?®
range; in particular, the threshold fluence remains constant For excitation levels just above threshold, laser action
within our 10% experimental accuracy. first takes place in a few nanofibers featuring efficient ran-
The observed nonlinear spectra are reminiscent of “random feedback and long gain paths. Thanks to their narrow

dom lasing”*~1® As the quantity of material deposited be- linewidth, random modes emerge from the intense spontane-
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