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While the determination of free-energy differences by MD simulation has become a standard
procedure for which many techniques have been developed, total entropies and entropy differences
are still hardly ever computed. An overview of techniques to determine entropy differences is given,
and the accuracy and convergence behavior of five methods based on thermodynamic integration
and perturbation techniques was evaluated using liquid water as a test system. Reasonably accurate
entropy differences are obtained through thermodynamic integration in which many copies of a
solute are desolvated. When only one solute molecule is involved, only two methods seem to yield
useful results, the calculation of solute–solvent entropy through thermodynamic integration, and the
calculation of solvation entropy through the temperature derivative of the corresponding free-energy
difference. One-step perturbation methods seem unsuitable to obtain entropy estimates. ©2004
American Institute of Physics.@DOI: 10.1063/1.1636153#

I. INTRODUCTION

Computing free energies and entropies is one of the main
goals and major efforts in the field of MD simulation, since
these properties are among both the most sought-after and
most elusive properties of a system. Knowledge about free
energies is essential to understand the direction of any
chemical process as well as the composition of any equilib-
rium, while knowledge about entropies contributes to our
understanding of chemical processes, e.g., of the driving
forces of the folding of biomolecules or the binding of
ligands. Entropy is the key property to understand chemical
phenomena such as hydrophobic interactions. Unfortunately,
these two statistical properties are not that easily accessible
to simulations, as their evaluation involves a measurement of
the extent of phase space available to the system, and so in
principle requires an infinitely long simulation to scan the
entire space. Nevertheless, a sizable effort has so far been
invested in studying free-energy differences, showing that it
is, in spite of all sampling problems, possible to obtain rea-
sonable free-energy estimates.1–7 The reason is, that in order
to obtain free-energy differences between two states, the
evaluation of the complete partition function is not really
necessary, but extensive sampling of the relevant parts where
the two states differ, suffices. In contrast to free-energy dif-
ferences, determining both absolute entropies and entropy
differences from MD simulations requires in principle sam-
pling of the complete phase space. Generally, one can distin-
guish two types of attempts to obtain reasonable estimates
for entropies by MD simulations. One type of methods fo-
cuses on conformational entropies, where not all, but only
internal ~conformational! nondiffusive degrees of freedom,
for example, in a protein, are considered.8–12 The other type
of method relies on the principles of statistical thermody-

namics, where, usually in analogy to the methods to deter-
mine free-energy differences, formulas for entropy differ-
ences between two states can be derived.13,14The first type of
methods has been successfully applied to proteins and other
biomolecular systems, e.g., to estimate sidechain entropies.15

A study of the internal entropy of the unfolded and folded
conformations of a small peptide showed though, that know-
ing these conformational entropies is not sufficient to under-
stand the underlying forces that drive peptide and protein
folding,16 but that inclusion of solvent degrees of freedom is
necessary. The second type of approach which extends tech-
niques to estimate free-energy differences to entropies, has
been applied very rarely so far,17–21 the reason being that
they involve an accurate estimate of an ensemble average
that includes the complete Hamiltonian of the system which
shows large fluctuations and therefore takes a very long
simulation time to converge. Here, several methods to esti-
mate entropy differences are presented and tested for a pure
water system, namely by calculation of the excess and hy-
dration entropies of a widely used water model, the simple
point charge~SPC! model.22

II. THEORY

A. Basic statistical mechanics formulas
and notation used

The classical Hamiltonian for a system ofN atoms, ex-
pressed in their Cartesian coordinatesr and conjugate mo-
mentap reads

H~p,r !5Ekin~p!1Epot~r !5(
i 51

N pi
2

2mi
1Epot~r !, ~1!

Ekin(p) andEpot(r ) being the kinetic and the potential energy
of the system. The partition function in the canonical en-
semble is given by

Q~N,V,T!5
** exp~2H~p,r !/kBT!dpdr

h3NN!
, ~2!
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whereV is the volume of the system,T is the absolute tem-
perature,kB is Boltzmann’s constant, andh is Planck’s con-
stant, respectively. The factorial should only be present when
theN particles are indistinguishable. In analogy, the partition
function of the isothermal–isobaric~NPT! ensemble can be
written

Q~N,p,T!5
*** exp~2~H~p,r !1pV!/kBT!dpdrdV

h3NN!
, ~3!

the only difference being apV term in addition to the Hamil-
tonian and an additional integration over volume.

The phase-space probabilityp(p,r ) to find the system in
a given state~in the canonical ensemble! with configurationr
and conjugate momentap is given by

p~p,r !NVT5
exp~2H~p,r !/kBT!

** exp~2H~p,r !/kBT!dpdr

5
exp~2H~p,r !/kBT!

h3NN!Q~N,V,T!
~4!

and is used to define the ensemble average of a propertyX
through

^X&NVT5E E X~p,r !p~p,r !dpdr . ~5!

The key quantity of the canonical ensemble, the Helmholtz
free energy, can thus be expressed as an ensemble average

A~N,V,T!52kBT ln Q~N,V,T!

52kBT lnH ** exp~2H~p,r !/kBT!dpdr

h3NN! J
51kBT ln^exp~1H/kBT!&. ~6!

In the NPT ensemble the analogous quantity is the Gibbs free
energy

G~N,p,T!5A~N,V,T!1pV52kBT ln Q~N,p,T!. ~7!

In the statistical mechanical context, the entropy can be for-
mulated through two fundamental expressions, first as tem-
perature derivative of the free energy (A or G)

S52S ]A

]TD
N,V

52S ]G

]T D
N,p

, ~8!

and second through the difference of free energy (A or G)
and energyU ~or enthalpyH)

S~N,V,T!5kB ln Q~N,V,T!

1
**H~p,r !exp~2H~p,r !/kBT!dpdr

h3NN!Q~N,V,T!T

5kB ln Q~N,V,T!1
^H&NVT

T
5

2A1U

T
~9!

or

S~N,p,T!5kB ln Q~N,p,T!1
^H&NpT

T
5

2G1H

T
. ~10!

In the following, we will focus on the canonical ensemble
and give only the key equations for the NPT ensemble or
brief indications how to obtain these.

B. Determining free-energy differences

There exists various methods to determine the free-
energy difference between two statesa and b of a system.
We concentrate on two basic approaches, thermodynamic
integration13 and perturbation,14 which we wish to apply to
the determination of entropies.

In the thermodynamic integration~TI! method, the
HamiltonianH(p,r ) is made a function of a coupling param-
eterl, H(p,r ,l). Thus, the free energy also becomesl de-
pendent and the free-energy difference between two statesa
andb, characterized byla andlb , respectively, can be ex-
pressed through the following integral:

DAba
TI 5A~lb!2A~la!5E

la

lb dA

dl
dl, ~11!

where the derivative of the free energy with respect tol can
be written as

dA

dl
5E E ]H~p,r ,l!

]l

3
exp~2H~p,r ,l!/kBT!

** exp~2H~p8,r 8,l!/kBT!dp8dr 8
dpdr

5E E ]H~p,r ,l!

]l
p~p,r ,l!dpdr5 K ]H~l!

]l L
l

. ~12!

The original perturbation~PT! formula was derived by
Zwanzig14

DAba
PT5A~b!2A~a!

52kBT lnS Q~b!

Q~a! D
52kBT lnS E E exp~2~H~p,r ,b!

2H~p,r ,a!!/kBT!p~p,r ,a!dpdr D
52kBT ln~^exp~2~H~b!2H~a!!/kBT!&a!, ~13!

and, in the terminology of coupling parameter approach, cor-
responds to making use of the numerical derivative of the
free energy with respect tol. The PT method can be applied
in two ways: as in TI, one can make use of artifical interme-
diate states between statesa andb ~multistep perturbation23!,
or one can perform a single simulation of one of the
endstates24,25 or of an artificial reference state,26–28 from
which extrapolations to the~other! endstates are carried out
~one-step perturbation!. The Gibbs free energyG is com-
puted in analogy toA when using NPT simulations.

C. Determining entropy differences

The most obvious, ‘‘naive’’ approach to estimate the en-
tropy difference of two statesa andb is based on Eq.~9! and
uses the free-energy difference, e.g., determined through TI
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or PT, and the difference of the energies~or enthalpies! of the
two states~i.e., the endpoints of the TI or PT pathways!

DSba
end5

DUba2DAba

T
5

DHba2DGba

T
. ~14!

A second approach makes use of Eq.~8!, which leads to the
finite-difference approximation to compute the entropy at
temperatureT via the free energies (A or G) at T1DT and
T2DT,

DSba
DT52

DAba~T1DT!2DAba~T2DT!

2DT
. ~15!

This method assumes a constant difference in the heat capac-
ity Dcv,ba ~or Dcp,ba for NPT! over the temperature range
2DT.

Other techniques to determine entropy differences can be
derived from the methods to compute free-energy differences
@using Eq.~8!#. In order to obtain a TI formulation forDSba ,
the entropy needs to be expressed as a function of the cou-
pling parameterl,

S~l!52S ]~2kBT ln Q~N,V,T,l!

]T D
N,V

5kB ln Q~N,V,T,l!

1kBT
]

]T
lnS ** exp~2H~p,r ,l!/kBT!dpdr

h3NN! D
5kB ln Q~N,V,T,l!

1
**H~p,r ,l!exp~2H~p,r ,l!/kBT!dpdr

T** exp~2H~p,r ,l!/kBT!dpdr
. ~16!

Differentiated with respect tol this gives

S dS

dl D
N,V,T

5
1

kBT2 H K ]H~l!

]l L
l

^H~l!&l

2 K ]H~l!

]l
H~l!L

l
J , ~17!

thus, the entropy difference reads

DSba
TI 5

1

kBT2 E
la

lbH K ]H
]l L

l

^H&l2 K ]H
]l

HL
l
J dl. ~18!

The corresponding perturbation analog is

DSba
PT5S~b!2S~a!

52S ]DAba
PT

]T D
N,V

5kB ln^exp~2~H~b!2H~a!!/kBT!&a

1
1

T

^exp~2~H~b!2H~a!!/kBT!•H~b!&a

^exp~2~H~b!2H~a!!/kBT!&a

2
1

T
^H~a!&a . ~19!

Note, that equations analogous to Eqs.~17! and ~19! can be
derived for the NPT ensemble. They contain additionalpV
terms in any ensemble average linear in the Hamiltonian.
Thus, any ensemble average^H& becomeŝ H1pV&, and
^H•X& becomeŝ @H1pV#•X&. Generally, thesepV terms
do not contribute much to the ensemble-average differences
and are therefore neglected throughout this study.

D. Splitting the Hamiltonian: Solute–solvent entropy

Alternative formulas to compute entropy differences
~both for TI and PT! can be derived by distinguishing parts
of the Hamiltonian that are and that are not dependent on the
coupling parameterl ~that do or do not differ for the two
statesa andb). Without loss of generality, we may think of
a Hamiltonian that distinguishes between solute (u) and sol-
vent (v) degrees of freedom, in which the intra-solute and
the solute–solvent interactions are dependent onl, while the
intrasolvent interactions arel independent

H~p,r ,l!5Huu~p,r ,l!1Huv~p,r ,l!1Hvv~p,r !. ~20!

We then find for the free energy~TI!,

DAba
TI 5E

la

lb dA

dl
dl5E

la

lbK ]Huu

]l
1

]Huv

]l L
l

dl, ~21!

or ~PT!

DAba
PT52kBT ln~^exp~2~Huu~b!1Huv~b!2Huu~a!

2Huv~a!!/kBT!&a!. ~22!

For DSba , Eq. ~18!, ~TI! becomes

DSba
TI 5

1

kBT2 E
la

lbH K ]~Huu1Huv!

]l L
l

^Huu1Huv1Hvv&l

2 K ]~Huu1Huv!

]l
@Huu1Huv1Hvv#L

l
J dl

5
1

kBT2 E
la

lbH K ]~Huu1Huv!

]l L
l

^Huu1Huv&l

2 K ]~Huu1Huv!

]l
@Huu1Huv#L

l
J dl

1
1

kBT2 E
la

lbH K ]~Huu1Huv!

]l L
l

^Hvv&l

2 K ]~Huu1Huv!

]l
HvvL

l
J dl. ~23!

The last integral can be simplified using
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d

dl
^Hvv&l5

d

dl

**Hvv~p,r !exp~2H~p,r ,l!/kBT!dpdr

** exp~2H~p,r ,l!/kBT!dpdr

5
1

kBT H K ]~Huu1Huv!

]l L
l

^Hvv&l

2 K ]~Huu1Huv!

]l
HvvL

l
J . ~24!

Thus, Eq.~23! can be reformulated

DSba
TI,all5

1

kBT2 E
la

lbH K ]~Huu1Huv!

]l L
l

^Huu1Huv&l

2 K ]~Huu1Huv!

]l
@Huu1Huv#L

l
J dl

1
1

T E
la

lb d

dl
^Hvv&ldl

5DSba
TI,uuv1

1

T
~^Hvv&lb

2^Hvv&la
!

5DSba
TI,uuv1

DUend,vv

T
, ~25!

where the notationDSba
TI,uuv was introduced to indicate that

the first integral refers to the solute–solute and solute–
solvent entropy difference. Physically, this result shows that
the entropy difference is determined through the difference
in the solute–solute plus the solute–solvent entropy and the
solvent–solvent energy, since the contributions of solvent–
solvent entropy and solute–solvent energy cancel exactly
@Eq. ~24!, see also Ref. 29#. A detailed analysis of these types
of entropy–enthalpy compensation is given in Ref. 30.

Splitting the Hamiltonian, Eq.~19! ~PT! can be reformu-
lated too,

DSba
PT5kB ln^exp~2~Huu~b!1Huv~b!2Huu~a!2Huv~a!!/kBT!&a

1
1

T

^exp~2~Huu~b!1Huv~b!2Huu~a!2Huv~a!!/kBT!•@Huu~b!1Huv~b!#&a

^exp~2~Huu~b!1Huv~b!2Huu~a!2Huv~a!!/kBT!&a
2

1

T
^Huu~a!1Huv~a!&a

1
1

T

^exp~2~Huu~b!1Huv~b!2Huu~a!2Huv~a!!/kBT!•Hvv~b!&a

^exp~2~Huu~b!1Huv~b!2Huu~a!2Huv~a!!/kBT!&a
2

1

T
^Hvv~a!&a

5DSba
PT,uuv1

1

T
~^Hvv~b!&b2^Hvv~a!&a!, ~26!

where the last line again gives a physical explanation of the
different terms that contribute toDSba

PT, namely, combining
the first three lines yields an estimate for the solute–solute
and solute–solvent entropy difference, whereas the next two
lines refer to the difference in the solvent–solvent energy.

Concluding this section, it should be mentioned that,
since the kinetic energy part of the Hamiltonian@Eq. ~1!# can
be separated in the ensemble averages, in practice only the
potential energyEpot(r ) is considered instead ofH(p,r ).
This implies that the internal~total! energyU is replaced by
the internal potential energyUpot.

E. Other methods to compute entropy

Obviously, other methods to determine free-energy dif-
ferences can in principle also be extended to obtain entropy
differences. One method that can be mentioned here as ex-
ample is particle insertion,19 the application of which is lim-
ited to the calculation of solvation free energies~and entro-
pies! of atoms and small molecules.

For completeness, other techniques to determine entropy
should be mentioned: the adiabatic switching method31 can
be used to obtain absolute entropies and has been succesfully
applied to determine excess entropies of pure liquids,32 how-
ever, a generalization to other~mixed! systems seems to be

difficult, if not impossible. An acceptance ratio method to
determine the excess entropy of pure liquids has been devel-
oped and successfully tested for water.33 A number of meth-
ods to determine configurational entropies based on a har-
monic approximation of the internal degrees of freedom has
been developed for nondiffusive systems.8–12

III. COMPUTATIONAL DETAILS

All simulations were performed using theGROMOS96

package of programs.34,35 They were all based on an equili-
brated cubic, periodic simulation box containing 1000 SPC
~Ref. 22! molecules~initial box length: 3.132 nm!. The simu-
lation temperature was kept constant by weakly coupling to a
temperature bath with a relaxation time of 0.1 ps.36 For NPT
simulations, the pressure was maintained at 1 atm by also
applying the weak coupling algorithm with a relaxation
time of 0.5 ps and an isothermal compressibility of
76.2431025 (kJ mol21 nm23)21. For the nonbonded inter-
actions, a twin-range method with cutoff radii of 0.8 and 1.4
nm was used.34,35 Outside the longer cutoff radius a reaction
field correction37 was applied with a relative dielectric per-
mittivity of 78.5. The integration time step was 2 fs, the
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pairlist for pairs within the inner cutoff and the energies and
forces for pairs between the inner and outer cutoff radii were
updated every 10 fs.

In a thermodynamic cycle three types of SPC molecules
were considered: SPC molecules with normal interactions
~denoted as SPC!, SPC molecules without Coulombic inter-
actions~denoted as SPCnc), and SPC molecules without non-
bonded interactions (SPCnn). Two types of transitions be-
tween these molecules were performed:~i! perturbing the
interactions of all molecules~for the transition SPC
→SPCnn this gives the excess free energy and entropy!, and
~ii ! perturbing only one molecule, which yields the hydration
free energy and entropy of the molecule of interest.

Two methods to determine free-energy differences and
to test various approaches to compute entropies were ap-
plied, thermodynamic integration and one-step perturbation.
Multistep perturbation had been briefly tested and performed
essentially like TI. It should be noted though, that perturbing
all molecules can only sensibly be carried out using thermo-
dynamic integration~with constant volume!.

In the TI calculations the statesa andb were connected
usingl points 0.1 apart in the range@0,1#. In particular cases
morel points were inserted to obtain a more accurate refer-
ence free energy or entropy value~see Figs. 1 and 2!. All TI
calculations were performed using a quadratic dependence of
the potential energy on the coupling parameterl and a soft-
core interaction on the perturbed atoms~see below!. At each
l point, an initial equilibration of 50 ps for the all-molecule
perturbation TI calculations and of 250 ps for the single-

molecule perturbation TI calculations was carried out. After
this equilibration period, the simulation at eachl point was
performed for 100 ps for the all-molecule perturbation TI, for
600 ps for the one-molecule perturbation TI at 300 K, and
for 200 ps for the one-molecule perturbation TI at 280 and
320 K.

The one-step perturbation calculations were carried out
using an uncharged soft-core reference state as described in
Refs. 27 and 28. The van der Waals interactions of the soft-
core reference state with the solvent molecules had the form

Epot,vdW,soft~r ,l,a!

5
C12SO

S r 61l2a
C12SO

C6SO
D 2 2

C6SO

S r 61l2a
C12SO

C6SO
D , ~27!

wherea, a parameter that controls the ‘‘softness’’ of the in-
teraction, was set to 1.51, andl, a coupling parameter in-
cluded here only for implementation reasons, was set to 0.5.
The parametersC6SO andC12SO of the Lennard-Jones inter-
actions between the soft-core reference and the oxygen at-
oms of the SPC molecules were computed using geometric
combination rules as described in Ref. 34. The reference
state was chosen with a mass of 18.0154 amu, and
AC6SS50.27322 (kJ mol21 nm6)1/2 and AC12SS

50.05901(kJ mol21 nm12)1/2. We note that in Ref. 27 the
squares of these parameter values are erroneously attributed
to the soft-core oxygen interactions. The height of the soft-
core potential used atr 50 thus is 9.37 kJ mol21, and not
6.99 kJ mol21 as quoted in Refs. 27 and 28. The initial con-
figuration was generated by replacing one SPC molecule of
the equilibrated box described above by the soft-core particle
and equilibrating for 10 ps. As described in Ref. 28, the
insertion of a SPC~or SPCnc) molecule at the soft-core site
was performed with additional translational and rotational
sampling. The molecule was first inserted in ten random ori-
entations, and then for each orientation ten random displace-
ments in an interval of@20.05 nm, 0.05 nm# were carried
out.

FIG. 1. Thermodynamic integration perturbing all~1000! molecules. Simu-
lation length perl point: 100 ps; SPC: full nonbonded interactions, SPCnn :
no nonbonded interactions, SPCnc : no Coulomb interactions. dA/dl: Eq.
~12!. dS/dl: Eq. ~17!.

FIG. 2. Thermodynamic integration perturbing a single
out of 1000 molecules; SPC: full nonbonded interac-
tions, SPCnn : no nonbonded interactions, SPCnc : no
Coulomb interactions. Upper panels: NVT, lower pan-
els: NPT; A and D: dATI/dl , dGTI/dl according to Eq.
~12!; B and E: dSTI/dl according to Eq.~17!; C and F:
dSTI,uuv/dl according to Eq.~25!. Simulation length
per l point: 600 ps.
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IV. RESULTS

The following estimates for entropy differences were
computed~whenever applicable!:

~A! Thermodynamic integration:DSTI as given in Eq.~18!.
~B! Entropy as difference of energy/enthalpy and free en-

ergy:DSend according to Eq.~14! with DATI ~or DGTI)
computed using TI according to Eq.~11! andDUpot

end ~or
DHpot

end) calculated from the endpoints of the TI path-
way.

~C! Thermodynamic integration with splitting of the
Hamiltonian into solute–solvent versus solvent–
solvent terms:DSTI,all as given in Eq.~25!, using
DSTI,uuv computed using TI including only the solute–
solvent terms of the Hamiltonian~the solute–solute
terms are zero! and DUpot

end,vv ~or DHpot
end,vv) from the

endpoints of the TI pathways.
~D! Entropy as temperature derivative of free energy:DSDT

through the finite-difference estimate given in Eq.~15!
via DATI(T6DT) @or DGTI(T6DT)], these computed
using TI according to Eq.~11!.

~E! One-step perturbation:DSPT @Eq. ~19!#.
Due to the nature of the one-step perturbation approach
~simulation only at one state, from which the other
ones are extrapolated!, no one-step perturbation

equivalents to@B# and @C# can be given, the corre-
sponding equations ultimately lead to Eq.~19!, i.e., the
estimates are identical.

~F! One-step perturbation equivalent to@D#: Equation~15!
with DAPT(T6DT) @or DGPT(T6DT)] computed us-
ing PT according to Eq.~13!.

A. Thermodynamic integration

Table I presents the free-energy and entropy differences
obtained by thermodynamic integration. The upper part of
the table shows the results for perturbing all molecules in the
system. The cycle closures of the thermodynamic cycle
SPC→SPCnc→SPCnn→SPC (SDATI50.2 kJ mol21 and
SDSTI521.8 J K21 mol21, whereSDX denotes the sum of
the propertyDX in the thermodynamic cycle! illustrate that
both the free energy and the entropy are quite well con-
verged. Cycle closures ofDUend are not meaningful, as they
in this case rely on the same endstate simulations and there-
fore add up to exactly zero. We note that this is not exactly
true for all cases discussed below, as sometimes two inde-
pendent simulations of the endstates are involved. For the
DATI values given in this upper part of the table, a statistical
error could be estimated which is at most 0.05 kJ mol21, the
statistical error ofDUpot

end is below 0.02 kJ mol21. Figure 1
shows the~well-converged! derivatives ofA andS with re-

TABLE I. Free energies, energies and entropies obtained by thermodynamic integration. Method (m): the interaction of all or a single water molecule isl
dependent; transition betweenl-dependent states: SPC all interactions, SPCnn no nonbonded interactions, SPCnc no Coulomb interactions; thermodynamic
boundary conditions~tbc!: NVT constant volume, NPT constant pressure;T temperature;l simulation length perl point; ^V& average volume determined
from the simulations at the two endstates.DATI Eq. ~11!; DUpot

end difference in potential energy between the two endstates;DSTI Eq. ~18!; DSend Eq. ~14!;
DUpot

end,vv difference in solvent–solvent potential energy between the two endstates;DSTI,uuv Eq. ~25!; DSTI,all Eq. ~25!; The different methods to computeDS
are indicated by@A#, @B#, and@C# in the text.

m Transition tbc
T

@K#
l

@ps#
^V&

@nm3#

DATI

(DGTI)
DUpot

end

(DHpot
end)

DSTI

@A#
DSend

@B# DUpot
end,vv

(DHpot
end,vv)

@kJ mol21#

DSTI,uuv
DSTI,all

@C#

@kJ mol21# @J K21 mol21# @J K21 mol21#

all SPC→SPCnn NVT 300 100 30.73 23.2 41.3 47.0 60.3
SPC→SPCnc 300 100 30.73 28.7 39.4 22.3 35.7

SPCnc→SPCnn 300 100 30.73 25.3 1.9 22.9 24.0

single SPC→SPCnn NVT 300 600 30.73 23.1 40.7 10.7 58.7 241.4 162.5 24.5
300 200 30.73 23.0 45.3 22.1 74.3 237.0 157.8 34.5
280 200 30.73 25.0 29.6 29.7 16.4 256.4 175.2 226.2
320 200 30.73 21.8 48.7 40.3 84.1 232.1 149.2 48.9

NPT 300 600 30.80 23.4 59.5 92.4 120.3 223.6 161.7 83.0
300 200 30.81 23.3 76.2 62.9 176.3 28.0 166.5 139.8
280 200 30.36 24.7 39.7 51.7 53.6 245.9 171.5 7.6
320 200 31.34 22.4 59.6 63.7 116.2 221.3 144.8 78.2

single SPC→SPCnc NVT 300 600 30.73 31.3 52.1 27.8 69.3 223.1 117.5 40.5
300 200 30.73 31.5 64.6 69.4 110.3 210.7 119.0 83.3

NPT 300 600 30.82 30.9 52 12.9 70.3 224.2 117.5 36.8
300 200 30.82 31.1 58.4 5.6 91.0 218.8 115.4 52.7
280 200 30.39 31.8 75 24.9 154.3 23.3 125.6 113.8
320 200 31.35 30.6 61.7 19.7 97.2 212.5 106.4 67.3

single SPCnc→SPCnn NVT 300 600 30.73 27.7 9.7 27.2 58.0 2.7 46.0 55.0
300 200 30.73 27.4 21.7 65.5 19.0 28.7 45.3 16.3

NPT 300 600 30.82 27.8 17 33.9 82.7 10.0 45.9 79.2
300 200 30.82 28.0 15.1 25.6 77.0 8.0 45.9 72.6
280 200 30.37 26.4 23.8 37.0 107.9 16.8 42.4 102.4
320 200 31.34 27.7 214.4 24.7 220.9 221.1 41.0 224.9
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spect tol @Eqs.~12! and~17!#, again indicating that one can
obtain not only good estimates forDA but also reasonable
estimates forDS with this method~method@A#!. No error
bars are displayed in the figure, as the ones for dA/dl are too
small to be visible and the ones for dS/dl too large due to
the sizeable errors of the energy ensemble averages. These
errors in the energy ensemble averages seem to cancel par-
tially upon computing entropies, leading to comparatively
good results. Comparing the dA/dl and the dS/dl profiles of
the three transitions shown, one can attribute the maxima and
minima to different types of interactions, namely the first
maximum~aroundl50.1) to switching off electrostatic in-
teractions and the second extremum~aroundl50.6) to re-
moving the van der Waals interactions. This nicely shows,
that the effects of turning off the different types of non-
bonded interactions are well separated along thisl path. This
makes a more complex procedure, in which first electrostatic
and subsequently the remaining nonbonded interactions are
switched off, unnecessary. Table I also presents theDSend

estimates obtained from free-energy differences and energy
differences@Eq. ~14!; method@B##, which differ significantly
from the results directly obtained from the TI calculation
(DSTI; method@A#!. Considering the error estimates,DSend

seems to be more precise thanDSTI. Comparison of the val-
ues ofDATI for the transition SPC→SPCnn with values for
the excess free energy of SPC from the literature~expt.
24.0 kJ mol21; simulated 24– 25 kJ mol21 at slightly differ-
ent simulation conditions38! gives excellent agreement.

The results for perturbing only a single molecule are
presented in the lower part of Table I both for constant vol-
ume and constant pressure simulations at 280, 300, and 320
K. The convergence behavior differs significantly from the
case where all molecules are perturbed. Again, the free-
energy differencesDATI seem to be reasonably well con-
verged, as can be seen from cycle closures and from the
comparison of the results for different simulation lengths per
l value. This is confirmed by Fig. 2, where the derivative of
the free energy with respect tol is presented in the left
panels~again, the error bars are too small to be visible!.
Estimates of the statistical error ofDATI in the table range
from 0.4 to 0.6 kJ mol21 for the simulations with 600 ps per
l point and from 0.5 to 1.1 kJ mol21 for the simulations with
200 ps perl point. The dA/dl profiles are qualitatively very
similar to those discussed above for Fig. 1 where all mol-
ecules were perturbed. The resulting Gibbs free energy of
solvation of water~transition SPC→SPCnn) agrees reason-
ably well with experimental values@26.5 kJ mol21 at 303 K;
27.5 kJ mol21 at 283 K; 25.5 kJ mol21 at 323 K ~Ref. 39!#,
in particular the temperature dependence ofDGTI seems to
be quite decent. As expected, the free-energy estimates do
not differ much between the NPT and NVT ensembles. The
entropy differencesDSTI though have not converged after
600 ps of simulation perl point. This is not only demon-
strated by the nonclosure of thermodynamic cycles (SDSTI

amounts to up to 44 and246 J K21 mol21 for NVT and
NPT at 300 K, respectively! but also by the rather erratic
behavior of dS/dl as displayed in the middle panels of Fig.
2. As expected, the estimates ofDSend are equally or even
more erroneous as theDSTI estimates, which results from the

large error in the potential energy ensemble averages. The
statistical error ofDUend ranges beween 10 and 15 kJ mol21

for the simulations with 600 ps perl point and is approxi-
mately 20 kJ mol21 for the simulations with 200 ps perl
point. It should be noted that the statistical error is not suf-
ficient to describe possible deviations inDUend when com-
pletely independent simulations are considered. This is prob-
ably due to dependence of the total potential energy of the
system on the~not entirely converged! pressure. Again it
should be noted that one is dealing here with errors in the
total potential energy of the system, which is in the present
cases in the order of240 000 kJ mol21.

When only one molecule is perturbed, it is possible to
determine the solute–solvent entropy differenceDSTI,uuv

@Eq. ~25!#. As DSTI,uuv relies only on solute–solute and
solute–solvent potential energy terms, it converges much
better than the total entropy differenceDSTI, where the nec-
essary ensemble averages include the total potential energy.
This is reflected in the right panels of Fig. 2, where the
derivatives ofDSTI,uuv with respect tol are displayed. Com-
paring the profiles of dSTI,uuv/dl with those obtained for
dS/dl when perturbing all molecules~Fig. 1!, one notices a
qualitative agreement of maxima and minima for the differ-
ent transitions. A similar agreement can only be guessed for
the middle panels of Fig. 2, where all interactions are con-
sidered. However, if one wants to use the~well-converged!
estimates of the solute–solvent entropy differenceDSTI,uuv

to compute the difference of the total entropyDSTI,all @Eq.
~25!; method @C##, an accurate estimate of the solvent–
solvent potential energy differenceDUpot

end,vv between states
a and b is required. The corresponding columns in Table I
show, that this is exactly the problem, the values ofDUpot

end,vv

are by far too ill-converged to result in a good estimate for
DSTI,all.

Thermodynamic integrations were not only carried out at
300 K but also at 280 and 320 K. ThusDS at 300 K can also
be determined using the free-energy difference estimates at
T6DT @Eq. ~15!; method@D##. The simulations at eachl
point were performed only for 200 ps, as this seemed to be
sufficient to obtain a reasonable estimate for the free-energy
differences at 300 K. The results are presented in Table II.
The resulting entropy of solvation at constant pressure~tran-
sition SPC→SPCnn : 58 J K21 mol21) agrees very well with
the experimental value39 (51 J K21 mol21). Note that cycle
closure is not necessarily a good measure to assess the qual-
ity of the resulting entropy differences. The fact that the
cycle for DSDT closes reasonably well~sinceDSDT values
rely on free-energy differences! does not say anything about
the accuracy ofDSDT, since it is not related to the tempera-

TABLE II. DSDT at 300 K determined fromDATI andDGTI ~values can be
found in Table I! at 280 K and 320 K via Eq.~15!. Thermodynamic bound-
ary conditions~tbc!: NVT constant volume, NPT constant pressure.

Transition tbc DSDT @J K21 mol21#

SPC→SPCnn NVT 80
SPC→SPCnn NPT 58
SPC→SPCnc NPT 30
SPCnc→SPCnn NPT 33
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ture dependence of the free energies involved. Another weak
point of this approach is, that, as opposed to the TI and PT
formulas which are in principle exact, this finite-difference
approach assumes a constant difference in heat capacityDcv
~or Dcp for NPT! over the temperature range of interest.

B. One-step perturbation

Table III presents the results of the one-step perturbation
calculations. As observed in previous studies,28 the one-step
perturbation method with additional translational and rota-
tional sampling when inserting a~dipolar! molecule at the
soft-core site yields reasonably good estimates for free-
energy differencesDAPT. However, comparison with the val-
ues obtained by TI,DATI ~Table I!, shows that the method is
of no use to predict a reasonable temperature dependence of
the free-energy. This implies that the one-step perturbation
finite-difference method@F# @Eq. ~15!# cannot be used to ob-
tain accurateDSDT values. In Fig. 3, the convergence of
DAPT at 300 K is presented. It shows that the best conver-
gence is achieved for the transition SPCnc→SPCnn , where
no charges are involved. This is reasonable, since the un-
charged soft-core particle is a better reference for uncharged
statesa andb than for a state involving partial charges. This
can apparently not be completely compensated by the addi-
tional translational and rotational sampling. Table III also
shows differences of total entropiesDSPT @Eq. ~19!; method
@E## and of solute–solvent entropiesDSPT,uuv @Eq. ~26!#. The
total entropy differences are completely unrealistic results
with a huge scattering, whereas the estimates ofDSPT,uuv

seem to be better converged, at least if one compares results
for the same transition at different temperatures and for dif-
ferent ensembles. Yet, theseDSPT,uuv estimates do not match
the valuesDSTI,uuv obtained previously by thermodynamic
integration~Table I!. This is probably due to the fact, that
DSPT,uuv in Eq. ~26! contains essentially two contributions,

one from the solute–solvent free-energy difference and the
second from the solvent–solvent energy/enthalpy difference,
which is obtained by extrapolating the solvent–solvent en-
ergy at stateb from the simulation at statea, which probably
yields a very poor estimate for this energy. The convergence
behavior ofDSPT andDSPT,uuv for the simulations at 300 K
is monitored in Fig. 4, showing that indeed the overall en-
tropy difference is completely erratic, whereas the solute–
solvent entropies do converge, at least towards some value.

V. CONCLUSIONS

We have compared the accuracy of various formulas and
procedures to compute entropy differences, in particular the
excess entropy and the entropy of solvation using liquid wa-
ter as a test system. The methodological problem of calcu-
lating entropy is that any method requires an accurate esti-

TABLE III. One-step perturbation~length of each simulation: 1 ns!. Thermodynamic boundary conditions~tbc!:
NVT constant volume, NPT constant pressure.DAPT Eq. ~13!; DSPT Eq. ~19!; DSPT,uuv Eq. ~26!.

Transition tbc
T

@K#
^V&

@nm3#
DAPT ~or DGPT)

@kJ mol21#
DSPT

@J K21 mol21#
DSPT,uuv

@J K21 mol21#

SPC→SPCnn NVT 300 30.73 19.4 217.5 106.7
280 30.73 16.4 2209.8 116.4
320 30.73 17.9 2112.6 99.7

NPT 300 30.85 20.7 45.1 101.7
280 30.41 18.6 2219.0 96.0
320 31.39 15.9 96.6 96.7

SPC→SPCnc NVT 300 30.73 28.1 153.9 54.6
280 30.73 23.7 2463.8 65.6
320 30.73 28.6 2185.8 46.0

NPT 300 30.85 29.2 47.7 50.1
280 30.41 25.1 2190.3 47.0
320 31.39 25.1 27.8 47.6

SPCnc→SPCnn NVT 300 30.73 28.7 63.6 52.1
280 30.73 27.3 254.0 50.8
320 30.73 210.6 73.2 53.7

NPT 300 30.85 28.5 22.6 51.6
280 30.41 26.5 228.7 49.0
320 31.39 29.2 68.8 49.1

FIG. 3. Convergence ofDAPT @Eq. ~13!# or DGPT for one-step perturbation
calculations at 300 K. SPC: full nonbonded interactions, SPCnn : no non-
bonded interactions, SPCnc : no Coulomb interactions.
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mate of an ensemble average that includes the complete
Hamiltonian of the system. Such an ensemble average shows
enormous fluctuations and therefore takes a very long simu-
lation time to converge. Two different types of perturbations
were considered: perturbing all molecules in the system~ex-
cess entropy! and perturbing a single molecule~entropy of
solvation!. For the first case good, well-converged estimates
for entropy differences could be obtained, while the second
case was by far more problematic. In this case, comparing
the entropy difference obtained by thermodynamic integra-
tion, DSTI, and the one obtained from the free-energy differ-
ence~from thermodynamic integration! combined with the
energy/enthalpy difference of the endpoint simulations,
DSend, the following observations were made:~i! with the
applied simulation lengths of 600 ps perl value ~or per
endstate!, neither method yields an accurate result forDS,
~ii ! DSTI requires a value for the ensemble average
^]H/]l&l^H&l2^]H/]lH&l which shows smaller fluctua-
tions than the ensemble average^H&l needed forDSend, as
the latter ensemble average is an extensive quantity, thus
growing with system size,~iii ! on the other hand, forDSTI a
comparatively long simulation has to be carried out at eachl
point, whereas forDSend the simulations at eachl point can
be much shorter, as they are only needed to determineDATI,
the gained simulation time can in principle be invested in

performing longer simulations of the two endstates. The
most promising approach is to determine the temperature
dependence of the corresponding free-energy difference by
thermodynamic integration. Using thermodynamic integra-
tion, one can also get a decent estimate for the difference in
the solute–solvent entropies. For processes in which the
solvent–solvent energy/enthalpy term is nearly constant, the
solute–solvent energy/enthalpy and entropy terms will be
representative for for the total energy and entropy terms,
respectively. For example,40,41 the relative contributions of
enthalpy and entropy to the free enthalpy of solvation of a
series of small solutes in different binary and ternary aque-
ous solutions could be understood using the solute–solvent
energy and entropy terms investigated here. The one-step
perturbation approach is a poor approximation to determine
entropy differences, even when using it to estimate an en-
tropy difference through determination of the temperature
dependence of the corresponding free-energy difference.
None of the techniques considered seems suitable to give a
perspective for the calculation of the entropy of ligand-
protein binding or entropy of polypeptide folding.
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