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Estimating entropies from molecular dynamics simulations
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While the determination of free-energy differences by MD simulation has become a standard
procedure for which many techniques have been developed, total entropies and entropy differences
are still hardly ever computed. An overview of techniques to determine entropy differences is given,
and the accuracy and convergence behavior of five methods based on thermodynamic integration
and perturbation techniques was evaluated using liquid water as a test system. Reasonably accurate
entropy differences are obtained through thermodynamic integration in which many copies of a
solute are desolvated. When only one solute molecule is involved, only two methods seem to yield
useful results, the calculation of solute—solvent entropy through thermodynamic integration, and the
calculation of solvation entropy through the temperature derivative of the corresponding free-energy
difference. One-step perturbation methods seem unsuitable to obtain entropy estim@@84 ©
American Institute of Physics[DOI: 10.1063/1.1636153

I. INTRODUCTION namics, where, usually in analogy to the methods to deter-
mine free-energy differences, formulas for entropy differ-
Computing free energies and entropies is one of the maiences between two states can be derivedThe first type of
goals and major efforts in the field of MD simulation, since methods has been successfully applied to proteins and other
these properties are among both the most sought-after arnomolecular systems, e.g., to estimate sidechain entrpies.
most elusive properties of a system. Knowledge about fre@ study of the internal entropy of the unfolded and folded
energies is essential to understand the direction of angonformations of a small peptide showed though, that know-
chemical process as well as the composition of any equilibing these conformational entropies is not sufficient to under-
rium, while knowledge about entropies contributes to ourstand the underlying forces that drive peptide and protein
understanding of chemical processes, e.g., of the drivingolding,'® but that inclusion of solvent degrees of freedom is
forces of the folding of biomolecules or the binding of necessary. The second type of approach which extends tech-
ligands. Entropy is the key property to understand chemicahiques to estimate free-energy differences to entropies, has
phenomena such as hydrophobic interactions. Unfortunateljyeen applied very rarely so f&f;?! the reason being that
these two statistical properties are not that easily accessibtbey involve an accurate estimate of an ensemble average
to simulations, as their evaluation involves a measurement dhat includes the complete Hamiltonian of the system which
the extent of phase space available to the system, and so $hows large fluctuations and therefore takes a very long
principle requires an infinitely long simulation to scan the simulation time to converge. Here, several methods to esti-
entire space. Nevertheless, a sizable effort has so far be@nate entropy differences are presented and tested for a pure
invested in studying free-energy differences, showing that itvater system, namely by calculation of the excess and hy-
is, in spite of all sampling problems, possible to obtain readration entropies of a widely used water model, the simple
sonable free-energy estimated The reason is, that in order point charge(SPQ model??
to obtain free-energy differences between two states, the
evaluation of the complete partition function is not really ||, THEORY
necessary, but extensive sampling of the relevant parts where . - )
the two states differ, suffices. In contrast to free-energy dif—A' Basic s_tatlstlcal mechanics formulas
. . and notation used
ferences, determining both absolute entropies and entropy
differences from MD simulations requires in principle sam- ~ The classical Hamiltonian for a system fatoms, ex-
pling of the complete phase space. Generally, one can distifreéssed in their Cartesian coordinateand conjugate mo-
guish two types of attempts to obtain reasonable estimatg®entap reads
for entropies by MD simulations. One type of methods fo- N2
cuses on conformgtional entropigs, where not all, but only H(pir):Ekin(p)_"Epot(r):E 2_I_+Epot(r)! )
internal (conformational nondiffusive degrees of freedom, i=1em
for example, in a protein, are considefed? The other type g, (p) andE () being the kinetic and the potential energy
of method relies on the principles of statistical thermody-of the system. The partition function in the canonical en-
semble is given by
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whereV is the volume of the systenT, is the absolute tem- In the following, we will focus on the canonical ensemble
peraturekg is Boltzmann's constant, artfdis Planck’s con- and give only the key equations for the NPT ensemble or
stant, respectively. The factorial should only be present whebrief indications how to obtain these.

theN particles are indistinguishable. In analogy, the partition

function of the isothermal—isobari®NPT) ensemble can be B. Determining free-energy differences

written There exists various methods to determine the free-
exo( — (H(p.1) + pV)/keT)dpdr dv energy difference between tvyo staandb of a system. .
Q(N,p,T)= 1] exn—( (phS)NNE) ks T)dp ., (3) We concentrate on two basic approaches, thermodynamic

integratiort® and perturbatiod? which we wish to apply to

the only difference being pV term in addition to the Hamil- the determination of entropies.

tonian and an additional integration over volume. In the thermodynamic integratioriTl) method, the
The phase-space probability(p,r) to find the system in HamiltonianZ{(p,r) is made a function of a coupling param-

a given statgin the canonical ensemblwith configurationr ~ teri, H(p,r,\). Thus, the free energy also becomede-

and conjugate momenfais given by pendent and the free-energy difference between two states
andb, characterized by, and\,, respectively, can be ex-
exp(—H(p,r)/kgT) pressed through the following integral:

W(p,r)NVT:ff exp(—H(p,r)/kgT)dpdr

_exp(—H(p,r)/kgT)
~ h3NNIQ(N,V,T)

- Ap dA
AApa=ANp) —A(Na) = N ad)\' (11

4)

where the derivative of the free energy with respect wan
and is used to define the ensemble average of a property Pe written as

through dA_ff JH(p,r,\)
J J d\ 2N
X = X(p,r)a(p,r)dpdr. (5)
(Xnvr p p,r)ap ) expl — H(p.r M/keT) .
The key quantity of the canonical ensemble, the Helmholtz Jfexp—H(p',r' \)/kgT)dp'dr’ pdr
free energy, can thus be expressed as an ensemble average B SH(PT ) e JHOV) .
A(N,V,T)=—ksTINQ(N,V,T) - g mpnMdpdr={—Ee) o (12
kT JJ exp(—H(p,r)/kgT)dpdr The original perturbation(PT) formula was derived by
—oKelN h3NNI Zwanzig"
= +KkgT In(exp + H/kgT)). 6 AAL=A(b)—A(a)
In the NPT ensemble the analogous quantity is the Gibbs free Q(b)
=—kgTIn| =——
energy Q(a)
G(N,p,T)=A(N,V,T)+pV=—kgTInQ(N,p,T). (7
(N,p, T)=A( )+p sT INQ(N,p,T). (7) =—kBT|nUf ex — (H(p.r.b)
In the statistical mechanical context, the entropy can be for-
mulated through two fundamental expressions, first as tem-
perature derivative of the free energh br G) —H(p,r,a))/kgT)m(p,r,a)dpdr
S__( @) _ ( ﬁ) @® =—kgTIn((exp(— (H(b)—H(a))/kgT))a), (13
JT N,V al N,p, and, in the terminology of coupling parameter approach, cor-

responds to making use of the numerical derivative of the
free energy with respect %o. The PT method can be applied
in two ways: as in Tl, one can make use of artifical interme-

and second through the difference of free enemyof G)
and energyJ (or enthalpyH)

S(N,V,T)=kgInQ(N,V,T) diate states between stageandb (multistep perturbatiot),
or one can perform a single simulation of one of the

JIH(p.r)exp(—H(p.r)/kgT)dpdr endstatéd"?® or of an artificial reference staf®;?® from
h3NNITQ(N,V, T which extrapolations to théothe) endstates are carried out

(one-step perturbationThe Gibbs free energ$ is com-

<H>NVT: ~ATU (9)  puted in analogy tA when using NPT simulations.

=ks I Q(N,V, )+ .

or C. Determining entropy differences

The most obvious, “naive” approach to estimate the en-
<H>NDT: -G+H (10 tropy difference of two states andb is based on Eq9) and
T T uses the free-energy difference, e.g., determined through TI

S(N!piT):kBln Q(N,p,T)"F
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or PT, and the difference of the energies enthalpiesof the  Note, that equations analogous to E¢s7) and(19) can be

two stateq(i.e., the endpoints of the Tl or PT pathways derived for the NPT ensemble. They contain additiopdl
terms in any ensemble average linear in the Hamiltonian.

A end:AUba_AAba: AHpa—AGpa (14) Thus, any ensemble averag®) becomes(H+pV), and

é T T ' (H-X) becomes[H+pV]-X). Generally, thes@V terms

A d h mak f hich leads o th do not contribute much to the ensemble-average differences
» Sécond approach makes use o €8), which leads to the and are therefore neglected throughout this study.
finite-difference approximation to compute the entropy at

temperaturel via the free energiesd or G) at T+AT and
T—AT,

AALL(T+HAT)—AA(T—AT)
B 2AT '

A A;= (15 D. Splitting the Hamiltonian: Solute—solvent entropy
Alternative formulas to compute entropy differences

This method assumes a constant difference in the heat capagoth for TI and PT can be derived by distinguishing parts
ity AC, ha (Or ACppa for NPT) over the temperature range of the Hamiltonian that are and that are not dependent on the
2AT. coupling parametek (that do or do not differ for the two

Other techniques to determine entropy differences can bgtatesa andb). Without loss of generality, we may think of
derived from the methods to compute free-energy differenceg Hamiltonian that distinguishes between solutk ¢nd sol-
[using Eq.(8)]. In order to obtain a Tl formulation fakSy,,  vent (v) degrees of freedom, in which the intra-solute and
the entropy needs to be expressed as a function of the cothe solute—solvent interactions are dependent,omhile the

pling parameten, intrasolvent interactions are independent
d(—kgTInQ(N,V,T,\)
SV =- 0T H(P.IN)=Hyu(P.T A +Hyy(P,FN) +Hyy(PF). - (20)
N,V
=kgINQ(N,V,T,\) We then find for the free energifl),
d [ [fexp—H(p,r,\)/kgT)dpdr

+kBTﬁ|n h3NI T \p dA Mo OHyy  IHy,

’ AAbaZ J})\ Kd)\:f + dn, (22
a A

VAN WO

=kgInQ(N,V,T,\)
IIH(pirv)\)qu_H(pirv)\)/kBT)dpdr or (PT)

T exp— H(p.r.\)/kgT)dpdr (16)

(A B
Differentiated with respect ta this gives AADI=—keT In((exp( — (Huu(b) + Hyy(b) = Hyu(@)

ds 1 TH(N) —Hu(@)/kgT))a). (22)
N.v.T A For AS,,, Eq.(18), (Tl) becomes
JH(N)
_< kS H()\)> } @D e )
» ASba:W J;\ T <HUU+HUU+HUU>)\
thus, the entropy difference reads B a A
I HyutHyy)
1 M| [ OH oH —<M[H +H. +H ]> }d)\
Tl _ - _ - uu uv vy
AS = ke T2 f)\a { < &)\>)\<H>>‘ < N 7‘(>}\} dn. (18 N N

The corresponding perturbation analog is

_ 1 Ap 5(HUU+HUU)
- kBTZJ {< O\ )\<Huu+Huv>>\

)‘a
ASTI=S(b)~-S(a) e
- (aAAg’; —<%[HUU+HUU]>X]@\
" Y 1 M| [ I(Hyut+Hyy)
= kg In(exp( — (H(b)—H(a))/KsT))4 +@La[ B — A<va>x

(23

1 (exp(— (H(b) —H(a))/kgT) - H(b))a I Hyut Hup)
T (exp(—(H(b)—H(a))/kgT))a _< IN ’”’>Jd)\

1
Bl T<H(a)>a' (19 The last integral can be simplified using
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d _d JJH,,(p,r)exp(—H(p,r,\)/kgT)dpdr o eTluw, L
K<va>)\_a ff exq—H(p,r,)\)/kBT)dpdr _Asba +?(<Huv>)\b_<Huv>Aa)
_ 1 d(Huu_'—Huv) _ Tl uuv endv
- kBT [ < I\ >)\<Hvu>)\ _ASDa + #' (25)
(ATl ) ) -
A where the notatiorA S was introduced to indicate that
Thus, Eq.(23) can be reformulated the first integral refers to the solute—solute and solute—
1 o | (Hyu+ Hy) solvent entropy dn‘ferenpe. Phy3|_cally, this result shpws that
A Tle,laII:_ZJ {<M> (Hyu+ Huo) the entropy difference is determined through the difference
keT* Ja, I\ N in the solute—solute plus the solute—solvent entropy and the
A Mot Ho) solvent—solvent energy, since the contributions of solvent—
—<M[Huu+7‘lw]> ]d)\ solvent entropy and solute—solvent energy cancel exactly
I\ N [Eq.(24), see also Ref. 29A detailed analysis of these types
1 M d of entropy—enthalpy compensation is given in Ref. 30.
+ _J ——(H,p)rdA Splitting the Hamiltonian, Eq.19) (PT) can be reformu-
T Jy, dh lated too,

AST=kg In(exp — (Hyu(b) + Hyy (D) = Hyu(@) = Hyy(a) kg T))a

+ E <eXF(_(Huu(b)+HUU(b)_Huu(a)_HUU(a))/kBT)'[Huu(b)+HUU(b)]>a
T (X~ (Huya(D) T Hap (D)~ Houl @)~ Hun(@)) /g T))a
1 (X~ (Hy(D) + Huu (D)~ Hu(8) ~ Hun (8) ke T) - Hy ()
T (exf— (Hua(D) + Huy(D)— Hao(@)— Hup(a))TkgT))a T\ oe(@a

1
- ?(Huu(a) + Huv(a)>a

1
=AS; Y+ Z((Hyy(b))s—(Huu(@))a), (26

where the last line again gives a physical explanation of thdifficult, if not impossible. An acceptance ratio method to

different terms that contribute tAS.., namely, combining determine the excess entropy of pure liquids has been devel-

the first three lines yields an estimate for the solute—soluteped and successfully tested for wateA number of meth-

and solute—solvent entropy difference, whereas the next twods to determine configurational entropies based on a har-

lines refer to the difference in the solvent—solvent energy. monic approximation of the internal degrees of freedom has
Concluding this section, it should be mentioned that,been developed for nondiffusive systefn&?

since the kinetic energy part of the Hamiltonidty. (1)] can

be separated in the ensemble averages, in practice only the

potential energyE (r) is considered instead df{(p,r).

This implies that the interndtotal) energyU is replaced by

the internal potential energy . IlI. COMPUTATIONAL DETAILS

All simulations were performed using theROMOS96
package of program®$:° They were all based on an equili-
brated cubic, periodic simulation box containing 1000 SPC

Obviously, other methods to determine free-energy dif-(Ref. 22 moleculedinitial box length: 3.132 nm The simu-
ferences can in principle also be extended to obtain entroplation temperature was kept constant by weakly coupling to a
differences. One method that can be mentioned here as etemperature bath with a relaxation time of 0.13p&or NPT
ample is particle insertioh, the application of which is lim-  simulations, the pressure was maintained at 1 atm by also
ited to the calculation of solvation free energi@nd entro- applying the weak coupling algorithm with a relaxation
pies of atoms and small molecules. time of 0.5 ps and an isothermal compressibility of

For completeness, other techniques to determine entropg6.24x 10~ ° (kJ mol * nm™2%)~1. For the nonbonded inter-
should be mentioned: the adiabatic switching methe@n actions, a twin-range method with cutoff radii of 0.8 and 1.4
be used to obtain absolute entropies and has been succesfutign was used*3® Outside the longer cutoff radius a reaction
applied to determine excess entropies of pure ligtidsmw-  field correction’ was applied with a relative dielectric per-
ever, a generalization to othémixed systems seems to be mittivity of 78.5. The integration time step was 2 fs, the

E. Other methods to compute entropy
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150 L e e molecule perturbation Tl calculations was carried out. After
= o SPC> SPC, | [, Hos 'g this equilibration period, the simulation at eaxhpoint was
E 100 waSPC-> 5P| Y Toy performed for 100 ps for the all-molecule perturbation TI, for
f ok x-x SPC,. > SPC,, | 12 600 ps for the one-molecule perturbation TI at 300 K, and
s | L my 1% 5 for 200 ps for the one-molecule perturbation Tl at 280 and
A T S + F teTme 8 320K
002 04 06 05 1 0 02 04 a6 o3 1 The one-step perturbation calculations were carried out

using an uncharged soft-core reference state as described in
FIG. 1. Thermodynamic integration perturbing @D00 molecules. Simu-  Refs. 27 and 28. The van der Waals interactions of the soft-

lation length pen point: 100 ps; SPC: full nonbonded interactions, 3PC  core reference state with the solvent molecules had the form
no nonbonded interactions, SRC no Coulomb interactions.Add\: Eq.

(12). dS/dn: Eq. (17).

Epot,vdW,sof( r\,a)

pairlist for pairs within the inner cutoff and the energies and c12 c6
forces for pairs between the inner and outer cutoff radii were = =0 > — 0 , (27)
updated every 10 fs. <r6+)\2aC1250) (rsH\zaClZSO)

In a thermodynamic cycle three types of SPC molecules Cbso Cbso

were considered: SPC molecules with normal interactions
(denoted as SPCSPC molecules without Coulombic inter-
actions(denoted as SR{), and SPC molecules without non- where, a parameter that controls the “softness” of the in-
bonded interactions (SRE. Two types of transitions be- teraction, was set to 1.51, and a coupling parameter in-
tween these molecules were performéid: perturbing the cluded here only for implementation reasons, was set to 0.5.
interactions of all molecules(for the transition SPC The parameter€655andC125, of the Lennard-Jones inter-
— SPG,, this gives the excess free energy and entyppgd  actions between the soft-core reference and the oxygen at-
(i) perturbing only one molecule, which yields the hydrationoms of the SPC molecules were computed using geometric
free energy and entropy of the molecule of interest. combination rules as described in Ref. 34. The reference
Two methods to determine free-energy differences andtate was chosen with a mass of 18.0154 amu, and
to test various approaches to compute entropies were ap/C6gs=0.27322 (kJmol* nmP)1/2 and JC125
plied, thermodynamic integration and one-step perturbation=0.05901(kJ mol* nm*?) Y2 We note that in Ref. 27 the
Multistep perturbation had been briefly tested and performedquares of these parameter values are erroneously attributed
essentially like TI. It should be noted though, that perturbingto the soft-core oxygen interactions. The height of the soft-
all molecules can only sensibly be carried out using thermoeore potential used at=0 thus is 9.37 kJmol*, and not
dynamic integratioriwith constant volume 6.99 kJmol ! as quoted in Refs. 27 and 28. The initial con-
In the TI calculations the statesandb were connected figuration was generated by replacing one SPC molecule of
using\ points 0.1 apart in the rang8,1]. In particular cases the equilibrated box described above by the soft-core particle
more\ points were inserted to obtain a more accurate referand equilibrating for 10 ps. As described in Ref. 28, the
ence free energy or entropy val(gee Figs. 1 and)2All TI insertion of a SPGor SPG,.) molecule at the soft-core site
calculations were performed using a quadratic dependence ofas performed with additional translational and rotational
the potential energy on the coupling parametemd a soft- sampling. The molecule was first inserted in ten random ori-
core interaction on the perturbed atofase below At each  entations, and then for each orientation ten random displace-
\ point, an initial equilibration of 50 ps for the all-molecule ments in an interval of —0.05 nm, 0.05 nrhwere carried
perturbation Tl calculations and of 250 ps for the single-out.

200 0.3 0.8
L A C i ﬁ‘r—!
150 | 6—o SPC > SPC, 0.2 —Ho0s6 é
[} L - =1
E ool | =e sPC> sPC, R 01 1
= b e-xsee, >spC, : ™ 3
S OF B o 1.7 o i : .
T & r . 02 3 FIG. 2. Thermodynamic integration perturbing a single
= ol 0 01 oo T 1 9 out of 1000 molecules; SPC: full nonbonded interac-
C P A PR SVH N (Y L eod 0 FH0 tions, SPG,: no nonbonded interactions, SRC no
0 02 04 06 08 1 0 02 04 06 08 170 02 04 06 08 1 Coulomb interactions. Upper panels: NVT, lower pan-
200 I E ] 0.4 F 08 — els: NPT; Aand D: d™/d\ , dG™/d\ according to Eq.
150 Jos Jos = (12; B and E: dST'/_dA according to Eq(17); C and F:
g 1 1 E ds™uw/d\ according to Eq.(25). Simulation length
e} 100 —0.2 o4 ¥ per\ point: 600 ps.
T -4
3 50 o1 1.7
= .
o) j Q02 g
a1 0 0 4 %
3 A DY e = = 1
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
A A A
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TABLE I. Free energies, energies and entropies obtained by thermodynamic integration. Majhdbg interaction of all or a single water moleculehis
dependent; transition betweardependent states: SPC all interactions, §P® nonbonded interactions, SRGo Coulomb interactions; thermodynamic
boundary conditiongtbc): NVT constant volume, NPT constant pressufetemperature| simulation length pei point; (V) average volume determined
from the simulations at the two endstatasA™ Eq. (11); Auggfdifference in potential energy between the two endstaté&s! Eq. (18); AS™™ Eq. (14);
Augy difference in solvent—solvent potential energy between the two endstsB8s!™ Eq. (25); AS™ Eq. (25); The different methods to compufeS
are indicated byA], [B], and[C] in the text.

AAT AU Sgg AST Agend Aends AgThal
(AG™)  (AHZ [A] (B] pot AsThuw [C]
T (W (AHE)
m Transition toc  [K] [ps] [nm®] [kI mol 1] [JK 1 mol 1] [kJ mol 1] [JK tmol 1]
all SPC-SPG, NVT 300 100  30.73 23.2 41.3 47.0 60.3
SPC-SPG, 300 100  30.73 28.7 39.4 22.3 35.7
SPG,.—SPG,, 300 100 3073 -53 1.9 22.9 24.0
single SPG-SPG,, NVT 300 600 3073 23.1 40.7 10.7 58.7 —41.4 162.5 245
300 200  30.73 23.0 45.3 22.1 743 -37.0 157.8 34.5
280 200  30.73 25.0 29.6 29.7 164 —56.4 1752  —26.2
320 200 30.73 21.8 48.7 40.3 84.1 -321 149.2 48.9
NPT 300 600  30.80 23.4 59.5 92.4 120.3 -23.6 161.7 83.0
300 200 3081 23.3 76.2 62.9 1763  -8.0 166.5 139.8
280 200  30.36 24.7 39.7 51.7 53.6 —45.9 171.5 7.6
320 200  31.34 22.4 59.6 63.7 1162 -21.3 144.8 78.2
single SPG-SPG, NVT 300 600  30.73 31.3 52.1 27.8 69.3 —23.1 117.5 40.5
300 200 @ 30.73 315 64.6 69.4 1103 —10.7 119.0 83.3
NPT 300 600  30.82 30.9 52 12.9 703 -24.2 117.5 36.8
300 200  30.82 31.1 58.4 5.6 91.0 -—188 115.4 52.7
280 200  30.39 31.8 75 24.9 1543  -33 125.6 113.8
320 200 3135 30.6 61.7 19.7 97.2 -125 106.4 67.3
single  SPG.—~SPG, NVT 300 600 3073 —7.7 9.7 27.2 58.0 2.7 46.0 55.0
300 200 3073 -74 -17 65.5 19.0 -87 45.3 16.3
NPT 300 600 3082 -78 17 33.9 82.7 10.0 45.9 79.2
300 200 3082 -80 15.1 25.6 77.0 8.0 45.9 72.6
280 200 3037 -64 23.8 37.0 107.9 16.8 42.4 102.4
320 200 3134 -77 —14.4 247  —209 -21.1 41.0 —-24.9
IV. RESULTS equivalents to[B] and [C] can be given, the corre-
) ) ) sponding equations ultimately lead to E49), i.e., the
The following estimates for entropy differences were estimates are identical.
computed(whenever applicable (F) One-step perturbation equivalent[@]: Equation(15)

(A) Thermodynamic integratiomsS™ as given in Eq(18). with AAPT(T=AT) [or AGPT(T+AT)] computed us-

(B) Entropy as difference of energy/enthalpy and free en- ing PT according to Eq(13).
ergy: AS*™according to Eq(14) with AA™ (or AG™) A Thermodynamic integration
computed using Tl according to E@.1) andAUSﬁj (or _
AHS% calculated from the endpoints of the Tl path- T_able | presents the frge—gnergy gnd entropy differences
way. obtained by thermodynamic integration. The upper part of

(C) Thermodynamic integration with splitting of the the table shows the results for perturbing all molecules in the
Hamiltonian into solute—solvent versus solvent—System. The cycle closures of the thermodynamic cycle
solvent terms:AS™! as given in Eq.(25), using SPC-SPG—SPG,—~SPC EAA™=0.2kJmol* and
AS™U® computed using Tl including only the solute— 2AS™=—1.8 JK *mol™*, where2AX denotes the sum of
solvent terms of the Hamiltoniafthe solute—solute the propertyAX in the thermodynamic cycléllustrate that
terms are zeroand Augggvv (or AHSQ?””) from the both the free energy and the entropy are quite well con-
endpoints of the Tl pathways. verged. Cycle closures afU®"are not meaningful, as they

(D) Entropy as temperature derivative of free enetyg®”™  in this case rely on the same endstate simulations and there-
through the finite-difference estimate given in Ep5)  fore add up to exactly zero. We note that this is not exactly
via AAT(T=AT) [or AG™(T+AT)], these computed true for all cases discussed below, as sometimes two inde-
using Tl according to Eq11). pendent simulations of the endstates are involved. For the

(E) One-step perturbatios S°' [Eq. (19)]. AAT™ values given in this upper part of the table, a statistical
Due to the nature of the one-step perturbation approachrror could be estimated which is at most 0.05 kJmpthe
(simulation only at one state, from which the other statistical error ofAU,‘°;2§j is below 0.02 kJmolt. Figure 1
ones are extrapolatgd no one-step perturbation shows the(well-convergedl derivatives ofA and S with re-
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spect tox [Egs.(12) and(17)], again indicating that one can TABLE II. AS*T at 300 K determined _fromAT' andAG™ (values can be
obtain not only good estimates farA but also reasonable found in Table )} at 280 K and 320 K via Eq.15). Thermodynamic bound-
estimates forA S with this method(method [A]) No error ary conditions(tbc): NVT constant volume, NPT constant pressure.

bars are displayed in the figure, as the ones fidd are too Transition thc ASMT [IK T mol™Y
sr:nalll to bbelz visible anfd rt]he ones foB/IA tglo large due t(')rh SPG-SPG,. NVT 80
the sizeable errors o the energy ensemble averages. These gpc.spc, NPT 58
errors in the energy ensemble averages seem to cancel par- Spc-SPG, NPT 30
tially upon computing entropies, leading to comparatively  SPG—SPG, NPT 33

good results. Comparing thé\dd\ and the &/ d\ profiles of
the three transitions shown, one can attribute the maxima and

minima to different types of interactions, namely the first|5ge error in the potential energy ensemble averages. The
maxmum(around)\zo.l) to switching off electrostatic in- statistical error ofs Uend ranges beween 10 and 15 kJ mbl
teractions and the second extremtanound\ =0.6) t0 re-  for the simulations with 600 ps per point and is approxi-
moving the van der Waals interactions. This nicely ShOWSmater 20 kImol?® for the simulations with 200 ps pex

that the effects of tuming off the different types of non- point. It should be noted that the statistical error is not suf-
bonded interactions are well separated alongxtpath. This  ficient to describe possible deviations AJe™ when com-
makes a more complex procedure, in which first electrostatig|etely independent simulations are considered. This is prob-
anq subsequently the remaining nonbonded mteractl?urj]s ahly due to dependence of the total potential energy of the
switched off, unnecessary. Table | also presents At system on thenot entirely convergedpressure. Again it
estimates obtained from free-energy differences and energshould be noted that one is dealing here with errors in the
differenceq Eq. (14); method[B]], which differ significantly  otal potential energy of the system, which is in the present
from the results directly obtained from the TI calculation cgses in the order of 40 000 kJ moi 2.

(AS™; method[A]). Considering the error estimatess®" When only one molecule is perturbed, it is possible to
seems to be more precise thAB™. Comparison of the val- determine the solute—solvent entropy different&™ U\

ues of AAT™ for the transition SPG>SPG,, with values for [Eq. (25)]. As AS™"U" relies only on solute—solute and

the excess free energy of SPC from the literat(g®pt.  solute—solvent potential energy terms, it converges much
24.0 kImof *; simulated 24—25 kI mol at slightly differ-  petter than the total entropy differenas™, where the nec-
ent simulation condition) gives excellent agreement. essary ensemble averages include the total potential energy.
The results for perturbing only a single molecule areThis is reflected in the right panels of Fig. 2, where the
presented in the lower part of Table I both for constant vol-derivatives ofAS™ " with respect to\ are displayed. Com-
ume and constant pressure simulations at 280, 300, and 32ring the profiles of §™U"/d\ with those obtained for
K. The convergence behavior differs significantly from theds/dx when perturbing all molecule@ig. 1), one notices a
case where all molecules are perturbed. Again, the freequalitative agreement of maxima and minima for the differ-
energy differencef\A™ seem to be reasonably well con- ent transitions. A similar agreement can only be guessed for
verged, as can be seen from cycle closures and from thghe middle panels of Fig. 2, where all interactions are con-
comparison of the results for different simulation lengths persidered. However, if one wants to use ttveell-converged
\ value. This is confirmed by Fig. 2, where the derivative ofestimates of the solute—solvent entropy differet®’" 1"
the free energy with respect to is presented in the left to compute the difference of the total entropg™2 [Eq.
panels(again, the error bars are too small to be visible (25); method [C]], an accurate estimate of the solvent—
Estimates of the statistical error &fA™ in the table range solvent potential energy differencBUSi?*" between states
from 0.4 to 0.6 kI mal® for the simulations with 600 ps per a andb is required. The corresponding columns in Table |
A\ point and from 0.5 to 1.1 kJ mot for the simulations with  show, that this is exactly the problem, the valueﬁb,fsgfw
200 ps pen point. The d\/d\ profiles are qualitatively very are by far too ill-converged to result in a good estimate for
similar to those discussed above for Fig. 1 where all mol-AS™a!l
ecules were perturbed. The resulting Gibbs free energy of Thermodynamic integrations were not only carried out at
solvation of water(transition SPG-SPG,,,) agrees reason- 300 K but also at 280 and 320 K. ThAsSS at 300 K can also
ably well with experimental valug26.5 kI mol * at 303 K;  be determined using the free-energy difference estimates at
27.5kImol! at 283 K; 25.5 kIJmol* at 323 K(Ref. 39], T=AT [Eq. (15); method[D]]. The simulations at each
in particular the temperature dependenceA@'™ seems to  point were performed only for 200 ps, as this seemed to be
be quite decent. As expected, the free-energy estimates duwifficient to obtain a reasonable estimate for the free-energy
not differ much between the NPT and NVT ensembles. Thalifferences at 300 K. The results are presented in Table II.
entropy differencesAS™ though have not converged after The resulting entropy of solvation at constant presstres-
600 ps of simulation pek point. This is not only demon- sition SPG-SPG,,: 58 JK 1 mol™1) agrees very well with
strated by the nonclosure of thermodynamic cyclBAS"  the experimental valié (51 JK *mol™ ). Note that cycle
amounts to up to 44 ane-46 JK 'mol~! for NVT and  closure is not necessarily a good measure to assess the qual-
NPT at 300 K, respectivelybut also by the rather erratic ity of the resulting entropy differences. The fact that the
behavior of &/d\ as displayed in the middle panels of Fig. cycle for AS?T closes reasonably wefsince AS*T values
2. As expected, the estimates 88°" are equally or even rely on free-energy differencesoes not say anything about
more erroneous as theS™ estimates, which results from the the accuracy oAS*T, since it is not related to the tempera-
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TABLE lIl. One-step perturbatioflength of each simulation: 1 psThermodynamic boundary conditioftbc):
NVT constant volume, NPT constant pressuké\"" Eq. (13); AS"T Eq. (19); ASPTUW Eq. (26).

T (V) AAPT (or AGPT) AS"T ASPTuw
Transition the K] [nn?] [kI mol 1] [JK 1 mol™%] [JK 1 mol™1]
SPC-SPG, NVT 300 30.73 194 217.5 106.7
280 30.73 16.4 —209.8 116.4
320 30.73 17.9 —-112.6 99.7
NPT 300 30.85 20.7 45.1 101.7
280 30.41 18.6 —219.0 96.0
320 31.39 15.9 96.6 96.7
SPC-SPG, NVT 300 30.73 28.1 153.9 54.6
280 30.73 23.7 —463.8 65.6
320 30.73 28.6 —185.8 46.0
NPT 300 30.85 29.2 47.7 50.1
280 30.41 25.1 —190.3 47.0
320 31.39 251 27.8 47.6
SPG,.— SPG, NVT 300 30.73 —-8.7 63.6 52.1
280 30.73 —-7.3 254.0 50.8
320 30.73 —10.6 73.2 53.7
NPT 300 30.85 -85 —-2.6 51.6
280 30.41 —-6.5 —28.7 49.0
320 31.39 —-9.2 68.8 49.1

ture dependence of the free energies involved. Another weatne from the solute—solvent free-energy difference and the
point of this approach is, that, as opposed to the Tl and PEecond from the solvent—solvent energy/enthalpy difference,
formulas which are in principle exact, this finite-difference which is obtained by extrapolating the solvent—solvent en-
approach assumes a constant difference in heat capecijty ergy at statd from the simulation at state, which probably
(or Ac, for NPT) over the temperature range of interest.  yields a very poor estimate for this energy. The convergence
behavior ofASPT and ASPTU" for the simulations at 300 K
is monitored in Fig. 4, showing that indeed the overall en-
tropy difference is completely erratic, whereas the solute—
Table Ill presents the results of the one-step perturbatiogolvent entropies do converge, at least towards some value.
calculations. As observed in previous studi&the one-step
perturbatlon.method V\{Ith a<_jd|t|on_al translational and rota—v_ CONCLUSIONS
tional sampling when inserting @aipolan molecule at the
soft-core site yields reasonably good estimates for free- We have compared the accuracy of various formulas and
energy differenceA A”T. However, comparison with the val- procedures to compute entropy differences, in particular the
ues obtained by TIAA™ (Table ), shows that the method is excess entropy and the entropy of solvation using liquid wa-
of no use to predict a reasonable temperature dependencetef as a test system. The methodological problem of calcu-
the free-energy. This implies that the one-step perturbatiotating entropy is that any method requires an accurate esti-
finite-difference methoflF] [Eq. (15)] cannot be used to ob-
tain accurateAS*T values. In Fig. 3, the convergence of
AAPT at 300 K is presented. It shows that the best conver-
gence is achieved for the transition SRS SPG,,, where 30
no charges are involved. This is reasonable, since the un—
charged soft-core particle is a better reference for uncharge: E
statesa andb than for a state involving partial charges. This =
can apparently not be completely compensated by the addig
tional translational and rotational sampling. Table Il also
shows differences of total entropiasS™" [Eq. (19); method
[E]] and of solute—solvent entropiass”™ " [Eq.(26)]. The &

B. One-step perturbation

— SPC->SPC_(NVT)

......... SPC > SPC.. (NVT)
_____ SPC,_->SPC, (NVT)
---- SPC—>SPC_ (NPT) |
..... - SPC->SPC_(NPT) |

ne

....... SPC,_-->SPC, (NPT)

resp. AG

total entropy differences are completely unrealistic results 5 ,_,_m...“_._.1,___,,‘_____1___,___f,-_77_1,=R=,-_.....__-,-,,,,,,.,-_-_.._u-._“:
with a huge scattering, whereas the estimates\ 87" O ]
seem to be better converged, at least if one compares resul * |
for the same transition at different temperatures and for dif- 20— 200 @0 o w0 1000
ferent ensembles. Yet, thed&” ™"’ estimates do not match time [ps]

Tl,uuv i H H
the valuesAS obtained previously by thermodynamic FIG. 3. Convergence akAPT [Eq. (13)] or AGFT for one-step perturbation

integratiqn (Table ). This ?5 pr0b3b|)_/ due to the ffiCt:_that calculations at 300 K. SPC: full nonbonded interactions, $P®o non-
ASPTUW in Eq. (26) contains essentially two contributions, bonded interactions, SRC no Coulomb interactions.
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1 —— T | - | y T - performing longer simulations of the two endstates. The
osh | ;‘:g z:igmgzg ] most promising approach is to determine the temperature
_____ SPC__ > SPC._(NVT) | dependence of the corresponding free-energy difference by

— 06§ ———- SPC ->SPC__(NPT) - thermodynamic integration. Using thermodynamic integra-
E 1 Lo 211:2 >>SI;(;C U‘(T;Ty)r) l tion, one can also get a de.cent estimate for the_differgnce in
- . ne m the solute—solvent entropies. For processes in which the

solvent—solvent energy/enthalpy term is nearly constant, the
solute—solvent energy/enthalpy and entropy terms will be

£ I e o csioint .
b 0 A [_1_,. 7 representative for for the total energy and entropy terms,
02 | [rrmrsraR e ] respectively. For exampf;*! the relative contributions of
1 enthalpy and entropy to the free enthalpy of solvation of a
0.4 | | . | . | o series of small solutes in different binary and ternary aque-
0 200 400 600 800 1000 ous solutions could be understood using the solute—solvent
time [ps] energy and entropy terms investigated here. The one-step

. | ' | . | . | . perturbation approach is a poor approximation to determine
entropy differences, even when using it to estimate an en-
tropy difference through determination of the temperature
dependence of the corresponding free-energy difference.
None of the techniques considered seems suitable to give a
perspective for the calculation of the entropy of ligand-
protein binding or entropy of polypeptide folding.
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