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The exchange-correlation potentialsvxc which are currently fashionable in density functional theory
~DFT!, such as those obtained from the local density approximation~LDA ! or generalized gradient
approximations~GGAs!, all suffer from incorrect asymptotic behavior. In atomic calculations, this
leads to substantial overestimations of both the static polarizability and the frequency dependence of
this property. In the present paper, it is shown that the errors in atomic static dipole and quadrupole
polarizabilities are reduced by almost an order of magnitude, if a recently proposed model potential
with correct Coulombic long-range behavior is used. The frequency dependence is improved
similarly. The model potential also removes the overestimation in molecular polarizabilities, leading
to slight improvements for average molecular polarizabilities and their frequency dependence. For
the polarizability anisotropy we find that the model potential results do not improve over the LDA
and GGA results. Our method for calculating frequency-dependent molecular response properties
within time-dependent DFT, which we described in more detail elsewhere, is summarized. ©1996
American Institute of Physics.@S0021-9606~96!02031-4#

I. INTRODUCTION

In recent years there has been a growing interest in den-
sity functional theory~DFT!1,2 from the quantum chemistry
community. Its time-dependent extension, time-dependent
DFT3–5 is not yet that well explored. It was given a firm
theoretical basis in 1984, by Runge and Gross6 and offers the
possibility to calculate frequency-dependent response prop-
erties, whereas finite-field calculations7–11 only give access
to static properties. Most calculations with time-dependent
DFT have been restricted to atoms.12–19 Molecular calcula-
tions were, among others, performed by Levine and Soven,20

in a single-center expansion. As this approach seems imprac-
tical for general systems, we recently developed a method
which can be used for general molecules, although our
present implementation can only handle closed-shell mol-
ecules. Our previous calculations with this method,21 using
the local density approximation~LDA ! yielded satisfactory
results for polarizabilities and van der Waals dispersion co-
efficients. However, the results for the atoms showed a clear
overestimation of both the static polarizability and the fre-
quency dependence, in agreement with results from previous
papers.12–18 The molecular results were more satisfactory,
though the average polarizability is systematically overesti-
mated here too, as is also well-known.11,21 The overestima-
tion seems more pronounced in lighter systems~He can serve
as an example! than in heavy molecules.

In atomic calculations on properties which are even
more sensitive to the outer region, such as quadrupole
polarizabilities22 and hyperpolarizabilities16,23–25 the LDA
error is more pronounced. The static quadrupole polarizabil-
ities of the rare gases are overestimated by the LDA by about
25% on average. The static second hyperpolarizabilityg is

overestimated by a factor of 2 approximately. The source of
this error is well-known. The LDA potential is not attractive
enough in the outer region, due to spurious self-interaction.
This leads to valence electrons which are too loosely bound.

These results made it worthwhile to test a potential
which has correct asymptotic behavior. There have been pre-
vious attempts to improve upon the LDA results for atomic
response properties. In the book by Mahan and
Subbaswamy17 results for the static~hyper!polarizabilities
with so-called self-interaction correction~SIC!26 and partial
self-interaction correction~PSIC! potentials are given. The
disadvantage of this approach, is that the potential becomes
orbital dependent, which makes all calculations significantly
more time-consuming.

Zhong et al.18 have considered the frequency depen-
dence of the atomic polarizabilities in LDA. We agree with
these authors upon the fact that occupied and unoccupied
eigenvalues are too close together in LDA, which causes too
high a frequency dependence. Their solution to this problem
is inspired by the GW method,27,28which is popular in solid
state physics. Their approach is simply to shift the unoccu-
pied energies by a constant. The shift is obtained from a
simple model or fitted in order to obtain the experimental
static polarizability. This method is reminiscent of the more
recent work of Malkinet al.,29 who used a comparable pro-
cedure for the calculation of nuclear magnetic resonance
~NMR! shielding tensors. We will compare our results to the
papers mentioned above, and show that our results are at
least of comparable quality, but are obtained in a more trac-
table or theoretically more satisfactory way.

First we will give a short outline of our implementation
of the linear response equations of time-dependent DFT,
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which has been described in more detail elsewhere.21 Then
the model potential with correct asymptotic behavior, pro-
posed by two of the authors in Reference 30, will be pre-
sented. After this theoretical introduction, we present our
atomic and molecular results in the next section, and we end
with some concluding remarks.

II. THEORETICAL INTRODUCTION

A. Frequency-dependent linear response in DFT

We will use time-dependent DFT for our calculations in
this paper. For reviews on time-dependent DFT we refer to
References 3–5. Many atomic results are given in the book
by Mahan and Subbaswamy.17 A more detailed description
of our approach has been given elsewhere.21

In time-dependent DFT, the frequency dependent linear
density responsedr(r ,v) due to a scalar electric external
field dvext(r ,v) is given in terms of a single particle re-
sponse functionxs(r ,r 8,v) acting on an effective field
dveff(r 8,v) ~atomic units are used throughout the paper!:

dr~r ,v!5E xs~r ,r 8,v!dveff~r 8,v!dr 8. ~1!

The Kohn–Sham response functionxs(r ,r 8,v) is con-
structed from~real! orbitals, occupation numbers and one-
electron energies, obtained in an ordinary DFT calculation:

xs~r ,r 8,v!5(
i

occ.

(
m

virt.

nif i~r !fm~r !fm~r 8!f i~r 8!

3S 1

~« i2«m!1v
1

1

~« i2«m!2v D . ~2!

Because of screening effects, the effective field in Equation
~1! is not equal to the external field. It contains a Hartree and
an exchange-correlation term due to the induced density:

dveff~r ,v!5dvext~r ,v!1E dr 8
dr~r 8,v!

ur2r 8u
1dvxc~r ,v!,

~3!

where the last term is given by

dvxc~r ,v!5E dr 8 f xc~r ,r 8;v!dr~r 8,v!. ~4!

Here the exchange-correlation kernelf xc has been intro-
duced. It is the functional derivative of the exchange-
correlation potential with respect to the time-dependent den-
sity. As in our previous work,21 we use the frequency-
independent adiabatic LDA~ALDA ! form of this kernel3 for
all our calculations. In this way we can assess the quality of
different potentials, irrespective of the quality of their func-
tional derivatives.

It should be noted that such a mixed scheme, where a
different approximation forf xc is made than forvxc , has
been used before. Mahan and Subbaswamy17 prefer the par-
tial SIC, which uses the self-interaction correction only for
vxc and not for f xc , to full SIC, because the latter involves
unphysical singularities. Steneret al.19 have used the model
potential, which we employ here and which they called

VLB-potential, in combination with time-dependent DFT to
calculate autoionization resonances in noble gases. They
used the simple X-a form for f xc , claiming that the Coulom-
bic term in Equation~3!, which is the second term on the
right-hand side, is much more important for the screening
than the exchange-correlation term. We agree with this in
general, though it should be observed that the last term is
certainly not negligible. For this reason the exchange-
correlation kernel has to be chosen with care.

We see no theoretical reason to prefer anfxc derived
from a generalized gradient approximation~GGA! potential
or the model potential to the ALDA expression forf xc . In
the case of the GGAs, the energy functionalExc is clearly
superior to that of the LDA, but the functional derivative of
this functional (vxc) is not improved.

30 Because of this, there
seems to be no reason to prefer the second functional deriva-
tive of a GGA energy functional to the ALDA kernelf xc . On
similar grounds, the model potential is nota priori expected
to give an improvement, because it was obtained with some
amount of fitting without considering the quality of the de-
rivative of the potential. It should be noted that finite-field
calculations can only be compared to schemes in which the
exchange-correlation kernelf xc is the functional derivative
of the potential which is used.

The given set of equations~1!, ~2!, ~3!, ~4! is solved
iteratively for a certain external potentialvext, until self-
consistency is reached. Then the first-order frequency depen-
dent density change according to the external potential
is known. By choosing the appropriate external field, one
can calculate dipole, quadrupole and higher multipole
polarizabilities.3,17,21

B. A model potential with correct asymptotic
behavior

Recently, there has been much interest in constructing
nearly exact exchange-correlation potentials from highly ac-
curateab initio densities.30–35 The model potential used in
this paper is supposed to approximate such an accurate
exchange-correlation potential better than the GGA and LDA
potentials do. It was recently proposed by two of the present
authors.30 It yields accurate values for the eigenvalue of the
highest occupied Kohn–Sham orbital. This corrects the LDA
and GGA values, which are typically several eV too high,
causing the density to decrease too slowly in the outer region
and the electrons to be too loosely bound. However, one
should not look solely at this eigenvalue. We consider the
difference between the highest occupied and lowest unoccu-
pied eigenvalue to be a more important quantity for response
properties. This can already be understood from Equation~2!
for the response function, where only energy differences be-
tween occupied and unoccupied orbitals appear. In the work
by Zhonget al.18 this gap is also the main quantity.

One of the motivations for the direct modeling of the
exchange-correlation potential, instead of taking the func-
tional derivative of an energy functional, is that any ex-
change energy functional~the Becke functional36 for ex-
ample! of the form
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Ex@r#5E r4/3~r ! f ~x~r !!dr , ~5!

with

x5
u¹ru
r4/3

, ~6!

which satisfies the requirement that the exchange energy
density per electron«x should behave asymptotically as

«x~r !;2
1

2r
~r→`!, ~7!

does not satisfy the requirement

vx~r !5
dEx@r#

dr~r !
;2

1

r
~r→`!. ~8!

The proof for this is given in References 37 and 30. The
form of the model potential we use here is analogous to
Becke’s functional for the exchange energy density.36 In
spin-restricted form it is given by Ref. 30:

vmodel~r !52br1/3
x2

113bxsinh21~x!
, ~9!

whereb has the value 0.05, which is an order of magnitude
larger than the value used by Becke in his energy
functional.36 This potential is a correction to the normal LDA
potential, for which we use the Vosko–Wilk–Nusair
parametrization.38 This form of the model potential ensures
the correct Coulombic decay at large distances. Furthermore,
it reduces to the LDA potential in the weak inhomogeneity
limit ( x→0).

Most exchange-correlation potentials do not show the
correct asymptotic behavior. In fact, the only examples
known to us which have not yet been mentioned, are a po-
tential based upon the computationally expensive weighted
density approximation~WDA!,39,40and another model poten-
tial developed by some of us.41,42We will make some com-
ments on our results with the latter potential in the final
section of the paper.

A comparison of the accurate exchange-correlation po-
tential and the model potential from Reference 30 with the
LDA potential shows the erroneous behavior of the LDA
potential in the outer region. These potentials are compared
in Figure 1 for the neon atom. In the outer region, the model
potential is clearly much closer to the accurate potential than
the LDA potential is. In the core region there is room for
improvement, because the model potential does not exhibit
the peak at the boundary of the 1s and 2s shells. The rela-
tively poor quality of the model potential near the nucleus
might be the reason why the results for geometries obtained
with the model potential are not so good, as was recently
shown by Neumannet al.43

For polarizabilities, the outer region is of greater impor-
tance however, and in this region the LDA potential is not
attractive enough. This leads to too high values for the ei-

genvalue of the highest occupied orbital and overestimation
of polarizabilities. The characteristics of Figure 1 also appear
for other atoms.

III. DETAILS OF CALCULATION AND ATOMIC
RESULTS

A. Description of the program and details of the
calculations

All calculations were performed with the Amsterdam
density functional~ADF! package.44–48 Its characteristics in-
clude the use of Slater type orbitals, the possibility to use a
frozen core approximation, the use of fit functions~also
called auxiliary basis functions! for the density and an accu-
rate numerical integration scheme.46,47The basis sets we use
for our calculations are at least as extensive as those we used
previously.21 These basis sets consisted of a valence triple
zeta basis with two polarization functions, augmented with
two s, two p and twod functions, all with diffuse exponents.
These diffuse functions are essential in obtaining results
which are close to the basis set limit. The basis sets for atoms
which we did not include in our previous publication were
constructed in a similar fashion.

For most molecules~H2, HF, F2, N2, CO, Cl2, HCl,
CO2, N2O, SO2, CH4) we have added diffusef functions to
the basis sets. A comparison with the results with slightly
smaller basis sets shows, that in most~but not all! cases this
addition causes only very small changes in the dipole polar-
izabilities. For the other molecules we did not include the
diffuse f functions in the bases, because of technical prob-
lems due to linear dependencies in the basis sets. Because of
the large basis sets we use, we can expect to be close to the
basis set limit in all the calculations presented in this paper.
This is also shown by the fact that our atomic and molecular
results are close to those obtained with basis set free
methods17 and to other results with high quality basis sets.11

FIG. 1. A comparison, for the neon atom, of the model potential and the
LDA potential to an accurate potential, constructed from a high quality
configuration interaction density.
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We made sure that all our fit sets were nearly saturated
and that the integration accuracy was sufficiently high. We
used the frozen core approximation for most of the atoms.
The outermost frozen shell was 3d for Kr, 2p for Si, P, S,
Cl, Ar and 1s for C, N, O, F, Ne. This approximation is
assumed to change the results only insignificantly, especially
for molecules. We have tested this before.21We demanded at
least six significant digits for a set of test integrals from the
numerical integration routine, which is more than sufficient.

B. Atomic results

In Table I we compare the static dipole polarizability for
the rare gases, calculated with different potentials. Our LDA
results are close to accurate literature values, testifying to the
quality of our basis and fit sets. The LDA values are substan-
tially larger than the experimental values. The literature LDA
values17 are on average 12.8% too high. Compared to this,
the results with the model potential are excellent. They differ
on average by only 2.6% from the experimental values. Re-
sults with the partial SIC method,17 another scheme to re-
move the LDA self-interaction, are worse than our results
with the model potential. The average deviation from experi-
ment is 5.3% in this case. Using full SIC~not shown in the
table! hardly improves this~4.7% average deviation!. An-
other interesting result is that the Becke–Perdew~BP!36,49

generalized gradient potential overestimates the polarizabil-
ity somewhat less~9.0%! than the LDA potential does.

The frequency dependence of the dipole polarizability of
the rare gases is sometimes given in the form17

a~v!5a0~11C2v
2!. ~10!

In this formulation, which is only applicable for small values
of v, the coefficientC2 is a measure for the frequency de-
pendence which is independent of the static value. Zhong
et al.18 have devoted an article to the problem of the overes-
timation of the frequency dependence in atomic time-
dependent LDA~TDLDA ! calculations. They use two semi-
empirical models to increase the gap between occupied and
unoccupied Kohn-Sham energies. They call this the modified
TDLDA approach. One model is based on a single-oscillator
model, the other one simply applies a scissors operator to the
gap. In both cases one imposes that the static polarizability
should equal the experimental value. Their results have been
included in Table II. In this table, our LDA values are again
close to the basis set free results. These LDA results show a
large overestimation of theC2 coefficient~24%!. The semi-
empirical values obtained with the scissors operator are al-
ready much closer to experiment~12%!, but they show a
systematic underestimation of the frequency dependence.
Both the single-oscillator model and the use of the model
potential increase the agreement with experiment signifi-
cantly. They respectively differ by only 4.3% and 4.5% from
the experimental numbers. However, we stress that our re-
sults were obtained without any fitting or modeling. Merely
the quality of the model potential in the outer region of the
atom assures the good description of the frequency depen-
dence.

We have also performed calculations on atomic quadru-
pole polarizabilities. For these calculations the inclusion of
the diffusef functions to the basis sets was much more im-
portant than for dipole polarizabilities and had a significant
influence on the results. The calculations can be assumed to

TABLE I. Static atomic dipole polarizabilities~in a.u.!, calculated with various exchange-correlation potentials.

Atom LDAa LDA ~lit ! BPb PSICc Modeld Expt.e

He 1.65 1.67f 1.59 1.32 1.40 1.38
Ne 3.02 3.05f 2.98 2.56 2.55 2.67
Ar 11.94 12.01f 11.66 11.67 11.40 11.07
Kr 17.67 18.02f, 17.88g 17.39 17.95 16.48 16.74

aReference 21. eReference 68.
bReferences 36 and 49. fReference 17.
cReferences 2417. gReference 18.
dReference 30.

TABLE II. Frequency dependence C2 of atomic dipole polarizability, as defined by Equation~10!.

TDLDA Mod. TDLDAb Mod. TDLDAb

Atom TDLDAa lit.e scissors single oscil. Modelc Expt.d

He 1.46 1.49 0.94 1.01 1.11 1.16
Ne 1.49 1.49 0.95 1.10 1.05 1.11
Ar 3.07 3.13 2.35 2.62 2.63 2.60
Kr 4.02 4.10 3.28 3.52 3.35 3.61

aReference 21.
bModified time-dependent LDA approach, as described in the text, Reference 18.
cReference 30.
dReference 68.
eReference 16.
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be equally close to the basis set limit as the calculations for
dipole polarizabilities. The static results are given in Table
III. Again, the LDA values severely overestimate the results
from reliableab initio calculations. They are on average 25%
too large, with He as the worst case. The model potential
brings major improvement for this property too. The results
are only about 5% from theab initio reference values, on
average.

One of the major advantages of the model potential is
that the one-electron energies of the highest occupied30 and
lowest unoccupied orbital are quite well predicted. Only the
highest occupied eigenvalue has strict physical significance
~it should equal minus the ionization potential!, but the gap
between the highest occupied and lowest unoccupied orbital
determines the frequency dependence to a great extent. Es-
pecially in the region near the first excitation energy this
plays an important role.

This can clearly be seen from Figure 2, where the quad-
rupole polarizability of He has been calculated on a wide
range of real frequencies. The time-dependent LDA result
and the result with the model potential are compared to an
extremely accurateab initio calculation.50 It was already
known from Table III that the static LDA value for the quad-
rupole polarizability was not very good. In addition to this,
Figure 2 shows that the LDA result has a much too high
frequency dependence and that the first excitation energy lies
too low ~these facts are of course interrelated!. In compari-
son, the model potential performs quite well. It follows the
accurate theoretical curve closely, along the entire frequency
range. Note that this frequency range extends to 0.6 Hartree!

IV. MOLECULAR RESULTS

A. Average polarizabilities

It has been remarked many times that both the LDA and
the GGAs systematically overestimate polarizabilities. Be-
cause the atomic results with the model potential are prom-
ising, we are now going to study molecular polarizabilities.
We remark that the overestimation of the polarizability is
less pronounced in molecules than in atoms. Other effects,
such as charge transfer from one atom to another, become
important, which makes the asymptotic behavior of the po-
tential less crucial. In order to be able to draw reliable con-
clusions from our calculations, we decided to perform calcu-
lations on a fairly large number~19! of small and medium-
sized molecules. We took the molecules we already

performed calculations on previously21 and added those from
Reference 11. This should yield a list of molecules which is
representative and large enough.

We performed our calculations at the experimental ge-
ometries, gathered from different sources, such as Refer-
ences 51 and 52. For the sake of reproducibility and for ease
of reference, we listed the used geometries in Table IV. In
our previous work,21 we used the same geometries, except
for H2, for which we used the optimized geometry of
r ~HH! 5 0.767 Å. For PH3 we listed both the experimental
geometry and the geometry which was optimized with the
Becke–Perdew potential. We performed calculations at the
optimized geometry as well, in order to be able to explain a
discrepancy between our results and the results obtained by
McDowell et al.11 for the same molecule.

In Table V the average polarizabilities for the molecules
are presented. We show our results with the LDA potential,
the BP potential and the model potential and compare them
to literature values with LDA and GGAs, as well as to ex-
perimental values and values obtained with the accurate con-
strained dipole oscillator strength distribution~DOSD!
method.53,54

In general, our LDA values agree well with previous

FIG. 2. The frequency-dependent quadrupole polarizability of He. Compari-
son of results with the LDA and model potentials to benchmarkab initio
results.

TABLE III. Atomic quadrupole polarizabilities~in a.u.! with different potentials.

Atom LDA LDA ~lit.!a Modelb Ab initio

He 3.56 3.35 2.52 2.445c

Ne 9.47 9.35 7.12 7.52d, 7.3276e

Ar 61.81 59.6 55.61 53.58f, 51.862e

Kr 111.42 108.5 96.53 99.86g, 99.296e

aReferences 22 and 17. eMBPT, Reference 70.
bReference 30. fFinite-field MP4, Reference 71.
cReference 50. gFinite-field MP4, Reference 72.
dCCSD~T!, Reference 69.
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work in which high quality basis sets were used,11 except for
our PH3 results at the experimental geometry, which are
37.63, 36.42 and 35.44 for the LDA, BP and model poten-
tials respectively. In the table the results with the optimized

geometry for PH3 have been presented, which agree well
with the literature values.

The LDA results are higher than the experimental ones,
without exception. The average overestimation of the LDA
values is 5.3%, which is close to the 5.7% overestimation
found by McDowellet al.11 for a subset of the molecules in
our table.

Our values with the Becke–Perdew potential are not
strictly comparable to GGA values in previous studies, be-
cause our mixed-scheme results need not be identical to
finite-field results. In fact, our results with the Becke–
Perdew potential correct the LDA overestimation somewhat.
The agreement with the experimental values is improved
~2.7%!. The values are still too high, though in three cases it
is slightly lower than experiment. Finite-field Becke–Lee–
Yang–Parr~BLYP!36,55 values slightly increase the LDA
overestimation.11

The results with the model potential in Table V are also
slightly better than the LDA results. The average absolute
error is somewhat reduced, to 3.5%. More important, the
overestimation which is present in the LDA and GGA re-
sults, is removed. No large systematic over- or underestima-
tion of the experimental results remains. Part of the remain-
ing underestimation of 0.9% might be due to the fact that the
basis set limit has not been fully reached.

It is well-known that LDA and GGA potentials underes-
timate the eigenvalue of the highest occupied Kohn–Sham
orbital by typically 5 eV. This error is greatly reduced by the

TABLE IV. Molecular geometries used in this paper.

Molecule Bond length~Å! Angle~degrees!

H2 r ~HH! 5 0.7461
HF r ~HF! 5 0.917
HCl r ~HCl! 5 1.2746
N2 r ~NN! 5 1.0976
CO r ~CO! 5 1.1283
F2 r ~FF! 5 1.417
Cl2 r ~ClCl! 5 1.9871
H2O r ~OH! 5 0.957 /~HOH! 5 104.5
H2S r ~SH! 5 1.3455 /~HSH! 5 93.3
CO2 r ~CO! 5 1.160
N2O r ~NO! 5 1.186,r ~NN! 5 1.1257
SO2 r ~SO! 5 1.4321 /~OSO! 5 119.54
NH3 r ~NH! 5 1.008 /~HNH! 5 107.3
PH3

a r ~PH! 5 1.4166 /~HPH! 5 93.1
PH3

b r ~PH! 5 1.437 /~HPH! 5 91.5
CH4 r ~CH! 5 1.091
SiH4 r ~SiH! 5 1.4798
C2H4 r ~CH! 5 1.071,r ~CC! 5 1.344 /~HCH! 5 119.9
C2H6 r ~CH! 5 1.107,r ~CC! 5 1.533 /~HCH! 5 109.3
c-C3H6 r ~CH! 5 1.089,r ~CC! 5 1.510 /~HCH! 5 115.0

aExperimental geometry.
bBecke–Perdew optimized geometry.

TABLE V. Average molecular polarizabilities calculated with different potentials.

Molecule LDA LDA ~lit !a BPb BLYPc Modeld DOSD / Expt.e

NH2 5.89 5.54 5.61 5.43
HF 6.20 6.17 6.08 6.26 5.31 5.60
HCl 18.63 18.43 18.09 18.54 17.86 17.39
N2 12.27 12.04 11.46 11.74
CO 13.87 13.36 12.62 13.08
F2 8.87 8.82 8.70 8.96 8.02 8.38
Cl2 32.00 31.70 31.29 31.97 30.96 30.35
H2O 10.53 10.54 10.28 10.63 9.20 9.64
H2S 26.34 26.13 25.49 25.94 25.39 24.71
CO2 17.72 17.80 17.46 17.97 16.63 17.51
N2O 19.91 19.63 18.71 19.77
SO2 26.49 26.41 26.21 26.75 24.59 25.61
NH3 15.62 15.57 15.25 15.62 13.85 14.56
PH3

f 32.80 32.52 31.56 32.14 32.12 32.03
CH4 18.19 18.01 17.40 17.82 17.98 17.27
SiH4 34.04 34.28 32.34 33.14 33.91 31.90
C2H4 28.30 29.10 27.77 29.31 27.12 27.70
C2H6 30.74 29.72 30.54 29.54
c-C3H6 39.19 38.91 37.91 38.0

Mean error 15.3% 12.4% -0.9%
Mean absolute error 5.3% 2.7% 3.5%

aReference 11.
bBecke–Perdew potential~References 36 and 49!.
cBecke–Lee–Yang–Parr potential,~References 36 and 55! results obtained by McDowellet al. ~Reference 11!.
dReference 30.
eExperimental and constrained dipole oscillator strength distribution results, as gathered in References 11 and
21.
fOptimized geometry was used in our calculations.
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model potential we employ. The average error is a few tenths
of an eV in this case.30 One might wonder how it is possible
that the LDA and GGA values for molecular polarizabilities
are only a few percent too high, compared to experiment,
when the highest eigenvalue is predicted so erroneously. In
order to answer this question, we calculated the eigenvalue
of the lowest unoccupied orbital as well. It appears that the
gap between these eigenvalues is not so different for the
three potentials considered here. Typically, they are identical
to within a few tenths of an eV. The correct asymptotic be-
havior of the model potential affects the highest occupied
and lowest unoccupied eigenvalues in similar fashion. They
both become more bound, being shifted by almost the same
amount. This is true for molecules, but it does not hold for
atoms, as can be seen from Figure 2. This is due to the
different nature of the lowest unoccupied orbital in the
atomic and molecular cases. For a more detailed analysis, the
knowledge of the exact Kohn–Sham values for these eigen-
values would be desirable. However, we presume that the
model potential yields accurate values for the first unoccu-
pied eigenvalue as well, because of its asymptotically correct
behavior.

B. Anisotropy in the polarizability

Our results for the static polarizability anisotropy are
presented in Table VI. The anisotropyg is defined for diag-
onal polarizability tensors in the usual way56 as:

g25 1
2@~axx2ayy!

21~axx2azz!
21~azz2ayy!

2#, ~11!

where we useg5azz2axx for symmetric top molecules
with their main symmetry axis along thez axis. For this
property the LDA and GGA results are more satisfactory and
the model potential offers no improvement.

The results with LDA and Becke–Perdew, which are
similar to each other, are slightly preferable. In most cases
the different potentials yield similar results, but for a few
molecules~notably HCl, H2O, NH3 and PH3) the model po-
tential gives markedly different results.~Here the results for
PH3 at the experimental geometry are 8.17, 8.07 and 3.13
respectively.!

The polarizability anisotropy suffers much less from the
incorrect asymptotic behavior of the LDA and GGA poten-
tials, because the overestimation of the different polarizabil-
ity tensor components partially cancels in Equation~11!.
This means that the correct description of the outer region is
not as important as for the average polarizability. Other parts
of the potential curve gain in importance. Because the model
potential only improves the outer region and is not so good
near the nucleus, one would not necessarily expect an im-
provement from this potential for the polarizability anisot-
ropy. For this, one would need an exchange-correlation po-
tential which improves upon the LDA near the nucleus as
well.

The agreement between our LDA anisotropies and those
obtained by McDowellet al.11 is somewhat less than for the
average polarizabilities, especially for the molecules with
small anisotropies. This can be understood from the fact that
the polarizability anisotropy is a more sensitive property than
the average polarizability. It has been noted before11 that

TABLE VI. Polarizability anisotropiesg ~in a.u.!, as in Equation~11!. Comparison of results with different
exchange-correlation potentials to experimental data.

Molecule LDA LDA ~lit !a BPb BLYPc Modeld DOSD / Expt.e

H2 2.04 2.00 2.13 2.04
HF 0.93 1.10 0.96 1.160 1.28 1.33
HCl 1.29 1.30 1.32 1.329 2.29 1.45
N2 4.62 4.69 4.67 4.45
CO 3.26 3.40 3.23 3.57
F2 5.69 5.49 5.75 5.784 5.94
Cl2 16.60 16.11 16.46 16.455 17.33 17.53
H2O 0.07 0.24 0.15 0.296 1.25 0.66
H2S 0.84 1.24 0.67 1.664 0.81 0.65
CO2 13.37 13.96 13.22 14.026 13.49 13.3
N2O 18.73 18.63 18.35 19.10
SO2 13.36 13.16 13.35 13.427 13.02 13.0
NH3 3.09 2.67 3.09 2.676 0.25 1.94
PH3

f 2.25 2.38 2.03 2.337 0.76
C2H4 11.31 10.95 12.82 11.4
C2H6 4.37 4.10 3.82 5.2
C-C3H6 25.25 24.95 25.52 25.4

aReference 11.
bBecke–Perdew potential~References 36 and 49!.
cBecke–Lee–Yang–Parr potential~References 36 and 55!, results obtained by McDowellet al. ~Reference 11!.
dReference 30.
eExperimental and constrained dipole oscillator strength distribution results, as gathered in References 11 and
21.
fOptimized geometry was used.
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LDA and GGA polarizability anisotropies are of higher qual-
ity than Hartree–Fock anisotropies.

C. Frequency dependence of molecular polarizabilities

Because the model potential improves the frequency de-
pendence of the atomic polarizabilities remarkably, we have
investigated the frequency dependence of average molecular
polarizabilities as well. It is known that Hartree–Fock calcu-
lations underestimate the frequency dependence of the polar-
izability considerably. The Cauchy momentS(24) in the
expansiona(v)5(kS(22k22)v2k, which dominates the
frequency dependence in usual frequency ranges, was under-
estimated by 27.6% with respect to experiment in a study by
Spackman on a large number of molecules.56 To our knowl-
edge, it has never been investigated how well different po-
tentials in DFT describe this frequency dependence for mol-
ecules. For these two reasons we have calculated some
frequency-dependent molecular polarizabilities with the
same potentials we have used in the rest of this work. We
compare to recent experimental values of high accuracy.57

We could not perform calculations on O2, for which mea-
surements were also performed,57 because it is an open-shell
molecule. The results atv 5 0.140 and 0.072 a.u. are shown
in Table VII.

As was to be expected, the LDA and BP potentials tend
to overestimate the frequency dependence. The LDA values
differ from the experimental ones by 27.0% on average and

the Becke–Perdew values differ by 21.3%. The overestima-
tion is especially clear in the cases of ammonia and cyclo-
propane. The model potential yields better results for these
molecules. Its average error is 9.9%, which makes it a more
reliable choice than Hartree–Fock, LDA or Becke–Perdew.
The error in the model potential results seems to be less
systematic, which is reflected by the fact that the mean error
is about two times as small as the mean absolute error.

However, when considering the frequency dependence
of the polarizability, another point is of importance. We
made an adiabatic approximation for the exchange-
correlation kernelf xc in Equation~4!. This means that the
exchange-correlation screening is assumed to be frequency
independent. In the present context it is relevant to assess the
validity of this approximation. To this purpose, we have per-
formed some test calculations with the frequency-dependent
Gross–Kohn exchange-correlation kernel,58–60,3 which is
based upon the frequency-dependent linear response of the
homogeneous electron gas. Although some principal objec-
tions can be raised against it~such as the violation of the
so-called ‘‘harmonic potential theorem’’61!, it provides at
present the only practical way to go beyond the adiabatic
approximation.

As a check on our implementation, we compared to Ref-
erence 3 and reproduced Figures 1 and 2 of that paper. We
also compared numerically to another implementation of the

TABLE VII. Frequency dependence of average polarizabilitya, with different potentials. Here,D gives the
difference between the results at the two different wavelengths.

Molecule l~Å! ALDA BPa Modelb Expt.c

H2 3251.3 6.44 6.02 6.06 5.86
6329.9 6.03 5.66 5.72 5.54

D 0.41 0.36 0.34 0.32

CO2 3251.3 18.83 18.68 17.57 18.62
6329.9 18.00 17.85 16.85 17.78

D 0.83 0.82 0.72 0.84

N2O 3251.3 21.50 21.18 20.78 21.32
6329.9 20.29 20.01 19.67 20.09

D 1.21 1.17 1.11 1.23

NH3 3251.3 19.02 18.25 15.33 16.35
6329.9 16.34 15.82 14.19 14.96

D 2.68 2.43 1.14 1.39

C2H6 3251.3 33.45 32.21 33.07 31.92
6329.9 31.39 30.33 31.16 30.13

D 2.06 1.88 1.91 1.79

c-C3H6 3251.3 43.16 43.01 41.29 40.577
6329.9 40.12 39.84 38.71 38.107

D 3.04 3.17 2.57 2.47

Mean error inD 126.1% 118.9% -4.2%
Mean absolute error inD 27.0% 21.3% 9.9%

aBecke–Perdew potential~References 36 and 49!.
bReference 30.
cReference 57.
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same kernel,62 finding agreement in the first five digits over a
wide frequency range.

The Gross–Kohn parametrization off xc decreases the
frequency dependence which is found in the ALDA. This is
due to the fact that the exchange-correlation screening,
which increases the polarizability, becomes smaller with in-
creasing frequency in the Gross–Kohn parametrization.

In the literature,3,16 it has been assumed that the adia-
batic approximation is not a severe one. Our preliminary
results for the frequency dependence of the average polariz-
ability indicate that this is not true in general. We find that
the ALDA results in Table VII for the quantitiesD are re-
duced by roughly 15–30% with the Gross–Kohn kernel, thus
increasing the agreement with experiment. This indicates
that the adiabatic approximation cannot be applied thought-
lessly in the optical region and that its use will lead to a
frequency dependence which is too high. It is important to
note here that if the Gross–Kohn kernel is used in combina-
tion with the model potential, the resulting frequency depen-
dence in Table VII will be too low in comparison with ex-
periment. This may be due to the fact that the Gross–Kohn
kernel was derived from the frequency-dependent linear re-
sponse of the homogeneous electron gas, which might not be
a realistic model for the frequency dependence in molecules.

We conclude that both the quality of the exchange-
correlation potential in the outer region of the molecule and
the frequency dependence of the exchange-correlation
screening need to be considered in order to obtain accurate
DFT results for frequency-dependent polarizabilities. We
emphasize however, that the restricted number of molecules
for which we performed these calculations does not allow
definite generalizations and that more work is needed in or-
der to further clarify the importance of the adiabatic approxi-
mation and the importance of the outer region of the
exchange-correlation potential on the frequency dependence.

V. CONCLUDING REMARKS

We have presented calculations with a model exchange-
correlation potential, which possesses the correct long-range
behavior. Our approach allows an analytic determination of
frequency-dependent polarizabilities for closed-shell mol-
ecules. A mixed scheme was used, in which the adiabatic
LDA approximation was used for the exchange-correlation
kernel f xc , regardless of the approximation made for the
exchange-correlation potentialvxc . Our atomic results~static
and dynamic dipole and quadrupole polarizabilities! are sub-
stantial improvements on previous results with LDA and
GGA potentials. In our molecular calculations, the model
potential removes the systematic overestimation in the aver-
age polarizability, which is obtained in calculations with
LDA or GGA potentials. Both the results with the model
potential and the results with the Becke–Perdew potential
provide improvements on the LDA results. More subtle mod-
eling for the exchange-correlation potential is needed to ob-
tain satisfactory results for the anisotropy, for which the
LDA and GGA results are slightly better.

In general, we observe that the asymptotic behavior of

the potential is more critical for polarizability calculations
than the correct description of the core region. This is shown
by test calculations with a model potential which was intro-
duced more recently.41,42 This potential gives a better de-
scription of the core region~it exhibits the required peaks
between the atomic shells! and also possesses the correct
long-range behavior. It yields accurate values for the highest
occupied Kohn–Sham orbital as well, but it did not yield
good results in preliminary calculations which we per-
formed. The polarizabilities were consistently underesti-
mated, thus overcorrecting the LDA results. Subsequent
analysis showed that the gap between the highest occupied
and lowest unoccupied orbital was larger for this potential
than for the model potential used in this work. This was due
to the fact that the Coulombic asymptotic behavior was
reached too slowly, showing that the problems in the mod-
eling of potentials can be quite subtle.

In future work, it would seem desirable to improve the
quality of the potential in the core region. This might help to
improve the results for other response properties as well,
such as NMR shielding tensors, in which the poor quality of
the LDA or GGA eigenvalues is also important.29,63,64Fur-
thermore, the quality of the exchange-correlation kernel is of
importance, as shown by our finite-field test calculations.

The frequency dependence of average molecular polar-
izabilities was also best described by the model potential.
The LDA and Becke–Perdew potentials tend to overestimate
this frequency dependence. The importance of the frequency
dependence of the exchange-correlation screening should not
be underestimated, as shown by our preliminary results with
the Gross–Kohn parametrization forf xc . We have shown
that the direct modeling of the exchange-correlation potential
yields promising improvements in our calculations on re-
sponse properties, and we hope to have encouraged further
work in this direction.

In the final stages of this work, the work of Casida and
co-workers5,65,66 came to our attention. They also have an
implementation capable of calculating molecular frequency-
dependent linear response within DFT. They present results
for the N2 molecule for which they calculated excitation en-
ergies and the frequency-dependent average polarizability,
suggesting that their results might be improved by using an
accurate exchange-correlation potential. We learned very re-
cently that Castro, Casida and Salahub67 obtained very simi-
lar results for polarizabilities with the model potential.
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