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Dynamics of Bimanual Rhythmic 
Coordination in the Coronal Plane 

Suvobrata Mitra, Polemnia G. Amazeen, 
and Michael T: Turvey 

We investigated the 1 : 1 frequency locking of two hand-held pendulums oscil- 
lated parallel to the body's coronal plane. In this configuration, anti-phase 
defined muscularly is in-phase defined spatially, and vice versa. Coordination 
equilibria measured by average relative phase were shifted less from muscu- 
lar anti-phase than from muscular in-phase by detuning (unequal uncoupled 
pendulum frequencies) and were shifted less in both modes with vision than 
without. Variability of the equilibria, however, was ordered opposite to their 
degrees of shift and was unaffected by vision. Demonstrated subcritical pitch- 
fork and tangent bifurcations conformed to the variability classification of 
anti- and in-phase coordination. Implications for dynamical models, hierar- 
chical control, and definitions of coordination modes were discussed. 

In Bernstein's (1996) hierarchical characterization of biological movement 
systems, the formation and selection of cooperative relations among relatively in- 
dependent muscles spanning one or more joints are tasks of the level of muscular- 
articular links or synergies. According to Bernstein, the functioning of this level is 
oriented strictly to the patterning of the body's segments. The criteria that the level 
of synergies satisfies are with respect to the patterns themselves, namely, criteria 
of pattern stability and pattern retention (against both internal and external pertur- 
bations). Criteria having to do with the particular uses of the patterns in everyday 
activity are not the concern of the level of synergies. Satisfying criteria of the latter 
kind is the concern of other levels, specifically, the level of space and the level of 
actions. Under Bernstein's (1996) interpretation, the motor problems solved by 
the level of space are generically those of translating from an object's spatial coor- 
dinates to a sequence of muscle activation. Typical of the level of space are aimed, 
transferring movements, characterized by criteria of accuracy and precision. The 
class of motor problems solved by the level of actions is that of sequencing differ- 
ent movements that succeed each other systematically, leading to the solution of a 
problem whose meaning (function, purpose) dictates the relation among the com- 
ponents. Where corrections and adjustments at the level of synergies are based 
strictly on muscular proprioception, at the level of space they are based (primarily) 
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on visual exteroception, proprioception, and exproprioception (see Lee, 1978), 
and at the level of actions they are based on plans and intentions. 

In the present research we consider the relation between the levels of space 
and synergies by examining the influences of vision and of task orientation with 
respect to the principal body axes on an elementary rhythmic synergy: the 1 : 1 
frequency locking of two contralateral segments of the body. One typical experi- 
mental procedure for studying this synergy requires oscillating two hand-held pen- 
dulums about the left and right wrist joints and parallel to the body's sagittal plane 
(e.g., Kugler & Turvey, 1987; Rosenblum & Turvey, 1988; Schmidt, Shaw, & 
Turvey, 1993; Sternad, Turvey, & Schmidt, 1992). The experimental advantage of 
using pendulums is control over the frequency competition between the left and 
right hands (see below). In the present research we used a variant of this typical 
procedure, where the hand-held pendulums were oscillated in a frontoparallel plane 
(parallel to the body's coronal plane) as shown in Figure 1. The significant feature 
of this particular 1 : 1 frequency locking task is that the in-phase (anti-phase) coor- 
dination from the perspective of the level of muscular-articular links or synergies 
is the anti-phase (in-phase) coordination from the perspective of the level of space 
(interpreted here as the visual perception of the ongoing coordination). When ho- 
mologous muscles of the right and left forearms contract simultaneously, the pen- 
dulums move spatially in opposite directions. 

The relation between Bernstein's level of synergies and level of space can be 
approached through the dynamical theory of coordination patterns developed by 
Schoner and Kelso (1988a, 1988b, 1988c, 1988d). The significance of this theory 
is that it aims to incorporate within a single formulation the fundamental dynamics 
of a particular coordination, called intrinsic dynamics, and the modulation of those 
dynamics by environmental and informational factors, called required dynamics. 
Rhythmically moving together two segments of the body in 1: 1 frequency lock- 
ing, as depicted in Figure 1, is an elementary coordination pattern. This pattern is 
a functional coordination in which many physical, biological, and psychological 
components relate in an ordered fashion. At the core of the dynarnical theory of 

Figure 1 - Schematic of participant performing 1:l frequency locking of hand-held 
pendulums oscillating parallel to the body's coronal plane. 
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coordination patterns are three propositions (see Schoner & Kelso, 1988a). First, 
on any level of analysis (kinematic, muscular, neural, and below), a coordination 
pattern is characterized by a low-dimensional collective variable or order param- 
eter. Second, reproducible and stationary states of the coordination are mapped 
onto the attractors of the dynamics of this order parameter. Third, there are certain 
parameters (often one, sometimes a few') that act on the collective dynamics 
nonspecifically or indirectly, meaning, essentially, that there is no formal resem- 
blance between these parameters and the resultant stationary states. Such param- 
eters are called control parameters. These three propositions are at work in the 
formulation of the dynamical model of 1: 1 frequency locking advanced by Haken, 
Kelso, and Bunz (1985), Schoner, Haken, and Kelso (1986), and Kelso, DelColle, 
and Schoner (1990) and are constrained by the empirical fact that anti-phase is less 
attractive than in-phase (e.g., Kelso, 1984): 

4=6-as in@-2bs in2@+@,  (1) 

In Equation 1, the relative phase @ = - 0,,,, between the phase angles (0,) 
of the oscillating body segments is the collective variable or order parameter with 
the overdot on the left-hand side signifying its time derivative. The control param- 
eter is the ratio, b/a, of the coefficients on the 27c periodic terms, which determines 
the relative strengths of the attractors at 0 and x phase relations when 6 = 0 and the 
relative strengths of the attractors in the vicinity of 0 and x when 6 # 0. The dy- 
namics are symmetrical, that is, @ = 4, when 6 = 0, and they are asymmetrical, 
that is, @ # -9, when 6 # 0. The quantity 6 represents the detuning or imperfection 
parameter (Strogatz, 1994) and is commonly represented by the difference in the 
uncoupled frequencies of the contralateral segments, -or,,,, (but see Collins, 
Sternad, & Turvey, in press; Sternad, Collins, & Turvey, 1995). The final term in 
Equation 1 represents a stochastic force of strength Q that arises from the very 
many subsystems that contribute to the behavior of the collective variable at time 
scales much faster than that of the collective variable. The presence of the final 
term means that the collective variable will fluctuate about its stationary value. 

Predictions about the equilibria of the 1: 1 coordination pattern and their rela- 
tive stabilities follow by setting the left-hand side of Equation 1 equal to zero, 
ignoring the noise term, and solving for @ given specific values of 6 and b/a. The 
stability measure is the slope at the zero crossing of the time-derivative of $ as a 
function of $. Designating this slope by h, h < 0 signifies a stable equilibrium and 
h > 0 signifies an unstable equilibrium. It can be shown (see Gilmore, 1981 ; Schoner 
et al., 1986) that the standard deviation of @, that is, SD$, is given by 

For a fixed magnitude of Q, SD$ grows as the inverse of Ihl. Alarge body of 
experimental evidence has confirmed the predictions that follow from Equations 1 
and 2) (see summaries by Kelso, 1994; Schmidt & Turvey, 1995). 

With respect to the experimental task depicted in Figure 1, Equation 1 can 
be taken as defining the dynamics at the level of synergies. These are the dynamics 
in which vision does not participate (the subject's eyes are closed or the oscillating 
hand-held pendulums are occluded) and only the haptic perceptual system con- 
tributes to the coordination. What might we expect when the experimental task is 
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performed with the benefit of vision? Consider the symmetrical case when the two 
hand-held pendulums are identical, that is, 6 = 0. A hypothesis of visual domi- 
nance assumes Equation 1 as the coordination dynamics but with the equilibria of 
Q = 0 and 4 = n defined visually. According to this hypothesis, if a subject per- 
formed the task with eyes open as compared to eyes closed, the stability ranking of 
the two equilibria would reverse. In short, vision dominates the dynamics at the 
level of synergies, such that the muscular-articular linkages are completely gov- 
erned by visual criteria (e.g., Gibson & Radner, 1937). Using the definition of @ in 
muscular terms as the standard (coactivation of homologous muscles defines 
in-phase, 4 = 0, and coactivation of nonhomologous muscles defines anti-phase, Q 
= n), then with eyes open the stability ranking would be n: > 0 (i.e., anti-phase 
more stable than in-phase), whereas with eyes closed the stability ranking would 
be 0 > n (i.e., in-phase more stable than anti-phase), following the observation 
behind Equation 1. Numerical solutions of Equation 1 reveal that ?L is greater for 
@ = 0 than Q = n, meaning smaller SDQ (see Equation 2) at Q = 0. When vision 
dominates, @ = 0 in muscular coordinates becomes Q = n in visual-spatial coordi- 
nates. So in the presence of vision, SDQ is larger, not smaller, for Q = 0 in muscular 
coordinates than @ = n in muscular coordinates. 

A second and more plausible hypothesis-one that is consistent with 
Bernstein's interpretation of the responsibilities of the levels of space and syner- 
gies-assumes that vision modulates rather than dominates. When a subject watches 
the two oscillating hand-held pendulums in the configuration of Figure 1 execut- 
ing, say, Q = n in muscular coordinates, the deviation of @ from visually defined 0 
defines a "force" (e.g., Schoner & Kelso, 1988) of magnitude proportional to the 
deviation. In the dynamical theory of coordination patterns, a "force" reflecting 
the superimposition of a required pattern on an intrinsic pattern is represented by 
an additional 2n periodic term in the order parameter equation (Schoner & Kelso, 
1988a, 1988b, 1988c; Sim, Shaw, & Turvey, in press). Let r stand for relative 
phase in visual-spatial coordinates, so that when Q = 0 and Q = n in muscular 
coordinates, r is made equal to n and r is made equal to 0, respectively. Equation 
1 can then be amended as follows to include the influence of vision: 

Equation 3 with the noise term excluded can be solved numerically for an 
intended coordination of muscular in-phase (in which case r = n) and for an in- 
tended coordination of muscular anti-phase (in which case r = 0)'. With 6 = 0, and 
with a and b assuming standard values (e.g., a = b = 1, see Schoner et al., 1986; 
Sternad, Amazeen, & Turvey, in press), and c set at a comparable value (e.g., 
c = 2), Equation 3 has equilibria at Q = 0 and Q = n with SDQ smaller at 0 than at n. 

'The choice of the ordering of r and 0 in the argument of the third sine function was 
dictated by the assumption that seeing the two hands in spatial in-phase (anti-phase) should 
aid moving the hands in muscular anti-phase (in-phase). Exploration of Equation 3 using 
the two forms of the argument, namely, r - @ and 0 - r, revealed that r - Q gave the 
intuited facilitation with Q - r having the opposite effect. We pursued Equation 3 as shown 
with the idea that if the results turned out counter to intuition, that is, that seeing spatial in- 
phase (anti-phase) hindered moving the hands in muscular anti-phase (in-phase), then due 
consideration would be given to the @ - r form of the argument. 
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When Equation 3 is compared with Equation 1-the comparison of 1: 1 frequency 
locking with visual guidance and without visual guidance-the equilibria of Equa- 
tion 3 are more stable than the equilibria of Equation l. That is, when 6 = 0, vision 
does not affect the location of the attractors (equilibrium points) of the elementary 
rhythmic synergy but it does affect their strength. SD@ should be lower in the 
presence of vision than in its absence. 

Experiment 1 

Experiment 1 was directed at the predictions of the visual dominance and the vi- 
sual modulation hypotheses for 6 = 0. Subjects produced 1: 1 frequency locking, 
in-phase and anti-phase, in the manner depicted in Figure 1 with identical pendu- 
lums in the left and right hands. They did so with eyes open (watching the pendular 
motions) and with eyes closed. Under both hypotheses, the fixed points of the 
coordination dynamics for both eyes open and closed should be at Q = 0 and @ = n. 
The two hypotheses differ with respect to predictions about degree of stability. 
According to the visual dominance hypothesis, SD$ should be larger at @ = .rr: in 
the absence of vision and larger at @ = 0 in the presence of vision. According to the 
visual modulation hypothesis (Equation 3), SDQ should be larger at 0 = n in both 
the absence and presence of vision but it should be less at both equilibria in the 
presence of vision. 

Method 

Participants. Six men and 3 women, all graduate students at the University 
of Connecticut, volunteered to participate in the experiment. All 9 had participated 
in previous experiments on interlimb coordination using the hand-held pendulums 
procedure. 

Design and Procedure. The data collected in this study were the move- 
ment trajectories of the two hand-held pendulums. Measures included the frequency 
of oscillation averaged over the two pendulums, o,,,; the relative phase averaged 
across the trial (the estimate of the stable fixed point), Q,,; and the standard devia- 
tion of relative phase (theestimate of fluctuations about the stable fixed point), SD@. 
Participants were instructed to maintain a muscular phase relation y~ of either 
y ~ =  0 or y~ = n either with or without visual information. In the visual condition, they 
visually monitored the movement of the bottom tips of the pendulums. In the non- 
visual condition, the hand-held pendulums were occluded. The same symmetrical 
pair of pendulums (6 = 0) was used throughout the experiment. Therefore, partici- 
pants were tested under four conditions (2 y~ x 2 Vision Conditions), with three trials 
per condition. Order of conditions was completely randomized. 

Apparatus and Data Collection. The hand-heldpendulums were aluminum 
rods (1.2 cm diameter) with wooden handles (2.5 cm in diameter), each held in the 
center of the hand so that the pendulum was vertical and the hand was positioned at the 
center of the 12 cm long wooden handle attached at the top. Both the right and left 
pendulums were 57 cm long, with a 200 g metal ring attached at the bottom of each. 

The movement trajectories of the pendulums were recorded using a Sonic 3- 
Space Digitizer (SAC Corporation, Stratford, CT). A sonic emitter attached to the 
end of each pendulum emitted sparks at the rate of 90 Hz. Microphones positioned 
in the four corners of the experimental enclosure registered the position of the 

+ _ emitters by compatingthe dis tanced the emiztef from-the three of four micro- 
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phones that recorded the least number of errors during the trial. This slant range 
time series was stored on an 80486-based microcomputer using MASS motion 
analysis software (ESI Technologies, Columbus, OH). MASS was then used to 
calculate the mean frequency of oscillation, primary angle of excursion, and @. 
The primary measures of @ and SDQ were then calculated for each individual trial. 
Since no order effects were found, all three measures were averaged across repli- 
cations to obtain single data points for each experimental condition. 

Procedure. Participants stood next to a wood-frame enclosure with fore- 
arm and wrist supports designed to allow for comfortable maintenance of the pos- 
ture shown in Figure 1. Participants could swing each pendulum within the enclo- 
sure without any obstruction from the enclosure frame or from the other pendulum. 
Both wrists were aligned with the midline of the body and separated along the same 
line by approximately 10 cm. Subjects were instructed to create as smooth and as 
continuous a trajectory as possible, holding the pendulum firmly in the hand to 
guarantee rotation about the wrist rather than the finger joints. On any given trial, 
participants were instructed to coordinate the hand-held pendulums to establish 
either muscular in-phase ( y  = 0) or anti-phase ( y  = K )  1: 1 frequency locking either 
with or without visual guidance. They were permitted to elect a comfortable fre- 
quency and to signal the experimenter when they felt prepared for data collection 
in each 45 s trial. All experimental procedures reported in the present experiments 
adhere to the ethical guidelines of the American Psychological Association. 

Results and Discussion 

Separate analyses of variance (ANOVA) were conducted on @ - y and SDq. 
(I - v was positive and statistically equal for both v = 0 (3.2" or 0.06 rad) and t + ~  = 
n (2.5" or 0.04 rad), F(1, 8) = 2.09, p > .05. 0 - y was similarly positive and 
statistically equal both with (2.3" or 0.04 rad) and without (3.2" or 0.06 rad) visual 
information, F(1, 8) = 3.59, p > .05. The y x Vision Condition interaction was 
nonsignificant, F < 1. Therefore, neither intended phase nor visual information 
influenced the location of the equilibria. 

Intended phase did have a significant effect on equilibria stability, as mea- 
sured by SDq. Specifically, muscular anti-phase was significantly more variable 
(SDQ = 9.8" or 0.17 rad) than muscular in-phase (SD@ = 6.5" or 0.11 rad), F(1, 8) 
= 24.99, p < .001. There was no effect of visual information (SDq = 8.5" or 0.15 
rad when eyes were open; SD@ = 7.95" or 0.14 rad when eyes were closed), F(1,8) 
= 1.08, p > .05, nor was there an interaction between y and visual condition, F(l,  
8) = 1.83, p > .05. 

The nonsignificance of the main manipulations on @ - y was expected from 
the perspectives of both hypotheses. With respect to SDQ, the visual dominance 
hypothesis predicted no main effect of v (the higher stability of in-phase with eyes 
closed would be offset by its lower stability with eyes open, with the reverse true 
for anti-phase) but an interaction of y~ and vision. In contrast, v was significant 
and there was no interaction. The visual modulation hypothesis fared no better. Its 
prediction was simply that SD$ would be less when the eyes were open. To the 
contrary, SD@ was indifferent to the availability of vision. 

The present results are accommodated by Equation 1. When 6 = 0, the con- 
tributions of the two oscillators to the coordination dynamics are identical. For this 
symmetrical case, the dynamics expressed by Equation 1 are such that anti-phase 
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is less stable than in-phase, and parameter variations do not affect the location of 
the attractors, only their stability (for empirical verification see Schmidt et al., 
1993; Sternad et al., 1992; Sternad, Amazeen, & Turvey, 1996; Treffner & Turvey, 
1995). Consequently, a possible conclusion to be drawn from Experiment 1 is that 
the level of space, insofar as it is represented by the present visual manipu- 
lation, does not affect the level of synergies when the intersegmental rhythmic 
coordination dynamics are symmetrical. In Experiment 2 we examine the influ- 
ence of vision when the symmetry of the coordination dynamics is broken, that is, 
6 # 0 rad . s-I. 

Experiment 2 

Figure 2 shows the predictions from Equation 3 for the visual-haptic (eyes open) 
and haptic-only (eyes closed) conditions when 6 = O,6 =+I,  and 6 = f 2  rad . s-I (a 
= b = 2, c = I). The expectations are that (a) in-phase and anti-phase coordination 
will be defined by muscular, not spatial, criteria in both the occluded and visible 
conditions; (b) the equilibria of the elementary synergy under broken symmetry 
(6 # 0) will be tuned closer to the muscularly defined 0 and n by visual control; 

and (c) the equilibria will be rendered more stable by visual control. 

Figure 2 - Predictions from Equation 3 for haptic-only (eyes closed) and visual- 
haptic (eyes open) guided coordination as a function of detuning. Left panel: predictions 
for the standard deviation of relative phase (simply, the value of Illhl) in the visual- 
haptic (V) and haptic-only (H) conditions for both in-phase (0) and anti-phase (n) 
modes. Right panel: predictions for fixed-point shift for the haptic-only (H) and visual- 
haptic (V) conditions in the in-phase mode. 

Method 

Participants. Four men and 3 women, all graduate students at the Univer- 
sity of Connecticut, participated on a voluntary basis. Five of the participants had 
participated previously in experiments using the hand-held pendulums procedure, 
but none had taken part in Experiment 1. 

Design. A detuningfactor with five levels (6 = 0, f 1, +2 rad . s-') was added 
to the design of Experiment I, resulting in a three-way repeated-measures design 
with 20 conditions (2 y x 2 Vision Conditions x 5 6) and only one trial per condition. 
Trials were 45 s each and order was completely randomized. 
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Apparatus and Data Collection. Detuning was manipulated through the 
addition of two asymmetrical pendulum pairs (6 = _+I, _+2 rad - s-') to the one 
symmetrical pair (6 = 0 rad s-') used in Experiment 1. The unforced, undamped 
frequency of a hand-held pendulum was computed in the standard way (e.g., Amazeen, 
Schmidt, & Turvey, 1995; Sternad et al., 1992). We found that 6 = f  1 when a44 cm 
pendulum with a 500 g metal ring (5.21 rad - s-') was paired with a 68 cm pendulum 
with a 200 g metal ring (4.20 rad . s-I); 6 = k2 when a 36 cm pendulum with a 90 
g metal ring (6.28 rad . s-l) was paired with a 66 cm pendulum with a 200 g metal 
ring (4.28 rad . s-I). In either case, 6 < 0 when the longer (s1ower)pendulum was held 
in the left hand and 6 > 0 when the longer (slower) pendulum was held in the right 
hand. The coupled eigenfrequency of the pendulum pair was identical across all 6, 
o = 4.60 rad . s-I (see Sternad et al., 1995; Treffner & Turvey, 1996). Data collection 
and experimental procedure for Experiment 2 were identical to Experiment 1. 

Results and Discussion 

Separate ANOVAs were conducted on $ - yr and SD$. Variations in 6 produced a 
significant shift of equilibria away from intended phase, F(4, 24) = 63.649, p < 
.0001. Note in Figure 3 that 6 > 0 produced $ - yr > 0, and 6 < 0 produced $ - yr < 
0. There was no main effect of either y ~ ,  F < 1, or vision condition, F < 1, on $ - y. 
The expected interaction between vision and 6 was significant, F(4,24) = 11.439, 
p < .0001, as shown in Figure 3, with fixed-point shift amplified in the absence of 
vision. Figure 4 depicts the unexpected yr x 6 interaction, F(4, 24) = 11.890, p < 
.0001: The fixed-point shift was larger when \I, = 0 than when \I, = n. The yr x 
Vision Condition was nonsignificant, F < 1, but, as shown in Figure 5, there was a 
three-way interaction, F(4, 24) = 4.218, p < .01. The attenuation of fixed-point 
shift by visual information was more effective in the spatial in-phase (muscular 
anti-phase) condition than in the spatial anti-phase (muscular in-phase) condition. 

Figure 6 depicts SD$ as a function of yr and 6. In replication of Experiment 
I, muscular anti-phase (9.7" or 0.17 rad) was significantly more variable than muscu- 
lar in-phase (8.4" or 0.14 rad), F(1, 6) = 9.62, p i .05. As expected, SD$ increased 
with increasing 161, F(4,24) = 5 1.47, p < .0001. Visual information had no significant 
effect on variability, F < 1, nor were any of the interactions significant, F < 1. 

Experiment 1 showed that vision did not affect the fixed point of symmetri- 
cal coordination dynamics, 6 = 0. This indifference to vision at 6 = 0 was corrobo- 
rated in Experiment 2, as shown by Figure 3. However, vision did affect coordina- 
tion equilibria, as expected, when 6 f 0. The shift in fixed point induced by breaking 
reflective symmetry was attenuated by the eyes-open condition. Also, as evidenced 
by the significant three-way interaction shown in Figure 5, attenuation of fixed- 
point drift by vision was greater in magnitude for the muscular anti-phase (spatial 
in-phase) condition than for the muscular in-phase (spatial anti-phase) condition. 
As should be obvious from Figure 1, the arrangement of the coordination in the 
frontoparallel plane makes the muscular in-phase (spatial anti-phase) condition 
harder to monitor visually by following the bottom of the pendulums (as subjects 
were instructed to do) than the muscular anti-phase (spatial in-phase) condition. This 
suggests why visual monitoring of the coordination was more effective for attenuat- 
ing fixed-point drift in the spatial in-phase than in the spatial anti-phase condition. 

Although vision influenced location of the equilibria, it did not influence 
their degree of stability as measured by SD$. The increase in variability accom- 
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6- Eyes Open 
----c- Eyes Closed 

6 ( rad s') 
Figure 3 - Significant interaction of detuning and vision (eyes open vs. eyes closed) 
in Experiment 2 showing the attenuation of fixed-point shift in the eyes-open condition. 
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Figure 4 - Significant interaction of detuning and phase mode in Experiment 2. The 
muscular in-phase (spatial anti-phase) mode registered greater fixed-point shift due 
to detuning than the muscular anti-phase mode. 
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panying detuning from 0 and n was not smaller when the eyes were open than 
when the eyes were closed. Typically, for intersegmental coordination of move- 
ments parallel to the sagittal plane, larger fixed-point shifts are accompanied by 
larger SD$ (Schmidt & Turvey, 1994; Schmidt et al., 1993; Sternad et al., 1996; 
Treffner & Turvey, 1995,1996). The interpretation for this linkage is readily given 
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Figure 5 - Three-way interaction of detuning and vision in Experiment 2. Attenuation 
of fixed-point shift due to detuning was more pronounced in the muscular anti-phase 
(spatial in-phase) condition (top panel) than in the muscular in-phase (spatial anti- 
phase) condition (bottom panel). 
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in terms of the underlying potential function V(@) from which Equation 1 is de- 
rived as -d V(@)ld@ (see Haken et al., 1985). As the minima of the potential func- 
tion, that is, the attractors, are displaced from 0 and K ,  the potential wells around 
the minima become more shallow with the result that a stochastic force of strength 
Q can displace the system from the minima to a larger degree. Hence, SD@ is 
systematically amplified with fixed-point shift. The present results suggest that for 
intersegmental coordinatio'n of movements parallel to the body's lateral plane, dis- 
placements of the minima of the potential function and the steepness of the poten- 
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In Phase (muscular) 
Anti Phase 

-2 - 1 0 1 2 

6 ( rad c') 
Figure 6 - Greater variability of muscular anti-phase shown over the entire detuning 
range used in Experiment 2. 

tial walls surrounding the minima do not change together. There is the suggestion 
of a dissociation between fixed point and stability. 

This preceding dissociation and the contrast between the intersegmental co- 
ordination investigated here and in prior experiments are underscored by the ob- 
servation in Experiment 2 that muscular in-phase was more susceptible to sym- 
metry breaking (detuning) than muscular anti-phase. Equations 1 and 3 predict the 
opposite, and previous investigations have confirmed this prediction (e.g., Amazeen, 
Sternad, & Turvey, 1996; Stemad et a]., 1996; Treffner & Turvey, 1995, 1996). 
Importantly, the greater susceptibility of muscular in-phase to detuning was not 
accompanied by a reversal of stability as measured by SD$. By this measure, mus- 
cular in-phase was more stable than muscular anti-phase, in agreement with theory 
and experimentation. Patently, the anomolous nature of greater susceptibility of 
muscular in-phase to detuning calls for a systematic replication of this major ob- 
servation of Experiment 2. 

It is evident that vision did not dominate the coordination pattern in Experi- 
ment 2. If visual domination occurred with eyes open, then Q, = 0 and @ = n in 
muscular coordinates would have become Q, = n and 4 = 0, respectively, in visual- 
spatial coordinates, and an interaction between vision and would have been 
observed. Additionally, in the presence of vision, SDQ, should have been larger for 
Q, = 0 in muscular coordinates than @ = .rr: in muscular coordinates. Neither of these 
effects, which were expected from the hypothesis of visual dominance, were con- 
firmed. At the same time, it is clear that Equation 3 accommodates the present data 
only in part, and major expectations from Equation 3 were not upheld. In sum, the 
present experiment strongly hints that coordination dynamics for movements per- 
pendicular to the body's sagittal plane, and the contribution of vision, may not 
conform to a straightforward extension of Equation 1. 

Finally, the unexpected results raise the possibility that all or part of the 
anomaly in pattern arises due to peculiarities of the specific experimental arrange- 
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Figure 7 - Sample time series of pendulum positions during 10 s of data collection 
in Experiment 2 from a typical subject: (A) symmetrical pendulum condition, and (B) 
asymmetrical pendulum condition. In each case, pendulum positions were recorded 
from the bottom of each pendulum. 

taken part previously in interlimb coordination experiments involving hand-held pen- 
dulums. None had participated in any of the preceding experiments of the present series. 

Design. The same three-factor, repeated-measures 
-* -- Conditions x-5 6) used in Experiment-2-wasmedin E 
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Figure 7 - (continued) 

Apparatus and Data Collection. Apparatus was identical toExperiment 2. 
Because o = 4.60 rad . s-' for all three pendulum pairs, the same metronome 
frequency was used to pace participants in all three 6 conditions. Otherwise, data 
collection was identical to Experiment 2. 

Procedure. For each trial, participants were asked to produce the required 
in-phase or anti-phase coordination and to try at all times to keep pace with the 
metronome. Participants were advised, but not required, to try to synchronize with 
the metronome at times when one or both pendulums reached peak extension in the 
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cycle. Observation of performance suggested that participants found it convenient 
to follow the guideline. On a trial, data collection was started once the participant 
signaled that he or she was satisfied with the stability of the pattern and its synchrony 
with the metronome. The procedure was otherwise identical to Experiment 2. 

Results and Discussion 

Separate ANOVAs were conducted on @ - ty and SD@. In replication of Experiment 
2, variations in 6 produced significant shifts of equilibria away from intended phase, 
F(4,28) = 141.19, p < .0001, with 6 > 0 producing @ - v > 0 and 6 < 0 producing 
@ - yr < 0. There was no main effect of either yr, F < 1, or vision condition, F < 1, 
on $ - ty. The ty x 6 interaction was also replicated, F(4,28) = 3.58, p < .02, with 
a greater fixed-point shift for ty = 0 than for yr = TC (see Figure 8). Unlike Experi- 
ment 2, the Vision Condition x 6 interaction was nonsignificant, F(4, 28) = 1.54, 
p > .05, suggesting that experimental control of coupled frequency negated the 
amplifying effect that absence of vision had on fixed-point shift. Vision did not 
interact with v, F < 1, nor was there a three-way interaction, F < 1. 

In replication of Experiments 1 and 2, anti-phase (10.2" or 0.18 rad) 
was significantly more variable than in-phase (9.1" or 0.16 rad), F(1, 7) = 6.07, 
p < .05 (see Figure 9). There was also a significant effect of 6 on SD@, F(4,28) = 
1 9 . 9 0 , ~  < .0001, with SD@ least at 6 = 0 and increasing symmetrically for 6 = +1 
and 6 = f 2. Visual information had no significant effect on variability, F < 1, nor 
were any of the interactions significant: y~ x Vision Condition, F < 1; Vision Con- 
dition x 6, F(4, 28) = 2.50, p > .05; tp x 6, F(4, 28) = 2.34, p > .05; yr x Vision 
Condition x 6, F(4,28) = 1.60, p > .05. 

The main outcomes of Experiment 3 in relation to those of Experiment 2 
were (a) the complete absence of an effect of vision and (b) a replication of the 

In Phase (muscular) 
Anti Phase 

Figure 8 - Significant interaction of detuning and phase mode in Experiment 3. As 
in Experiment 2, muscular in-phase (spatial anti-phase) mode registered greater fixed- 
point shift due to detuning than themuscular anti-phase mode. 
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Figure 9 - Greater variability of muscular anti-phase shown over the detuning 
variation used in Experiment 3. 

greater shift by symmetry breaking, but less destabilization by symmetry break- 
ing, of equilibria under muscularly defined ty = 0 than under muscularly defined 
ty = n. The use of a metronome and the explicit requirement to track its frequency 
may have contributed to the elimination of the two-way interaction between vision 
and detuning and the three-way interaction between phase, vision, and detuning 
found in Experiment 2 and shown in Figures 3 and 5, respectively. If so, this would 
reinforce the impression that intersegmental rhythmic coordination is mainly 
through the haptic-proprioceptive perceptual system, that is, formed at Bernstein's 
level of synergies, with vision a potential but not automatic modifier of the result- 
ant coordination dynamics. 

The result expressed by (b) above is of major theoretical importance. The 
structure of Equations 1 and 3 cannot give rise to the observed opposition between 
fixed-point shift and variability. To be redundant, when the left-hand sides of these 
equations are set to zero and the equations solved to isolate the fixed points or zero 
crossings for given parameter values, and the slopes at these zero crossings are 
then determined (h from Equation 2), it is necessarily the case that the larger the 
deviation of a zero crossing from 0 or n, the shallower is the corresponding slope. 
In short, the larger the fixed-point shift, the larger the variability (given that SDg is 
inversely related to W. The question that the present anomalous finding poses is, 
Which measure, the magnitude of Q, - ty or the magnitude of SDQ,, most appropri- 
ately captures the difference between the two attractive states of Q, = 0 and 4 = n, 
given that the two measures behave differently? Experiment 4 addresses this ques- 
tion by examining phase transitions under scaling of movement frequency. 

Experiment 4 

In one of the earliest demonstrations of phase transitions in human intersegmental 
coordination, Kelso (1984) asked participants to oscillate their two index fingers 



60 Mitra, Amazeen, and Tun/ey 

(or two hands) at a movement frequency specified by a metronome. With increas- 
ing movement frequency, the "prepared anti-phase of a subject's fingers switched 
suddenly to in-phase. The direction of the transition (from anti-phase to in-phase) 
was not reversed by reducing the movement frequency, however, or by initially pre- 
paring the fingers in-phase. This observation of a greater persistence over frequency 
scaling of muscular in-phase coordination led to the 2n periodic function in Equation 
1, which is the negative derivative with respect to Q, of the potential function 

V(@) = -a cos - b cos 24. (4) 

The minimum of this function at Q, = 0 is greater than the minimum at Q, = kn. 
The ratio of the coefficients, b/a, defines a control parameter, as noted above, that 
is inversely related to the movement frequency. As b/a decreases, the potential 
wells become more shallow, with those at Q, = &TC disappearing when b/a = 0.25 
(Haken et al., 1985). The spontaneous transition from anti-phase to in-phase, but 
not in reverse, is the consequence of the loss of stability (loss of the attractor) at Q, 
= b with increasing movement frequency. 

The phase transition methodology can be used, therefore, to determine the 
relative strengths of the attractors in the rhythmic coordination of movements per- 
pendicular to the sagittal plane. That is, it can be used to answer the question, 
Which is the most attractive coordination in the present experimental task, in- 
phase coordination defined in muscular coordinates or anti-phase coordination 
defined in muscular coordinates? In concrete terms, the test is whether the muscu- 
lar in-phase mode will switch to the muscular anti-phase mode, and whether the 
muscular anti-phase mode will persist, with frequency scaling as implied by the 
fixed-point shift results of Experiments 2 and 3, or whether the reverse will be true 
as implied by the variability results of those experiments. 

Method 

Participants. Two women and 2 men, all undergraduates at the University 
of Connecticut, participated in Experiment 4. All 4 subjects were enrolled in an 
introductory psychology course and received course credit for their participation. 

Design. Participants were instructed to maintain a relative phase of either 
y = 0 or y = n with either symmetrical (6 = 0 rad - s-l) or asymmetrical (6 = 2 rad 

s-') pendulums. There were 3 trials in each of 4 conditions (2 ty x 2 6) for a total 
of 12 trials. Order was completely randomized. 

Apparatus and Data Collection. The system of symmetrical pendulums 
(6 = 0 rad - s-I) was composed of two identical pendulums that were 52 cm long and 
had 90 g metal rings attached at the bottom. The system of asymmetrical pendulums 
(6 = 2 rad .s-') was composed of one 38 cm pendulum and one 69 cm pendulum, each 
with a 30 g metal ring attached at the bottom. The coupled eigenfrequency for both 
pendulum pairs was identical, a = 5.08 rad . s-I. An auditory metronome paced the 
coordination, starting at 5.08 rad . s-I and increasing every 10 s by 1.26 rad . s-' to 
a maximum frequency of 11.38 rad . s-I. Trials were 60 s long, with six frequency 
plateaus. Data collection began after the first 10 s plateau and continued for 50 s 
through five more plateaus. Data collection was otherwise identical to Experi- 
ments 1-3. 

Procedure. On any given trial, participants were instructed to coordinate 
either symmetrical (6 = 0 rad . s ' )  or asymmetrical (6 = 2 rad . s-') pendulums to 
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Figure 10 - Evolution of subcritical pitchfork (al-a5) and saddle node or tangent 
(bl-b5) bifurcations with decreasing b/a. The subcritical pitchfork bifurcation changes 
the attractor a t  n to a repeller, leaving only the attractor at  0. The saddle-node 
bifurcation is an initial coalescing of the unstable and stable states followed immediately 
by 'the annihilation of both, leaving a saddle-node ghost that can continue to attract 
and repel. 
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Figure 11 - Examples of the phase transition under 6 = 0 (left column) and 6 = 32 
(right column), with the lower panel in each column showing the smoothed data. The 
relative phase angles on the vertical axis are in spatial coordinates. The unit of time (t) 
on the horizontal axis is 1190th of a second, the sampling rate used in the experiment. 
The series in the lower panel of both columns was obtained through an 18-point (0.2 s) 
moving average of the recorded data shown in the upper panels. The transition is 
abrupt in the former symmetrical case and prolonged in the asymmetrical case, in 
agreement with the contrast between subcritical pitchfork and saddle-node (or tangent) 
bifurcations. 

vations reported in Figure 11 are of theoretical importance given their relation to 
intermittency phenomena (see discussions in Kelso, 1991, 1995; Kelso & 
DeGuzman, 1992). A future elaboration of the present experiment and analyses is 
planned. 

General Discussion 

The present series of experiments presents two important results with nontrivial 
implications for theories of intersegmental coordination dynamics. The first result 
is that visual guidance can attenuate the fixed-point shift associated with compo- 
nent asymmetries in interlimb 1: 1 rhythmic coordination tasks, even as it produces 
no detectable changes in stability of the in-phase and anti-phase coordination modes. 
The second important result is that rotating the plane of motion of a basic bi- 
manual coordination from the sagittal to the coronal plane can render the (muscu- 
lar) in-phase mode more susceptible to fixed-point shift than the (muscular) anti- 
phase mode, even as the former mode remains more stable than the latter. As 
previously remarked, both of these results reflect a rather fundamental dissocia- 
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tion between fixed points and stability that is accommodated neither by Equation 
1 nor by any parametric or expansional variations of it. Under these circumstances, 
one obvious possibility for a resolution appears to lie in the conventions used to 
define the collective variable of relative phase. The experiments reported here 
were directed at contrasting a neuromuscular convention based upon the homol- 
ogy of the involved muscle groups with a geometric convention based upon sym- 
metries about either principal body axis. It is clear that a definition of relative 
phase based on neither convention renders the obtained results concordant with all 
predictions from Equation 1 or Equation 3. 

At first sight, this outcome appears dissonant with several suggestions in the 
literature that the stability ranking of the two attractors (in-phase and anti-phase) 
in interlimb coordination dynamics is best characterized spatially rather than in 
terms of any preferred coupling among muscle groups (Baldisserra, Cavallari, & 
Civaschi, 1982; Baldisserra, Cavallari, Marini, & Tassone, 199 1 ; Carson, Goodman, 
Kelso, & Elliot, 1995; Jeka & Kelso, 1995; Kelso, Buchanan, & Wallace, 1991; 
Kelso & Jeka, 1992;). Evidence for favoring the spatial characterization derives 
from empirical results obtained in coordination tasks involving rotations about the 
elbow and wrist joints (Kelso et al., 1991), the wrist and ankle joints (Baldisserra 
et al., 1982, 1991; Carson et al., 1995), and the elbow and knee joints (Kelso & 
Jeka, 1992). Results indicate that the coordination mode in which the participating 
limbs move in the same direction is more stable than the mode in which the limbs 
move in opposite directions. Moreover, for cases involving motions about the wrist 
joint, it has been shown that shifting from supinated forearm preparation to pro- 
nated forearm preparation (which reverses the mapping between wrist flexion- 
extension and direction of hand motion) does not alter the stability ranking of the 
spatially defined in-phase and anti-phase modes. 

While these results highlight the limitations of defining relative phase strictly 
on the basis of muscle homology, a closer inspection of the above-cited studies 
reveals that they do not make a similarly convincing case for the considerably 
stronger claim that "the mutual direction of motio? between interacting compo- 
nents and not simply kinesiological action of the participating muscles plays a role 
in determining coordinative stability" (Kelso & Jeka, 1992, p. 647). First, it is 
relatively easy to provide a perfectly satisfactory definition of relative phase based 
precisely on the "kinesiological action of the participating muscles" that gives 
results identical to those arrived at via spatial criteria in each of these studies. 
Second, it is equally easy to provide an obvious example, other than the present 
paradigm, of a coordination in which limbs moving in opposite directions produce 
a more stable pattern than limbs moving in the same direction. 

Pursuing the former point first, we might observe that in all coordination 
patterns employed in the paradigms in question (i.e., wrist-elbow, wrist-ankle, 
and elbow-knee), a full oscillation of a given limb about a joint divides roughly 
into a half-cycle during which the rotation of the joint lifts the limb away from the 
ground plane (i.e., moves the limb against gravity) and a half-cycle during which 
the opposite rotation of the same joint lowers the limb toward the ground plane 
(i.e., moves the limb with gravity). In the case of a supinated arm, for example, 
wrist flexion elicits the lifting half-cycle and wrist extension elicits the lowering 
half-cycle, while for a pronated arm, wrist extension elicits the lifting half-cycle 
and wrist flexion elicits the lowering half-cycle. Similarly, for a m  motions about 
the elbow joint, elbow flexion elicits the lifting half-cycle, while for foot motions 
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that the fixed-point behavior of the coordination (or the average relative phase) is 
a long-term, aggregate measure reflecting the interactions between Level B, which 
assembles and maintains the fundamental synergy, and Level C, which employs 
perceptual information (haptic, visual, and auditory) in orientating or adapting the 
coordination to the intended spatial configuration. The second suggestion is that 
the standard deviation of relative phase is a measure of the level of short-term, 
high-frequency behavior due primarily, if not completely, to processes and inter- 
actions occurring within Level B. 

Several predictions follow from the above mapping of experimental mea- 
sures to nearly decomposable Level B-Level C coupling. The first prediction is 
that the standard deviation of relative phase will reflect the exigencies of multi- 
component pattern assembly and harmony retention that are peculiar to Level B. 
The behavior of this measure will be closely tied to the kinesiological demands 
operating upon assembled muscle groups and other biomechanical and physiological 
contingencies of synergy formation, and will retain some signature of Level B contin- 
gencies across changes in Level C configurations. The second prediction is that stan- 
dard deviation of relative phase will scarcely, if ever, register qualitative changes as a 
function of changes in Level C contingencies. And the third prediction is that al- 
though fixed-point behavior, an interaction variable, will exhibit sensitivity to changes 
in Level B dynamics, it will also reflect changes in Level C contingencies. 

These three predictions, which follow directly from conceptualizing Level 
B-Level C complex as a nearly decomposable system, account for every effect 
recorded in the series of experiments reported here. With respect to the first pre- 
diction, we may note that in Experiments 1 through 3, standard deviation of rela- 
tive phase uniformly showed that the muscularly anti-phase coordination (which 
was prepared so as to be spatially in-phase) was less stable than the muscularly in- 
phase coordination (which was prepared so as to be spatially anti-phase). More- 
over, Experiment 4 demonstrated that scaling the frequency of the coordination 
resulted in the loss of stability of the muscular anti-phase mode, resulting either in 
abrupt phase transitions to the muscular in-phase mode (when the interlimb sys- 
tem was symmetrical) or in excessive phase wandering (when the symmetry of the 
interlimb system was broken). Thus, the assembly of the synergy (by Level B) out 
of muscle groups producing synchronous lifting half-cycles (in-phase) or asyn- 
chronous lifting half-cycles (anti-phase) captures the pattern of standard deviation 
results. Along the same lines, with respect to the second prediction, it is worth 
noting that in Experiment 2, where the availability of visual guidance attenuated 
fixed-point shift due to detuning, no effects of vision were recorded on the stan- 
dard deviation of relative phase. The availability or usability of visual informa- 
tion, and its effects on the observed coordination, are contributions from Level C 
contingencies. If, as postulated, standard deviation of relative phase reflects Level 
B-intrinsic behavior, the absence of any vision effects is clearly expected. 

That leaves the third prediction, which speaks directly to the result in Ex- 
periments 2 and 3 that appears discordant with Equation 1 and Equation 2, namely, 
that the muscular in-phase coordination, traditionally known to be more stable 
than muscular anti-phase (and corroborated to be so throughout the present study), 
showed greater fixed-point shift due to detuning than did the muscularly anti-phase 
coordination. This result is unobtainable through Equation 1, Equation 3, or, for 
that matter, any equation that models the stability of a coordination as being purely 
derivative of its relative phasing behavior. The present paradigm differs from the 
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standard hand-held pendulums paradigm (Kugler & Turvey, 1987) solely in that 
the coordination is parallel to the coronal plane as opposed to parallel to the sagit- 
tal plane. The standard paradigm has been used to thoroughly explore and confirm 
the entire range of predictions made by Equation 1 and its variants (see Schmidt & 
Turvey, 1995, for a summary). The inability of this class of equations to accommo- 
date the reported reversal of the fixed-point shift effect suggests that the present 
paradigm exposes previously unexplored levels of organization whose influences 
cannot be subsumed under the current quantitative understanding of intersegmen- 
tal coordination dynamics. More specifically, the accepted generality of Equation 
1 stems precisely from the conflation of Bernstein's level of synergies and his 
level of space in the standard paradigms. In both the standard hand-held pendu- 
lums and the finger-oscillation paradigms, the muscular definition of phase is com- 
pletely interchangeable with the spatial definition of phase, leaving no opportunity 
to even discover if the distinction between the two conventions could have signifi- 
cance. The present research suggests that the pattern of fixed-point shift can be 
decoupled from that of coordination stability simply by eliminating the interchange- 
ability of the muscular and spatial conventions. 

In terms of the nearly decomposable Level B-Level C coupling model hy- 
pothesized here, the reversal of the fixed-point shift effect in Experiments 2 and 3 
is not quite as perplexing if pictured as the signature of changes in Level C contin- 
gencies as we go from the standard to the current paradigm. Recall that in this 
view, aggregate relative phase behavior is considered an interaction variable that 
will show sensitivity to both Level B dynamics and Level C contingencies. Note 
first that changes in the level of detuning (Level B) do affect the interaction vari- 
able in that they produce fixed-point shift. But also, changes in Level C require- 
ments (i.e., from orienting the synergy parallel to the sagittal plane in the standard 
paradigm, to orienting it parallel to the coronal plane in the current one) reverse 
the magnitude of shift. The standard quantitative model depicted in Equation 1 
appears in this light as a special case solution that works when the Level C contin- 
gencies align perfectly with the inherent asymmetries of Level B dynamics, thereby 
allowing the modeling of SDQ, (Level B variable) as a derivative of Q, (Level B- 
Level C interaction variable). It is not surprising that changes in Level C require- 
ments which add aspects to the behavior of the interaction variable independently 
of Level B dynamics are beyond the scope of the current model. 

Aside from rendering potentially perplexing results at least marginally com- 
prehensible, the method of nearly decomposable systems has the additional ad- 
vantage of being recursively applicable over several levels of coordination struc- 
tures. Consider, for example, the structure of the relatively well-studied case of 
Level B. Even as a study seeking to explore Level B-Level C coupling treats 
Level B as a relatively encapsulated subsystem, the internal complexity of Level 
B can itself be studied as a nearly decomposable system (see Turvey & Carello, 
1996). The phase of each oscillator is influenced by the summed, aggregate ef- 
fect of the relatively slowly changing spatiotemporal relations between the other 
oscillators in the coordination. At the same time, it exhibits little sensitivity to 
the fast-changing phase perturbations introduced into the other limbs' phasings 
by their own internal microstructural interactions. In fact, the key principles of 
nearly decomposable systems dovetail quite well with the central tenets of 
synergetics, and given the considerable success of the synergetic approach in il- 
luminating the organization-of-Bemtein7s Level B, it seems highly likely that 
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extending the study of interlimb coordination to issues of Level B-Level C cou- 
pling, and doing so in terms of intuitions from the theory of nearly decompos- 
able systems, will benefit development of synergetic approaches that address 
phenomena at this level. 

Afinal point that deserves mention has to do with the as-yet unfamiliar char- 
acteristics of Bernstein's Level C. The interface between fundamental coordina- 
tion structures and information systems that modulate their deployment is undoubt- 
edly one of the most majestic achievements of biological evolution. As such, the 
interactive influence of Level C as well as its internal structure and asymmetries 
will present daunting challenges for systematic exploration. Some hints of Level 
C asymmetries have peeped through even in the present study. Consider the fact 
that the fixed-point shift reversal effect of Experiment 2 was replicated with the 
introduction of the metronome in Experiment 3, but the visual attenuation of fixed- 
point shift disappeared under metronome-driven conditions. If both visual attenu- 
ation and configurational reversal of fixed-point shift are Level C contributions to 
Level B-Level C coupling, they clearly differ in their resilience against changes in 
Level B conditions. Tightening Level B coordination by a driver wiped out the 
effect of visual information on the interaction variable but did not alter the influ- 
ence of spatial configuration. While it is clear that visual information can spatially 
constrain or modulate such a fundamental synergy as 1:l interlimb coupling, it 
also seems interesting that its influence on highly fluid, well-practiced coordina- 
tions, when existent, comes only in the absence of, or perhaps at the expense of, 
precision timing performance. This would come as no surprise to players of racquet 
sports who have tried to correct a swing or impact angle by watching themselves 
strike the ball. 

References 

Amazeen, E.L., Schmidt, R.C., & Turvey, M.T. (1995). Frequency detuning of the phase 
entrainment dynamics of visually coupled rhythmic movements. Biological Cyber- 
netics, 72,5 11-5 18. 

Amazeen, E.L., Stemad, D., & Turvey, M.T. (1996). Predicting the nonlinear shift of stable 
equilibria in interlimb rhythmic coordination. Human Movement Science, 15,521-542. 

Baldissera, F., Cavallari, P., & Civaschi, P. (1982). Preferential coupling between voluntary 
movements of ipsilateral limbs. Neuroscience Letters, 34, 95-100. 

Baldissera, F., Cavallari, P., Marini, G., & Tassone, G. (1991). Differential control of in- 
phase and anti-phase coupling of rhythmic movements of ipsilateral hand and foot. 
Experimental Brain Research, 83,375-380. 

Beek, P. (1989). Juggling dynamics. Amsterdam: Free University Press. 
Beek, P., Turvey, M.T., & Schmidt, R.C. (1992). Autonomous and nonautonomous dynam- 

ics of coordinated rhythmic movements. Ecological Psychology, 4,65-95. 
Bernstein, N. (1967). The coordination and regulation of movement. London: Pergamon 

Press. 
Bernstein, N. (1996). On dexterity and its development. In M. Latash & M.T. Turvey (Eds.), 

Dexterity and its development (pp. 3-244). Hillsdale, NJ: Erlbaum. 
Byblow, W.D., Carson, R.G., & Goodman, D. (1994). Expressions of asymmetries and 

anchoring in bimanual coordination. Human Movement Science, 13, 147-174. 
Carson, R.G., Goodman, D., Kelso, J.A.S., & Elliott, D. (1995). Phase transitions and criti- 

cal fluctuations in rhythmic coordination of ipsilateral hand and foot. Journal of 
Motor Behavior, 27(3), 21 1-224. 



70 Mitra, Amazeen, and Turvey 

Collins, D.R., Sternad, D., & Turvey, M.T. (in press). An experimental note on defining 
frequency competition in intersegmental coordination dynamics. Journal of Motor 
Behavior. 

de Groot, S.R. (1951). Thermodynamics of irreversible processes. New York: Inter- 
science. 

Fisher, EM. (1961). On the cost of approximate specification in simultaneous equation 
estimation. Econometrica, 29, 139-170. 

Fisher, F.M., & Ando, A. (1962). Two theorems on ceteris paribus in the analysis of dy- 
namic systems. American Political Science Review, 61, 103-1 13. 

Gibson, J.J., & Radner, M. (1937). Adaptation, after-effect and contrast in the perception of 
tilted lines: I. Quantitative studies. Journal of Experimental Psychology, 20,453-467. 

Gilmore, R. (1981). Catastrophe theory for scientists and engineers. New York: Wiley. 
Haken, H., Kelso, J.A.S., & Bunz, H. (1985). A theoretical model of phase transitions in 

human hand movements. Biological Cybernetics, B, 347-356. 
Hillborn, R.C. (1994). Chaos and nonlinear dynamics: An introduction for scientists and 

engineers. New York: Oxford University Press. 
Jeka, J.J., & Kelso, J.A.S. (1995). Manipulating symmetry in the coordination dynamics of 

human movement. Journal of Experimental Psychology: Human Perception and 
Performance, 21,360-374. 

Kelso, J.A.S. (1984). Phase transitions and critical behavior in human bimanual coordina- 
tion. American Journal of Physiology: Regulatory, Integrative and Comparative, 
246, R1000-R 1004. 

Kelso, J.A.S. (1991). Anticipatory dynamical systems, intrinsic pattern dynamics and slull 
learning. Human Movement Science, 10,93-111. 

Kelso, J.A.S. (1994). Elementary coordination dynamics. In S.P. Swinnen, J.H. Massion, 
H. Heuer, & P. Casaer (Eds.), Interlimb coordination: Neural, dynamical, and cogni- 
tive constraints (pp. 301-3 18). San Diego: Academic Press. 

Kelso, J.A.S. (1995). Dynamic patterns. Cambridge, MA: MIT Press. 
Kelso, J.A.S., Buchanan, J.J., & Wallace, S.A. (1991). Order parameters for the neural 

organization of single, multijoint limb movement patterns. Experimental Brain Re- 
search, 85,432-444. 

Kelso, J.A.S., Delcolle, J.D., & Schoner, G. (1990). Action-perception as a pattern forma- 
tion process. In M. Jeannerod (Ed.), Attention and performance XIII (pp. 139-169). 
Hillsdale, NJ: Erlbaum. 

Kelso, J.A.S., & Ding, M. (1993). Fluctuations, intermittency and controllable chaos in 
biological coordination. In K.M. Newell & D.M. Corcos (Eds.), Variability and mo- 
tor control (pp. 291-316). Champaign, IL: Human Kinetics. 

Kelso, J.A.S., & Jeka, J.J. (1992). Symmetry breaking dynamics of human multilimb coordination. 
Journal of Experimental Psychology: H u m  Perception and Peformance, 18,645-668. 

Kugler, P.N., & Turvey, M.T. (1987). Information, natural law, and the self-assembly of 
rhythmic movement. Hillsdale, NJ: Erlbaum. 

Lee, D.N. (1978). On the functions of vision. In H. Pick & E. Saltzman (Eds.), Modes of 
perceiving (pp. 159-170). Hillsdale, NJ: Erlbaum. 

Rosenblum, L.D., & Turvey, M.T. (1988). Maintenance tendency in coordinated rhythmic 
movements: Relative fluctuation and phase. Neuroscience, 27,289-300. 

Schmidt, R.C., Shaw, B.K., & Turvey, M.T. (1993). Coupling dynamics in interlimb coordination. 
Journal of Experiment Psychology: Human Perception and Peformance, 19,397-415. 

Schmidt, R.C., & Turvey, M.T. (1994). Phase-entrainment dynamics of visually coupled 
rhythmic movements. Biological Cybernetics, 70, 369-376. 



Bimanual Rhythmic Coordination 71 

Schmidt, R.C., & Turvey, M.T. (1995). Models of interlimb coordination-Equilibria, local 
analyses, and spectral patterning: Comment on Fuchs and Kelso (1994). Journal of 
Experimental Psychology: Human Perception and Performance, 21,432-443. 

Schoner, G., Haken, H., & Kelso, J.A.S. (1986). A stochastic theory of phase transitions in 
human hand movement. Biological Cybernetics, 53,442-452. 

Schoner, G.S., & Kelso, J.A.S. (1988a). A synergetic theory of environmentally-specified 
and learned patterns of movement coordination: I. Relative phase dynamics. Bio- 
logical Cybernetics, 58,71-80. 

Schiiner, G.S., & Kelso, J.A.S. (1988b). A synergetic theory of environmentally-specified 
and learned patterns of movement coordination: 11. Component oscillator dynamics. 
Biological Cybernetics, 58, 81-89. 

Schoner, G.S., & Kelso, J.A.S. (198%). Dynamic pattern generation in behavioral and neu- 
ral systems. Science, 239, 15 13-1 520. 

Schoner, G.S., & Kelso, J.A.S. (1988d). Adynamic theory of behavioral change. Journal of 
Theoretical Biology, 135,501-524. 

Sim, M., Shaw, R.E., & Turvey, M.T. (in press). Intrinsic and required dynamics of a simple 
bat-ball skill. Journal of Experimental Psychology: Human Perception and Perjomzance. 

Simon, H.A. (1962). The architecture of complexity. Proceedings of the American Philo- 
sophical Society, 106,467-482. 

Simon, H.A., & Ando, A. (1961). Aggregation of variables in dynamic systems. 
Econometrics, 29, 11 1-138. 

Stemad, D., Amazeen, E.L., & Turvey, M.T. (1996). Diffusive, synaptic, and synergetic 
coupling: An evaluation through inphase and antiphase rhythmic movement. Jour- 
nal of Motor Behavior, 28, 255-269. 

Sternad, D., Collins, D.R., & Turvey, M.T. (1995). The detuning factor in the dynamics of 
interlimb rhythmic coordination. Biological Cybernetics, 73,27-35. 

Sternad, D., Turvey, M.T., & Schmidt, R.C. (1992). Average phase difference theory and 1:l 
phase entrainment in interlimb coordination. Biological Cybernetics, 67,223-231. 

Strogatz, S.H. (1994). Nonlinear dynamics and chaos. Reading, MA: Addison-Wesley. 
Treffner, P.J., & Turvey, M.T. (1995). Handedness and the asymmetric dynamics of bi- 

manual rhythmic coordination. Journal of Experimental Psychology: Human Per- 
ception and Pe@rmance, 21,318-333. 

Treffner, P.J., & Turvey, M.T. (1996). Symmetry, broken symmetry, and handedness in bi- 
manual coordination dynamics. Experimental Brain Research, 107,463-478. 

Turvey, M.T., & Carello, C. (1996). Dynamics of Bernstein's level of synergies. In M. 
Latash & M.T. Turvey (Eds.), Dexterity and its development (pp. 339-376). Hillsdale, 
NJ: Erlbaum. 

Authors' Notes 

This research was supported by NSF Research Grant SBR 94-22650 to the third 
author. We thank Scott Kelso, Claudia Carello, Charles Worringham, Dagmar Stemad, David 
Collins, Andrew Peck, Eric Amazeen, Michael Riley, and an anonymous reviewer for many 
helpful comments and discussions. M.T. Turvey and S. Mitra are also at Haskins Laborato- 
ries, New Haven, CT. 

Manuscript submitted: March 9, 1996 
Accepted forpublication: September 4, 1996 


