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Dynamics of Bimanual Rhythmic
Coordination in the Coronal Plane

Suvobrata Mitra, Polemnia G. Amazeen,
and Michael T. Turvey

We investigated the 1:1 frequency locking of two hand-held pendulums oscil-
lated parallel to the body’s coronal plane. In this configuration, anti-phase
defined muscularly is in-phase defined spatially, and vice versa. Coordination
equilibria measured by average relative phase were shifted less from muscu-
lar anti-phase than from muscular in-phase by detuning (unequal uncoupled
pendulum frequencies) and were shifted less in both modes with vision than
without. Variability of the equilibria, however, was ordered opposite to their
degrees of shift and was unaffected by vision. Demonstrated subcritical pitch-
fork and tangent bifurcations conformed to the variability classification of
anti- and in-phase coordination. Implications for dynamical models, hierar-
chical control, and definitions of coordination modes were discussed.

In Bernstein’s (1996) hierarchical characterization of biological movement
systems, the formation and selection of cooperative relations among relatively in-
dependent muscles spanning one or more joints are tasks of the level of muscular—
articular links or synergies. According to Bernstein, the functioning of this level is
oriented strictly to the patterning of the body’s segments. The criteria that the level
of synergies satisfies are with respect to the patterns themselves, namely, criteria
of pattern stability and pattern retention (against both internal and external pertur-
bations). Criteria having to do with the particular uses of the patterns in everyday
activity are not the concern of the level of synergies. Satisfying criteria of the latter
kind is the concern of other levels, specifically, the level of space and the level of
actions. Under Bernstein’s (1996) interpretation, the motor problems solved by
the level of space are generically those of translating from an object’s spatial coor-
dinates to a sequence of muscle activation. Typical of the level of space are aimed,
transferring movements, characterized by criteria of accuracy and precision. The
class of motor problems solved by the level of actions is that of sequencing differ-
ent movements that succeed each other systematically, leading to the solution of a
problem whose meaning (function, purpose) dictates the relation among the com-
ponents. Where corrections and adjustments at the level of synergies are based
strictly on muscular proprioception, at the level of space they are based (primarily)
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on visual exteroception, proprioception, and exproprioception (see Lee, 1978),
and at the level of actions they are based on plans and intentions.

In the present research we consider the relation between the levels of space
and synergies by examining the influences of vision and of task orientation with
respect to the principal body axes on an elementary rhythmic synergy: the 1:1
frequency locking of two contralateral segments of the body. One typical experi-
mental procedure for studying this synergy requires oscillating two hand-held pen-
dulums about the left and right wrist joints and parallel to the body’s sagittal plane
(e.g., Kugler & Turvey, 1987; Rosenblum & Turvey, 1988; Schmidt, Shaw, &
Turvey, 1993; Sternad, Turvey, & Schmidt, 1992). The experimental advantage of
using pendulums is control over the frequency competition between the left and
right hands (see below). In the present research we used a variant of this typical
procedure, where the hand-held pendulums were oscillated in a frontoparallel plane
(parallel to the body’s coronal plane) as shown in Figure 1. The significant feature
of this particular 1:1 frequency locking task is that the in-phase (anti-phase) coor-
dination from the perspective of the level of muscular—articular links or synergies
is the anti-phase (in-phase) coordination from the perspective of the level of space
(interpreted here as the visual perception of the ongoing coordination). When ho-
mologous muscles of the right and left forearms contract simultaneously, the pen-
dulums move spatially in opposite directions.

The relation between Bernstein’s level of synergies and level of space can be
approached through the dynamical theory of coordination patterns developed by
Schéner and Kelso (1988a, 1988b, 1988c, 1988d). The significance of this theory
is that it aims to incorporate within a single formulation the fundamental dynamics
of a particular coordination, called intrinsic dynamics, and the modulation of those
dynamics by environmental and informational factors, called required dynamics.
Rhythmically moving together two segments of the body in 1:1 frequency lock-
ing, as depicted in Figure 1, is an elementary coordination pattern. This pattern is
a functional coordination in which many physical, biological, and psychological
components relate in an ordered fashion. At the core of the dynamical theory of

Figure 1 — Schematic of participant performing 1:1 frequency locking of hand-held
pendulums oscillating parallel to the body’s coronal plane.
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coordination patterns are three propositions (see Schoner & Kelso, 1988a). First,
on any level of analysis (kinematic, muscular, neural, and below), a coordination
pattern is characterized by a low-dimensional collective variable or order param-
eter. Second, reproducible and stationary states of the coordination are mapped
onto the attractors of the dynamics of this order parameter. Third, there are certain
parameters (often one, sometimes a few) that act on the collective dynamics
nonspecifically or indirectly, meaning, essentially, that there is no formal resem-
blance between these parameters and the resultant stationary states. Such param-
eters are called control parameters. These three propositions are at work in the
formulation of the dynamical model of 1:1 frequency locking advanced by Haken,
Kelso, and Bunz (1985), Schéner, Haken, and Kelso (1986), and Kelso, DelColle,
and Schoner (1990) and are constrained by the empirical fact that anti-phase is less
attractive than in-phase (e.g., Kelso, 1984):

¢=5~asin¢—2bsin2¢+\/§§ ey

In Equation 1, the relative phase ¢ = 0, —0,,,,, between the phase angles (6,)
of the oscillating body segments is the collective variable or order parameter with
the overdot on the left-hand side signifying its time derivative. The control param-
eter is the ratio, b/a, of the coefficients on the 21 periodic terms, which determines
the relative strengths of the attractors at 0 and 7 phase relations when & = 0 and the
relative strengths of the attractors in the vicinity of 0 and T when & # 0. The dy-
namics are symmetrical, that is, ¢ = —¢, when & = 0, and they are asymmetrical,
that is, ¢ # —0, when & # 0. The quantity & represents the detuning or imperfection
parameter (Strogatz, 1994) and is commonly represented by the difference in the
uncoupled frequencies of the contralateral segments, Wy, —,,,,, (but see Collins,
Sternad, & Turvey, in press; Sternad, Collins, & Turvey, 1995). The final term in
Equation 1 represents a stochastic force of strength Q that arises from the very
many subsystems that contribute to the behavior of the collective variable at time
scales much faster than that of the collective variable. The presence of the final
term means that the collective variable will fluctuate about its stationary value.

Predictions about the equilibria of the 1:1 coordination pattern and their rela-
tive stabilities follow by setting the left-hand side of Equation 1 equal to zero,
ignoring the noise term, and solving for ¢ given specific values of & and b/a. The
stability measure is the slope at the zero crossing of the time-derivative of dasa
function of ¢. Designating this slope by A, L < 0 signifies a stable equilibrium and
A > 0 signifies an unstable equilibrium. It can be shown (see Gilmore, 1981: Schéner
etal., 1986) that the standard deviation of ¢, that is, SD¢, is given by

0
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For a fixed magnitude of O, SD¢ grows as the inverse of I\l A large body of
experimental evidence has confirmed the predictions that follow from Equations 1
and 2) (see summaries by Kelso, 1994; Schmidt & Turvey, 1995).

With respect to the experimental task depicted in Figure 1, Equation 1 can
be taken as defining the dynamics at the level of synergies. These are the dynamics
in which vision does not participate (the subject’s eyes are closed or the oscillating
hand-held pendulums are occluded) and only the haptic perceptual system con-
tributes to the coordination. What might we expect when the experimental task is
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performed with the benefit of vision? Consider the symmetrical case when the two
hand-held pendulums are identical, that is, = 0. A hypothesis of visual domi-
nance assumes Equation 1 as the coordination dynamics but with the equilibria of
¢ = 0 and ¢ = 7 defined visually. According to this hypothesis, if a subject per-
formed the task with eyes open as compared to eyes closed, the stability ranking of
the two equilibria would reverse. In short, vision dominates the dynamics at the
level of synergies, such that the muscular—articular linkages are completely gov-
erned by visual criteria (e.g., Gibson & Radner, 1937). Using the definition of ¢ in
muscular terms as the standard (coactivation of homologous muscles defines
in-phase, ¢ = 0, and coactivation of nonhomologous muscles defines anti-phase, ¢
= 7), then with eyes open the stability ranking would be 1t > 0 (i.e., anti-phase
more stable than in-phase), whereas with eyes closed the stability ranking would
be 0 > 1 (i.e., in-phase more stable than anti-phase), following the observation
behind Equation 1. Numerical solutions of Equation 1 reveal that A is greater for
¢ = 0 than ¢ = 7, meaning smaller SD¢ (see Equation 2) at ¢ = 0. When vision
dominates, ¢ = 0 in muscular coordinates becomes ¢ =7 in visual-spatial coordi-
nates. So in the presence of vision, SD¢ is larger, not smaller, for ¢ = 0 in muscular
coordinates than ¢ = 7 in muscular coordinates.

A second and more plausible hypothesis—one that is consistent with
Bernstein’s interpretation of the responsibilities of the levels of space and syner-
gies—assumes that vision modulates rather than dominates. When a subject watches
the two oscillating hand-held pendulums in the configuration of Figure 1 execut-
ing, say, ¢ = T in muscular coordinates, the deviation of ¢ from visually defined 0
defines a “force” (e.g., Schoner & Kelso, 1988) of magnitude proportional to the
deviation. In the dynamical theory of coordination patterns, a “force” reflecting
the superimposition of a required pattern on an intrinsic pattern is represented by
an additional 27 periodic term in the order parameter equation (Schoner & Kelso,
1988a, 1988b, 1988c; Sim, Shaw, & Turvey, in press). Let I" stand for relative
phase in visual-spatial coordinates, so that when ¢ = 0 and ¢ = 7 in muscular
coordinates, I is made equal to T and I" is made equal to 0, respectively. Equation
1 can then be amended as follows to include the influence of vision:

¢ =8—asin¢—2b sin2¢—c sin(I' - ) +0C, (3)

Equation 3 with the noise term excluded can be solved numerically for an
intended coordination of muscular in-phase (in which case I" = i) and for an in-
tended coordination of muscular anti-phase (in which case I'=0)'. With =0, and
with a and b assuming standard values (e.g., a = b = 1, see Schoner et al., 1986;
Sternad, Amazeen, & Turvey, in press), and ¢ set at a comparable value (e.g.,
¢ =2), Equation 3 has equilibria at ¢ = 0 and ¢ = © with SD¢ smaller at O than at 7.

'The choice of the ordering of I" and ¢ in the argument of the third sine function was
dictated by the assumption that seeing the two hands in spatial in-phase (anti-phase) should
aid moving the hands in muscular anti-phase (in-phase). Exploration of Equation 3 using
the two forms of the argument, namely, I — ¢ and ¢ — T', revealed that I" — ¢ gave the
intuited facilitation with ¢ — I" having the opposite effect. We pursued Equation 3 as shown
with the idea that if the results turned out counter to intuition, that is, that seeing spatial in-
phase (anti-phase) hindered moving the hands in muscular anti-phase (in-phase), then due
consideration would be given to the ¢ — I" form of the argument.
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When Equation 3 is compared with Equation 1—the comparison of 1:1 frequency
locking with visual guidance and without visual guidance—the equilibria of Equa-
tion 3 are more stable than the equilibria of Equation 1. That is, when & = 0, vision
does not affect the location of the attractors (equilibrium points) of the elementary
thythmic synergy but it does affect their strength. SD¢ should be lower in the
presence of vision than in its absence.

Experiment 1

Experiment 1 was directed at the predictions of the visual dominance and the vi-
sual modulation hypotheses for & = 0. Subjects produced 1:1 frequency locking,
in-phase and anti-phase, in the manner depicted in Figure 1 with identical pendu-
lums in the left and right hands. They did so with eyes open (watching the pendular
motions) and with eyes closed. Under both hypotheses, the fixed points of the
coordination dynamics for both eyes open and closed should be at ¢=0and p=m.
The two hypotheses differ with respect to predictions about degree of stability.
According to the visual dominance hypothesis, SD¢ should be larger at ¢ = T in
the absence of vision and larger at ¢ = 0 in the presence of vision. According to the
visual modulation hypothesis (Equation 3), SD¢ should be larger at ¢ = 1 in both
the absence and presence of vision but it should be less at both equilibria in the
presence of vision.

Method

Participants.  Six men and 3 women, all graduate students at the University
of Connecticut, volunteered to participate in the experiment. All 9 had participated
in previous experiments on interlimb coordination using the hand-held pendulums
procedure.

Design and Procedure. The data collected in this study were the move-
ment trajectories of the two hand-held pendulums. Measures included the frequency
of oscillation averaged over the two pendulums, ®,,.; the relative phase averaged
across the trial (the estimate of the stable fixed point), ¢,..; and the standard devia-
tion of relative phase (the estimate of fluctuations about the stable fixed point), SD¢.
Participants were instructed to maintain a muscular phase relation v of either
y=0ory=mneither with or without visual information. In the visual condition, they
visually monitored the movement of the bottom tips of the pendulums. In the non-
visual condition, the hand-held pendulums were occluded. The same symmetrical
pair of pendulums (8 = 0) was used throughout the experiment. Therefore, partici-
pants were tested under four conditions (2 y x 2 Vision Conditions), with three trials
per condition. Order of conditions was completely randomized.

Apparatus and Data Collection.  The hand-held pendulums were aluminum
rods (1.2 cm diameter) with wooden handles (2.5 ¢m in diameter), each held in the
center of the hand so that the pendulum was vertical and the hand was positioned at the
center of the 12 cm long wooden handle attached at the top. Both the right and left
pendulums were 57 cm long, with a 200 g metal ring attached at the bottom of each.

The movement trajectories of the pendulums were recorded using a Sonic 3-
Space Digitizer (SAC Corporation, Stratford, CT). A sonic emitter attached to the
end of each pendulum emitted sparks at the rate of 90 Hz. Microphones positioned
in the four corners of the experimental enclosure registered the position of the
emitters by computing-the distance of the emitter from the three of four micro-
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phones that recorded the least number of errors during the trial. This slant range
time series was stored on an 80486-based microcomputer using MASS motion
analysis software (ESI Technologies, Columbus, OH). MASS was then used to
calculate the mean frequency of oscillation, primary angle of excursion, and ¢.
The primary measures of ¢ and SD¢ were then calculated for each individual trial.
Since no order effects were found, all three measures were averaged across repli-
cations to obtain single data points for each experimental condition.

Procedure. Participants stood next to a wood-frame enclosure with fore-
arm and wrist supports designed to allow for comfortable maintenance of the pos-
ture shown in Figure 1. Participants could swing each pendulum within the enclo-
sure without any obstruction from the enclosure frame or from the other pendulum.
Both wrists were aligned with the midline of the body and separated along the same
line by approximately 10 cm. Subjects were instructed to create as smooth and as
continuous a trajectory as possible, holding the pendulum firmly in the hand to
guarantee rotation about the wrist rather than the finger joints. On any given trial,
participants were instructed to coordinate the hand-held pendulums to establish
either muscular in-phase (y = 0) or anti-phase (y = 1) 1:1 frequency locking either
with or without visual guidance. They were permitted to elect a comfortable fre-
quency and to signal the experimenter when they felt prepared for data collection
in each 45 s trial. All experimental procedures reported in the present experiments
adhere to the ethical guidelines of the American Psychological Association.

Results and Discussion

Separate analyses of variance (ANOVA) were conducted on ¢ — ¢ and SD¢.
¢ — was positive and statistically equal for both y =0 (3.2° or 0.06 rad) and y =
7 (2.5° or 0.04 rad), F(1, 8) = 2.09, p > .05. ¢ — y was similarly positive and
statistically equal both with (2.3° or 0.04 rad) and without (3.2° or 0.06 rad) visual
information, F(1, 8) = 3.59, p > .05. The y x Vision Condition interaction was
nonsignificant, F < 1. Therefore, neither intended phase nor visual information
influenced the location of the equilibria.

Intended phase did have a significant effect on equilibria stability, as mea-
sured by SD¢. Specifically, muscular anti-phase was significantly more variable
(SD¢ =9.8° or 0.17 rad) than muscular in-phase (SD¢ = 6.5° or 0.11 rad), F(1, 8)
=24.99, p < .001. There was no effect of visual information (SD¢ = 8.5° or 0.15
rad when eyes were open; SD¢ =7.95° or 0.14 rad when eyes were closed), F(1, 8)
=1.08, p > .05, nor was there an interaction between y and visual condition, F(1,
8)=1.83,p>.05.

The nonsignificance of the main manipulations on ¢ — y was expected from
the perspectives of both hypotheses. With respect to SD¢, the visual dominance
hypothesis predicted no main effect of y (the higher stability of in-phase with eyes
closed would be offset by its lower stability with eyes open, with the reverse true
for anti-phase) but an interaction of y and vision. In contrast, y was significant
and there was no interaction. The visual modulation hypothesis fared no better. Its
prediction was simply that SD¢ would be less when the eyes were open. To the
contrary, SD¢ was indifferent to the availability of vision.

The present results are accommodated by Equation 1. When & = 0, the con-
tributions of the two oscillators to the coordination dynamics are identical. For this
symmetrical case, the dynamics expressed by Equation 1 are such that anti-phase
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is less stable than in-phase, and parameter variations do not affect the location of
the attractors, only their stability (for empirical verification see Schmidt et al.,
1993; Sternad et al., 1992; Sternad, Amazeen, & Turvey, 1996; Treffner & Turvey,
1995). Consequently, a possible conclusion to be drawn from Experiment 1 is that
the level of space, insofar as it is represented by the present visual manipu-
lation, does not affect the level of synergies when the intersegmental rhythmic
coordination dynamics are symmetrical. In Experiment 2 we examine the influ-
ence of vision when the symmetry of the coordination dynamics is broken, that is,
0#0rad-s™.

Experiment 2

Figure 2 shows the predictions from Equation 3 for the visual-haptic (eyes open)
and haptic-only (eyes closed) conditions when 8 =0, 8 =+1,and §=+2rad - s (a
=b =2, c=1). The expectations are that (a) in-phase and anti-phase coordination
will be defined by muscular, not spatial, criteria in both the occluded and visible
conditions; (b) the equilibria of the elementary synergy under broken symmetry
(6 # 0) will be tuned closer to the muscularly defined 0 and © by visual control;
and (c) the equilibria will be rendered more stable by visual control.
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Figure 2 — Predictions from Equation 3 for haptic-only (eyes closed) and visual-
haptic (eyes open) guided coordination as a function of detuning. Left panel: predictions
for the standard deviation of relative phase (simply, the value of 1/IAl) in the visual-
haptic (V) and haptic-only (H) conditions for both in-phase (0) and anti-phase (1)
modes. Right panel: predictions for fixed-point shift for the haptic-only (H) and visual-
haptic (V) conditions in the in-phase mode.

Method

Participants. Four men and 3 women, all graduate students at the Univer-
sity of Connecticut, participated on a voluntary basis. Five of the participants had
participated previously in experiments using the hand-held pendulums procedure,
but none had taken part in Experiment 1.

Design. A detuning factor with five levels (§=0,+1,+2 rad - s was added
to the design of Experiment 1, resulting in a three-way repeated-measures design
with 20 conditions (2 y x 2 Vision Conditions x 5 8) and only one trial per condition.
Trials were 45 s each and order was completely randomized.
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Apparatus and Data Collection. Detuning was manipulated through the
addition of two asymmetrical pendulum pairs (8 = £1, 2 rad - s7') to the one
symmetrical pair (8 = 0 rad - s™") used in Experiment 1. The unforced, undamped
frequency of a hand-held pendulum was computed in the standard way (e.g., Amazeen,
Schmidt, & Turvey, 1995; Sternad et al., 1992). We found that 0=+1 whena44cm
pendulum with a 500 g metal ring (5.21 rad - s™') was paired with a 68 cm pendulum
with a 200 g metal ring (4.20 rad - s7'); & = £2 when a 36 cm pendulum with a 90
g metal ring (6.28 rad - s™') was paired with a 66 cm pendulum with a 200 g metal
ring (4.28 rad - s7!). In either case, 8 <0 when the longer (slower) pendulum was held
in the left hand and & > 0 when the longer (slower) pendulum was held in the right
hand. The coupled eigenfrequency of the pendulum pair was identical across all 3,
®=4.60rad - s! (see Sternad et al., 1995; Treffner & Turvey, 1996). Data collection
and experimental procedure for Experiment 2 were identical to Experiment 1.

Results and Discussion

Separate ANOVAs were conducted on ¢ — and SD¢. Variations in 8 produced a
significant shift of equilibria away from intended phase, F(4, 24) = 63.649, p <
.0001. Note in Figure 3 that 3 > 0 produced ¢ —y > 0, and 6 < 0 produced ¢ — Wy <
0. There was no main effect of either y, F < 1, or vision condition, F <1, on ¢ — .
The expected interaction between vision and & was significant, F(4, 24) = 11.439,
p <.0001, as shown in Figure 3, with fixed-point shift amplified in the absence of
vision. Figure 4 depicts the unexpected y x & interaction, F(4, 24) = 11.890, p <
.0001: The fixed-point shift was larger when y = 0 than when y = 7. The ¥ x
Vision Condition was nonsignificant, F < 1, but, as shown in Figure 5, there was a
three-way interaction, F(4, 24) = 4.218, p < .01. The attenuation of fixed-point
shift by visual information was more effective in the spatial in-phase (muscular
anti-phase) condition than in the spatial anti-phase (muscular in-phase) condition.
Figure 6 depicts SD¢ as a function of y and 8. In replication of Experiment
1, muscular anti-phase (9.7° or 0.17 rad) was significantly more variable than muscu-
lar in-phase (8.4° or 0.14 rad), F(1, 6) = 9.62, p < .05. As expected, SD¢ increased
with increasing 101, F(4, 24) =51.47, p <.0001. Visual information had no significant
effect on variability, F < 1, nor were any of the interactions significant, F < 1.
Experiment 1 showed that vision did not affect the fixed point of symmetri-
cal coordination dynamics, & = 0. This indifference to vision at & = 0 was corrobo-
rated in Experiment 2, as shown by Figure 3. However, vision did affect coordina-
tion equilibria, as expected, when 8 # 0. The shift in fixed point induced by breaking
reflective symmetry was attenuated by the eyes-open condition. Also, as evidenced
by the significant three-way interaction shown in Figure 5, attenuation of fixed-
point drift by vision was greater in magnitude for the muscular anti-phase (spatial
in-phase) condition than for the muscular in-phase (spatial anti-phase) condition.
As should be obvious from Figure 1, the arrangement of the coordination in the
frontoparallel plane makes the muscular in-phase (spatial anti-phase) condition
harder to monitor visually by following the bottom of the pendulums (as subjects
were instructed to do) than the muscular anti-phase (spatial in-phase) condition. This
suggests why visual monitoring of the coordination was more effective for attenuat-
ing fixed-point drift in the spatial in-phase than in the spatial anti-phase condition.
Although vision influenced location of the equilibria, it did not influence
their degree of stability as measured by SD¢. The increase in variability accom-
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Figure 3 — Significant interaction of detuning and vision (eyes open vs. eyes closed)

in Experiment 2 showing the attenuation of fixed-point shift in the eyes-open condition.
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Figure4 — Significant interaction of detuning and phase mode in Experiment 2. The
muscular in-phase (spatial anti-phase) mode registered greater fixed-point shift due
to detuning than the muscular anti-phase mode.

panying detuning from 0 and © was not smaller when the eyes were open than
when the eyes were closed. Typically, for intersegmental coordination of move-
ments parallel to the sagittal plane, larger fixed-point shifts are accompanied by
larger SD¢ (Schmidt & Turvey, 1994; Schmidt et al., 1993; Sternad et al., 1996;
Treffner & Turvey, 1995, 1996). The interpretation for this linkage is readily given
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Figure 5 — Three-way interaction of detuning and vision in Experiment 2. Attenuation

of fixed-point shift due to detuning was more pronounced in the muscular anti-phase
(spatial in-phase) condition (top panel) than in the muscular in-phase (spatial anti-
phase) condition (bottom panel).

in terms of the underlying potential function V(¢) from which Equation 1 is de-
rived as —d V(0)/d¢ (see Haken et al., 1985). As the minima of the potential func-
tion, that is, the attractors, are displaced from 0 and &, the potential wells around
the minima become more shallow with the result that a stochastic force of strength
Q can displace the system from the minima to a larger degree. Hence, SD¢ is
systematically amplified with fixed-point shift. The present results suggest that for
intersegmental coordination of movements parallel to the body’s lateral plane, dis-
placements of the minima of the potential function and the steepness of the poten-
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Figure 6 — Greater variability of muscular anti-phase shown over the entire detuning

range used in Experiment 2.

tial walls surrounding the minima do not change together. There is the suggestion
of a dissociation between fixed point and stability.

This preceding dissociation and the contrast between the intersegmental co-
ordination investigated here and in prior experiments are underscored by the ob-
servation in Experiment 2 that muscular in-phase was more susceptible to sym-
metry breaking (detuning) than muscular anti-phase. Equations 1 and 3 predict the
opposite, and previous investigations have confirmed this prediction (e.g., Amazeen,
Sternad, & Turvey, 1996; Sternad et al., 1996; Treffner & Turvey, 1995, 1996).
Importantly, the greater susceptibility of muscular in-phase to detuning was not
accompanied by a reversal of stability as measured by SD¢. By this measure, mus-
cular in-phase was more stable than muscular anti-phase, in agreement with theory
and experimentation. Patently, the anomolous nature of greater susceptibility of
muscular in-phase to detuning calls for a systematic replication of this major ob-
servation of Experiment 2.

It is evident that vision did not dominate the coordination pattern in Experi-
ment 2. If visual domination occurred with eyes open, then ¢ = 0 and ¢ = 1t in
muscular coordinates would have become ¢ = 7 and ¢ =0, respectively, in visual—
spatial coordinates, and an interaction between vision and y would have been
observed. Additionally, in the presence of vision, SD¢ should have been larger for
¢ =0 in muscular coordinates than ¢ = 7 in muscular coordinates. Neither of these
effects, which were expected from the hypothesis of visual dominance, were con-
firmed. At the same time, it is clear that Equation 3 accommodates the present data
only in part, and major expectations from Equation 3 were not upheld. In sum, the
present experiment strongly hints that coordination dynamics for movements per-
pendicular to the body’s sagittal plane, and the contribution of vision, may not
conform to a straightforward extension of Equation 1.

Finally, the unexpected results raise the possibility that all or part of the
anomaly in pattern arises due to peculiarities of the specific experimental arrange-
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ment rather than more general properties of coordinations in the coronal plane. It
is possible, for instance, that the apparatus and the subject’s position in it con-
strained or otherwise altered the performance conditions that have provided the
well-known results of coordination parallel to the sagittal plane. Ease of move-
ment between the two arms may not have been balanced, or there may have been
significant differences in amplitude of motion between arms or experimental con-
ditions that might affect the interpretation of results. Also, it is possible that the
present task induces a strategy for synchronization that is distinct from the one
used by subjects in the standard version (oscillations parallel to the sagittal plane).
It has been suggested that, in bimanual rhythmic coordination in general, the es-
sential information for coordination is localized in discrete regions (or points) in
relative phase space (Beek, 1989; Beek, Turvey, & Schmidt, 1992; Byblow, Carson,
& Goodman, 1994; Kelso, 1995). These are possibilities that cannot be adequately
addressed through the global measures employed in the present study but can be
tested and eliminated only through extensive analysis of the measures of coordina-
tion at different phases of each cycle. Inspection of sample time series obtained in
the present experiment does not, however, indicate any obvious peculiarities. Fig-
ures 7a and 7b present 10 s samples of a typical subject’s time series in Experiment
2 as recorded from the bottom of each hand-held pendulum. Figure 7a presents in-
phase and anti-phase (in spatial coordinates) data in the eyes-open and eyes-closed
conditions for the symmetrical oscillator case (8 =0), and Figure 7b presents the same
data for the most extreme asymmetry condition (8 = 2) used in Experiment 2 (and in
the following Experiment 3). No obvious anomalies are visible in either data set. In
Figure 7b, showing & = 2, the asymmetry with the longer pendulum in the right hand
is most likely responsible for the visible difference in position amplitude. Otherwise,
the time series do not appear to contain anomalies of the kind just discussed.

Experiment 3

Experiment 2 was replicated with one important change. In Experiment 2, the
movement frequency at which the two pendulums moved together was essentially
constrained by the sizes of the pendulums. Participants selected a movement fre-
quency that was comfortable for the given coupled-pendulum condition. When
participants make these selections, the frequencies chosen tend to correlate with
the natural frequencies of the pendulum pairs (computed as if the coupling be-
tween hand-held pendulums was rigid, e.g., Amazeen et al., 1996; Sternad et al.,
1996), although different participants tend to select different frequencies. In Ex-
periment 3, the movement frequency was dictated by metronome rather than se-
lected freely. Variation in this aspect of the coordination dynamics was thereby
eliminated. A possible drawback of using metronome control is that the explicit
emphasis on controlling movements by hearing may diminish the implicitly de-
fined contribution of vision (performing the coordination with eyes open versus
eyes closed). Of major significance in Experiment 3 was whether muscular in-
phase would be more susceptible to detuning with respect to fixed-point shift, but
less destabilized by detuning as measured by SD¢, than muscular anti-phase.

Method

tParticipants. Four men and 4 women, all graduate students at the Univer-
sity of Connecticut, participated on a voluntary basis. Four of the participants had



56

EYES CLOSED

Position (cm)

EYES OPEN

Position (cm)

Position (cm)

Position (cm)

70 -
60 -
50
40
30

10 4

IN-PHASE

Mitra, Amazeen, and Turvey

ANTI-PHASE

70
60 -
50
40
30
20-
10

70 -
60
50
40 3
30 -
20 4
10 4

70 A
60
50 A
40 1
30 1
20
10-_

Time (sec)

4 5 6 7

AL LA LA B B N B m e |
2 3 4 5 6 7 8 9 10

Time (sec)

Figure 7 — Sample time series of pendulum positions during 10 s of data collection
in Experiment 2 from a typical subject: (A) symmetrical pendulum condition, and (B)
asymmetrical pendulum condition. In each case, pendulum positions were recorded
from the bottom of each pendulum.

taken part previously in interlimb coordination experiments involving hand-held pen-
dulums. None had participated in any of the preceding experiments of the present series.

Design. The same three-factor, repeated-measures design (2 y x 2 Vision

Conditions x 5 8) used in Experiment 2 was used in Experiment 3.
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Figure 7 — (continued)

Apparatus and Data Collection. ~ Apparatus wasidentical toExperiment 2.
Because ® = 4.60 rad - s for all three pendulum pairs, the same metronome -
frequency was used to pace participants in all three & conditions. Otherwise, data
collection was identical to Experiment 2.

Procedure.  For each trial, participants were asked to produce the required
in-phase or anti-phase coordination and to try at all times to keep pace with the
metronome. Participants were advised, but not required, to try to synchronize with
the metronome at times when one or both pendulums reached peak extension in the
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cycle. Observation of performance suggested that participants found it convenient
to follow the guideline. On a trial, data collection was started once the participant
signaled thathe or she was satisfied with the stability of the pattern and its synchrony
with the metronome. The procedure was otherwise identical to Experiment 2.

Results and Discussion

Separate ANOVAs were conducted on ¢ — y and SD¢. In replication of Experiment
2, variations in 6 produced significant shifts of equilibria away from intended phase,
F(4,28) = 141.19, p < .0001, with > 0 producing ¢ —y > 0 and § < 0 producing
¢ -y < 0. There was no main effect of either y, F < 1, or vision condition, F < I,
on ¢ — . The y x & interaction was also replicated, F(4, 28) = 3.58, p < .02, with
a greater fixed-point shift for y = 0 than for y =  (see Figure 8). Unlike Experi-
ment 2, the Vision Condition x & interaction was nonsignificant, F(4, 28) = 1.54,
p > .05, suggesting that experimental control of coupled frequency negated the
amplifying effect that absence of vision had on fixed-point shift. Vision did not
interact with y, F < 1, nor was there a three-way interaction, F' < 1.

In replication of Experiments 1 and 2, anti-phase (10.2° or 0.18 rad)
was significantly more variable than in-phase (9.1° or 0.16 rad), F(1, 7) = 6.07,
p < .05 (see Figure 9). There was also a significant effect of § on SD¢, F(4, 28) =
19.90, p <.0001, with SD¢ least at & = 0 and increasing symmetrically for & = +1
and § = +2. Visual information had no significant effect on variability, F < 1, nor
were any of the interactions significant: y x Vision Condition, F < 1; Vision Con-
dition x 8, F(4, 28) = 2.50, p > .05; y x 8, F(4, 28) = 2.34, p > .05; y x Vision
Condition x 3, F(4, 28) = 1.60, p > .05. :

The main outcomes of Experiment 3 in relation to those of Experiment 2
were (a) the complete absence of an effect of vision and (b) a replication of the
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Figure 8 — Significant interaction of detuning and phase mode in Experiment 3. As
in Experiment 2, muscular in-phase (spatial anti-phase) mode registered greater fixed-
point shift due to detuning than the muscular anti-phase mode.



Bimanual Rhythmic Coordination 59

14 7
———
In P_hase (muscular)
—®— Anti Phase
12 A
)
)
©
~ 10
=
(=]
»
g -
6 T T T — T T T T 1
-3 -2 -1 0 1 2 3
0 (rad s'1)
Figure 9 — Greater variability of muscular anti-phase shown over the detuning

variation used in Experiment 3.

greater shift by symmetry breaking, but less destabilization by symmetry break-
ing, of equilibria under muscularly defined y = 0 than under muscularly defined
y = 1. The use of a metronome and the explicit requirement to track its frequency
may have contributed to the elimination of the two-way interaction between vision
and detuning and the three-way interaction between phase, vision, and detuning
found in Experiment 2 and shown in Figures 3 and 5, respectively. If so, this would
reinforce the impression that intersegmental rhythmic coordination is mainly
through the haptic—proprioceptive perceptual system, that is, formed at Bernstein’s
level of synergies, with vision a potential but not automatic modifier of the result-
ant coordination dynamics.

The result expressed by (b) above is of major theoretical importance. The
structure of Equations 1 and 3 cannot give rise to the observed opposition between
fixed-point shift and variability. To be redundant, when the left-hand sides of these
equations are set to zero and the equations solved to isolate the fixed points or zero
crossings for given parameter values, and the slopes at these zero crossings are
then determined (A from Equation 2), it is necessarily the case that the larger the
deviation of a zero crossing from 0 or 7, the shallower is the corresponding slope.
In short, the larger the fixed-point shift, the larger the variability (given that SD¢ is
inversely related to A). The question that the present anomalous finding poses is,
Which measure, the magnitude of ¢ — y or the magnitude of SD¢, most appropri-
ately captures the difference between the two attractive states of ¢ =0 and ¢ =7,
given that the two measures behave differently? Experiment 4 addresses this ques-
tion by examining phase transitions under scaling of movement frequency.

Experiment 4

In one of the earliest demonstrations of phase transitions in human intersegmental
coordination, Kelso (1984) asked participants to oscillate their two index fingers
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(or two hands) at a movement frequency specified by a metronome. With increas-
ing movement frequency, the “prepared” anti-phase of a subject’s fingers switched
suddenly to in-phase. The direction of the transition (from anti-phase to in-phase)
was not reversed by reducing the movement frequency, however, or by initially pre-
paring the fingers in-phase. This observation of a greater persistence over frequency
scaling of muscular in-phase coordination led to the 27 periodic function in Equation
1, which is the negative derivative with respect to ¢ of the potential function

V(§)=—a cos— b cos 2¢. “4)

The minimum of this function at ¢ = 0 is greater than the minimum at O=1m.
The ratio of the coefficients, b/a, defines a control parameter, as noted above, that
is inversely related to the movement frequency. As b/a decreases, the potential
wells become more shallow, with those at ¢ = +1t disappearing when b/a = 0.25
(Haken et al., 1985). The spontaneous transition from anti-phase to in-phase, but
not in reverse, is the consequence of the loss of stability (loss of the attractor) at ¢
= 1 with increasing movement frequency.

The phase transition methodology can be used, therefore, to determine the
relative strengths of the attractors in the rhythmic coordination of movements per-
pendicular to the sagittal plane. That is, it can be used to answer the question,
Which is the most attractive coordination in the present experimental task, in-
phase coordination defined in muscular coordinates or anti-phase coordination
defined in muscular coordinates? In concrete terms, the test is whether the muscu-
lar in-phase mode will switch to the muscular anti-phase mode, and whether the
muscular anti-phase mode will persist, with frequency scaling as implied by the
fixed-point shift results of Experiments 2 and 3, or whether the reverse will be true
as implied by the variability results of those experiments.

Method

Participants. Two women and 2 men, all undergraduates at the University
of Connecticut, participated in Experiment 4. All 4 subjects were enrolled in an
introductory psychology course and received course credit for their participation.

Design. Participants were instructed to maintain a relative phase of either
Y =0 or y =m with either symmetrical (§ =0 rad - s”') or asymmetrical (§ = 2 rad
-s7") pendulums. There were 3 trials in each of 4 conditions (2 y x 2 9) for a total
of 12 trials. Order was completely randomized.

Apparatus and Data Collection. The system of symmetrical pendulums
(d=0rad - s') was composed of two identical pendulums that were 52 cm long and
had 90 g metal rings attached at the bottom. The system of asymmetrical pendulums
(8=2rad -s™') was composed of one 38 cm pendulum and one 69 cm pendulum, each
with a 30 g metal ring attached at the bottom. The coupled eigenfrequency for both
pendulum pairs was identical, ® = 5.08 rad - s™'. An auditory metronome paced the
coordination, starting at 5.08 rad - s~' and increasing every 10 s by 1.26 rad - s™' to
a maximum frequency of 11.38 rad - s!. Trials were 60 s long, with six frequency
plateaus. Data collection began after the first 10 s plateau and continued for 50 s
through five more plateaus. Data collection was otherwise identical to Experi-
ments 1-3.

Procedure.  On any given trial, participants were instructed to coordinate
either symmetrical (8 = 0 rad - s™') or asymmetrical (8 = 2 rad - s7') pendulums to
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establish either in-phase (y = 0) or anti-phase (\ = 1t) without visual guidance and
at the frequency designated by the metronome. They were informed that frequency
would increase during the course of the trial and that they should track it to the best
of their ability. Participants were also instructed that if they felt that they were losing
the phase relation with which they began the trial, they should maintain it as long
as possible but should not prevent themselves from switching to a more comfortable
pattern. They were further reminded to continue swinging the pendulums (no matter
what the pattern) until the end of the trial. Visual gaze was focused on a target
provided at eye height on the wall in front of the participant.

Results and Discussion

For the 4 participants, transitions from muscular anti-phase to muscular in-phase
occurred on 15 out of 24 frequency scaling trials; there were no trials on which
transitions occurred from muscular in-phase to muscular anti-phase. In short, the
experiment replicated the fundamental observations (Kelso, 1984), captured in the
dynamics of Equation 1, that the muscular in-phase pattern is the more attractive
and that with frequency scaling the muscular anti-phase pattern is the first to lose
stability.

An important methodological feature of the present experiment is that many
informal efforts to obtain a phase transition in the coordination of hand-held pen-
dulums have not been successful. Those previous efforts, however, were restricted
to movements parallel to the sagittal plane. In the present research, the focus was
upon movements perpendicular to the sagittal plane, and we observed spontane-
ous switches in coordination in this orientation (see discussion of Experiment 2
and General Discussion section for possible distinctions between movements par-
allel and perpendicular to the sagittal plane). The general significance of this find-
ing is that the hand-held pendulums procedure can now be used to investigate the
phase transition phenomenon under conditions of systematic symmetry breaking.
A most important prediction of Equation 1 in this respect follows from the fact that
the bifurcation for the broken symmetry condition 8 = £2 is different from that of
the symmetry condition d = 0: a saddle-node bifurcation versus a subcritical pitch-
fork bifurcation (Kelso, 1994; Turvey & Carello, 1996).

Figure 10 shows the evolution of these two types of bifurcation with de-
creasing b/a. The subcritical pitchfork bifurcation arises when the two repellers at
¢ =m/2 and ¢ = 31/2 “collide” with the attractor at ¢ = rt. This collision changes the
attractor at 7t to a repeller, leaving only the attractor at 0. The prediction in this case
is that the transition from muscular anti-phase to muscular in-phase must be dis-
continuous (see discussions for the general case in Hillborn, 1991; Strogatz, 1994).
In contrast, the saddle-node bifurcation arises from a collision between the repel-
ler at t/2 and the attractor at 7, with an initial coalescing of the unstable and stable
states followed immediately by the annihilation of both. Importantly, however,
there is a saddle-node remnant or ghost that can continue to attract (from one
direction) and repel (in the opposite direction) (Strogatz, 1994). Relative phase
can get trapped temporarily in the vicinity of this ghost point (Kelso & Ding, 1993).
The prediction, therefore, with regard to the transition from muscular anti-phase to
muscular in-phase when & # 0 is that it will be gradual rather than discontinuous.
Figure 11 presents examples of the phase transition under 6 = 0 and & = +2. The
transition is abrupt in the former symmetrical case and prolonged in the latter
asymmetrical case, in agreement with the contrast in bifurcation types. The obser-
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Figure 10 — Evolution of subcritical pitchfork (al-a5) and saddle node or tangent
(b1-b5) bifurcations with decreasing b/a. The subcritical pitchfork bifurcation changes
the attractor at T to a repeller, leaving only the attractor at 0. The saddle-node
bifurcation is an initial coalescing of the unstable and stable states followed immediately
by the annihilation of both, leaving a saddle-node ghost that can continue to attract
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Figure 11 — Examples of the phase transition under 8 = 0 (left column) and 0 = 12
(right column), with the lower panel in each column showing the smoothed data. The
relative phase angles on the vertical axis are in spatial coordinates. The unit of time (?)
on the horizontal axis is 1/90th of a second, the sampling rate used in the experiment.
The series in the lower panel of both columns was obtained through an 18-point (0.2 s)
moving average of the recorded data shown in the upper panels. The transition is
abrupt in the former symmetrical case and prolonged in the asymmetrical case, in
agreement with the contrast between subcritical pitchfork and saddle-node (or tangent)
bifurcations.

vations reported in Figure 11 are of theoretical importance given their relation to
intermittency phenomena (see discussions in Kelso, 1991, 1995; Kelso &
DeGuzman, 1992). A future elaboration of the present experiment and analyses is
planned.

General Discussion

The present series of experiments presents two important results with nontrivial
implications for theories of intersegmental coordination dynamics. The first result
is that visual guidance can attenuate the fixed-point shift associated with compo-
nent asymmetries in interlimb 1:1 rhythmic coordination tasks, even as it produces
no detectable changes in stability of the in-phase and anti-phase coordination modes.
The second important result is that rotating the plane of motion of a basic bi-
manual coordination from the sagittal to the coronal plane can render the (muscu-
lar) in-phase mode more susceptible to fixed-point shift than the (muscular) anti-
phase mode, even as the former mode remains more stable than the latter. As
previously remarked, both of these results reflect a rather fundamental dissocia-
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tion between fixed points and stability that is accommodated neither by Equation
I nor by any parametric or expansional variations of it. Under these circumstances,
one obvious possibility for a resolution appears to lie in the conventions used to
define the collective variable of relative phase. The experiments reported here
were directed at contrasting a neuromuscular convention based upon the homol-
ogy of the involved muscle groups with a geometric convention based upon sym-
metries about either principal body axis. It is clear that a definition of relative
phase based on neither convention renders the obtained results concordant with all
predictions from Equation 1 or Equation 3.

Atfirst sight, this outcome appears dissonant with several suggestions in the
literature that the stability ranking of the two attractors (in-phase and anti-phase)
in interlimb coordination dynamics is best characterized spatially rather than in
terms of any preferred coupling among muscle groups (Baldisserra, Cavallari, &
Civaschi, 1982; Baldisserra, Cavallari, Marini, & Tassone, 1991; Carson, Goodman,
Kelso, & Elliot, 1995; Jeka & Kelso, 1995; Kelso, Buchanan, & Wallace, 1991;
Kelso & Jeka, 1992;). Evidence for favoring the spatial characterization derives
from empirical results obtained in coordination tasks involving rotations about the
elbow and wrist joints (Kelso et al., 1991), the wrist and ankle joints (Baldisserra
et al., 1982, 1991; Carson et al., 1995), and the elbow and knee joints (Kelso &
Jeka, 1992). Results indicate that the coordination mode in which the participating
limbs move in the same direction is more stable than the mode in which the limbs
move in opposite directions. Moreover, for cases involving motions about the wrist
Joint, it has been shown that shifting from supinated forearm preparation to pro-
nated forearm preparation (which reverses the mapping between wrist flexion—
extension and direction of hand motion) does not alter the stability ranking of the
spatially defined in-phase and anti-phase modes.

While these results highlight the limitations of defining relative phase strictly
on the basis of muscle homology, a closer inspection of the above-cited studies
reveals that they do not make a similarly convincing case for the considerably
stronger claim that “the mutual direction of motion between interacting compo-
nents and not simply kinesiological action of the participating muscles plays arole
in determining coordinative stability” (Kelso & Jeka, 1992, p. 647). First, it is
relatively easy to provide a perfectly satisfactory definition of relative phase based
precisely on the “kinesiological action of the participating muscles” that gives
results identical to those arrived at via spatial criteria in each of these studies.
Second, it is equally easy to provide an obvious example, other than the present
paradigm, of a coordination in which limbs moving in opposite directions produce
a more stable pattern than limbs moving in the same direction.

Pursuing the former point first, we might observe that in all coordination
patterns employed in the paradigms in question (i.e., wrist—elbow, wrist-ankle,
and elbow—knee), a full oscillation of a given limb about a joint divides roughly
into a half-cycle during which the rotation of the joint lifts the limb away from the
ground plane (i.e., moves the limb against gravity) and a half-cycle during which
the opposite rotation of the same joint lowers the limb toward the ground plane
(i.e., moves the limb with gravity). In the case of a supinated arm, for example,
wrist flexion elicits the lifting half-cycle and wrist extension elicits the lowering
half-cycle, while for a pronated arm, wrist extension elicits the lifting half-cycle
and wrist flexion elicits the lowering half-cycle. Similarly, for arm motions about
the elbow joint, elbow flexion elicits the lifting half-cycle, while for foot motions
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about the ankle joint, dorsiflexion elicits the lifting half-cycle. While different
limbs in different orientations recruit different muscle groups to perform the lift-
ing and lowering half-cycles (Bernstein, 1967), itis clear that no matter what muscle
group is actually doing the work, the lifting half-cycle requires greater effort than
the lowering half-cycle.

This fact of differential loading during the two half-cycles about any of the
three joints can be used to define relative phase based purely on criteria involving
the kinesiological action of the muscle groups involved in an interlimb (or
intersegment) coordination task. We might define in-phase coordination as the
organization in which both limbs (segments) traverse their lifting half-cycles to-
gether, and anti-phase coordination as the organization in which one limb (seg-
ment) traverses its lifting half-cycle while the other traverses its lowering half-
cycle. These definitions of in-phase and anti-phase modes are based upon criteria
of equal or unequal muscular effort required for concurrent movement of partici-
pating limbs (segments). We might predict, then, that the in-phase mode will be more
stable than the anti-phase mode and conjecture that this is so because the simultaneity
of the lowering half-cycles in this mode allows more time between lifting activity
(summed over all involved muscles), rendering the mode energetically (or even
informationally) more and more economical (compared to anti-phase) as the frequency
of oscillation increases. While the conjecture may or may not be correct, the above
definitions of in-phase and anti-phase capture every piece of data from each study
under scrutiny. In-phase, by this definition, is always more stable than anti-phase,
even though the definitions were arrived at through kinesiological criteria.

It remains true, however, that the kinesiologically based phasing convention
developed above gives the same phase modes as the spatial criterion that takes
movement of component limbs (segments) in the same direction as in-phase and
movement in the opposite direction as anti-phase. As such, these two conventions
are behaviorally indistinguishable for all of the tasks under consideration, and the
obvious and relatively uninteresting reason for this is that gravity always acts in
the direction of the ground plane. This brings us, however, to our second point,
that it is possible to provide an example of an interlimb (segment) coordination,
other than the one presented in this series of experiments, in which limbs moving
in opposite directions produce a more stable coordination than limbs moving to-
gether in the same direction. Consider, then, the finger-oscillation task (Kelso,
1984) with an important twist: One arm is prepared supinated while the other is
prepared pronated. By trying to oscillate their two index fingers with their arms
held in the prepared orientations, readers can see that the spatially anti-phase mode
(i.e., one finger rotates downward as the other rotates upward) is far more stable
than the spatially in-phase mode. While gravitational loading on a finger is mini-
mal due to its low mass, there remains an asymmetry in required muscular effort
between flexing the finger away from the palmar plane and extending the finger
toward this plane. Thus, while the spatial criterion fails to predict stability ranking,
the kinesiological criterion developed above is still able to predict that the in-
phase mode is more stable than the anti-phase mode.

Having thus reinforced the need to retain some suitable form of kinesiologi-
cal criteria for phase mode identification, we may return to the rotated hand-held
pendulums paradigm employed in the present study and note first that this para-
digm introduces a dissociation between a spatial and any possible kinesiological
definition of phasing in a manner that the wrist-elbow, wrist—ankle, or elbow—



66 Mitra, Amazeen, and Turvey

knee paradigms do not. Applying the kinesiological criterion introduced above,
we are able to predict the stability ranking of the two modes but are unable to
reconcile that prediction with the pattern of fixed-point shift. On the other hand, adopt-
ing the spatial criterion applied in the studies cited above, we are able to predict the
pattern of fixed-point shift (i.e., spatial in-phase produces smaller fixed-point shift)
but are unable to reconcile that with stability rankin g. In light of this quandary, we try
in the following to take a fresh look at interlimb coordination by situating the dynam-
ics of articular synergies, and indeed the interpretation of our variables of measure-
ment, in a somewhat broader context of general theories of complexity.

In differentiating levels of motor coordinative organization in biological sys-
tems, Bernstein conceived of the level of muscular—articular links (his Level B) as
concerned exclusively with formation and retention of stable patterns involving
large numbers of disparate musculoskeletal components. The synergies assembled
by this level of organization in the execution of intended tasks are deployed by the
level of space (Bernstein’s Level C), which may orient or adapt the coordination to
the specific spatial contingencies of the task in question. The elegance of this level-
encapsulated design is that two staggeringly complex responsibilities—harmoniz-
ing the activity of the various participating articulators into a stable and repeatable
pattern (synergy), and channeling the synergy along a given perceptually deter-
mined trajectory—are relegated to two quasi-autonomous functional organizations.
A perception—action complex composed of such Bernsteinian subsystems is close
in spirit to the nearly decomposable architecture of complexity (Simon, 1962; Simon
& Ando, 1961), which is characterized by the following two properties: (a) The
short-term behavior of each component organization is approximately indepen-
dent of the short-term behavior of the other component organizations, and (b) the
long-term behavior of any one of the component organizations depends only in an
aggregate manner on the behavior of the other components, that is, on the sum of
their respective states averaged over time (see Simon, 1962, for further details).

The nearly decomposable architecture is ubiquitous in the natural world and
has been identified as being operational at scales ranging from the economic and
political (Fisher, 1961; Fisher & Ando, 1962) down to the atomic and molecular
(de Groot, 1951). In considerations of the vibratory behavior of microphysical
complexes, for example, the vibrations associated with nuclear processes are of
higher frequency than those associated with the planetary electrons, which, in turn,
are of much higher frequency than those associated with molecules. With respect
to a dependent measure such as radiation frequency, then, a molecular organiza-
tion is a nearly decomposable one: the short-term (high-frequency) behavior of
molecular radiation relates to the short-term behaviors of the component atomic
and subatomic organizations, and the long-term (low-frequency) aggregate radia-
tion behavior relates to the interactions between those component organizations.

In studying a perception—action complex such as the one that accomplishes
intersegmental 1:1 rhythmic coordination, interest is commonly focused on the
behavior of two dependent measures: (a) the relative phase, whose distribution
points to the regions of stability in phase-space (or the locations of the wells of the
governing potential), and (b) the standard deviation of relative phase, which re-
flects stability magnitudes (or the steepness of the potential wells). If Bernstein’s
Levels B and C are viewed to couple in nearly decomposable fashion, critical
insights become available in interpreting and predicting the two dependent mea-
sures under changing conditions at both Levels B and C. The first suggestion is
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that the fixed-point behavior of the coordination (or the average relative phase) is
a long-term, aggregate measure reflecting the interactions between Level B, which
assembles and maintains the fundamental synergy, and Level C, which employs
perceptual information (haptic, visual, and auditory) in orientating or adapting the
coordination to the intended spatial configuration. The second suggestion is that
the standard deviation of relative phase is a measure of the level of short-term,
high-frequency behavior due primarily, if not completely, to processes and inter-
actions occurring within Level B.

Several predictions follow from the above mapping of experimental mea-
sures to nearly decomposable Level B-Level C coupling. The first prediction is
that the standard deviation of relative phase will reflect the exigencies of multi-
component pattern assembly and harmony retention that are peculiar to Level B.
The behavior of this measure will be closely tied to the kinesiological demands
operating upon assembled muscle groups and other biomechanical and physiological
contingencies of synergy formation, and will retain some signature of Level B contin-
gencies across changes in Level C configurations. The second prediction is that stan-
dard deviation of relative phase will scarcely, if ever, register qualitative changes as a
function of changes in Level C contingencies. And the third prediction is that al-
though fixed-point behavior, an interaction variable, will exhibit sensitivity to changes
in Level B dynamics, it will also reflect changes in Level C contingencies.

These three predictions, which follow directly from conceptualizing Level
B-Level C complex as a nearly decomposable system, account for every effect
recorded in the series of experiments reported here. With respect to the first pre-
diction, we may note that in Experiments 1 through 3, standard deviation of rela-
tive phase uniformly showed that the muscularly anti-phase coordination (which
was prepared so as to be spatially in-phase) was less stable than the muscularly in-
phase coordination (which was prepared so as to be spatially anti-phase). More-
over, Experiment 4 demonstrated that scaling the frequency of the coordination
resulted in the loss of stability of the muscular anti-phase mode, resulting either in
abrupt phase transitions to the muscular in-phase mode (when the interlimb sys-
tem was symmetrical) or in excessive phase wandering (when the symmetry of the
interlimb system was broken). Thus, the assembly of the synergy (by Level B) out
of muscle groups producing synchronous lifting half-cycles (in-phase) or asyn-
chronous lifting half-cycles (anti-phase) captures the pattern of standard deviation
results. Along the same lines, with respect to the second prediction, it is worth
noting that in Experiment 2, where the availability of visual guidance attenuated
fixed-point shift due to detuning, no effects of vision were recorded on the stan-
dard deviation of relative phase. The availability or usability of visual informa-
tion, and its effects on the observed coordination, are contributions from Level C
contingencies. If, as postulated, standard deviation of relative phase reflects Level
B-intrinsic behavior, the absence of any vision effects is clearly expected.

That leaves the third prediction, which speaks directly to the result in Ex-
periments 2 and 3 that appears discordant with Equation 1 and Equation 2, namely,
that the muscular in-phase coordination, traditionally known to be more stable
than muscular anti-phase (and corroborated to be so throughout the present study),
showed greater fixed-point shift due to detuning than did the muscularly anti-phase
coordination. This result is unobtainable through Equation 1, Equation 3, or, for
that matter, any equation that models the stability of a coordination as being purely
derivative of its relative phasing behavior. The present paradigm differs from the
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standard hand-held pendulums paradigm (Kugler & Turvey, 1987) solely in that
the coordination is parallel to the coronal plane as opposed to parallel to the sagit-
tal plane. The standard paradigm has been used to thoroughly explore and confirm
the entire range of predictions made by Equation 1 and its variants (see Schmidt &
Turvey, 1995, for a summary). The inability of this class of equations to accommo-
date the reported reversal of the fixed-point shift effect suggests that the present
paradigm exposes previously unexplored levels of organization whose influences
cannot be subsumed under the current quantitative understanding of intersegmen-
tal coordination dynamics. More specifically, the accepted generality of Equation
1 stems precisely from the conflation of Bernstein’s level of synergies and his
level of space in the standard paradigms. In both the standard hand-held pendu-
lums and the finger-oscillation paradigms, the muscular definition of phase is com-
pletely interchangeable with the spatial definition of phase, leaving no opportunity
to even discover if the distinction between the two conventions could have signifi-
cance. The present research suggests that the pattern of fixed-point shift can be
decoupled from that of coordination stability simply by eliminating the interchange-
ability of the muscular and spatial conventions.

In terms of the nearly decomposable Level B-Level C coupling model hy-
pothesized here, the reversal of the fixed-point shift effect in Experiments 2 and 3
is not quite as perplexing if pictured as the signature of changes in Level C contin-
gencies as we go from the standard to the current paradigm. Recall that in this
view, aggregate relative phase behavior is considered an interaction variable that
will show sensitivity to both Level B dynamics and Level C contingencies. Note
first that changes in the level of detuning (Level B) do affect the interaction vari-
able in that they produce fixed-point shift. But also, changes in Level C require-
ments (i.e., from orienting the synergy parallel to the sagittal plane in the standard
paradigm, to orienting it parallel to the coronal plane in the current one) reverse
the magnitude of shift. The standard quantitative model depicted in Equation 1
appears in this light as a special case solution that works when the Level C contin-
gencies align perfectly with the inherent asymmetries of Level B dynamics, thereby
allowing the modeling of SD¢ (Level B variable) as a derivative of ¢ (Level B-
Level C interaction variable). It is not surprising that changes in Level C require-
ments which add aspects to the behavior of the interaction variable independently
of Level B dynamics are beyond the scope of the current model.

Aside from rendering potentially perplexing results at least marginally com-
prehensible, the method of nearly decomposable systems has the additional ad-
vantage of being recursively applicable over several levels of coordination struc-
tures. Consider, for example, the structure of the relatively well-studied case of
Level B. Even as a study seeking to explore Level B-Level C coupling treats
Level B as a relatively encapsulated subsystem, the internal complexity of Level
B can itself be studied as a nearly decomposable system (see Turvey & Carello,
1996). The phase of each oscillator is influenced by the summed, aggregate ef-
fect of the relatively slowly changing spatiotemporal relations between the other
oscillators in the coordination. At the same time, it exhibits little sensitivity to
the fast-changing phase perturbations introduced into the other limbs’ phasings
by their own internal microstructural interactions. In fact, the key principles of
nearly decomposable systems dovetail quite well with the central tenets of
synergetics, and given the considerable success of the synergetic approach in il-
luminating the organization of Bernstein’s Level B, it seems highly likely that
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extending the study of interlimb coordination to issues of Level B-Level C cou-
pling, and doing so in terms of intuitions from the theory of nearly decompos-
able systems, will benefit development of synergetic approaches that address
phenomena at this level. '

A final point that deserves mention has to do with the as-yet unfamiliar char-
acteristics of Bernstein’s Level C. The interface between fundamental coordina-
tion structures and information systems that modulate their deployment is undoubt-
edly one of the most majestic achievements of biological evolution. As such, the
interactive influence of Level C as well as its internal structure and asymmetries
will present daunting challenges for systematic exploration. Some hints of Level
C asymmetries have peeped through even in the present study. Consider the fact
that the fixed-point shift reversal effect of Experiment 2 was replicated with the
introduction of the metronome in Experiment 3, but the visual attenuation of fixed-
point shift disappeared under metronome-driven conditions. If both visual attenu-
ation and configurational reversal of fixed-point shift are Level C contributions to
Level B-Level C coupling, they clearly differ in their resilience against changes in
Level B conditions. Tightening Level B coordination by a driver wiped out the
effect of visual information on the interaction variable but did not alter the influ-
ence of spatial configuration. While it is clear that visual information can spatially
constrain or modulate such a fundamental synergy as 1:1 interlimb coupling, it
also seems interesting that its influence on highly fluid, well-practiced coordina-
tions, when existent, comes only in the absence of, or perhaps at the expense of,
precision timing performance. This would come as no surprise to players of racquet
sports who have tried to correct a swing or impact angle by watching themselves
strike the ball.
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