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Stability of a diode laser with phase-conjugate feedback

Wim A. van der Graaf* and Luis Pesquera

Instituto de Fı́sica de Cantabria, Facultad de Ciencias, Consejo Superior de Investigaciones Cientı́ficas–Universidad de Cantabria,
Avenida de los Castros s/n, E-39005 Santander, Spain

Daan Lenstra

Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
Received September 8, 1997

An exact analysis is presented of the steady-state stability of a semiconductor laser subjected to feedback from
a phase-conjugate mirror. Reduced stability occurs at low feedback whenever the effective external delay time
is an integer multiple of the relaxation oscillation period. The role of a finite response time of the mirror is to
enhance drastically the steady-state stability.  1998 Optical Society of America
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Optical feedback is known to affect severely the
properties of a semiconductor laser. For stabilization
purposes feedback from a phase-conjugate mirror is
preferred over conventional optical feedback (COF),
since in the latter case the laser suffers from extreme
sensitivity to mirror-distance variations within an
optical wavelength.1 This sensitivity is due to the
fact that with an ordinary mirror the phase of the
returning light depends strongly on the mirror posi-
tion, whereas in phase conjugation there is no such
dependence.2 However, in the case of phase-conjugate
feedback (PCF) one is always confronted with a certain
sluggishness of the ref lector owing to the f inite re-
sponse time, which should be taken into account when
one is analyzing the stability of the laser operation
with a phase-conjugate mirror. Most of the previous
stability analyses disregarded this sluggishness.3,4

In this Letter we present a linear stability analysis
of the steady state of single-frequency operation of
a single-mode diode laser with PCF, including the
finite response-time effect. Owing to the time-delay
term in the rate equations an exponential appears in
the characteristic equation Dssd, the roots of which
determine the stability of the laser. This exponential,
which also shows up in the case of COF, complicates the
analysis, and several kinds of approximation have been
made in stability analysis.1,4,5 We report on a stability
analysis without any such approximation, the results of
which are valid for arbitrary laser parameters. This
method was also used by Cohen et al.6 in analyzing a
diode laser with COF.

When multiple external round trips can be ignored,
the rate equations for a single-mode semiconductor
laser with sluggish PCF are given by7
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where E is the slowly varying amplitude of the optical
field with respect to the optical carrier expsiv0td, with
v0 as the emission frequency of the solitary laser (i.e.,
the same laser without feedback) at threshold. E is
normalized such that jEj2 ­ P equals the number
of photons inside the cavity. N ­ Nth 1 DN is the
number of electron–hole pairs (inversion) in the active
layer, and Nth is the inversion at threshold of the
solitary laser. j is the differential gain, e is the
nonlinear gain parameter, G0 is the photon decay
rate, a is the linewidth-enhancement factor, gp is the
feedback rate, tm is the response time of the mirror, d0
is the detuning of the mirror pump beam with respect
to v0, t is the external-cavity round-trip time, J is the
number of carriers injected into the active layer per
unit of time by means of an electrical current, and T1 is
the carrier lifetime. Owing to the f inite response time
tm the feedback term in Eq. (1a) depends on the optical
field at and before time t 2 t. In the limit tm ! 0,
the feedback term reduces to the one given by, e.g., Van
Tartwijk et al.3

The single-frequency steady state is calculated from
Eqs. (1) and is characterized by the time-independent
frequency, amplitude, and phase of the optical f ield
and by the value of the inversion. It can easily be
seen that the laser frequency vs must lock to the
pump frequency. The calculation of the steady state
in analytic form is simplif ied when we disregard
nonlinear gain. In that case we find two solutions
for any given set of parameters as long as jd0j #
gps1 1 a2d1/2 is satisfied and no solution otherwise.
This situation is similar to what is found in the laser
with external monochromatic injection.8 Below we
assume that the steady state is known, with or without
nonlinear gain.

The next step involves considering small deviations
from the steady state and analyzing their evolution
in time. We replace the feedback term in Eq. (1a)
with gpEFB and add an extra equation for ÙEFB. After
replacing the complex f ields with their power and
 1998 Optical Society of America
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phase and linearizing the equations around the steady
state, we are left with a system of f ive coupled linear
delay-differential equations.

This system is solved with Laplace-transform tech-
niques. For the small deviations to relax to the steady
state, all roots of the characteristic equation f ssd ­ 0
must have a negative real part.

As a consequence of the delay, the function f ssd
resembles a polynomial in s but contains exponentials
exps2std, which makes analytical progress difficult.
The exponential is therefore sometimes approximated
by others as 1 2 st. However, in many cases this is a
bad approximation: Taking a realistic value of the RO
of 3 GHz, Imsstd already equals 1 for a cavity length of
less than a centimeter.

Instead of making approximations we apply the so-
called principle of the argument.9 This theorem states
that
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where N and P are the number of zeros and poles
of f ssd within the contour C, respectively. By setting
f ssd ­ u we arrive at

H
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our case P ­ 0 and we choose C to enclose the right
half of the complex plane (we choose a semicircle of
radius R, close it along the imaginary axis, and let
R ! `). The laser is stable if N ­ 0, that is, if the
contour G does not enclose the origin. This criterion
leads us to investigate the intersections of a function of
a real variable on a segment of the negative real axis,
which is most easily done on a computer.

The above-outlined technique is now used for calcu-
lating stability diagrams, where we use the parame-
ter values listed in Table 1. These values, which are
identical to those in Ref. 7, imply that the laser is
pumped 5% above its solitary threshold, and vRy2p ­
764 MHz. Variation of a and e conf irms a well-
known behavior, i.e., a larger a gives rise to a smaller
region of stability, whereas inclusion of nonlinear gain
enhances the stability. In the figures presented below
nonlinear gain is ignored.

For zero detuning sd0 ­ 0d, Fig. 1 shows the sta-
bility diagram when gp and t are varied for several
values of the mirror-response time. Focusing first on
tm ­ 0 only, one can see that for very small feedback
rates the laser is stable. When the feedback is in-
creased, instability sets in when one crosses the bot-
tom dashed curve. Note the periodic modulation of
the stability-edge curve with a lower stability limit
when the RO matches an external round-trip reso-
nance, i.e., when vRty2p is an integer. This result
was not seen by Agrawal and Gray,4 owing to the above-
mentioned lowest-order expansion of the exponential.
On the other hand, this result is similar to what was
found for a laser with COF, except that in COF high sta-
bility tongues were found at half-integer values.5,10 As
yet we do not have an explanation for the apparent
difference.

Comparing PCF from an instantaneously respond-
ing mirror with that from a slowly responding mir-
ror, one can see that the stability is enhanced slightly
with increasing tm (for tm ­ 100 ps the stable re-
gions are shown by the shaded areas at the bottom
of Fig. 1). This enhancement is caused by the mirror-
induced spectral f iltering of the ref lected field, which
suppresses frequencies larger than 1ytm. More strik-
ing is the shifted location of the stability peaks, which,
in view of the time delay in the mirror, resembles a
situation of larger external round-trip length. The ef-
fective round-trip length enhancement is not sharply
defined, which reduces the quality of the resonance
for large tm. The relative importance of this reduced
quality increases when t gets smaller, which may ex-
plain why the peak at vRty2p ­ 0.5 is lower for
tm ­ 400 ps than for shorter response times.

We also investigated the behavior at moderate feed-
back. The result is displayed at the top of Fig. 1. The
stability of the laser is greatly enhanced by the slug-
gish mirror: Over the whole range of t indicated in
the figure the PCF laser is stable with higher feedback
for mirror-response times of 100 and 400 ps, whereas
for an instantaneous mirror stability is found only in a
small region for short cavities. DeTienne et al.7 found
in numerical simulations that the standard deviation
of the output power was much smaller for ref lectivities

Table 1. Values of the Parameters Used in
the Calculations

Quantity Value Unit

G0 7.2595 3 1011 s21

J 4.0635 3 1017 s21

Nth 7.74 3 108 –
T1 2.0 3 1029 s
a 3.0 –
j 1.19 3 103 s21

e 3.57 3 1028 –

Fig. 1. Feedback rate gp at which the laser changes sta-
bility as a function of the cavity round-trip time t, nor-
malized to the RO period (which is constant and equal to
1.3 ns). The shaded regions indicate stable behavior with
tm ­ 100 ps. For low feedback the laser is stable for all
mirror-response times. The critical value at which insta-
bility sets in depends on t in an oscillatory way. For mod-
erate amounts of feedback (the top set of curves) a sluggish
mirror response gives rise to stable behavior over the whole
range of t investigated, whereas an instantaneous mirror
response yields stable behavior in a small region for short
cavities only.
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Fig. 2. Stability of a PCF laser as a function of gp and
the pump detuning d0. tm ­ 100 ps, except at the dotted
curve. The shaded region is the region of stable behavior
for a cavity with vR ty2p ­ 1. The dotted curve represents
an instantaneous mirror response at vR ty2p ­ 0.5; in this
case the region of stability shrinks to a narrow stripe.
When jd0j . gps1 1 a2d1/2 steady-state solutions (f ixed
points) do not exist at all. The line representing d0 ­
gps1 1 a2d1/2 is displayed only where it separates stable
from nonexistent fixed points.

Fig. 3. Magnification of the region near the origin of
Fig. 2. Notice the destabilizing inf luence of the RO when
it matches an external round-trip resonance (compare the
solid and the dashed curves). The dotted curve is an
extension of Fig. 3 of Ref. 3, which was obtained for an
instantaneously responding mirror.

of the order of 4%. Here we have proved that the re-
duction of the standard deviation corresponds to stable
steady-state operation of the laser. The structure in
the higher-stability boundaries of Fig. 1 is caused by a
new frequency V instead of the RO frequency. In good
approximation V is equal to gpays1 1 a2d1/2. Each
time V matches an external round-trip resonance the
steady-state stability is decreased. In this sense the
top and bottom oscillations in the f igure have the same
origin.
As a last result we show the inf luence of the
detuning d0 in Figs. 2 and 3. For weak feedback one
can see a narrow band of stable operation, but this band
widens for higher feedback, and finally we find a large
region of stable laser output that is consistent with
Fig. 1. The general shape of the curves for f inite tm
resembles the stability diagram of a diode laser with
external optical injection.11 Also, the low-feedback
part of the stability diagram with vRty2p ­ 1 is very
similar to the corresponding part of the injection-laser
stability diagram.

All stability diagrams were checked by direct nu-
merical integration of rate equations (1) at several
points in the stability diagrams, and no discrepancy
between the two methods was found.

In conclusion, a f inite mirror-response time tends
to stabilize a laser with PCF: The low-feedback
stability-edge curve shifts upward with tm. With a
further increase of the feedback rate the PCF laser
becomes stable again if the mirror has a f inite response
time, in sharp contrast with the unstable behavior of
a laser with an instantaneously responding mirror.
The stability areas for low and moderate feedback are
connected in the feedback versus detuning parameter
plane.
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