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Quantitative analysis of decay transients applied
to a multimode pulsed cavity ringdown experiment

Hans Naus, Ivo H. M. van Stokkum, Wim Hogervorst, and Wim Ubachs

The intensity and noise properties of decay transients obtained in a generic pulsed cavity ringdown
experiment are analyzed experimentally and theoretically. A weighted nonlinear least-squares analysis
of digitized decay transients is shown that avoids baseline offset effects that induce systematic deviations
in the estimation of decay rates. As follows from simulations not only is it a method that provides correct
estimates for the values of the fit parameters, but moreover it also yields a correct estimate of the
precision of the fit parameters. It is shown experimentally that a properly aligned stable optical
resonator can effectively yield monoexponential decays under multimode excitation. An on-line method
has been developed, based on a statistical analysis of the noise properties of the decay transients, to align
a stable resonator toward this monoexponential decay. © 2001 Optical Society of America

OCIS codes: 000.4430, 120.2230, 300.0300.
1. Introduction

Since the invention of a technique known as cavity
ringdown spectroscopy1 ~CRDS! a large number of
pplications have been described. Also a number of
ariants of this versatile and sensitive laser tech-
ique for measuring absorption resonances have
een proposed. They all exhibit the major advan-
ages of CRDS: long effective absorption path
engths combined with the independence of shot-to-
hot fluctuations in the laser output. Although the
uggestion of using Fabry–Perot cavities to enhance
bsorption sensitivity dates back to Kastler2 and

methods for intracavity laser absorption were dem-
onstrated in the early days of the tunable laser,3
cavity-enhanced techniques were initially used only
for measuring mirror reflectivities.4 The mere real-
ization by O’Keefe and Deacon1 that a conceptually
simple setup, where two mirrors formed a stable res-
onator and a commonly available pulsed laser, could
detect molecular absorption features with extreme
sensitivity initiated a new branch of research. Ap-
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plications of CRDS in molecular spectroscopy have
been recently reviewed.5,6

Details of cavity-enhanced spectroscopic tech-
niques and the problems associated with the mea-
surement and interpretation of decay transients
obtained from a stable resonator have been elabo-
rated. Here a few studies are cited that gave insight
into the physics of the optical decay transients and
their analysis. Lehmann and Romanini7 analyzed
in detail the effects of mode structure on the optical
transients obtained from a cavity. In Ref. 8 van Zee
et al. studied the experimental conditions in which a
single cavity mode is excited when short cavities and
transverse-mode suppression are used; their rather
complex setup requires control of the cavity length.
From a statistical analysis of the observed transients
the relative standard deviation in the ringdown time
could be extracted. Martin et al.9 discussed the im-
plications of using single-mode Fourier-transform-
limited pulses in analyzing the interference effects in
the resonator producing mode-beating oscillations in
the exiting waveform. Lee et al.10 performed a time-
domain study on cavity ringdown ~CRD! signals from
a resonator under pulsed laser excitations, focusing
on the idealized case of a Fourier-transform-limited
Gaussian laser pulse with complete mode match to
the lowest cavity mode, including the subtle effects of
carrier frequency detuning from this cavity mode.

The problems associated with the nonzero band-
width of the laser source, in particular in the regime
where it is nonnegligible with respect to the width of
the molecular absorption features, have been dis-
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cussed by Jongma et al., Zalicki and Zare, and
Hodges et al.13 These problems are similar to the
lit-function problem encountered in classical linear
bsorption spectroscopy. However, correction for
hese effects in CRDS is nontrivial, inasmuch as each
requency component within the laser bandwidth
rofile gives rise to a different decay time, thus pro-
ucing multiexponential decay.
In recent years several cavity-enhanced techniques

ave been developed exhibiting elegant features and
mploying continuous-wave lasers.14–16 Ye et al.17

obtained extreme absorption sensitivity of 10214

cm21 by combining these cavity-enhanced techniques
ith frequency modulation spectroscopic techniques.
ut the simple version of CRD with multimode exci-

ation of a cavity by a standard laser, with typical
eatures of 0.1-cm21 bandwidth and a pulse duration

of 5 ns, remains a powerful technique and has been
implemented in a growing number of laboratories.
If the length of the resonator is chosen to be '80% of
the radial curvature of the mirror substrates and
transverse-mode suppression is deliberately omitted,
the cavity can be considered essentially white, as
shown experimentally by Meijer et al.18: The trans-

ission through the cavity is independent of wave-
ength.

Here we analyze and describe the noise properties
f decay transients in a generic pulsed CRD experi-
ent. We show that the transmission of a typical
RD cavity in terms of the photon number and its
ariance can be understood quantitatively. It is
emonstrated that a nonlinear least-squares analysis
f the decay transient can avoid baseline offset effects
hat can be responsible for systematic deviations in
ecay rates. A parameter ap can be defined that

characterizes the noise that originates from a
Poisson-distributed counting process on a decay tran-
sient. This parameter can be employed to imple-
ment an on-line alignment procedure for the
resonator; it is experimentally demonstrated that the
alignment of a CRD cavity can be optimized toward a
setting of monoexponential decay, even when a large
number of cavity modes are excited by the incident
laser pulse. In this condition effects that are due to
the mode structure of the resonator can be ignored;
this is the condition of a white CRD cavity.

2. Estimating the Rate of Monoexponential Decay:
Analog Method

Excitation of multiple modes in an optical resonator
will in principle result in a multiexponential decay of
the exiting flux of photons. The multiexponentiality
is caused by increasing diffraction losses for higher-
order transversal TEMmn modes in the resonator.19

Because pulsed dye lasers will in general excite mul-
tiple modes of an optical resonator, the decay is in
principle not monoexponential. The multiexponen-
tial character of the decay in the case of a multiple-
modes-excited resonator can deviate so minimally
from a single exponent that it is not discernible by
any means in the recorded experimental decay. Al-
ternatively the cavity alignment can be arranged so
that the losses are equal for each excited transversal
mode. Experimental decays are considered to be
monoexponential if the results of a monoexponential
fit greater than '10t ~t is the decay time! do not
indicate nonexponential or multiexponential behav-
ior.

The purely monoexponential character of the decay
is important for reliable retrieval of the absorption
properties of a species contained inside the resonator.
Only in this condition can the absorption coefficient
a~n! be estimated from the decay rate b ~51yt! by

a~n! 5
b

c
2

uln Ru
l

, (1)

here l is the cavity length, c is the speed of light, and
is the mirror reflectivity. Equation ~1! makes the

RD technique a suitable tool for measuring direct
bsorption.
The principles of the methods for estimating the

ecay rate of an experimental transient are best ex-
lained by considering a perfect monoexponential de-
ay in its most general form:

I~t! 5 Ioff 1 I0 exp~2bt!, (2)

here Ioff accounts for an offset that could be intro-
uced by the detection system and I0 is the initial
ntensity. The decay rate can be determined in an
nalog way with the aid of two boxcar devices by
lectronic integration of part of the decay inside two
uccessive time windows of equal width tg

~1,2! and a
time delay Dg@Dg $ tg

~1!# between them,20 as depicted
in Fig. 1. With

A 5 *
tg~1!

I~t!dt, B 5 *
tg~2!

I~t!dt, (3)

he decay rate b follows from

b 5
1
Dg

lnSA
BD . (4)

Some two-channel boxcars can execute Eq. ~4! inter-
nally at high repetition rates with the advantage that
the output signal is directly correlated to b. This
detection scheme, however, requires that Ioff 5 0;
otherwise Eq. ~4! is not valid. The signal can be
biased to eliminate Ioff, or a third boxcar can be used
to determine the offset of the actual ringdown signal;
with C 5 *tg

~3!I~t!dt @width, tg
~3! 5 tg

~1,2!#,

b 5
1
Dg

lnSA 2 C
B 2 CD . (5)

The output signals of the boxcars must then be re-
corded and processed for b to be determined inas-
much as commercially available boxcar devices
cannot perform the operation @Eq. ~5!# directly.

In this analog method timing is important; the gate
widths tg should be equal and the time separation Dg
between the gates accurately known and stable.
The gate settings are fixed and often optimized for
20 August 2001 y Vol. 40, No. 24 y APPLIED OPTICS 4417
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the decay signal of an empty cavity.20 When the
laser frequency is scanned over an absorption line the
decay rate will increase and the ~fixed! settings might
no longer be optimal. Variation in the timing set-
tings can introduce additional noise in the measured
spectrum.20 Another point of concern is that a zero
offset or a known offset is necessary for this method
to be able to correct for it; this baseline problem will
be addressed in some detail in Section 3.

An alternative scheme for determining the decay
rate introduced by O’Keefe21 and O’Keefe et al.22 uses
ntegration of the total decay,

*
0

`

I0 exp~2bt!dt 5
I0

b
. (6)

The intensity independence of the signal, one of the
main advantages of the CRD technique, is lost, how-
ever. Normalization with respect to the initial in-
tensity I0, probed separately by setting a narrow
econd time window, is in effect similar to the use of
q. ~5!. Another analog detection scheme has been

ntroduced16 in which the output of the detector is
logarithmically amplified to convert the exponential
decay to a linearly decaying signal. The output of
the logarithmic amplifier is then differentiated by an
analog differentiating circuit, generating a potential
that is proportional to the decay rate b. This scheme
is particularly suitable when continuous-wave lasers
or high-repetition-rate pulsed lasers are employed.
Note that in these last two schemes Ioff 5 0 is re-
quired.

Fig. 1. Exponential decay rate estimated by integrating the decay
inside two successive time windows. The situation represents
settings used by Romanini and Lehmann20 ~see text!. A possible
hird time window to estimate the baseline ~see text! is not shown.
418 APPLIED OPTICS y Vol. 40, No. 24 y 20 August 2001
3. Nonlinear Fit of Experimental Monoexponential
Decays after Digitization

As an alternative to methods in which the signal is
processed by analog electronics, the entire decay
transient can be recorded, digitized, and transferred
to a computer for analysis, which returns the decay
rate b. Often a linear fit is used to determine the

ecay rate because it is easy to implement and fast.
fter subtraction of the baseline the logarithm of the
ecay is fitted to a straight line.8,18 In Subsection

3.A we illustrate how the baseline offset could cause
an incorrect estimate of decay rate b and hence of
absorption coefficient a~n!. Subsequently un-
weighted and weighted fitting procedures for digi-
tized decay transients will be analyzed and supported
by simulation studies.

A. Errors Caused by Incorrect Baseline Estimation

The requirement of a zero offset, required for linear-
ization of the transients to a logarithm scale, but also
for the analog methods discussed above, can seem
trivial inasmuch as the offset can be estimated from
the baseline before the ringdown signal. This offset,
however, must be determined accurately because a
small deviation from a zero offset results in a sub-
stantial error in the estimated decay rate. Consider
an exponential decay with a small offset of only 0.5%
of the initial intensity I0 and b 5 1:

I~t! 5 @0.005 1 exp~2t!# I0. (7)

The effect of the offset in an analog detection scheme
with boxcars is illustrated with settings as used by
Romanini and Lehmann20: tg

~1,2! ' 0.5t0, Dg ' 2t0,
and the first-time window delayed by 0.25t0 with
respect to t0 ~Fig. 1!. Substitution of these settings
n Eqs. ~3! and ~4! results in b 5 0.9748, a deviation
f 2.5%. The effect of the small offset on the loga-
ithm of I~t! is clearly visible in Fig. 2. A linear ~un-

weighted! fit over 3t0, a commonly used fit range,
from t0 to t 5 3t0 returns a decay rate of 0.9745,
similar to the value estimated with the boxcar
method. It can easily be verified that deviations in
the decay rates depend on the fit range.

If the offset deviations for consecutive laser pulses
are randomly distributed around zero, e.g., as a result
of the standard deviation in the baseline estimation,
errors in the estimation of the decay rate as a conse-
quence of an offset will result in additional noise. In
the case of a typical CRD wavelength scan noise in
the frequency spectrum b~n! will result. Averaging
ringdown events can reduce this noise because the
offset uncertainty will average out. The averaging
procedure, however, is allowed only if individual de-
cay transients decay with equal rates. Systematic
offsets will result in a systematic error in the decay
rate. A source of systematic nonzero offsets is the
possible baseline shift owing to small charge effects
in the detection circuit. The baseline of the output of
a photomultiplier tube ~PMT!, for example, can shift
when a signal is present.23 Then an offset estimated
before or after the ringdown event is not correct.
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B. Experimental Recording of Decay Transients

An experimental single-shot decay transient re-
corded with a typical CRDS setup is shown in Fig. 3.
A Nd:YAG-pumped pulsed dye laser emitting pulses
of 5-ns duration with a bandwidth of 0.05 cm21 at 630
p

c
d
p
a
c

nm was used in combination with an empty cavity
built from two mirrors ~R ' 99.98%; Newport Super-
Mirrors! with a radius of curvature of 1 m, separated
by 86.5 cm. The cavity length corresponds to a cav-
ity round-trip time of 5.7 ns. Before detection the
exiting light passes through an optical bandpass fil-
ter with transmission T630 5 0.856 and a lens placed
in front of the photocathode of a PMT ~Thorn EMI
9658 RA, socket 9658-81-81! with an effective diam-
eter of 42 mm, ensuring that all the light is detected.
According to specifications the quantum efficiency
~QE! of the PMT at 630 nm is 0.12, whereas the gain
at 950 V is ' 0.3 3 106. Samples of the decay tran-
ient were taken every 50 ns with an 8-bit LeCroy
450 digital oscilloscope with a bandwidth of 350 MHz.
The scales in Fig. 3 are in dimensionless digital

oordinates to make the analysis generally applica-
le. For convenience the negative PMT signal is in-
erted. The 0–255 dynamic range of an 8-bit
igitizer is represented by 7 bits 1 sign bit ~2128–

127! and through the buffer memory of the oscillo-
scope converted to a 16-bit representation with a
minimum step size of 256.

C. Unweighted Nonlinear Fit of Experimental Decays

Although the nonlinear fit does not require a zero
baseline before the decay, the original decay is first
shifted vertically to a zero baseline for easier inter-
pretation of the fitted offset. For this purpose the
mean value of the signal before the ringdown event is
determined over the first 350 points and is subtracted
from the signal. The actual decay starts at t 5 t0 5
93 ~t in channels!, but for clarity the decay is shifted

along the time axis to t0 5 0. The thus transposed
decay, with a zero baseline and t0 5 0, is used as
nput for the nonlinear fit. To prevent errors from a
ossible shift in t0, as a result of the discreteness of

the time scale, the fit does not start at t0 but typically
at tst 5 t0 1 0.01t0. The maximum dynamic range of
the digitizer is not fully used ~in the example '70% is
chosen! in view of the shot-to-shot intensity fluctua-
tions. A margin to prevent clipping the signal is
necessary.

To fit the decay a Levenberg–Marquardt algorithm
is used. For a detailed explanation of this algo-
rithm, see Press et al.24 The results of the procedure
are summarized in Table 1 ~first row!. The residuals
of the unweighted fit ~Fig. 4! show a variance that
decreases over the decay transient. To test whether
a power-law relation is present between the variance
and the intensity of the fitted model function, the
absolute value of the residuals is plotted against the
expected value of the intensity of the model function
on a double logarithmic scale, as shown in Fig. 5.
The data in the scatterplot are fitted to a straight line
with a slope of 0.453 ~solid line in Fig. 5!. This is
lose to a slope of 0.5 expected for a Poisson-
istributed counting process, where the variance is
roportional to the expected value. ~The residuals
re proportional to the square root of the number of
ounts.!

The deviation of the slope from the expected value
Fig. 2. Effect of small offset on the logarithm of I~t!: solid curve,
effect on the logarithm of a 0.5% biased exponential decay ~see
text!; dashed curve, logarithm of an exponential decay with no
offset; dashed curve, difference between the two logarithms.
Fig. 3. Experimental single-shot decay transient as recorded with
the digital oscilloscope. The signal before the ringdown event
~baseline! is used to determine the offset.
20 August 2001 y Vol. 40, No. 24 y APPLIED OPTICS 4419
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Table 1. Results of the Unweighted and Weighted Fit of the Decay Shown in Fig. 3

4

of 0.5 can be explained by the distribution of the
points in the scatterplot. At lower intensities the
electronic noise, with a constant variance, is no
longer negligible and the intensity dependence of the
variance decreases, resulting in a lower estimate of
the slope. The two dashed lines in Fig. 5 represent
the functions y 5 ~3x!1y2 ~upper line! and y 5
0.03x!1y2 ~lower line!. It is clearly visible that the
nvelope of the absolute values of the residuals is well
epresented by a x1y2 dependence.

D. Statistics of a Poisson-Distributed Counting Process

The signal that is measured in a CRD experiment is
proportional to the number of photons. If no gain or
420 APPLIED OPTICS y Vol. 40, No. 24 y 20 August 2001
averaging processes are present, the variance var~Ic!
f a Poisson-distributed counting process is equal to
he expected value E@Ic#:

E@Ic# 5 var~Ic!. (8)

hen gain g is present in the detection system, the
easured intensity Im

g 5 g~Ic!; hence Eq. ~8! is no
onger valid. The relationship between the variance
ar~Im

g! and the expected value E@Im
g# of the mea-

surement can easily be derived, giving25

var~Im
g!

E@Im
g#

5 g. (9)

An average over N counting events per data point n
will also change the relationship between the vari-
ance and the expected value. In a CRD experiment
this can be accomplished by averaging the decay sig-
nals of N laser pulses. The expected value E@I#m# will
remain the same but the variance will decrease25:

var~I#m! 5
1

N 2 (
N

var~E@Ic
~n!#! 5

1
N

var~Ic!. (10)

Hence

var~I#m!

E@I#m#
5

1
N

. (11)

In typical experimental conditions a combination of
gain and averaging results in

var~I#m
g!

E@I#m
g#

5
g
N

5 ap
~N!, (12)

defining a parameter ap, which describes the rela-
tionship between the variance and the expected value
of a measurement of a Poisson-distributed counting
process. It can be usefully applied, as shown below.

E. Weighted Nonlinear Fit of Experimental Decays

From the residuals of the exponential fit shown in
Fig. 4 it is clear that the noise during the decay is not
constant. If the standard deviations in a measure-
ment vary by a factor of 3 or more, it is necessary to
take the probabilistic properties into account in the
fitting.26,27 Only by such a procedure can the resid-
uals and the results of the fit be evaluated reliably.
In a weighted least-squares fit24 the expected vari-
ance in a data point is used to weight that point; to
perform a correctly weighted fit it is necessary to
know the expected variance. A perfectly weighted
fit will return weighted residuals that behave ran-
domly around zero with a constant variance of one.
Fig. 4. Residuals of a monoexponential fit to the decay shown in
Fig. 3. Discretization effects due to the 8-bit resolution of the
digitizer are visible on the right-hand side. In the first part of the
decay the noise due to Poisson statistics is dominant.
Fig. 5. Scatterplot of the absolute values of the residuals from the
unweighted fit versus the fitted intensity. The slope ~0.453! of a
ine fitted to the data ~solid line! in the scatterplot indicates that
he intensity-dependent noise on the recorded transient originates
rom a Poisson-distributed counting process.
Fit Ioff I0
fit b 3 106 Root-Mean-Square Error of Residuals

Unweighted 225 ~25! 44222 ~102! 3452 ~10! 849
Weighted 229 ~10! 44157 ~212! 3444 ~16! 0.96

Note: The values in parentheses represent the standard deviation.
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From Figs. 4 and 5 it follows that the noise in the
decay, the variance, originates from two sources:
~discretized! electronic noise and intensity-dependent

oisson noise. Assuming that the two noise sources
re independent, the total expected variance vart is

equal to

var~I!
t 5 vare 1 var~I!

p, (13)

where vare is the expected ~constant! variance due to
electronic noise and var~I!

p is the intensity-dependent
variance that is due to the Poisson-distributed count-
ing process. The expected electronic variance can
easily be determined from the standard deviation of
the mean value of the baseline before the ringdown
event, which has already been used to shift the orig-
inal transient; vare 5 sbase

2. The Poisson variance
varp, however, is not known beforehand because it is
intensity dependent. Nevertheless it is possible to
estimate the expected variance over the total decay
and to perform a weighted fit.

Equation ~12! gives the relationship between the
expected value of the intensity and the variance for a
general Poisson-distributed counting process with a
system gain g and an average over N counting events
per data point. When the expected value E@Im# for
the intensity is time dependent, the variance var~Im!
is also time dependent, but their ratio ap remains
constant over the total decay. This relationship in
combination with an unweighted fit enables the esti-
mation of the expected Poisson variance varp. From
the results of the unweighted nonlinear fit ~Table 1!
the expected intensity E@I~k!# can be calculated for
each point k on the decay transient. The value of ap
can now be estimated with

âp 5
1
K (

k51

K var@Im
~k!#

E@I~k!#

5
1
K (

k51

K $Im
~k! 2 E@I~k!#%

2

E@I~k!#
, (14)

where the circumflex indicates the estimator of a.
Equation ~14! gives the true value for ap when no
other noise is present, but the additional electronic
noise calls for a simple correction term. The term
var@Im

~k!# in Eq. ~14! represents the total variance,
which is the sum of the electronic variance and the
Poisson variance. Because the electronic variance
vare is known from the baseline before the ringdown
event, it can be subtracted from var@Im

~k!# and a re-
liable value of ap can be estimated:

âp 5
1
K (

k51

K var@Im
~k!# 2 vare

E@I~k!#

5
1
K (

k51

K $Im
~k! 2 E@I~k!#%

2 2 sbase
2

E@I~k!#
. (15)

Combining Eqs. ~12!, ~13!, and ~15!, we find the ex-
pected var~I!

t that is needed for the weighted fit.
This procedure is valid for estimating the total ex-

pected variance var~I!
t because the Poisson noise at
the low intensities of the signal is negligible with
respect to electronic noise. It is thus not necessary
to take into account the Poisson probability density
function of the counting process for small count val-
ues. Note that the estimation of the weight factors
relies on the results of the unweighted fit. An incor-
rect unweighted fit will result in an incorrect esti-
mate of ap and subsequently incorrect weight factors.
It is therefore important to check the results of the
unweighted fit and the values determined for ap be-
fore proceeding to the weighted fit. Large differ-
ences between the estimated parameters of the
unweighted and weighted fit can indicate unreliable
weight factors or nonexponential decay or both. An
indication of an incorrect estimate of the weight fac-
tor is the value of ap. It is in principle equal for each
decay if the data-acquisition settings are kept con-
stant. Strong deviations from the average value of
ap indicate unreliable fit results.

The Levenberg–Marquardt algorithm used for the
weighted least-squares fit is similar to the
unweighted-fit algorithm.24 The weighted residuals
resulting from the weighted fit, shown in Fig. 6, with
weights determined by the procedure presented here
are satisfactory inasmuch as they show a constant
variance with a standard deviation of 0.96. Results
of the weighted fit are summarized in the second row
of Table 1. Comparison of the estimated parameters
from the weighted and unweighted fit reveals only
small differences, and the standard deviations of the
parameters estimated with the unweighted fit are of
the same order of magnitude as those obtained from
the weighted fit.

Note that the weighted fit returns a smaller uncer-
tainty for the offset than in the case of the un-
weighted fit. The standard deviations of the
unweighted fit ~Table 1! are in principle a lower
bound because the rms error of the residuals is much
larger than one. This paradox can be explained by
the intensity dependence of the weight factor. The
information on the initial intensity I0

fit and the decay
rate b is mainly present in the first part of the decay
where the accuracy of the collected data points is
lowest owing to Poisson noise. In the tail of the

Fig. 6. Residuals of a weighted monoexponential fit to the decay
as shown in Fig. 3.
20 August 2001 y Vol. 40, No. 24 y APPLIED OPTICS 4421
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decay, where information on the offset is present,
only electronic noise is present. The unweighted fit
assumes a constant noise level, resulting in nonreli-
able estimates of the uncertainties; the uncertainties
for I0 and b are estimated too low, whereas the un-
certainty for the Ioff is estimated too high. In this
example the fitted offset Ioff is 0.07% of I0

fit, but if this
offset is not accounted for ~Ioff is kept fixed at zero!,
the decay rate estimate is 0.3% higher ~3455 versus
3444!. This deviation cannot be neglected because
the estimated uncertainty in the decay rate is smaller
than 0.5%, i.e., even a small offset cannot be ignored.

The residuals of the weighted fit show a discrete
distribution on the right-hand part that can be ex-
plained by the intensity dependence of the weight
factor. At high intensities of the decay transient the
weight factor is not constant and will decrease with
intensity because the Poisson contribution is domi-
nant, and, as a consequence, the discrete steps due to
the bit resolution will wash out in the weighted re-
siduals. The weight factor becomes constant at low
intensities because the contribution of the Poisson
noise is negligible compared with the constant elec-
tronic noise; the discrete steps remain.

A second remarkable feature is the striation in the
residuals, which is an effect of the limited resolution
of the 8-bit digitizer. After several decay times t
~1yb! the intensity change in time is too small to be
detected by the digitizer. The digitized signal will
remain constant during a certain time interval ~ne-
lecting noise! until the signal reaches the next bit
evel, as shown in Fig. 7. The calculated intensity
ollowing the fit is not discretized, and the residual
Imeas 2 Icalc! will show a curved behavior after '4t.

F. Simulation Study of the Nonlinear Fitting Method

CRDS decay transients from experiments are proba-
bilistic in nature because of the underlying photon-
counting process. In fact, in the fitting it is
necessary to take into account the probabilistic prop-
erties consistently. Only by such a procedure can
the residuals of the fit be evaluated and the model

Fig. 7. Effect of the 8-bit resolution of the digitizer. The digi-
tized signal will remain constant during a certain time interval
~neglecting noise! until the slowly decreasing signal reaches the

ext bit level. This effect results in striation in the residuals ~Fig.
! of the fit. Solid white curve, fitted decay.
422 APPLIED OPTICS y Vol. 40, No. 24 y 20 August 2001
adequately established. It is the purpose of this
simulation study to demonstrate quantitatively the
advantages of the weighted nonlinear fit with a typ-
ical CRDS decay.

For the simulation study a decay of 2048 channels
was chosen, with a lifetime t ~reciprocal of the decay
rate b! of 250 channels ~b 5 4 3 1023 channel21!.
Poisson-distributed counts with an exponentially de-
caying mean were simulated. The amplitude of the
decay in the first channel I0 was 400, the baseline Ioff
was 1, and the standard deviation of the electronic
noise was 2. These values were chosen to mimic a
CRDS decay as shown in Fig. 3. Two ways of esti-
mating the unknown parameters are compared: ~a!

nweighted nonlinear least squares and ~b! weighted
onlinear least squares with weights derived from
he variance defined in Eq. ~13!. According to Car-
oll and Ruppert27 this weighted least-squares esti-

mate is equal to the maximum likelihood estimate,
which is the best possible. For the actual weighted
fit we proceed iteratively: First, for the weighting
function we use the profile estimated from an un-
weighted fit; second, we use the resulting profile to
perform a refined weighted fit ~so-called iteratively
reweighted least squares27!. This refinement is a
safeguard; it turned out not to improve the fit results.

From a single simulation we can already observe
that the weighted residuals of a weighted fit are sat-
isfactory, i.e., they behave randomly and show a con-
stant variance ~comparable with Fig. 6!, whereas the
residuals of an unweighted fit behave as in Fig. 4.
However, to investigate quantitatively the properties
of a weighted versus an unweighted fit 1024 simula-
tions were performed. This resulted in 1024 realiza-
tions of the estimates ~b̂, Î0, and Îoff! and their
standard errors ~ŝb, ŝI0

, and ŝoff; for calculation of
these standard errors, see, e.g., Ref. 26!. We sum-
marize the resulting estimates for the parameters
and their standard errors by estimating smoothed
probability densities using the S-plus function,
ksmooth.29 Figure 8~a! depicts the distribution of
deviations in the decay rate parameter Db 5 b̂ 2 b
~the difference between the estimated and the real
value! of a weighted nonlinear least-squares fit. It is
symmetric around zero with a rms value of 17 3 1026

channel21. The distribution of the standard error
ŝb @Fig. 8~b!# narrowly peaks around 17 3 1026. The
ratio of the deviation and the estimated standard
error should be distributed approximately as a Stu-
dent’s t-variable with the degrees of freedom df equal
o the number of data points N minus the number of

parameters @Eqs. ~3!#. ~In this case, df 5 2045, the
df distribution is practically identical to the normal

distribution.! The distribution of this ratio is de-
picted by the solid curve in Fig. 8~c!, whereas the
dotted curve represents the tdf distribution. There
is a great similarity. The small differences that are
present are attributed to the linear approximation of
the standard errors26 and to the inadequacy of the
assumed normal distribution to describe small num-
bers of Poisson-distributed counts.

A comparison with the results of an unweighted fit
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Fitting
can be made for which the residuals do not behave
well ~Fig. 4!. The summary of decay parameters for
his case is shown in Fig. 9. Note that the distribu-
ion of the deviation in Fig. 9~a! is wider by a factor of
1.5 compared with that in Fig. 8~a!. The estimated

tandard errors are on average smaller @compare
igs. 8~b! and 9~b!#. Most important, the differences
etween the solid and the dashed curves are much
ore pronounced in Fig. 9~c! than in Fig. 8~c!; note

he tails in Fig. 9~c!. This means that for large de-
iations the unweighted fit predicts more precise re-
ults than actually achieved.
The results in Table 2 confirm that the weighted fit

s superior to the unweighted fit. The rms deviation
b of the unweighted fit is larger than that of the

weighted fit. Only with the weighted fit is the rms
standard error ŝb equal to the rms deviation Db,

Fig. 8. Distributions estimated from the weighted fit: ~a! devi-
tion Db of the estimated decay rate parameter b; ~b! approximate

standard error sb; ~c! solid curve, ratio of Db and sb; dashed curve,
df distribution.

Fig. 9. Distributions estimated from an unweighted fit. Layout
as in Fig. 8.

Table 2. Results ~rms average! from

Fit Db 3 106 ŝb 3 106 DI0

Unweighted 26 16 2.2
Weighted 17 17 1.9

aFor details see text. The deviations of the estimated paramete
which is necessary for a consistent fit. This consis-
tency is also present in the amplitude and baseline
parameters. The weighted rms error was 1.0 ~rms
average!. Comparing Table 2 with the fit of the ex-

erimental data ~Table 1!, we note agreement with
he standard error of the decay rate parameter ŝb.

Taking into account the ratio of I0 in the two cases
@44,000 versus 400; ap

~1! ' 110#, the standard errors
f the amplitude and offset parameters also agree
ell. Thus the experimental results of Table 1 are
ell mimicked by the simulation parameters.
We conclude from this direct simulation study that

he weighted fit is preferred for three reasons: ~a!
he weighted residuals behave well when the mono-
xponential model is adequate; in contrast, the ob-
ervation of systematic deviations of these weighted
esiduals from randomness or constant variance is an
ndication of model inadequacy, i.e., nonexponential
ecay. ~b! The weighted fit is more accurate and
esults in smaller deviations of the estimated param-
ters. ~c! The ratio of the deviation and the standard
rror is closer to the tdf distribution, indicating a

larger probability that the estimated parameters are
correct.26

G. Optimization of the Cavity Alignment

In the subsections above the noise of the decay signal
as a consequence of the Poisson-distributed counting
process and the related constant ap were discussed.
Inspection of the underlying aspects of ap reveals
unexpected and useful features. The value of ap,
e.g., is a useful parameter for optimizing cavity align-
ment. Another feature is that ap can be used to
estimate the number of photons in the cavity in the
case of a properly aligned cavity.

The initial alignment of the laser beam with re-
spect to the CRD cell and the mirror alignment usu-
ally results in a decaying signal. One can often
minimize pronounced nonexponential decay and
mode beats by monitoring the decay on the oscillo-
scope while adjusting the cavity alignment. The
fine tuning of the alignment, however, is not trivial
because nonexponential decay and beat effects are at
a certain point no longer discernible by visually mon-
itoring the oscilloscope trace. On-line monitoring of
fit parameters and the weighted residuals can help to
improve the final fine tuning of the setup. An obvi-
ous parameter to monitor during alignment of the
CRD cavity appears to be the decay rate, but this can
be a pitfall. A low decay rate does not imply good
alignment; it can even indicate severe nonexponen-
tial decay.

More useful parameters for the fine tuning of the

1024 Simulations of a CRDS Decaya

ŝI0
DIoff

ŝIoff Root-Mean-Square Error

0.9 0.14 0.22 7.3
1.9 0.08 0.08 1.0

e estimated standard errors, and the rms error of the fit are listed.
rs, th
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cavity alignment are the mean values of the weighted
residuals and their standard deviation sres. In the
case of wrongly estimated weight factors, however,
these mean values could be satisfactory whereas the
weighted residuals are not. It is therefore impor-
tant to monitor the weighted residuals; only then the
mean values and sres can be interpreted reliably.

Pronounced nonexponential decay and beats or
both, with a period comparable with or smaller than
one t ~1yb!, will be visible in the residuals of the fit,
while fast beatings are often obscured by Poisson
noise. A useful measure for the presence of fast
beatings is ap, the parameter already calculated and
used in the fitting routine. In ideal circumstances
the value for ap is inversely proportional to the num-
ber N of averaged ringdown events per analyzed tran-
sient, as follows from Eq. ~12!:

ap
~N! 5

ap
~1!

N
. (16)

If stable beatings are present in the decay, they will
appear in the residuals when the number of averaged
ringdown events increases as the magnitude of the
Poisson noise decreases. The beatings will remain
in the decay and affect the value of ap

~N! as deter-
ined by Eq. ~15!; the value of ap

~N! will not decrease
linearly with N but converges to a constant.

To estimate the expected value of ap
~N! ~N is typi-

cally 50! of an averaged decay trace, ap
~1! of a single-

shot trace has to be determined. From this value
the expected value of ap

~N! can easily be determined
ith Eq. ~16!. During the fine tuning of the cavity
lignment the relevant parameters and the weighted
esiduals are monitored on-line until they are satis-
actory. Alternatively an autocorrelation function
r the Fourier-transformed spectrum of the residuals
an be used to monitor the residuals. To check the
lignment, ap

~1! is again determined. It is possible
that due to the fine tuning of the cavity alignment
ap

~1! is significantly smaller. The alignment proce-
ure should then be repeated in an iterative way.
ith this procedure the alignment of the setup can be

ptimized toward monoexponential decay.

H. Estimation of the Number of Photons Leaking out of
the Cavity

A PMT converts the photon flux exiting the cavity
into a current. With a rise time of 10 ns and a
transit time spread of 22 ns, as in the present exper-
imental setup, the time constants of the PMT are
negligibly small compared with the decay time of the
photon flux ~t 5 15 ms!. The PMT signal is sampled
by a digitizer without additional amplification or low-
pass filtering. Sampling of a signal, however, is not
instantaneous; from the specifications of the oscillo-
scope it is estimated that data points as sampled in
the present experiment correspond to an integration
of the continuous signal of more than 1–2 ns. There-
fore the initial intensity I0

fit estimated from the fit
corresponds to the number of photons detected within
this bin width, Dt 5 1.5 6 0.5 ns. Substitution of
424 APPLIED OPTICS y Vol. 40, No. 24 y 20 August 2001
ap , determined from the fit, in Eq. ~15! gives the
ain g of the detection system with which the actual
umber of photons I0

ph can be calculated:

I0
ph 5

I0
fit

hap
~N!N

, (17)

where h is the QE of the PMT. The initial flux F0
ph

that corresponds to a number of photons I0
ph in the

first 1.5 ns of the decay is used to calculate the total
number of photons by integration of the total decay.

A series of 256 single-shot ~N 5 1! recordings was
taken for laser pulses with measured energies of 90
~10! nJ just in front of the entrance mirror; at a
wavelength of 630 nm; this corresponds to 2.9 ~0.3! 3
1011 photonsypulse. Subsequent data analysis gives
an average fitted intensity I#0

fit 5 34.2 ~0.2! 3 103, an
average a# p

~1! 5 123 ~8!, and an average decay time
t# 5 14.52~0.08! ms, with the estimated precisions in

arentheses. To estimate the number of photons
eaking out of the cavity the QE of the PMT and the
ransmittance of the bandpass filter have to be taken
nto account, resulting in an average of 2.6~0.9! 3 107

photons exiting the cavity at both sides.
The photon flux can also be estimated from the

output current of the PMT. The initial current at
the beginning of a decay is on average 418 ~6! mA,
which corresponds to 2.6~0.4! 3 106 electronsyns.
Taking into account the gain of the PMT, the transit
time spread, the QE, and T630, a total number of
2.7~0.5! 3 107 photons in one decay is estimated.
The good agreement between the photon numbers
derived from the statistical analysis and the PMT
output current underlines the correctness of the data-
analysis procedure.

4. White Cavity

In many descriptions of the CRD technique in its
application to spectroscopy mode structure and opti-
cal interference are neglected.6 The physical picture
of the pulses that enter the cavity is then as follows:
A laser pulse enters the resonator through the first
mirror with an effective transmittance, T 5 ~1 2 R!,

here R is the effective reflectivity estimated from
the decay rate. The fraction of the pulse captured in
the resonator then gradually leaks out through the
mirrors at both ends. In this picture the response of
the cavity is white, i.e., the transmission has no fre-
quency dependence. Meijer et al.18 measured the
frequency response of a CRD resonator and showed
that, in the condition of alignment far from the con-
focal, the frequency spectrum of the cavity is contin-
uous. Also Scherer et al.30 and Hodges et al.31 have
discussed the issue of a white optical resonator.

The data in Section 3 can also be interpreted in
terms of the picture of a white cavity. From the
estimated decay time, t 5 14.52 ms, a transmittance
f 181.0 ~1.4! 3 1026 is derived by T 5 ~1 2 R!. The

number of photons coupled into the resonator is then
5.2 ~0.5! 3 107 of which 50% will leak out at the rear
side of the cavity: 2.6 ~0.3! 3 107. This result is in
good agreement with the previous estimates of the
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photon number and thus verifies that the mode struc-
ture does not influence the overall transmission prop-
erty of the cavity; hence the cavity can be considered
white.

The data analyzed in Section 3 are taken from
measurements at a fixed laser frequency. Data re-
trieved from a frequency scan ~in an empty cavity!
with a well-aligned cavity, over several wave num-
bers and a step size of 0.01 cm21, are consistent with
the data at a fixed laser frequency. This again dem-
onstrates the frequency-independent transmission of
the resonator. The data resulting from a scan with
a poorly aligned setup vary and are not consistent
with the data at a fixed laser frequency.

Characteristic oscillations in the decay rate b as a
function of the frequency n were observed in studies
in our laboratory32 as well as in other reports on

RDS,20,33 but they never occurred in a CRD spec-
rum recorded in a setup aligned toward a minimum
alue of ap. The oscillations in b~n! tend to occur in

combination with oscillations in I0 ~proportional with
he transmitted energy! and may be as high as 40%.
ften the oscillations in b~n! and in I0 are out of phase.
he number of photons estimated by the pulse energy

s then inconsistent with the results from estimates
ased on ap. In that case the frequency spectrum of
he cavity cannot be treated as white because the
mount of transmitted energy through the cavity is
requency dependent. If the oscillations are out of
hase, they cannot originate from etalon effects in the
irrors, as proposed by Romanini and Lehmann20;

he phase difference should then be zero. A possible
xplanation for the out-of-phase behavior of these
scillations could relate to the different losses of dif-
erent transversal modes19 in the cavity combined

with the transversal mode structure of the laser
beam. It is preferred that certain higher-order
modes that exhibit higher loss rates might be excited.
It is therefore not necessary that the effective reflec-
tivity, the background spectrum, and the intensity
are in phase. A final resolution of this issue, often
limiting the sensitivity of the CRDS method, has not
yet been found.

5. Conclusion and Outlook

In this research it has been demonstrated that the
correct analysis of CRD decay transients is far from
trivial. The probabilistic properties of the decaying
signal and an offset have to be taken into account for
a reliable estimation of parameters. Even a small
nonzero offset in the decay signal can introduce sys-
tematic errors in the estimated decay rate if the offset
is not accounted for, e.g., in a linear fit to the loga-
rithm of the decay transient. A simulation study
shows that a weighted nonlinear data-analysis pro-
cedure, in which all the properties of the decay tran-
sients are taken into account, returns the most
accurate results with the smallest deviations in the
estimated parameters.

A nonlinear fit of the decays to a biased exponential
merit function can account for an offset and allows, in
principle, for an unlimited fit domain; fixed time set-
tings are superfluous and thus will not influence the
results. A mathematical transformation of the data
is not necessary; logarithmic transformation of the
decay transient can suppress important and interest-
ing features such as noise, oscillations that are due to
mode beating, and nonlinearities in the beginning of
the decay.

An alignment procedure for the fine tuning of the
CRD setup has been developed, based on an on-line
evaluation of the fit results and statistical properties
of the decay transient. The basic principle of the
procedure is alignment toward a setting of monoex-
ponential decay. In certain experimental conditions
the frequency spectrum of a CRD cavity is white, a
necessary condition for retrieving absolute absorp-
tion cross sections with pulsed CRD spectroscopy.13

For a well-aligned setup a reliable estimate of the
absolute number of photons in the cavity can be given
at any time during the decay. With the numbers of
photons in the cavity known it is possible to investi-
gate quantitatively intensity-dependent absorptions
with the CRD technique. From a first analysis the
absolute number of photons can be estimated, pref-
erably with the Poisson constant ap, and this infor-

ation can be included in the input of a second, more
dvanced analysis. Intensity-dependent decay
ates have recently been observed in CRD.34,35

In this paper laser bandwidth effects have not been
discussed. Indeed, for the case in which the band-
width of the laser source exceeds the widths of mo-
lecular resonances the decay transients will exhibit
multiexponential decay. This phenomenon has
been discussed extensively in the literature.11–13

Research to extend the present analysis to cover this
case is in progress in our laboratory. An important
ingredient is the analysis of all decay transients ob-
tained at various frequency settings over the line
profile in one procedure; hence an ensemble fit is
performed over all data to yield absolute absorption
cross sections of narrow molecular absorption fea-
tures.

Financial support from the Space Research Orga-
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