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Multiple Time Scales and Multiform 
Dynamics in Learning to Juggle

Raoul Huys, Andreas Daffertshofer, and Peter J. Beek

To study the acquisition of perceptual-motor skills as an instance of dynamic 
pattern formation, we examined the evolution of postural sway and eye and head 
movements in relation to changes in performance, while 13 novices practiced 
3-ball cascade juggling for 9 weeks. Ball trajectories, postural sway, and 
eye and head movements were recorded repeatedly. Performance improved 
exponentially, both in terms of the number of consecutive throws and the degree 
of frequency and phase locking between the ball trajectories. These aspects 
of performance evolved at different time scales, indicating the presence of a 
temporal hierarchy in learning. Postural sway, and eye and head movements 
were often 3:2 and sometimes 3:1 frequency locked to the ball trajectories. As 
a rule, the amplitudes of these oscillatory processes decreased exponentially at 
rates similar to that of the increase in the degree of phase locking between the 
balls. In contrast, the coordination between these oscillatory processes evolved 
exponentially at different time scales, apart from some erratic evolutions. 
Collectively, these findings indicate that skill acquisition in the perceptual-
motor domain involves multiple time scales and multiform dynamics, both in 
terms of the development of the goal behavior itself and the evolution of the 
processes subserving this goal behavior.

Key Words: movement coordination, posture, eye movements, skill 
acquisition

Introduction

During the acquisition of a new perceptual-motor skill, performance typically 
improves gradually, although brief episodes of regression sometimes occur. The 
form of the improvement may be logistic, exponential, or hyperbolic, or abide a 
power law description (Mazur & Hastie, 1978; Newell, Liu, & Mayer-Kress, 2001), 
although it may be difficult to distinguish between these possibilities. Nevertheless, 
the exact form of learning curves may allow for empirical testing of theoretical 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15460249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


188 

Motor Control, 2004, 7, 188-212
© 2004 Human Kinetics Publishers, Inc.

189 Multiform Dynamics in Learning

predictions about learning as, for instance, has been the case for the chunking 
theory of learning, which predicts a power-law like behavioral change (Newell & 
Rosenbloom, 1981).

Until recently, considerations regarding learning curves were based on the 
qualitative form of the evolution of an outcome variable in the course of practice. 
K.M. Newell et al. (2001), however, suggested that the pattern of change observed 
at the level of the outcome variable is the product of the cooperation of distinct 
subsystems operating in parallel at multiple levels of analysis and at distinct time 
scales. According to this theoretical position, the regularities of change due to 
practice reside at the level of the changing dynamics of the subsystems rather 
than at the level of the outcome variable. In particular, K.M. Newell et al. (2001) 
showed that power-law like evolutions of outcome variables might come about by 
a concatenation of multiple exponentials with distinct time scales. The theoretical 
significance of this approach is that it formally maps the dynamics of multiple 
subsystems onto the outcome dynamics. As it stands, however, the approach has 
remained confined to the phenomenological level of the outcome variable(s) without 
addressing the differential functional dynamics of the subsystems involved in task 
performance. To date, it is largely unknown how those subsystems evolve and 
become embedded in a task-specific, effective organization. This process is well 
worth examining in detail so as to gain insight into the development of task-specific 
couplings between distinct subsystems, the manner in which these subsystems 
evolve at different time scales to support the macroscopic goal behavior, and thus 
the evolution of variables that are relevant to task performance.

Achieving a perceptual-motor goal often requires simultaneous as well as 
sequential performance of subtasks, such as picking up multi-modal information, 
maintaining postural stability, and generating muscle forces in interaction with 
the environment. Bingham (1988) and Bernstein (1996) explicitly recognized that 
efficient, goal-directed perceptual-motor behavior requires specialized subsystems 
to become assembled into a task-specific dynamical organization. This implies 
that, during learning, specialized resources become recruited and harnessed so as 
to achieve an overarching action goal. Bernstein further proposed that movements 
are constructed and controlled hierarchically at four functional levels, and argued 
that each control level has a certain degree of autonomy relative to the other levels 
and overall task performance. In a similar vein, Bingham emphasized that, due 
to the “inherent dynamics” of the subsystems, which are often nonlinear, the 
macroscopic behavior cannot be understood by means of simple summation of the 
behaviors of the subsystems, as appears to be assumed implicitly by K.M. Newell 
et al. (2001). Recently, these insights were confirmed for the evolution of postural 
sway, as novices learned to juggle the 3-ball cascade (Huys, Daffertshofer, & Beek, 
2003), in that the stability of juggling performance and the dynamics of postural 
sway evolved in disparate fashion: Whereas the former improved gradually, the 
latter showed both gradual and abrupt changes in frequency locking. Is this the 
only evidence for the co-existence of distinct, relatively autonomous dynamical 
processes in learning? By no means.

Initial studies on (the acquisition of) juggling concentrated on spatial aspects 
of 3-ball cascade juggling (Van Santvoord & Beek, 1996) and on the manner 



190 Huys, Daffertshofer, and Beek 191 Multiform Dynamics in Learning

in which jugglers accommodate the primary temporal constraint on juggling as 
formalized by Shannon in his well-known juggling theorem, demanding frequency 
locking between hand and ball movements (cf. Beek & Lewbel, 1995; Horgan, 
1990; Raibert, 1986). While these studies focused on a selection of discrete 
measures and were therefore, by definition, based on limited information, Post, 
Daffertshofer, and Beek (2000) examined covariance structures (in terms of principal 
component analysis, PCA) of the time-continuous juggling pattern (3 balls  2 
directions) in the frontal plane to identify its main components (rather than to 
select its main descriptors beforehand). Due to inherent symmetries, the juggling 
pattern could be represented by minimally two and maximally four frequency- 
and phase-locked modes. The number of components required for reconstructing 
the pattern varied with tempo, as the quality of performance decreased when 
speed of juggling increased from preferred to high. Building on these findings, 
Huys et al. (2003) investigated changes in the patterning of the balls during the 
acquisition of 3-ball cascade juggling. Besides an asymptotic improvement in the 
consistency and stability of performance, changes in time-continuous cross-links, 
as revealed by cross-spectral and relative phase analyses, suggested a reduction in 
the dimensionality of the control structure.

When studying changes in motor control in a complex perceptual-motor skill 
like juggling, changes in perception cannot be ignored. In various perceptual-motor 
tasks, such as pointing and grasping (Helsen, Elliott, Starkes, & Ricker, 2000), 
rhythmically throwing and catching a ball (Amazeen, Amazeen, & Beek, 2001), 
and various ball sports (Williams, Davids, Burwitz, & Williams, 1992), gaze is 
coupled to features of the environment that are relevant to performance. Generally, 
the degree of coupling between point-of-gaze and relevant environmental events 
is a function of practice. For instance, experts are known to pick-up information 
from earlier phases of an unfolding event, like an approaching ball, than novices 
(Amazeen et al., 2001; Helsen & Starkes, 1999; Williams et al., 1992; however, see 
Abernethy, 1990; Abernethy & Russell, 1987) and to direct their gaze earlier to the 
unfolding event than novices (Amazeen et al., 2001). Huys and Beek (2002) found 
that, in 3-ball cascade juggling, the point-of-gaze is often frequency locked to the 
ball movements and more so in intermediately skilled than in expert jugglers. The 
expert jugglers visually tracked the movements of the balls to a lesser extent and with 
smaller point-of-gaze excursions than the intermediate jugglers, probably because 
they relied more on peripheral vision, and kinesthetic and haptic information, than 
on foveal vision. This example suggests that, in the course of learning to juggle, 
changes in the relative importance of various information sources may occur, 
affecting the role of vision in the overall task organization.

Further examples of subsystems undergoing task-specific changes in their 
dynamics are found in studies on postural control, showing that sway becomes 
coupled to suprapostural activities, such as swinging the arms (Abe & Yamada, 
2001) and visual tracking (Bardy, Marin, Stoffregen, & Bootsma, 1999; Bardy, 
Oullier, Bootsma, & Stoffregen, 2002). For instance, comparisons of the movements 
of novice and expert gymnasts, while visually tracking an oscillating target with a 
gradually increasing frequency of oscillation, showed that experts maintained the 
required in-phase hip-ankle coordination longer than novices (Marin, Bardy, & 
Bootsma, 1999). Similarly, the variability of body sway was found to be smaller 
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in experienced rifle shooters than in novices, while sway variability correlated only 
in the novices with task outcome (Era, Konttinen, Mehto, Saarela, & Lyytinen, 
1996). Apparently, the expert shooters had fully integrated whole-body posture 
stabilization with shooting, whereas the novices had not. Although these works 
suggest that postural sway patterns differ as a function of expertise, studies of the 
actual evolution of the sway patterns during the learning of suprapostural tasks are 
few and far between (but see Huys et al., 2003).

Examining changes in motor control and embedding processes during the 
acquisition of perceptual-motor skills requires longitudinal studies of learning a 
task in which multiple subsystems cooperate to subserve performance. We therefore 
conducted a long-term experiment in which participants practiced to juggle a 3-
ball cascade, while multiple signals were recorded repeatedly. Next to changes 
in juggling performance itself, we studied changes in the dynamics of various 
subsystems, namely postural sway and head and eye movements. The goal of the 
study was to examine the manner in which the changes in the dynamics of the 
subsystems relate to changes in task performance. To cast empirical light on the 
theoretical position of K.M. Newell et al. (2001), we were particularly interested 
in the (mathematical) form and the time scale of the changes occurring in the goal 
behavior itself and the processes subserving this goal behavior.

Evidently, searching for systematic changes in the dynamics of the subsystems 
implicated in 3-ball cascade juggling can be expected to be a fairly intricate affair. 
However, besides an increase in the number of consecutively juggled balls, 
extensive practice is likely to result in an asymptotic reduction of variability in the 
juggling patterns due to increases in the degree of frequency and phase locking 
between the ball trajectories (Beek & Van Santvoord, 1992; Huys et al., 2003) 
which, in principle, allows for detection of multiple time scales within the goal 
behavior itself. Furthermore, given the cyclic nature of juggling, similar changes in 
coordination may be expected to occur between the oscillatory features of postural 
sway, and head and eye movements on the one hand, and the ball trajectories on 
the other—opening up the possibility to examine how, and at what rate, these 
subsystems evolve in relation to the evolution of the goal behavior. Specifically, 
based on a previous study of postural sway in juggling (Huys et al., 2003), we 
expected to observe the occurrence of 3:2 and 3:1 frequency locking between 
postural sway and ball circulation, as well as switches between these locking 
modes. (See Huys et al., 2003, for explanations of these coordination modes in 
terms of their functionality and biomechanical background.) Similarly, based on a 
previous study of the coupling between point-of-gaze and ball movements during 
3-ball cascade juggling (Huys & Beek, 2002), we expected to see the development 
of 3:1 frequency locking between eye and ball movements (indicating that a gaze 
shift is made to each tossed ball). Finally, again on the basis of previous results, 
we expected both types of coordination to evolve on a slower time scale than the 
improvement in juggling performance itself.

The vast literature on the control of posture and gaze/eye movements readily 
shows that a whole arsenal of analysis methods may be applied to address the 
present research question. To anticipate, in view of the intrinsic variability of 
the data, we will first attempt to extract reasonably “simple” learning behaviors. 
Amenable to such an analysis are saturation processes that can be quantified by 
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a single scalar value—namely, the characteristic learning time that represents the 
rate of change. However, to cope with instances that cannot be cast in this form, 
we will focus on correlation and covariance patterns, which will yield more general 
insights into the structural properties of the dynamical evolutions of interest. For 
the sake of readability, the discussion of the various analyses will directly follow 
the presentation of the results obtained before summarizing all pertinent findings 
in a concluding section.

Methods

Participants

Thirteen participants without any prior juggling experience (6 males, 7 females) 
participated in the experiment, after having given their informed consent. They 
varied in age between 17 and 31 years (mean = 21.2 years; SD = 3.8 years). They 
all had normal or corrected to normal vision.

Procedure

Before and after the practice schedule, all participants were tested with regard to 
their handedness and manual, visual, and kinesthetic abilities. The results of these 
tests and their correlation with juggling performance will be reported elsewhere.

Participants practiced in the laboratory for 1 hour per day on every workday 
for 9 consecutive weeks, up to a total of 41 hours. (During this period, there were 4 
practice-free days.) Additional practice outside the laboratory was strictly forbidden. 
Each participant set out practicing the 3-ball standard cascade. During this initial 
stage of learning (stage I), 2-min recordings were made after each practice session, 
and the 10 attempts in which the participant had accomplished the highest number 
of consecutive throws were analyzed. Two hours of practice after a given participant 
was able to throw 30 or more consecutive balls during the recordings, he or she 
performed a number of additional experimental conditions that are irrelevant for 
the aims of the present study. During this second stage of learning (stage II, see 
Table 1), 2-min recordings were made after every other practice session. Fifteen 
practice sessions (hours) after a participant entered Stage II, he or she started (at 
the beginning of stage III) to practice juggling 4 balls for half an hour, dividing 
time equally over the in-phase (15 min) and anti-phase patterns (15 min), while 
continuing to practice the 3-ball cascade for the remaining half hour. The 4 slowest 
learners, however, remained on the 3-ball schedule. In this later stage of learning, 

Table 1 The Moment (in Hours of Practice) After Which Each Participant Entered 
Stage II and Stage III of the Learning Regime

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13

Stage II 31 10 4 7 5 31 15 6 11 12 7 15 12
Stage III — 25 19 22 20 — — 21 26 27 22 — 27
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five attempts to juggle each of the 4-ball patterns were recorded after each practice 
session. In addition, 2-min recordings of the 3-ball cascade juggle were made once 
every week (that is, after every 5th practice session). In the later stages of learning, 
most participants were able to juggle continuously for 2 min. In these cases, a second 
2-min recording was made. The present study focused on the results pertaining 
to the learning of the 3-ball cascade. Since only a few participants were able to 
juggle 4 balls sufficiently long to perform the here-applied analyses (see below), 
we will not present these results in the present paper. Note that we were unable 
to detect eventual influences of practicing the 4-ball juggle on the performance of 
the 3-ball juggle.

Apparatus

All experimental trials were recorded with two video cameras at a sampling rate of 
50 Hz, allowing for 3D reconstruction of the ball movements. (See Figure 1 for the 
experimental setup.) The cameras were suspended from the ceiling at an absolute 
height of about 2.90 m and a relative height to the middle of the scene of about 1.50 
m. Distances to the scene in the horizontal plane were about 3.20 m and 2.00 m for 
the left and right cameras, respectively, and about 4.20 m in the sagittal plane. The 
video setup was calibrated every 1st day of a week by means of a 1.00-m  0.75-
m  1.00-m calibration frame (height, width, and depth, respectively; equivalent 
to y-, x-, and z-axis, respectively). In addition, the participants were standing on a 
force platform (1.00 m  1.00 m; sampling frequency 200 Hz) that measured the 
ground reaction forces by means of eight strain gauges. The force platform was 

Figure 1 — The experimental set-up. (See text for details.)
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calibrated each day before the first experimental session. Eye movements (in the 
horizontal and vertical direction) were recorded by means of an ASL Model 501 
head-mounted eye-tracking system (Applied Science Laboratories) at a sampling 
rate of 50 Hz. A head-mounted scene camera (50 Hz) was attached to the headband 
and recorded (part of) the field of view of the participant. (The footage of this camera 
was used for checking purposes.) A cursor was superimposed onto the recordings, 
indicating the participant’s point-of-gaze. For each participant, the eye-tracking 
system was calibrated before each experimental session by means of a 9-point 
calibration frame. In addition, a head-tracker (Polhemus, 50 Hz) was attached to 
the headband to measure head translation and rotation (azimuth, elevation, and 
roll) in 3D. Simultaneously, both elbow angles were recorded by means of two 
goniometers (Biometrics, 200 Hz); these recordings were only used to determine 
the number of consecutive throws in trials longer than 30 s. For all recordings, 
time was encoded using a time-code generator. All recordings were synchronized 
(the video recordings indirectly by means of a flashing light). An example of the 
so-obtained time raw data is shown in Figure 2 for a single trial.

Figure 2 — An example of the raw data of a single trial. Panels (1), (2), and (3) show 
the 3 ball trajectories in the x-, y-, and z-direction, respectively; panel (4) shows the 
ML-sway (solid line) and AP-sway (dotted line); panel (5) the eye movements in the 
horizontal (solid line) and vertical direction (dotted line); panel (6) the head translations 
in the x-, y-, and z-direction (solid line, dash-dotted line, and dotted line, respectively); 
and panel (7) the head rotations azimuth, elevation, and roll (solid line, dash-dotted 
line, and dotted line, respectively). Note that, for purposes of visualization, each time 
series was divided by its absolute maximal value, rendering the units dimensionless.
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Pre-processing

The video recordings were calibrated and the ball displacements were subsequently 
digitized in the x-, y-, and z-direction (WinAnalyze, Mikromak). Both center-of-
pressure (CoP) components—that is, medio-lateral (ML) and anterior-posterior 
(AP) sway, corresponding to sway in the x- and z-direction, respectively—were 
computed from the 8 time series of the ground reaction forces. In order to obtain 
time series with an equal number of samples, the trajectories of the ball, eye, and 
head movements were interpolated by means of cubic splines, which resulted in an 
effective sampling rate of 200 Hz. To incorporate as many data points as possible 
while eliminating transients due to the start-up of the juggle, the first moment of 
zero velocity of the first ball after its first zenith was determined. This moment 
occurred immediately after the third ball had been thrown for the first time. Time 
series were excluded if they covered less than 6 consecutive individual ball cycles 
in the vertical direction. The length of the time series was adjusted to integer 
periods of the ball trajectories to improve the reliability of the spectral estimates 
(see below). Consequently, the time series of the balls started and ended with equal 
phasing. All other time series were aligned accordingly. We further eliminated 
the observed low-frequency components in the postural sway, and head and eye 
movements by means of a high-pass filter. However, since juggling frequency varied 
between participants and over days, all time series first had to be rescaled in time 
so that the vertical movements of the balls was always equal to 1.0 Hz (Table 2). 
As a consequence, the subsequent filter-settings were equal for all trials—that is, 
a high-pass filter cutoff frequency of 1.2 Hz. Note that prior to this preprocessing 
step, we had established that the juggling-related spectral content was dominant 
at 3/2 and 3 times the juggling frequency.

Table 2 The Mean and Standard Deviation of the Rescaling Factors Used for 
Rendering the Main Frequency of All Ball Trajectories in the Vertical Direction of 
the Entire Experiment 1 Hz for Each Participant 

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13

Mean 1.27 0.81 1.03 1.12 0.90 1.22 1.09 1.01 1.11 1.00 0.86 0.74 1.27
SD 0.14 0.02 0.15 0.08 0.16 0.11 0.06 0.10 0.05 0.04 0.05 0.06 0.07

Frequency-Locking Ratio and Strength

For all subsystems examined, the power spectral densities P() were estimated 
by applying Welch’s periodogram method (e.g., Stoica & Moses, 1997). To obtain 
the same frequency resolution for all trials irrespective of the individual lengths 
of the time series, we zero-padded all trials to the length of the longest trial before 
estimating the power spectral densities. (We used overlapping Hamming windows 
fixed at the length of the shortest trial.) The dominant frequency 

0
 was identified 

at the peak containing the most spectral power. Eventual cross-relations between 
different signals were quantified in terms of the ratio between their dominant 
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frequencies. In all analyses, the frequency of the vertical ball trajectory was used 
as a reference and served as numerator in the calculation of frequency ratios between 
component processes. Note that, by definition, 3-ball cascade juggling requires 
frequency locking between the ball trajectories in the horizontal and vertical 
direction and that higher numerical accuracy for the ball movements in the vertical 
direction is reached because, in this direction, the frequency of the ball movements 
is twice as high as in the horizontal direction. A p:q frequency locking between 
projections of different subsystems was considered to be present if

where 
0,x

 and 
0,y

 denote the main frequencies of (arbitrary) time series x(t) and 
y(t), respectively, and  is the frequency resolution of the corresponding spectral 
estimates. For each trial, the strength of frequency locking between the signals was 
quantified by means of

where P
x
 and P

y
 represent the spectral densities of the (arbitrary) time series x(t) and 

y(t). Note that the integration only includes the frequency interval up to the smallest 
Nyquist frequency—that is, the actual sample frequency of the video recordings: 
25 Hz; N is a normalization factor defined as 8N2 =(2 + 1)/( + 1). By fixing the 
ratio  at a specific value, one can always determine the strength of this specific 
frequency locking, regardless of whether this locking dominates the coordination 
between two time series. In the present experiment, the ratios 1:1, 3:2, and 3:1 were 
used depending on the subsystems examined (see Results). The more similar two 
spectra are after an appropriate rescaling  of the frequency axis, the larger their 
overlap and thus the higher the value of 

x,y
 (: see Daffertshofer, Peper, Frank, & 

Beek, 2000). In other words, the more two time series share a common “time base” 
(after appropriate rescaling), the stronger the frequency-locking strength 

x,y
.

Relative Phasing

To address the time-dependent relative phasing between two projections x(t) and 
y(t), we used the Hilbert transform, as it provides an adequate estimate of the 
instantaneous phase and amplitude of an arbitrary signal (Gabor, 1946). Briefly, 
as complex extension of a real time series s(t), the analytic signal (t) = s(t) + I · 
u(t) can be uniquely defined via

in which PV refers to the Cauchy principal value. As for every complex-valued 
quantity, one can introduce amplitude and phase in terms of (t) = A(t) · exp[i 
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· 
H
(t)]—that is, 

H
(t) = arctan{T[(t)]/R[(t)]} = arctan[u(t)/s(t)] defines the 

continuous Hilbert phase of the time series s(t). The relative phase 
H
(t) between 

two time series x(t) and y(t) is then defined as 
H
(t) = 

H,y
(t) –  

H,x
(t) (see, e.g., 

Pikovsky, Rosenblum, Osipov, & Kurths, 1997, and references therein). As we were 
interested in cases of p:q frequency locking, we generalized the latter definition 
in terms of 

H
(t) = p

H,y
(t) – q

H,x
(t). For all trials in which frequency locking 

was observed, both the mean and the variance of the corresponding relative phases 
were computed using circular statistics (Mardia, 1971).

Cross-covariance

To evaluate the possibility of reducing the 9-dimensional time series representing 
the ball pattern (i.e., 3 balls  3 directions), we subjected each individual trial to 
a PCA (cf. Post et al., 2000)—that is, we computed eigenvalues and eigenvectors 
of the covariance matrix based on the 9 time series of the ball trajectories. For 
each trial, the 9 time series were normalized with respect to the overall maximum 
variance before combining them into a state vector, Is(t) = [b

1
x(t), b

1
y(t), b

1
z(t), b

2
x(t), 

. . . , b
3

z(t)]T. For each trial, the resulting eigenvalue spectrum was analyzed and, in 
addition, the time series were projected onto the individual eigenvectors (referred to 
as “projections”), after which these projections were subjected to spectral analysis 
as described above.

Extraction of Time Scales

To be able to extract and compare characteristic evolution times, we performed 
subsequent regressions on the basis of a single equation. As will become apparent 
in the Results section, we found learning curves that resembled linear, exponential, 
and (in a few cases) sigmoidal curves. Whereas the hyperbolic tangent function 
may capture all these forms, the number of parameters required (4) to do so renders 
the solution to the minimization of the regression equation non-unique (given the 
limited number of experimental data points; see the Procedure section and Table 
1), and a reliable comparison of time scales may become problematic. Therefore, 
we concentrated on the exponential forms—that is, we used the function A – Be-t 
and determined its parameters via a simplex minimization of the corresponding 
least squares (Nelder & Mead, 1965), thus capturing all observed forms except 
the sigmoid. The rate of change is given by  yielding characteristic times by 
means of  = 1/. Recall that the characteristic time  indexes the time to change a 
process’s value by a factor of 1/e similar to a first-order linear response showing 
exponential decay/saturation (see Figure 3). In combination,  and B may give rise 
to an exponential decay or saturation as well as to unbounded forms of change. 
The latter, however, are functionally irrelevant because frequency-locking strength 
and the variance of relative phase are bounded between 0 and 1. Indeed, in some 
instances, such unbounded, exponentially increasing curves were observed; 
however, we abstained from regressing them, as they necessarily indicate saturation 
(or transient behavior) on a time scale beyond that of the present experiment (except 
for the outcome measure of the number of consecutive throws). The limited number 
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of experimental data points renders the regression vulnerable to “noise” and outliers 
so that characteristic times can, in our opinion, only be viewed as distinct if they 
differ in orders of magnitude.

Results and Discussion

Number of Consecutive Throws

We first examined the changes in juggling performance in terms of a simple and 
intuitively appropriate outcome measure: the number of consecutively thrown balls. 
For 10 of the 13 participants, this number grew exponentially, albeit at a rate of 
change that varied widely across participants (see Figure 4). For the remaining 3 
participants, the number of consecutively thrown balls saturated after an initial 
exponential increase.

Frequency Locking and Phase Variance

To further quantify the quality of juggling performance, we investigated the 
occurrence of common cyclic features in the ball trajectories. Frequency locking 
between the ball trajectories reflects the overall timing constraint immanent in the 
juggling task (i.e., Shannon’s juggling theorem), while the locking strength indexes 
the degree to which the juggler satisfies this constraint. In other words, the locking 
strength reflects the degree to which the spectral content of the ball circulations 
is identical. Once the balls circulate at the same frequency (or period), a more 
fine-grained timing measure is provided by the variance of the relative phasing 
between the balls—that is, the degree to which a juggler succeeds in keeping 

Figure 3 — Examples of exponentially saturating curves. The parameter settings for 
these curves were A = 0; B = –1;  = 0.5 (decreasing solid curve); A = 0; B = –1;  = 1 
(decreasing dotted curve); A = 1; B = 1;  = 1 (increasing dash-dotted curve).
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the temporal distance between the balls constant. In all participants, juggling 
performance improved in that the strength of frequency locking between the ball 
trajectories increased and the variance of the relative phasing between the balls 
decreased. For most of the participants, the improvement of performance converged 
to fixed values within the practice period investigated. (Close to 1 for frequency 
locking and almost 0 for the phase variance.) In general, performance improved 
in terms of an exponential saturation when looking at the ball movements in the 
vertical direction. However, close inspection of the performance curves revealed 
that a rapid initial deterioration preceded this exponential change in 6 participants 
early in learning (see Figure 5). When the changes in performance appeared to 
be monotonic, some participants (5) improved so rapidly that exponential forms 
seemed to be absent, at least at first glance. To remove such initial trends, we 
applied two different regression procedures to the performance curves of interest 
(i.e., frequency-locking strength and variance of relative phase), one based on 
all the data except the initial non-monotonic changes (deterioration followed by 
improvement) and the other on all data except the very first sample. This allowed 
us to examine whether an early asymptote indeed implied that improvement was 
confined to the initial phase of practice. In all subsequent regression analyses, the 
second regression procedure was applied.

As regards the strength of frequency locking between the ball trajectories, 
3 participants showed fairly erratic juggling patterns, whereas the remaining 10 

Figure 4 — The number of consecutively thrown balls (on a logarithmic scale) as a 
function of practice for the 10 participants showing exponential improvement. The 
slopes of the curves indicate the rate of change. Note that the solid, dashed, and dashed-
dotted lines represent the learning curves of the fastest, intermediate, and slowest 
learners, respectively. (As indicated in the Methods section, most participants were able 
to juggle continuously for 2 min in the course of the experiment. As a consequence, the 
number of consecutive throws could not exceed the number reached at that moment. 
For visualization purposes, the fitted lines are extrapolated for these participants.)
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participants either showed a gradual, monotonic increase in locking strength or an 
already high, constant level of performance from the outset of learning onward. Two 
of these 10 participants showed a slow but persistent improvement in performance. 
Fitting exponential functions to these curves resulted in  exponents of around 1.6 
(h–1), implying intrinsic characteristic learning times of about  = .5 h and slightly 

Figure 5 — Exponential fit of the evolution of the frequency-locking strength (; left 
panels—the solid and dotted lines represent the fit and the data, respectively) and 
the variance of the relative Hilbert phase (; right panels—the solid and dotted lines 
represent the fit and the data, respectively) for 3 participants. Note the similar evolutions 
in the upper panels, the early asymptote for the frequency-locking strength, the slower 
evolution of  in the middle panels, and the initial deterioration in performance early 
in learning in the lower panel.
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less. The performance of the other 8 participants evolved rather slowly and resulted 
in estimated learning times of up to 100 days.

We subsequently examined the more fine-grained changes in timing by 
focusing on the variance of the relative phasing between the balls. In 5 of the 
identified group of 8 participants, as well as the 2 participants who improved in 
terms of frequency-locking strength, the variance of the relative phase between 
the balls decreased exponentially with estimated  exponents between 0.2 and 
1.0 (h–1), corresponding to characteristic learning times of  = 1 and 5 h (5 + 2 
= 7 participants). Thus, the majority of these participants showed an exponential 
decrease of the relative phase variance while being in a “steady-state” in terms of 
frequency-locking strength. The other 3 participants appeared to be close to their 
maximal performance level in terms of both frequency locking and relative phasing, 
as the variations in these measures were highly irregular. For a more detailed 
comparison of the time scales of the 5 + 2 = 7 participants (see below), we further 
re-estimated the growth rates of the outcome variable (number of consecutively 
thrown balls). This analysis showed that the outcome variable always changed 
slower than the variance of the relative phase. (In the following, we refer to the 
latter as the reference time scale, 


.)

All these results indicate that the rate of performance improvement varied 
widely across participants, as was already observed subjectively during the experiment. 
However, the results also indicate that, in most instances, performance improved 
monotonically. In addition, the difference in time scales between the exponential 
increase in frequency-locking strength and the exponential decrease of phase variance 
suggests that the temporal fine-tuning of juggling (i.e., the variance of the relative 
phase) is usually adjusted markedly slower than the assembly of a “spatial clock” (cf. 
Beek, 1989, interpreted here as strength of frequency locking), which suggests that, in 
juggling, frequency and phase locking constitute two distinct parallel processes.

Having identified distinct time scales in the improvement of the goal behavior, 
we continued quantifying the learning curves in the recorded subsystems by focusing 
on equivalently continuous, exponential evolutions. As expected on the basis of 
earlier research (cf. Huys & Beek, 2002; Huys et al., 2003), we found the spectral 
content of body sway and eye movements to be distributed predominantly at 3:1 and 3:
2 frequency-locking ratios with the ball trajectories. In addition, most of the recorded 
subsystems contained rather pronounced irregular, low-frequency, dynamical 
structures. Since these dynamical traces appeared to be random, and since our 
focus was on the relation between the subsystems and juggling performance—that 
is, on phenomena occurring at the time scales of the ball movements—we high-
pass filtered the time series (using a cutoff frequency of 1.2 Hz) for the purpose of 
further analyses (see below).

In the following, we first report changes in frequency-locking strength 
without amplitude rescaling—that is, coordinative changes that are largely due to 
modifications of the amplitude of the oscillations. In addition, we report changes in 
“pure” coordination—that is, coordinative changes in which the amplitude effects 
were eliminated by rescaling the individual time series to unit variance. The latter 
results pertain solely to the temporal relations, or coordinative tendencies, between 
the oscillatory phenomena.
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Amplitude-related Effects

Regarding the amplitude-dependent coordination (see Table 3), both sway 
components were usually 3:2 frequency locked to the ball trajectories; however, 
the strength of this locking mode strongly decreased in the course of practice. Except 
for 1 participant, the locking strength between AP-sway and the ball trajectories 
decreased exponentially, with characteristic times similar to those found for the 
aforementioned decreases in the variance of relative phase (i.e.,   ). Similarly, the 
reduction of the ML-sway was exponential, with comparable characteristic times, 
although in several participants, it appeared to be linear rather than exponential.

Similar to the results for postural sway, we found 3:2 frequency-locking ratios 
between eye movements and ball trajectories in both directions. In the horizontal 
direction, instances of 3:1 locking were observed as well (see also Huys & Beek, 
2002). The evolution of both locking modes was rather variable and, in general, 
both increases and decreases were present. As a result, the observed changes were 
rarely exponential but, if so, the magnitude of the characteristic time was often in the 
order of magnitude of , although less clearly so in the horizontal direction. These 
results differ from those obtained for body sway, and one may speculate that such 
differences were due to the distinct physical properties of both subsystems, such as 
differences in inertia. Recall, however, that we eliminated low-frequency components 
in the individual time series so that such physical effects were suppressed. Thus, 
the characteristic times related to the learning dynamics rather than to the response 
times of physical devices. When the passive biomechanical properties would be of 
overarching importance, one would expect the head movements to evolve similarly 
as the sway components. In fact, however, the 3:2 frequency-locked oscillations of 
the head movements in the x-direction decreased less consistently (in 4 participants) 

Table 3 Incidences of the Characteristic Times  of the Evolution of the Amplitude-
Dependent 3:2 Frequency Locking Strength of the Subsystems Relative to 



   ML3:2 AP3:2 Ex3:2 Ey3:2 Hx3:2 Hy3:2 Hz3:2 Az3:2 El3:2 Ro3:2 

10 1 (1) (2) 1 1 1 (1) 4 
(4)

1 2 7 3 5 2 (1) 2 2 1 (2) 2 1 3 3 (2) 24 
(5)

10–1 1 1 (1) 2 3 (1) 7 
(2)

100–1 1 1 2 1 3 (1) 8 
(1)

Steady 5 2 3 1 1 2 9
Others 4 2 (4) 2 2 2 (2) 2 2 2 (3) 18 

(9)

Note. Parenthesis indicates the number of observations for subsystems in which considerable 
3:1 locking was observed.
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than the 3:2 frequency-locked sway oscillations while, in the other directions, the 
3:2 locked oscillations decreased in all participants. In most cases, the observed 
reduction was exponential, with characteristic learning times ranging from /100 
to about . Similar patterns were observed regarding the head rotations, but the 
amplitudes of the coordinated oscillations always decreased, and characteristic 
times of about /100 were more common.

Changes in Coordination

The changes in the subsystems’ frequency-locking strength to the ball movements 
reported thus far were detected using analyses without amplitude rescaling. That 
is, “pure” coordinative effects may have been obscured by amplitude adjustments. 
By rescaling the amplitude of each individual time series such that their variances 
equaled 1, we eliminated all amplitude effects and focused solely on coordinative 
tendencies.

As was the case for the amplitude-dependent effects, 3:2 frequency locking 
between the subsystems of interest and the ball trajectories was found to prevail 
over 3:1 frequency locking, especially for AP-sway, the eye movements in the 
vertical direction, and the head movements in the horizontal direction (98%, 98%, 
and 95% of all trials, respectively). In contrast, pronounced 3:1 frequency locking 
was observed in the eye movements in the horizontal direction, the head movements 
in the vertical direction, and rolling movements of the head (32%, 54%, and 32% 
of all trials, respectively).

Subsequently, we examined whether the strength of the most dominant locking 
changed with practice (see Table 4). In contrast to the non-rescaled amplitudes, the 
AP-sway, the eye movements in the vertical direction, and the head movements 
in the horizontal direction, all exhibited rather steady 3:2 frequency locks with 
the ball trajectories so that extracting characteristic times led to estimations in the 
order of magnitude of around   /10–5—that is, years (cf. above). Although an 
experimental verification (or falsification) of such long time scales is cumbersome, 
it seems fair to say that, in view of the large differences between the characteristic 

Table 4 Incidences of the Characteristic Times  of the Evolution of the 3:2 
Frequency Locking Strength of the Subsystems Relative to 


 (Pure Coordination)

   AP3:2 Ex3:2 Ey3:2 Hx3:2 Hy3:2 

10 1 1 (2) 1 1 (1) 4 (3)
1 2 7 (3) (1) 0 (4)

10–1 (1) (1) 0 (2)
100–1 1(1) .. (..)

Steady 5 5 1 5 5 1(3) 17 (3)
Others 1 5 (1) 1 1 5 13 (1)

Note. Parenthesis indicates the number of observations for subsystems in which considerable 
3:1 locking was observed.
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time scale of the goal behavior (i.e., the variance of the relative phase) and the time 
scales of changes in the AP-sway, the vertical eye movements and the horizontal 
head movements, these subsystems had little impact on the fine-grained timing 
between the balls (and vice versa).

For the 3:1 frequency-locking strength, especially for the eye movements 
in the horizontal direction, a different pattern was found: Rather than a steady 
coordination, the strength of this locking mode increased exponentially in all 
participants (except for the 2 participants in whom the amplitude decreased as 
well). One may speculate that the differences between the horizontal and the vertical 
direction might have been caused by differences in the predictability of the ball 
movement, since the constant acceleration due to gravity is experienced daily, 
whereas the (almost) constant velocity along the horizontal direction is throw-
dependent. Notwithstanding the structural evolution of the 3:1 locking strength 
of the eye movements in the horizontal direction, switches between the 3:1 and 
3:2 locking modes often occurred. Head movements turned out to be even more 
irregular; all participants showed frequent switching between 3:1 and 3:2 frequency 
locking. Since none of these switches revealed a consistent pattern, they will not 
be discussed further.

In sum, the amplitude of the 3:2 frequency-locked oscillations of the sway 
components (AP most pronounced) as well as of the head movements decreased in 
a consistent manner. Such clear and consistent patterns of coordination were found 
less often for the eye movements. Roughly speaking, body sway, head movements, 
and (to a lesser extent) eye movements often showed characteristic learning times 
similar to that of the temporal fine-tuning of the juggling itself. In contrast to 
these amplitude effects, the strength of the 3:2 frequency locks was steady for the 
AP-sway, the eye movements in the vertical direction, and the head movements in 
the horizontal direction. Only the 3:1 frequency locking of the eye movements in 
the horizontal direction was found to consistently increase exponentially, albeit at 
rather variable time scales.

Correlation Analyses

Thus far, we focused on the temporal aspects of structural changes by extracting 
characteristic times over which functionally distinct subsystems evolve. In doing so, 
we had to restrict the analyses to cases in which participants followed exponential 
learning curves. In addition, we examined possible links between performance 
and the subsystems by correlating the performance curves (i.e., the variance of the 
relative phase as a function of practice) and the frequency-locking strength at the 
3:2 and 3:1 locking ratio as a function of practice for each participant. Since all 
participants could be included in this analysis, we also compared these correlations 
between the group that continued learning (“fast learners”; 5 + 2 = 7 participants) 
and the group whose performance improved only initially (“slow learners”; 3 + 3 
= 6 participants). In line with the previous analyses, we studied every subsystem 
with and without amplitude rescaling. For the amplitude-dependent coordination 
at the 3:2 locking mode, we found positive averaged correlations between the 
variance of the relative phase and the locking strength of ML- and AP-sway, the 
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head movements in the y-direction, azimuth, elevation, and roll (r  0.46, 0.51, 
0.39, 0.33, 0.42 and 0.39, respectively; means were calculated over all correlations, 
significant or not, with the proviso that, in minimally 10 of the 13 participants, the 
sign of the correlation was the same). Regarding the 3:1 locking mode, a positive 
averaged correlation was found for the head movements in the y-direction (r  
0.64). These positive correlations indicated that strong amplitude-dependent 
frequency locking and “poor” performance seemed to go hand-in-hand, regardless 
of learning rate (i.e., no significant group differences were found for any of these 
correlations). In contrast, when considering pure coordination, results changed 
dramatically. For the 3:2 locking ratio, all correlations basically vanished. For the 
3:1 frequency-locking ratio, only the eye movements in the horizontal direction 
were correlated on average to performance (r  –0.36). Furthermore, this averaged 
correlation was substantial for the fast learners (r  –0.52) but was absent for 
the slow learners. These results suggested that, indeed, large amplitudes of the 
oscillations in the subsystems impoverished performance. Although correlations 
should not be interpreted erroneously in causal terms, it seems likely that “poor,” 
unstable performance sometimes resulted in uncorrelated body sway. On the other 
hand, for the 3:1 locking of the horizontal eye movements, amplitude appeared to 
be less important; in contrast, coordinated looking behavior may “aid” juggling 
performance, at least, in the present group of novices.

The correlation analysis also allows for a more quantitative discussion with 
respect to the switches that occurred between the 3:2 and 3:1 frequency-locking 
ratios observed in the eye movements in the x-direction, the head movements in 
the y- and z-directions, and the head rotations. In order to quantify such relations, 
we calculated the ratio of the frequency-locking strengths 

x
3:1 and 

x
3:2, and 

subsequently examined the cross-correlation between the so obtained time series. 
For one participant (a “fast” learner), we found significant correlations in the locking 
dynamics between AP-sway and the vertical head movements (r = 0.68, p < .05), 
azimuth (r = –0.66, p < .05), and roll (r = 0.77, p < .05), and between azimuth 
and roll (r = –0.72, p < .05). Apart from this participant, in whom many evolving 
subsystems were correlated, incidental pair-wise correlations were found in all 
participants. However, in view of the lack of consistency across participants, we 
did not further pursue this aspect.

In sum, the patterns of correlations showed that, whereas large amplitudes of 
the 3:2 coordinated oscillations of both body sway components and head movements 
occurred in conjunction with unstable juggling performance (in terms of a large 
variance of the relative phasing between the balls), regarding pure coordination, 
adopting the 3:1 frequency locking of the horizontal eye movements seemed to 
aid juggling performance, and its presence distinguished the fast from the slow 
learners.

Recall that next to the aforementioned abrupt changes in locking strength, 
we reported initial discontinuities in performance in 6 participants. Indeed, the 
quality of the performed juggle appeared to depend on the strength of coordination 
between (some of) the subsystems and the ball trajectories; nevertheless, it could 
not be firmly concluded that specific subsystem-related constraints were responsible 
for the observed discontinuities in performance. Therefore, we finally examined 
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eventual changes in the spatio-temporal structure of the ball movements in the 
course of learning by looking at changes in their covariance patterns in the course 
of practice.

Covariance Analyses

PCA applied to the ball trajectories revealed that the eigenvalues converged in the 
course of learning (see Figure 6 for an example). On average, the first two modes 
initially covered 70% of the variance of the entire 9-dimensional space and 78% 
at the last day of learning. By implication, the variance covered by the remaining 
modes decreased. Besides overall changes in the distribution of the variance, the 
(absolute value of the) eigenvectors corresponding to the 9 modes indicated how 
the contribution to the most prominent modes changed as a function of practice: 
In general, the contribution of the ball movements in the y-direction to the first two 
modes gradually increased, whereas those along the x- or z-direction decreased. 
(The relative extent of vanishing contribution of x- vis-à-vis z-directions was rather 
variable across participants; see Figure 7 for an example.) In other words, throughout 
learning, the spatial variability of the entire 9-dimesional juggling pattern changed, 
such that the dominance of the ball movements in the y-direction became more 
prominent, and the juggling pattern changed from a “flat” rotated figure-8 pattern 
spread along all three Cartesian coordinates to a “steeper” figure-8 pattern confined 
primarily to the frontal plane. In 1 participant, this spatial re-organization was so 
pronounced that it resulted in an abrupt switch in the dominant direction from 
horizontal to vertical (see Figure 8). Interestingly, this transition coincided with 
the initial deterioration in performance. Considering, however, that such an abrupt 
switch between dominant principal modes was only detected in 1 participant, it 
cannot explain the initial deterioration seen in the other 5 participants.

Figure 6 — Eigenvalue spectrum of the ball trajectories for 1 subject as a function 
of learning. Note that the amount of variance accounted for by the first two modes 

k
 

gradually increases.
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To approach this topic in an unbiased manner, we computed the covariance 
function between learning curves using the improvement of performance in 
terms of frequency-locking strength as reference. Either the lag-zero or the lag-
one covariance with the evolution of the variance of relative phase turned out to 
be maximal (in absolute values), indicating that the non-monotonic change in 
frequency-locking strength either coincided with or was preceded by an increase 
in the variability of relative phase. Interestingly, similar extrema in the covariance 
function were detected for the change in postural AP-sway amplitudes showing 
that the (non-monotonic) change of this component also coincided or preceded the 
change in frequency locking. Comparable lag-covariances were not found in the 
other subsystems, indicating a primary relation between AP-sway/relative phasing 
and local deterioration of the quality of overall timing as reflected in the strength 
of frequency locking.

General Discussion and Conclusions

In the present study, we examined how juggling performance, postural control, 
and head and eye movements evolved as novices learned to juggle the 3-ball 
cascade. As has commonly been found in studies of motor learning (A. Newell & 
Rosenbloom, 1981; K.M. Newell et al., 2001; K.M. Newell & van Emmerik, 1989; 
Vereijken, Whiting, & Beek, 1992), juggling performance improved monotonically. 
Juggling performance was operationalized in terms of the number of consecutive 
throws and in terms of the degree of frequency and phase locking between the balls 
being circulated. The number of consecutive throws increased exponentially. With 
practice, the strength of frequency locking between the ball trajectories increased 
and the variance of the relative phasing between the balls decreased. The increase 
in frequency-locking strength occurred quicker than the decrease in the variance 

Figure 8 — Spectral density estimates of the projections of the first (left panel) and 
third (right panel) mode, , of the 9-dimensional ball pattern as a function of practice. 
 denotes the frequency axis, which was rescaled to the dominant frequency of the 
ball movements in the y-direction. Note that initially, the projections of the first mode 
correspond to the dominant frequency of the ball movements in the x-direction and 
the transition to the frequency corresponding to the dominant frequency of the ball 
movements in the y-direction.
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of relative phasing. This suggests that learning to juggle involves learning to 
satisfy (at least) two timing constraints: namely, the global temporal constraint of 
matching the frequencies of the balls, resulting in a “spatial clock” with a fixed 
(ball-independent) time base (cf. Beek, 1989) and the more local requirement to 
achieve a constant relative phasing (i.e., equal temporal distances) between the balls. 
Participants either improved both aspects in parallel at different rates or virtually 
started out with a fixed degree of frequency locking and only reduced the variance 
of the relative phasing. Thus, learning to juggle involves two kinds of constraint 
satisfaction: a quick adaptation to the global temporal constraints (frequency 
locking) and a markedly slower adjustment to the more local requirement to fixate 
the time intervals between the balls (relative phasing).

In general, frequency locking is a prerequisite for phase locking. An efficient 
strategy for learning to juggle is therefore to first achieve frequency locking 
before reducing the variance of relative phase, as was indeed the case in most 
participants. Deviations from this strategy seemed to be detrimental to the overall 
timing of the juggling performance, resulting in lower frequency-locking strength. 
Given our results of lag-zero versus lag-one covariance patterns in participants 
showing non-monotonic changes in frequency-locking strength, it seems likely 
that those participants tried to quickly adjust the relative phasing between the 
balls, which worsened the overall juggling performance. In other words, the 
two adjustments normally evolve on different time scales that, in spite of their 
simultaneous operation, appear to be characterized by a certain hierarchical order: 
first frequency locking and then reduction of relative phase variance. Disrespecting 
this hierarchy results in a deterioration in the quality of performance. Recall that 
these time-continuous measures reflect the stability of juggling performance and 
also contain information about the dynamics of the end-effectors. That is, they defy 
the traditional distinction between outcome and its generation. Interestingly, the 
identified hierarchical order above seems to extend to the primary outcome variable 
(i.e., the number of consecutive throws, which always increased at a slower rate than 
the variance of the relative phase decreased). In sum, the present results suggest 
a temporal hierarchy in the evolution of the goal behavior, implying that already 
in the production of the goal behavior itself, multiple time scales are operative, as 
we expected on theoretical grounds.

Further evidence for Newell et al.’s (2001) position was that multiple time 
scales and multiform dynamics are present in the learning of a complex perceptual-
motor skill was found in the evolution of the relations between the subsystems (i.e., 
postural sway, and eye and head movements) and the goal behavior. Interestingly, 
the results for the subsystems differed significantly when distinguishing between 
amplitude-related and “pure” coordination effects. When preserving the amplitude 
effects, we found distinct coordination patterns relative to the ball movements for 
both body sway and eye and head movements: As expected, 3:2 and 3:1 frequency 
locking prevailed (cf. Huys & Beek, 2002; Huys et al., 2003). In the subsystems with 
high inertia, the amplitudes of the oscillations decreased on average in a manner 
similar to the decrease in the variance of relative phase. While the sway amplitudes 
were reduced at a time scale similar to that of the reduction in the variability of 
relative phase, the amplitudes of the head movements often decreased much more 
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quickly. In contrast, when focusing on “pure” coordination (i.e., by eliminating 
amplitude effects), the positive correlations for the 3:2 frequency-locked sway and 
head movements vanished and did not show any structural changes in the course 
of learning. However, the 3:1 frequency-locked horizontal eye movements became 
(negatively) correlated, but only in the fast learners, implying an increased coupling 
between ball movements and looking behavior in this group. In addition, the latter 
coordination often changed at time scales similar to that of the increase in the 
degree of phase locking between the ball trajectories. The absence of correlations 
and structural changes in the course of learning for sway and head movements 
suggests that the pure frequency locking of these subsystems is less important for 
the quality of juggling; for postural sway, this result confirms our previous findings 
(Huys et al., 2003).

These results also allow for an alternative interpretation. Although the 
coordination between the subsystems and the ball trajectories evolved extremely 
slowly, if at all, the strength of these frequency locks was rather high. If these 
coordination modes were of limited importance to juggling, then the spectral 
correlations would be less pronounced, and the observed patterns of change less 
structured. Thus, one may speculate that the biomechanical and informational 
constraints on juggling are such that the 3:2 locking is almost inevitable or that 
the coordination is so important that the necessary adjustments already occurred 
before performance could be quantified. Although the importance of the degree 
of coordination may be disputable, controlling the amplitude of the coordinated 
oscillations clearly mattered. Both postural sway and head movements reflect, 
or at least contain, the dynamics of the center of mass of the entire body. At first 
guess, one would therefore expect them to evolve at identical time scales. Because 
head movement amplitude is reduced so rapidly, however, it seems to be important 
to “fixate” the head position relative to the juggling patterns, probably in order 
to stabilize the perceptual input. With this rapid reduction of head movements, 
a similarly quick adjustment of the eyes’ movement amplitudes becomes less 
important (and indeed was not consistently found). Instead, “fixating” the head 
may precede the development of pure coordinative coupling of the horizontal 
eye movements to the balls, as it optimizes the boundary conditions for this 
functional coordination to develop. Perhaps head movements can be seen as the 
coarse-grained component and eye-movements as the fine-grained component of 
the visual system.

Returning to the issue of multiple time scales in most general terms, Newell 
et al. (2001) suggested that there are potentially many indices of change in motor 
behavior and many time scales over which the change in behavior occurs. Our 
present results confirm this suggestion: We found evidence for different processes 
operating at time scales differing in orders of magnitude (>100, and possibly more). 
Besides exponential changes (see also Liu, Mayer-Kress, & Newell, 2003), we 
found sigmoid, erratic, and almost linear progressions. Intriguing questions for 
future research pertain to the principles underlying these functional forms, such as: 
What are the dynamical underpinnings of these differences in time scales? Do they 
merely reflect the dynamics of the particular subsystem measures in which they are 
found, or are they also the product of interactions with other processes?
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As regards the functional form of learning curves or, at least, dynamical 
changes in (specific) subsystems, some final remarks are called for. Although 
power laws are still rather popular, individual learning curves are often described 
more accurately using logistic, exponential, or hyperbolic function (cf. Brown & 
Heathcote, 2003; Heathcote, Brown, & Mewhort, 2000). In the present study, we 
were interested in comparing the time scales of the evolution of various dependent 
variables, pertaining either to the goal behavior or to specific subsystems. To allow 
for such a comparison, we had to use a single function to extract the time scales of 
the evolutions of interest. Considering that most of these evolutions saturated, we 
chose to fit an exponential function to the data. This choice should neither be seen 
as unique nor as one guaranteeing an optimal data fit. Longitudinal learning studies 
of tasks involving a plethora of subsystems will inevitably suffer from low temporal 
resolution and limited accessibility of relevant subsystems. Hence, the choice of a 
specific functional form will always remain arbitrary, at least to a degree. Indeed, 
when one restricts the analysis to a single monotonic functional form (e.g., logistic, 
exponential, or hyperbolic), every non-monotonic change implies that the recorded 
signal either stems from a combination of underlying subsystems or that changes 
in performance are caused by non-trivial interactions. In any case, it is impossible 
to describe such dynamical changes with the aforementioned functional forms. 
Whereas learning rates may be useful in detecting possible temporal hierarchies in 
the assembly of subsystems into a dynamical organization, they neglect magnitudes 
of change, which in all likelihood, are important from a functional point of view.
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