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Pumping a Playground Swing

Auke A. Post, Gert de Groot, Andreas Daffertshofer, 
and Peter J. Beek

In mechanical studies of pumping a playground swing, two methods of energy 
insertion have been identified: parametric pumping and driven oscillation. While 
parametric pumping involves the systematic raising and lowering of the swinger’s 
center of mass (CM) along the swing’s radial axis (rope), driven oscillation may 
be conceived as rotation of the CM around a pivot point at a fixed distance to the 
point of suspension. We examined the relative contributions of those two methods 
of energy insertion by inviting 18 participants to pump a swing from standstill and 
by measuring and analyzing the swing-swinger system (defined by eight markers) 
in the sagittal plane. Overall, driven oscillation was found to play a major role 
and parametric pumping a subordinate role, although the relative contribution of 
driven oscillation decreased as swinging amplitude increased, whereas that of 
parametric pumping increased slightly. Principal component analysis revealed that 
the coordination pattern of the swing-swinger system was largely determined (up 
to 95%) by the swing’s motion, while correlation analysis revealed that (within the 
remaining 5% of variance) trunk and leg rotations were strongly coupled.

Key Words: swinging, swing mechanics, parametric pumping, driven oscillation, 
coordinative structure, PCA

Swinging on a playground swing has been studied extensively as a biological 
example of the well-known physical pendulum (Burns, 1970; Case, 1996; Case 
& Swanson, 1990; Curry, 1976; Gore, 1970; McMullan, 1972; Simon & Riesz, 
1979; Tea & Falk, 1968; Walker, 1989). The initiation of the swinging motion and 
the angular displacement of the swing are realized by the swinger pumping energy 
into the swing-swinger pendulum by means of bodily movements.

Two methods of energy insertion have been identified in mechanical analyses 
of this phenomenon. The first, called parametric pumping, consists of alternately 
raising and lowering the swinger’s center of mass (CM) along the swing’s radial 
axis (see Figure 1A). This method of energy insertion has been studied by model-
ing the swing-swinger system as a point mass at the end of a rope whose length 
is varied periodically, amounting to a parametric oscillation (Burns, 1970; Curry, 
1976; Tea & Falk, 1968). If the sum of the external moments is small, the angular 
momentum is nearly constant: raising the CM yields a decrease in the moment of 
inertia I (with respect to the suspension point) and thus a proportional increase in 



Pumping a Playground Swing    137

the angular velocity φ and therefore the kinetic energy E Ikin = φ 2 2 of the swing. 
The largest energy gain is achieved when the swing moves through its lowest posi-
tion: at this position the rise in CM and thus the increase in angular momentum 
is maximal. Assuming extensive movement of the swinger along the radial axis, 
several authors (e.g., Burns, 1970; Curry, 1976; Tea & Falk, 1968; Walker, 1989) 
have suggested that this method of energy insertion would be observed in a stand-
ing swinger.

The second method to pump energy into a swing, called “driven oscillation,” 
is based on leaning back and forth during specific phases of the swing’s motion 
(Gore, 1970; McMullan, 1972). The driving mechanism is an exchange between 
angular momentum due to rotation about the CM and angular momentum due to 
motion of CM about the suspension point (see Figure 1B).

Figure 1—Schematic representation of the trajectory of the center of mass (CM) during 
parametric pumping (A) and during driven oscillation (B). In (A), the distance between the 
CM and the point of suspension varies. In (B), CM traverses a segment of a circle at a fixed 
distance to the point of suspension.
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Energy insertion into the swing-swinger system has been examined in con-
siderable analytical detail by Case (1996) and Case and Swanson (1990). Case 
(1996) introduced a rigid body with its CM rotating with respect to a pivot point 
at the lower end of a suspension rope. In the resonant case, that is, if the swinger 
pumps at the swing’s natural frequency ω, the rotation angle φ obeys the following 
equation of motion:

	   φ φ φ φ φ+ = + + +ω ω ω ω ω2 2 2 2F t A t B t Ccos cos sin cos tt 	 (1)

This equation represents a harmonic oscillator that is driven by an external force 
which varies harmonically in time, as expressed by the driving term Fcosωt, and 
parametric terms A…, B…, and C…, which modify the oscillator’s parameters 
at higher harmonics. If φ is small, then these parametric terms vanish, resulting 
in driven oscillation. Conversely, if φ grows, the parametric terms dominate the 
equation resulting in a form of oscillation in which parametric pumping prevails. 
Formal analyses of the equation of motion suggested that an actual swinger will 
hardly pump parametrically, but will mainly pump energy into the swing in the 
driven oscillator mode (Case, 1996; Case & Swanson, 1990). These predictions were 
based on estimated numerical values for the parameters for an adult swinger.

In spite of these predictions, however, actual swinging behavior and the relative 
contributions of parametric pumping and driven oscillation have not been investi-
gated empirically to date. For the present experimental study, we chose to perform 
the analysis in a local (moving) 2D Cartesian coordinate system with one coordinate 
axis fixed to the swing’s rope (radial motion) and the other one orthogonal to it 
(tangential motion). As explained in the preceding section, the radial motion of 
the CM can be associated with parametric pumping and its tangential motion with 
driven oscillation. For effective swinging these two different regimes are character-
ized further by distinct phasing relations with respect to the swing’s rotation. The 
driven oscillation regime requires that the CM is displaced mainly at the turning 
points, but remains steady when the swing passes through its lowest point. The 
driven oscillation is approximately 90° or 270° shifted in phase with respect to the 
swing’s motion, which should be visible in the phasing of the tangential movements 
of the CM. In contrast, the parametric pumping regime requires that the CM be 
displaced mainly when the swing passes through its lowest point during the fore 
(or back) swing, but remains steady at the extremes. Hence, parametric pumping 
is approximately 0° or 180° shifted in phase with respect to the swing’s motion, 
which should be visible in the phasing of the radial movements of the CM. These 
expectations can be tested by calculating the cross-correlation function between each 
CM component and the swing angle to determine the time lag, and subsequently, 
by using the basic frequency of swinging, the relative phase at which phase locking 
occurred. After all, under both regimes the movement of the swinger should vary 
harmonically with the frequency of swinging.

The identified methods of energy insertion are brought about by coordinated 
actions of a multisegmental movement system, the human body. The pattern of 
intersegmental coordination observed in a human swinger on a playground swing 
may be viewed as an example of a coordinative structure or synergy (Kugler, Kelso, 
& Turvey, 1980). A coordinative structure is a temporal arrangement of body 
components in two regards: first, it exists for a limited time only, namely as long 
as the activity persists; second, it specifies the temporal relations between these 
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components in terms of their (relative) phasing. Coordinative structures have often 
been examined by pair-wise comparisons of the time series representing individual 
limb movements (i.e., cross-correlations or relative phase analyses). However, this 
requires an a priori decision on the part of the experimenters about which time 
series are relevant and which are not. A method that avoids such an arbitrary step 
is principal component analysis (PCA). The relevance of PCA for the analysis of 
human movement is exemplified by its successful application in studies examin-
ing standing (Alexandrov, Frolov, & Massion, 1998; Vernazza-Martin, Martin, & 
Massion, 1999), walking (Mah, Hulliger, Lee, & O’Callaghan, 1994), reaching 
(Jaric, Ferreira, Tortoza, Marconi, & Almeida, 1999; Pigeon, Yahia, Mitnitski, & 
Feldman, 2000), pedalo riding (Haken, 1996), and juggling (Post, Daffertshofer, 
& Beek, 2000)—see Daffertshofer, Lamoth, Meijer, and Beek (2004) for a tuto-
rial. As analysis literally means “breaking down into constituent elementary 
parts,” principal components or modes can be conceived as these “independent” 
parts, which—by PCA’s very definition—do not covary with each other. Interest-
ingly, principal modes may be associated with the basic synergies or coordinative 
structures (Turvey, 1990) that constrain the movement system into a functional 
unit with a limited number of degrees of freedom (see also, Post, Peper, & Beek, 
2000; Schöner, 1995; Scholz, Danion, Latash, & Schöner, 2002). These dimensions 
capture the task and the participant’s behavior in increasing detail; in other words, 
the largest mode is the most important but crude descriptor of the behavior, which 
in swinging takes the form of a phase coupled set of body segments oscillating 
at a shared frequency in a specific direction. The subsequent modes describe the 
movements in a different direction, possibly with different phase relations and at a 
different frequency. Once the most important components of the swinging move-
ment have been identified by PCA, further analyses of the coordination of interest 
can be performed using cross-correlation functions to determine the relative phase 
at which an optimal coupling occurs.

In sum, we analyzed the pumping of a playground swing from standstill in two 
steps. First, we examined the relative contributions of the two proposed models of 
energy insertion by comparing tangential and radial components of the CM motion, 
representing driven and parametric oscillations, respectively. Next, we analyzed 
the principal components of intersegmental coordination within the swing-swinger 
system to gain insight into the coordinative structure via which energy insertion 
was achieved. In both steps, we calculated cross-correlation functions between 
selected variables to determine the time lag, and subsequently the relative phase, 
at which the variables in question were coupled most strongly.

Methods
Eighteen individuals (mean age 29.4 years, SD 6.6 years) participated in the experi-
ment. Prior to this, participants were informed about the purpose and procedures 
of the experiment and signed an informed consent statement. Height and weight of 
the participants were measured in order to estimate the centers of mass of all body 
segments using anatomical regression equations (Plagenhoef et al., 1983).

Participants were asked to start the seated swinging motion from rest and to 
gradually increase its amplitude without making contact with the ground. They 
were instructed to perform the swinging movements as smoothly and as regularly 
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as possible. They were further instructed to actively engage in each swing cycle. 
Participants were given three 10 s practice trials, after which the experiment proper 
was started. The experiment consisted of five trials lasting 30 s each. In a separate 
trial, during which the participants were instructed to sit still on the swing, the 
location of the CM at rest was determined.

Data Processing

Participants swung on a playground swing (RESPO model 8000). The distance 
between the floor and the center of the swing’s rotation axis was 2.58 m, the length 
of the suspension chains was 1.75 m, and the dimensions of the seat were 0.44 m 
(width) and 0.22 m (depth).

Figure 2—Schematic side view of landmarks on a seated swinger (numbers 1 through 6) 
and on the swing (numbers 7 and 8) defining the angles φ and θ. CM: actual position of 
center of mass; CM

rest
: position of CM when subject and swing are in rest. The fixed x-y 

coordinate system and the moving radial and tangential system are shown as well.
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Swinging patterns of the participants were recorded with an active marker 
system (Northern Digital Optotrak system 3020), consisting of a single control unit 
operating two measurement systems each housing three position sensors. Infrared 
light emitting diodes (LEDs) were placed on specific body landmarks: head just 
above the ear (1), shoulder (2), distal part of the third metacarpal (3), hip at the 
level of the trochanter major (4), lateral epicondyle of the femur (5), and lateral 
malleolus (6)—see Figure 2. Two additional markers were attached to the swing’s 
seat and rotation point, markers (8) and (7), respectively, which are also indicated 
in Figure 2. Data were digitized at a sampling rate of 150 Hz. Missing samples in 
the digital data due to occlusion by the swing’s frame were linearly interpolated. 
The data were subsequently filtered with a bi-directional fourth-order Butterworth 
low-pass filter (cutoff frequency was 10 Hz for the horizontal component (x) and 5 
Hz for the vertical component (y) of the position data because the swing frequency 
in the vertical direction is twice the frequency in the horizontal direction).

Data Analysis

The (x, y) position of the whole body’s CM was calculated from the position and 
orientation of body segments and swing as given by the recorded marker coordinates. 
Next, the (x, y) coordinates of CM were transformed to the aforementioned φ-rotated 
moving coordinate system (rad, tan), in which the radial direction pointed from 
marker (8) to (7) and the tangential direction was perpendicular to that direction; 
the origin was chosen at CM

rest
 (cf. Figure 2). In general, the swing is driven by 

the swinger forcing the angle θ to vary (the hip being the pivot). We analyzed this 
angle’s degree of harmonicity to compare performance with previous studies (e.g., 
Simon & Riesz, 1979). To this end, the time series of θ were analyzed in the spectral 
domain (Welch’s periodogram method with non-overlapping Hamming windows). 
The dominant frequency ω

0
 was established and the power in a bandwidth of ± 

10% around this frequency was integrated, as was done for the equivalent bands 
of the nine subsequent higher harmonics (ω

1
, ω

2
, …, ω

9
). The sum of the spectral 

power of those harmonics was normalized to an integral of unity (see, e.g., Peper 
et al. 1995) yielding the following measure of harmonicity H
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An H-value of 1 implies a perfectly harmonic sinusoid (i.e., all power is 
contained at the dominant frequency) and the smaller H, the larger the presence 
of higher harmonics relative to the dominant frequency. Note that, in general, H 
can become negative but this requires rather large amounts of spectral power at 
the higher harmonics, a scenario that is unlikely in the present case in which the 
overall motion is more or less sinusoidal (i.e., the power spectrum quickly decays 
to zero).

Time series of the radial displacement CM
rad 

and the tangential displacement 
CM

tan 
were obtained. Peaks of these time series were detected in order to calculate 

amplitudes A
j
, i.e. ( )max min 2j j jA = −  per each cycle j. The first derivative (or 
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difference) of the amplitudes was calculated as V A Aj j j= −+1  per cycle j for a first-
order assessment of the energy dynamics. Both amplitudes and derivatives were aver-
aged over cycles yielding the corresponding means denoted as A  and V dA dt= . 
Further, these mean values were averaged over five identical trials per participant 
and used to test which energy insertion method was used (i.e., 0, 0rad tanA A≠ = ) for 
parametric pumping or 0, 0rad tanA A= ≠  for driven oscillation). Subsequently, we 
evaluated whether this initial situation was maintained throughout the trial (i.e.,

0rad tanV V= = ) or whether both methods were (alternatively) used with one being 
more important than the other (i.e., rad tanA A> or rad tanA A< ). Finally, we examined 
whether a change occurred in the relative contributions of these methods of energy 
insertion (i.e., 0, 0rad tanV V> <  or 0, 0rad tanV V< > ).

For the PCA, the time series of the (x, y) coordinates of all eight markers 
(rather than the radial and tangential components) were used as input. In view of 
holonomic constraints (i.e., fixed segment length reducing a pendulum to a two-
dimensional motion) PCA was expected to yield two modes with a phase shift 
of 90º per oscillation (see Daffertshofer et al., 2004). For each trial the following 
procedure was applied: eigenvalues (variances) and eigenvectors (coefficients) of the 
16 × 16 covariance matrix were determined and the original dataset was projected 
onto the eigenvectors yielding 16 time series ξ

k
(t) (scores); modes were grouped 

in pairs (i.e., two dimensions) because these pairs matched the (two-dimensional) 
planar swing movement (with geometrical constraints, e.g., fixed limb length); and, 
finally, eigenvalues were z-transformed before averaging over identical trials per 
participant (the reported averaged values were inversely transformed).

Cross-correlation functions were calculated for three pairs of time series to 
establish their degree of coupling. The pairs of time series in question were (a) 
CM

tan 
and the swing’s oscillation φ, (b) CM

rad 
and φ, and (c) the rotation angle of 

the trunk (α) and the rotation angle of the lower leg (β). Segmental angular rota-
tions were measured with respect to the vertical. The pairs of time series were 
correlated with a variable time delay τ to assess the coupling between both time 
series, which yielded the cross-correlation ρ as a function of τ (after normalization 
ρ became bounded between -1 and 1). Subsequently, the value of τ was determined 
at which the two time series were optimally correlated, as indicated by the high-
est value of ρ. Cross-correlations at this optimal time lag were used as dependent 
measures. Time lags were used to calculate the phase difference ψ (in degrees) 
between the swing’s oscillation and the variable of interest, using the previously 
calculated ψ

0
. All ρ and τ values were subsequently averaged over five identical 

trials per participant (ρ values were z-transformed to ensure normality). The aver-
aged values of (a) and (b) were used to evaluate whether the coupling between the 
tangential component and the swing was as strong as the coupling between the 
radial component and the swing, and whether there existed a difference in phas-
ing between the tangential and the radial component with respect to the swing. 
Specifically, the obtained τ values could be tested against mathematically derived 
values (Case, 1996) to evaluate whether the phase difference between tangential 
movement and swing motion was 90°, and whether the phase difference between 
radial movement and swing motion was 180°.
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Statistics

Variables were analyzed with one-sample t-tests: radA , tanA , radV , tanV  against 0, τ 
(CM

tan
,φ) against 90° and τ (CM

rad
,φ) against 180°); or with paired-samples t-tests: 

radA  versus tanA  , radV  versus 
tanV , and ρ(CM

tan
,φ) versus ρ(CM

rad
,φ); we used a 

significance level of α = .05.

Figure 3—Normalized time series of φ (solid line) and θ (dashed line) (panel A), CM
tan 

(panel B) and CM
rad 

(panel C); positive values: right (CM
rad

), down (CM
tan

), counterclock-
wise (φ) or clockwise (θ). Panel D: Example of the CM trajectory in radial and tangential 
components. Note the difference in scale factor used on the abscissa and ordinate.
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Results

Relative Contribution of Driven Oscillation and 
Parametric Pumping

All participants were able to pump the swing close to the indicated maximal ampli-
tude: the average value of φ

max
 was 65.2° (SD 4.2°). The preferred frequency was 

nearly the same for all participants with an average of 0.384 Hz (SD 0.004 Hz). The 
swing is driven by variation of the angle θ. A typical example of the time series of 
φ and θ is given in Figure 3A. For all trials, the mean value of the harmonicity H 
was .97, i.e., fairly close to 1 implying an almost purely sinusoidal motion. This 
finding supports a harmonic driving force like the F…-term used in Equation 1. 
Figure 3 also shows a typical example of the CM time series and trajectory relative 
to its rest position during a trial. Essentially the same CM motion was observed 
in all trials. Obviously, CM trajectories were not symmetrical. The CM hardly 
passed the swing rope, which means that the major part of the energy insertion 
was achieved by leaning backward.

The averaged values of the dependent variables are listed in Table 1. The mean 
values of radA , tanA  and tanV  differed significantly from zero (t

17
 = 3.30, –18.26, and 

–3.42, respectively, p < .05), indicating marked contributions of both methods of 
energy insertion. Only radV  did not differ significantly from zero indicating that the 
radial amplitude remained statistically constant in the course of a trial. To evaluate 
the relative importance of both methods of energy insertion we tested radA  against 

tanA  and found that rad tanA A<  (t = –19.18, p < .05), indicating that the contribution 
in radial direction was not as great as that in tangential direction. We further tested 

radV  against tanV  and found that tanV  was much larger than radV  (t = 4.22, p < .05) 
and that radV  and tanV  differed in sign. These results indicate that tanA  decreased 
in the course of a trial, while radA  increased, albeit to a much lesser extent. Taken 
together, these results revealed that the tangential movements prevailed during the 
whole trial, indicating that the swing-swinger system predominantly behaved as 
a driven oscillation, with a subordinate role for parametric pumping. However, in 

Table 1  Mean Values of the Dependent Variables (Averaged Over 
Identical Trials and Subjects): Amplitudes A in M, Velocities V in M/S, 
Phase Difference ψ in Degrees and PCA Eigenvalues in Percent

variable mean variable mean variable mean

radA 0.0164* ρ(CM
rad

,φ) .68 	 PCA12 95.18

tanA –0.0836* ψ(CM
rad

,φ) 132.9 	 PCA34** 96.91

radV 0.0005 ρ(CM
tan

,φ) .74 	 PCA56** 2.34

tanV –0.0026* ψ(CM
tan

,φ) 104.4 	 ρ(α,β) 0.96

* significantly different from zero

** after removal of the first two modes and rescaling the residual to 100%
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the course of a trial, that is, as the amplitude of swinging increased, the tangential 
amplitude decreased and the radial amplitude tended to increase, indicating a gradual 
shift in emphasis from driven oscillation to parametric pumping, as predicted (Case, 
1996; Case & Swanson, 1990).

The cross-correlation functions between CM
tan 

and φ and between CM
rad 

and 
φ revealed that the tangential as well as the radial component of CM were coupled 
to the swing’s motion (ρ = .74 and .68, respectively; see Table 1), indicating again 
that both driven oscillation and paramertric pumping were operative. However, 
optimal coupling occurred at an averaged phase lead of 104.4° for CM

tan 
and at an 

averaged phase lead of 132.9° for CM
rad

, both of which differed significantly from 
the predicted values for driven oscillation (ψ(CM

tan
,φ) ≠ 90°, t = 2.95, p < .05) and 

180° for parametric pumping ((ψ(CM
rad

,φ) ≠ 180°, t = –7.57, p < .05).

Figure 4—A: Representative example of the radial component of the center mass (CM
rad

) 
against the swing’s angle with the gravitational vertical (φ). B: Schematic trajectory in x-y 
plane of CM during swinging.
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To provide an impression of the behavior of CM, Figure 4A depicts the radial 
movement of CM as function of φ from the time series shown in Figure 3C. The 
swinger’s CM was lowered by “falling back” at the rear end of the swing move-
ment and was gradually raised while swinging forward. This rise contributed to 
the increase of angular velocity, partially resembling the path followed during 
parametric pumping (cf. Figure 4B). The pumping primarily took place in the very 
last part of the back-swing and the first part of the fore-swing, thereby underscoring 
the fact that effective swinging was based on a tight phase locking between the 
swing’s rotation and the activity of the swinger as reflected in CM

tan 
and CM

rad
. The 

finding that a similar pumping mechanism was not observed in the back-swing can 
be understood via anatomical constraints that precluded leaning forward during 
the back-swing (together with the risk of falling forward). Note that this observed 
single oscillation of the CM in radial direction per half swing cycle is, in terms of 
frequency, consistent with the double oscillation per swing cycle involved in the 
parametric terms in Equation 1.

Figure 5—Stick diagrams of the projections of the most relevant PCA modes. A: PCA12 
(passive whole body movement with swing, α and β constant), B: PCA34 (coordinated 
movements of trunk and lower leg with respect to swing rope).
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Analysis of the Coordination Pattern of Swinging

Also the results of the PCA analysis are summarized in Table 1, collapsed over 
identical trials and participants. A small number of modes accounted for nearly all 
the variance in the swing-swinger system: of the 16 available modes (eight mark-
ers in two directions), the first four readily accounted for 99% of the total vari-
ance. Since all markers cover a comparable range of amplitude values, this quick 
drop of eigenvalues implies a rather stringent coordination and, hence, a dramatic 
reduction of the dimensionality of the system: for an adequate description of this 
16-dimensional system only 4 dimensions suffice. After projecting the original 
data on the coordinate system spanned by the principal axes, it appeared that the 
first two modes (PCA12) coincided with the passive large swing movement (i.e., 
the swing oscillating in x- and y-direction; see Figure 5A). Interestingly, these two 
modes already accounted for approximately 95% of the total variance, that is, the 
movements of the swinger were largely subordinate to the mechanical motion of 
the swing. Removing the first two modes and rescaling the sum of all the remain-
ing modes to 100% allowed us to examine these remaining modes more closely in 
a “decompressed” form. As became apparent from the projections, the remaining 
modes represented the movements of the swinger with respect to the swing. The 
first two modes of this reduced set (PCA34) could be associated with synchronous 
isodirectional trunk-leg rotations (see Figure 5B) and accounted for as much as 97% 
of the swinger’s activity. The subsequent two modes (PCA56) indicated additional 
movements of the swinger (either along the rope of the swing or trunk-leg rotations 
with a phasing relation opposite to that of PCA34) representing an additional 2.5% 
of the activity. The sum of all remaining modes (7 to 16) was even after rescaling 
negligibly small (less than 1% of the total variance).

In view of those PCA results, the degree of trunk-leg coupling was examined 
further by calculating the cross-correlation function between the trunk angle α and 
the lower leg angle β (see Figure 6). Cross-correlations ρ are presented in Table 
1 collapsed over identical trials but as function of trunk and lower leg angles, i.e., 
ρ = ρ(α,β). The high mean value (ρ = .96) indicates that α and β were strongly 
coupled. The angular rotation of the trunk somewhat lagged behind the angular 
rotation of the lower leg (the average value of ψ was 16.0°), but this could simply 
be the result of a difference in inertia. All in all, it appears that trunk and legs 
were not controlled independently, but formed an integral part of the coordinative 
structure for swinging.

Figure 6—Trunk angle α (solid) and lower leg angle β (dashed) as functions of time.
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General Discussion
The goal of the present study was to determine the extent to which the two methods 
of energy insertion identified in the physics literature, i.e., driven oscillation and 
parametric pumping, are involved in pumping a playground swing from standstill 
and to examine the corresponding coordinative structure of swinging. To this end, 
we conducted an experiment comparing real-life results with predictions derived 
from mechanical models. The results with regard to the two methods of energy 
insertion were largely in agreement with the main thrust of the mechanical analyses 
performed by Case (Case, 1996; Case & Swanson, 1990). As predicted for pumping 
a swing in a seated position, driven oscillation (as indexed by CM

tan
) was found 

to play a major role and parametric pumping (as indexed by CM
rad

) a subordinate 
role, although the relative contribution of driven oscillation decreased as swinging 
amplitude increased, whereas that of parametric pumping increased slightly. That 
both methods of energy insertion were operative was also evident from the fact 
that both CM

tan 
and CM

rad 
were phase coupled to the swing angle, albeit not at the 

predicted values of 90° and 180°, respectively. Instead, both components reached 
their maximal value while the swing moved from its rear turning point towards its 
lowest point (at phase leads of 104° and 133°, respectively).

The analysis of the coordinative structure of swinging using PCA revealed that 
the swinging motion is severely constrained by the mechanical properties of the 
swing-swinger system: 95% of the total variance could be attributed to the passive 
motion of the swing, implying that a mere 5% of the total variance was associated 
with active movements of the swinger. A “zoomed-in” PCA on this portion of the 
variance revealed that that the intersegmental coordination of the swinger mainly 
consisted of trunk-leg coordination. Further (correlation and relative phase) analyses 
of this coordination revealed that the rotations of trunk and lower legs were closely 
coupled with the lower legs leading the trunk by 16° while rotating over a much 
larger range of angles (cf. Figure 6). During this rotation, the knees were stretched 
leading to a CM change in tangential direction (i.e., the CM was slightly brought 
forward) and in radial direction (i.e., the CM was slightly lifted up). This displace-
ment of the CM was partially countered by the onset of trunk rotation, which, in 
its first stage, was predominantly in tangential direction (i.e., the CM was slightly 
brought backward). Thus, the resulting CM movement was first in radial direction, 
and then quickly followed by movement in tangential direction. The fact that trunk 
and lower leg rotations cancelled each other out in the tangential direction for a 
brief moment may also explain the observed phase difference between tangential 
and radial movement on the one hand (29°), and between trunk and lower legs 
rotation on the other hand (16°).

In sum, it can be concluded that while the discussed mechanical models 
approximate the mechanics of playground swinging to a satisfactory degree, 
measurements and analyses of real-life swinging are indispensable for capturing 
essential details of task performance. As expected on theoretical grounds, humans 
predominantly employ the method of driven oscillation to pump a playground swing 
from standstill with a subordinate role for parametric pumping, which increases in 
significance with the amplitude of swinging. However, the complex, multisegmental 
movements performed by humans are such that CM and swing are phase locked 
at other than mathematically predicted values, and are characterized by a strong 
coupling between rotations of the trunk and the lower legs.
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