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Abstract
Question: Is it possible to improve the general applicability and 
significance of empirical relationships between abiotic condi-
tions and vegetation by harmonization of temporal data?
Location: The Netherlands.
Methods: Three datasets of vegetation, recorded after periods 
with different meteorological conditions, were used to analyze 
relationships between soil moisture regime (expressed by the 
mean spring groundwater level – MSLt calculated for differ-
ent periods) and vegetation (expressed by the mean indicator 
value for moisture regime Fm). For each relevé, measured 
groundwater levels were interpolated and extrapolated to daily 
values for the period 1970-2000 by means of an impulse-
response model. Sigmoid regression lines between MSLt and 
Fm were determined for each of the three datasets and for the 
combined dataset. 
Results: A measurement period of three years resulted in sig-
nificantly different relationships between Fm and MSLt for the 
three datasets (F-test, p < 0.05). The three regression lines only 
coincided for the mean spring groundwater level computed over 
the period 1970-2000 (MSLclimate) and thus provided a general 
applicable relationship. Precipitation surplus prior to vegetation 
recordings strongly affected the relationships.
Conclusions: Harmonization of time series data (1) eliminates 
biased measurements, (2) results in generally applicable rela-
tionships between abiotic and vegetation characteristics and 
(3) increases the goodness of fit of these relationships. The pre-
sented harmonization procedure can be used to optimize many 
relationships between soil and vegetation characteristics.

Keywords: Delayed response; Groundwater level; Indicator 
Value; Time series analysis.

Abbreviations: Fm = mean indicator value for moisture re-
gime; MSL = Mean spring groundwater level; RMSE = Root 
mean squared error.

Introduction

A central question in ecology is how species and 
communities respond to variation in environmental 
conditions. In plant ecology, most studies focus on rela-
tionships between vegetation and measured site factors 
such as temperature, soil acidity, soil nutrient avail-
ability and groundwater level. These site factors act as 
drivers in selecting species with different physiological 
characteristics. Only plant species with the appropriate 
physiological characteristics can survive in specific 
environmental conditions. Numerous studies exist in 
which field measurements of soil and groundwater are 
used to define relationships between vegetation and site 
characteristics. Several researchers have focused on the 
response of plant species or vegetation types (Allen-
Diaz 1991; Dzwonko 2001; Schröder et al. 2005), while 
others, in pursuit of relationships that are generally ap-
plicable, used plant traits (Cousins & Lindborg 2004; 
Kennedy et al. 2003; McGill et al. 2006) or indicator 
values (Diekmann 1995; Ertsen et al. 1998; Schaffers 
& Sýkora 2000) as response variables of vegetation. 
Empirical relationships derived from such studies have 
been applied for predictions (Guisan & Zimmermann 
2000), for instance, to assess the effects on vegetation of 
water management (e.g. Witte et al. 1992), of vegetation 
management (e.g. Jansen & Roelofs 1996), of climate 
change (e.g. Thomas et al. 2004) and of air pollution 
(e.g. van Dobben & ter Braak 1999). 

However, because of temporal fluctuations in site 
conditions in combination with delayed vegetation 
responses, the general applicability of these empirical 
relationships cannot be taken for granted. Usually, the 
implicit assumption of these studies is that plant species 
composition reflects site conditions over many years. 
Such equilibrium is assumed as sufficient knowledge 
on the temporal dynamics of plant species composition 
on changes in site conditions is lacking. Moreover, since 
there is no unambiguous rule for length and frequency 
of a measuring program needed to calculate representa-
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tive site conditions, and since the time and money to 
perform a research are usually limited, researchers 
often base their relationships on short time series or 
even to single measurements.

There is much evidence that site factors that are 
important to plant performance (e.g. soil water content, 
nitrate, phosphate, total organic carbon) may vary 
considerably in time (between days as well as years) 
(Cain et al. 1999; Farley & Fitter 1999; Kieft et al. 
1998). Single or short-term (both months and years) 
measurements, therefore, probably deviate from the 
site conditions that the species composition of the 
vegetation is assumed to reflect. As a consequence 
of this temporal variability in site factors, it is likely 
that differences occur among empirical relationships 
with the same scope, but based on different measure-
ment periods. 

In this paper, we will analyze differences between 
empirical relationships, caused by temporal variation 
in site conditions between measurement periods. 
We will discuss the effect of time series length, i.e. 
the number of years in which a site factor has been 
measured, on the general applicability and on the 
goodness of fit of relationships between site factors 
and vegetation characteristics. 

As a case study, we will analyze empirical rela-
tionships between groundwater level, relative to soil 
surface, and moisture indicator values sensu Runhaar 
(Witte et al. 2007). Empirical relationships between the 
mean groundwater level in spring (MSL) and moisture 
indicator values (Fm) are commonly used in ecological 
modelling. Therefore, we decided to use MSL as the 
variable to be correlated with Fm.

Groundwater levels vary within and between years 
through variability in meteorological conditions and 
particularly through variability in precipitation sur-
plus. Therefore, it is hypothesized that empirical rela-
tionships between MSL and moisture indicator values 
as determined for short time series depend on the pre-
vailing meteorological conditions. We will investigate 
whether it is possible to minimize systematic differ-
ences between the empirical relationships, caused by 
temporal variation in meteorological conditions, by 
harmonization of groundwater level series measured in 
different periods. Harmonization is the minimization 
of systematic differences between different sources 
of environmental measures (Keune et al. 1991). Thus, 
the effect of temporal meteorological variation will 
be filtered out, improving the significance and general 
applicability of the relationships. 

Methods

General approach

We used three datasets of vegetation relevés and 
observed groundwater levels in, or immediately next to, 
each relevé. Each dataset contained vegetation relevés 
taken in the same year, but different from the other 
two datasets. Groundwater levels were measured fort-
nightly and for a limited number of years (see below). 
To be able to analyze soil moisture conditions over 
long time series, the groundwater level time series 
were extended to the period 1970-2000, as well as 
interpolated to daily values.

For each relevé we calculated a mean indicator 
value for moisture regime, Fm, based on the indicator 
values of the individual plant species (see below). Then, 
for each dataset, Fm was regressed on MSLt computed 
over a period of t years, preceding the vegetation record. 
We validated the statistical differences between the 
relationships for each of the datasets with emphasis 
on how the differences were influenced by time series 
length t. We quantified the need for data harmonization 
by cross-prediction. Additionally, we studied changes 
in the relationship between MSLt and Fm with increas-
ing t for all datasets merged into one database.

Data

The three datasets considered are: (A) the dataset 
of Runhaar (1989), with 188 relevés taken in 1987 and 
groundwater levels observed from 1980-1987; (B) the 
dataset of Ertsen (1999) with 56 relevés from 1991 and 
groundwater levels observed from 1991-1993 and (C) 
the dataset of the Dutch State Forest Service (Beets 
et al. 2003) with 63 relevés from 2002 and observed 
groundwater levels with starting dates ranging from 
1974 to 1998 and end date 2002.

The relevés refer to vegetation types from different 
succession stages, on various soils (with sandy soils 
dominating), ranging from dry to very wet, from nutrient-
poor to nutrient-rich and from acid to alkaline. Five 
phytosociological alliances are dominant in the datasets. 
Descriptions of these alliances are found in parts 2 and 3 
of the vegetation description of The Netherlands (Scham-
inée et al. 1995, 1996). 2 and 3 added to the names in the 
following list refer to the respective references: Nardo-
Galion saxatilis3, Calthion palustris3, Ericion tetralicis2, 
Caricion nigrae2 and Caricion davallianae2. Besides 
these types, that make up ca. 50% of the datasets, the 
relevés mainly belong to: Lolio-Potentillion anserinae3 
and Junco Molinion3 (dataset A), Empetrion nigri3 and 
Hydrocotylo-Baldellion2 (B), Empetrion nigri3 and 
Oxycocco-Ericion2 (C). 
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Fig. 1. Precipitation surplus data (difference between precipitation and reference evapotranspiration P-ETref) for De Bilt, the weather 
station in the centre of The Netherlands. (a) Annual P-ETref. Each bar represents the cumulative difference between precipitation 
and reference evapotranspiration for a hydrological year (e.g.: 2000 = 1 April 1999 - 31 March 2000). A, B, C: year of vegetation 
recording of the three datasets. (b) Average annual P-ETref, with standard errors, derived from (a), across t years preceding the 
vegetation recording, indicating deviations between datasets A, B and C and the long-term average. t = 1 year corresponds to the 
year of the vegetation recording for each dataset: 1987 for dataset A, 1991 for B and 2002 for C. 

Some terrestrial plant communities are character-
ized by groundwater levels close to, or even above, the 
soil surface in wet periods. None of the investigated 
plots had been under influence of a major change in 
hydrological conditions. 

All vegetation relevés were recorded in The 
Netherlands, a small and flat country with a tem-
perate climate that has small spatial differences in 
meteorological conditions. The spatial deviations in 
mean annual precipitation and reference evapotran-
spiration; the evapotranspiration of grassland under 
optimal water supply, according to Makkink (1957), 
are within 20% and 10% of the overall mean, re-
spectively (Sluijter & Nellestijn 2002). The temporal 
variation in precipitation surplus (precipitation minus 
reference evapotranspiration) for The Netherlands is 
given in Fig. 1a, b. 

The relevés of datasets A and B were distributed 
across the whole country and the relevés of dataset C 
were located mainly in the dune areas of the western 
and northern parts of The Netherlands. Because the 
spatial meteorological differences are small and be-
cause sandy soils dominate each dataset, systematic 
deviations in the relationships caused by the spatial 
prevalence of relevés within a dataset are not to be 
expected (see also the Discussion section). 

The species composition of each dataset was 
recorded after periods with different meteorologi-
cal conditions, as characterized by the precipitation 
surplus: dataset A follows a relatively average, B a 

dry and C a wet period, respectively (Fig. 1a). Dif-
ferences in mean precipitation surplus were apparent 
over long periods of time: mean precipitation surplus 
of datasets A and B coincided when calculated over 
four years, but dataset C showed a consistently higher 
precipitation surplus for the whole time period of 30 
years considered (Fig. 1b). 

Extension and interpolation of groundwater level 
series

Fortnightly measurements of groundwater level 
data were available for each relevé, but only for a 
limited number of years. To analyze long time series 
of daily groundwater level data, the groundwater level 
series were extended to the period 1970-2000 and 
interpolated to daily values with Menyanthes (von 
Asmuth et al. 2002). The interpolation was needed 
to calculate MSL values accurately. Menyanthes is 
an impulse-response model, which transforms pre-
cipitation and evapotranspiration series (impulse) 
into groundwater level series (response). Local 
meteorological data on precipitation and reference 
evapotranspiration were available from the Royal 
Netherlands Meteorological Institute on a daily basis 
from 1970 onwards for stations with a maximum of 30 
km (precipitation data) and 70 km (evapotranspiration 
data) from any relevé. 

For each time series measured at a relevé, a 
Menyanthes-model was created that links the local 
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precipitation surplus series, as input to the hydro-
logical system, to groundwater level series. Then, 
groundwater levels were simulated over the period 
1970-2000 by feeding the fitted Menyanthes-models 
with the same local precipitation surplus series of 
daily values of the period 1970-2000. 

Menyanthes presents the quality of a model in 
terms of the explained variance. We omitted relevés 
from the analysis with groundwater level series that 
could not be modelled in a reliable manner (explained 
variance < 70%; von Asmuth et al. 2006).

Calculation of MSLt and Fm

At groundwater independent sites, vegetation com-
position has no causal relationship with groundwater 
level (Witte & von Asmuth 2003). Consequently, 
relevés coinciding with deep groundwater levels (MSL 
calculated from 1970-2000 data deeper than 1.3 m 
below soil surface) were omitted. Overall, 133, 45 
and 54 relevés could be used for further analysis of 
dataset A, B and C, respectively.

For each relevé, harmonization of groundwater 
levels was achieved by computing MSLt as the mean 
of the groundwater level at the first of April (van 
der Sluijs 1990) for t years preceding the vegetation 
recording:

MSL
t

gwlt t
t t

= ( )
=
∑1

1
1April *

* ,
(1)

MSLt was calculated for minimal t =1 year and 
maximal t =18 years (dataset A), 22 years (B) and 33 
years (C). These maxima equal the period from 1970 
to the year of the vegetation record (1987, 1991 and 
2002, respectively). To avoid groundwater level fluc-
tuation data biased by overly wet or dry years, three 
years is the minimum measuring period that should be 
considered (Mew et al. 1997; Wamelink et al. 2002). 
According to Knotters & van Walsum (1997), a period 
of at least t = 30 yr is needed to calculate a reliable 
mean groundwater level, representative of climatic 
conditions. Therefore, we also computed the MSL 
from simulated groundwater levels over the period 
1970-2000. This MSL is referred to as MSLclimate.

A list of moisture indicator values for plant species 
tailored to The Netherlands based on expert judg-
ment and national and international literature (e.g. 
Ellenberg 1992; Londo 1975), was used to compute 
the arithmetic mean moisture indicator value Fm for 
each relevé. Witte et al. (2007) compiled this list of 
indicator values from published ecological groups 
for vascular plants (Runhaar et al. 2004; Witte 2002), 
mosses and liverworts (Dirkse & Kruijsen 1993) and 
Characeae (van Raam & Maier 1993). The consist-
ency of the division into ecological groups has been 
tested on a set of ca. 50 000 relevés from all over The 
Netherlands (Runhaar 1989). Indicator values were 
derived directly from the division of plant species 
into ecological groups, without the use of physical 
habitat factors such as groundwater level. All plant 
species present in each relevé were used to calculate 

Fig. 2. Mean moisture indicator values of the vegetation (Fm) for datasets A, B and C, in relation to the mean spring groundwater 
level calculated (a) over three years (MSL3) and (b) for average climatic conditions (1970-2000; MSLclimate). Each point represents 
a relevé. The insert in (a) shows the 95% confidence intervals for the relationships. Equations and correlation coefficients can be 
found in Table 3.
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the vegetation characteristics of each relevé in terms 
of mean indicator values. Following the findings of 
Käfer & Witte (2004), no weight was given to spe-
cies abundance. The indicator values range from one, 
for species from aquatic systems, to four, for species 
from extremely dry systems.

Statistical analysis

Theoretically, the relationship between MSLt and 
Fm is confined by the two boundaries of the Fm-scale: 
Fm = 1 (aquatic) and Fm = 4 (dry). In practice, the 
range of Fm-values is smaller because of ecological 
reasons. Hence, the data points level off towards both 
ends of the indicator value scale (Witte & von Asmuth 
2003). Relationships of this form can be described 
by sigmoid functions. 

Sigmoid regression lines between MSLt (inde-
pendent) and mean indicator value for moisture (Fm) 
(dependent) were fitted to each dataset, using the least 
square method. Because of the asymptotes, sigmoids 
were physically more correct than linear regression 
lines for the considered ranges of MSLs. Furthermore, 
sigmoids were statistically better (the correlation 
coefficient r between predicted vs observed values 

is generally 0.02 higher). Residuals of the sigmoid 
relationships were normally distributed and not af-
fected by the spatial configuration of the data.

Statistical differences between the shapes -in 
parts- of the empirical relationships based on dataset 
A, B and C were tested through an F-test (Motulsky 
& Christopoulos 2003). 

To quantify the mean error in the prediction of Fm 
and the differences in the mean error when relation-
ships are based on different periods t, cross-prediction 
was performed for MSL3 and MSLclimate data. For the 
cross-prediction, the relationships for t = 3 yr and t 
= climate from A, B and C were fed with MSL3 and 
MSLclimate values, respectively, of the other datasets 
and the root mean squared errors (RMSEs) of the 
predictions were calculated. The RMSE represents 
the mean error that is made in Fm across the range 
of MSLs. Additionally, the Pearson correlation coef-
ficients r between predicted and observed values of 
the cross-prediction were calculated. 

Empirical relationships between MSLt and Fm were 
also calculated for all datasets together (i.e. datasets 
A, B and C were merged) for an increasing number 
of contributing years t. The effect of t on the predic-
tive value of this empirical relationship was tested by 
determining the significance of differences between 
Pearson’s correlation coefficient r between predicted 
vs observed values for t = 1 to 18 yr (rt) vs rclimate 
using the method of Meng et al. (1992). This method 
compares two different correlation coefficients while 
taking account of dependencies between explanatory 
variables.

As multiple significance tests were executed 
on the same datasets, significant differences were 
corrected by False Discovery Rate (Benjamini & 
Hochberg 1995).

Results

The sigmoid relationship between Fm and MSL3 was 
significantly different for dataset B compared to the other 
two datasets (Fig. 2a, Table 1). At Fm = 2-3, for instance, 
sigmoids B and C deviate 20-30 cm. The 95% confidence 
intervals show, that especially in this sloped part of the 
sigmoids, the sigmoids were statistically different.

The differences between the relationships coincided 
with differences in meteorological conditions during the 
measurement period. The dry years before the vegetation 
record of dataset B (Fig. 1a) resulted in relatively low 
MSL3 values. Wetter conditions (as in dataset C) resulted 
in a shift of the sigmoid curve to the right, i.e. towards 
higher groundwater levels, although sigmoid C did not 
differ significantly from sigmoid A (Table 1).

Table 1. Results of F-tests to compare sigmoid regression lines 
between MSLt and Fm for t different periods. Significant differ-
ences (p < 0.05, corrected by False Discovery Rate; Benjamini 
& Hochberg 1995) are marked by *. Climate = 1970-2000.

 Comparison of datasets:
 A and B A and C B and C
t (yr) F p F p F p

1 9.79 3.77E-07* 1.12 0.350 5.85 3.09E-04*
2 9.27 8.44E-07* 1.01 0.403 6.50 1.20E-04*
3 4.91 9.00E-04* 0.87 0.486 5.84 3.13E-04*
4 0.97 0.426 1.21 0.306 3.00 0.023
5 1.17 0.328 1.09 0.363 3.79 0.007*
6 1.12 0.348 1.25 0.290 3.97 0.005*
7 1.17 0.328 2.10 0.083 4.07 0.004*
8 1.12 0.347 1.73 0.146 4.45 0.002*
9 0.91 0.462 1.72 0.148 4.72 0.002*
10 0.78 0.541 2.07 0.087 4.63 0.002*
11 0.91 0.458 1.94 0.105 4.94 0.001*
12 1.09 0.363 1.90 0.113 5.00 0.001*
13 0.97 0.426 2.02 0.093 4.80 0.001*
14 1.00 0.410 1.81 0.129 4.83 0.001*
15 0.89 0.472 1.55 0.190 4.53 0.002*
16 0.88 0.475 1.43 0.226 4.33 0.003*
17 0.98 0.422 1.36 0.248 4.34 0.003*
18 0.84 0.501 1.40 0.235 4.25 0.003*
19 - - - - 4.04 0.005*
20 - - - - 3.85 0.006*
21 - - - - 3.61 0.009*
22 - - - - 3.66 0.008*

Climate 0.65 0.628 1.43 0.226 1.96 0.107
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When considering a period of 4 years or more, the dif-
ference between sigmoids A and B became insignificant 
(Table 1). Again, this insignificant difference coincided 
with an insignificant difference in mean precipitation 
surplus from t = 4 years onwards (Fig. 1b). The very wet 
year of 1988 apparently compensated the dry period of 
1989-1991. The differences in both precipitation surplus 
and sigmoid B and C remained significant for all t’s ob-
served (Table 1, Fig. 1b). Only in the case of MSLclimate did 
the three regression lines coincide and the (visibly small) 
differences became insignificant (Fig. 2b, Table 1). 

The cross-prediction showed that only the RMSEs 
and the correlation coefficient r between predicted and 
observed values of cross-prediction of the MSL-data 
of dataset A on the regression lines of dataset C were 
not influenced by a different period t (Table 2). The 
decreases in RMSEs of the other cross-predictions of 
MSLclimate vs MSL3 were 20 to 30%. This indicates that 
data harmonization (Table 1) substantially decreased 
prediction errors.

The increasing resemblance of the regression lines 
was associated with the number of years contributing 
to MSL and with differences in precipitation surplus in 
the sampling year compared to the mean precipitation 
surplus. For the same reason, there was an increasing 
resemblance of data points with increasing t in the 
combined datasets A, B and C, reflected by increased 
values for the Pearson’s correlation coefficients r (Fig. 
3). Conversely, r1–r3 were significantly different from 
rclimate. A peak in r occurred in the period that the mete-
orological conditions for datasets A and B were similar 
(Fig. 1b): r4–r8 were not significantly different (p > 0.10) 
from rclimate. For t = 9-18 year, r fluctuated around 0.856 
(SD = 0.003). The small fluctuations in r and the low 
p-values (r9–r16: p < 0.05; r17–r18: p < 0.10) indicate that 
temporal deviations in meteorological conditions with 
respect to the climate conditions were still apparent in 
the defined relationship between MSL and Fm. 

The relationships between MSL and Fm, based on 
harmonized data as well as the combined datasets, are 
described in Table 3.

Table 2. Results of cross-prediction indicating the change in predictive error (RMSE) and the change in correlation coefficient be-
tween predicted and observed values (r) of Fm based on MSL-values calculated over t = 3 yr and over t = climate. Fm-values were 
predicted with the regression parameters of one dataset and the MSL-values of another dataset. Climate = 1970-2000.

   RMSE    r
MSL data regression line t = 3 years t = climate change % t = 3 years t = climate

A B 0.36 0.30 18.2 0.79 0.84
B A 0.29 0.21 26.3 0.89 0.91
A C 0.30 0.30 -0.6 0.85 0.85
C A 0.32 0.26 18.8 0.82 0.90
B C 0.36 0.24 34.9 0.86 0.91
C B 0.40 0.27 33.1 0.76 0.90

Table 3. Values for coefficients that describe the sigmoid regression lines between MSLt and Fm for t = 3 years and t = climate 
(1970-2000). ABC represents the combined datasets and ABC with t = climate represents the relationship between MSL and Fm 
based on harmonized data and the combined datasets. 

Sigmoid regression lines are described by:

Last column: r correlation coefficient between predicted and observed values. 

 t  a b c d r

A 3 years 1.29 2.32 0.26 3.39 0.85
 climate 1.21 2.39 0.29 3.17 0.85
B 3 years 2.09 1.57 2.41 5.00 0.91
 climate 1.73 2.06 1.01 2.96 0.91
C 3 years 1.75 1.82 0.81 5.43 0.90
 climate 1.18 2.67 0.62 2.84 0.83
ABC 3 years 1.41 2.23 0.44 3.25 0.84
 climate 1.19 2.51 0.36 2.84 0.87 
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Fig. 3. Pearson’s correlation coefficient r between observed 
and predicted values for relationships between MSLt and Fm 
as a function of t. Significant differences (corrected by False 
Discovery Rate; Benjamini & Hochberg 1995) between rt and 
rclimate (0.87) are indicated by * (p < 0.05) and † (p < 0.10). 

Discussion

Deriving relationships between environmental condi-
tions and vegetation

Our analysis clearly shows that abiotic variables, 
including meteorological conditions, may need to be 
measured for long periods to remove systematic differ-
ences between empirical relationships and thus to derive 
general relationships between environmental conditions 
and vegetation characteristics. Some of the relationships 
found in literature are only valid for specific meteorologi-
cal conditions, for instance after a number of very dry 
years and are thus not generally applicable. 

We showed that basing relationships on short time 
series of abiotic measurements resulted in biased rela-
tionships and that harmonization of abiotic data in time 
removed the bias and led to relationships that are gener-
ally applicable. Furthermore, we showed that merging 
data from different sources without harmonization of 
data in time, resulted in large variation and thus low 
goodness of fit of the defined relationships. This fact 
was already brought to attention by Witte & von Asmuth 
(2003), but it was only hypothetical until now. This paper 
confirms the hypotheses of Witte & von Asmuth (2003) 
that: (1) fitting a model through data from different 
datasets will yield a poor fit and (2) that describing the 
moisture indicator value of the vegetation as a function 
of the climatologically averaged MSL produces a higher 
explained variance. 

The relevés of dataset C were mainly confined to 
the dune area in the western and northern parts of The 
Netherlands. This confinement might have caused a 
systematically different relationship between MSL and 
Fm for datasets A and B. We checked if specific soil 
types (clay, loam, peat and sand) caused extra noise in 
the harmonized relationship. The RMSEs of relationships 
of each soil type were larger than the RMSE of all soil 
types together. This indicates that soil type did not cause 
systematic differences between the relationships. If soil 
type would have mattered, the three datasets would not 
have coincided when data were harmonized. 

The harmonization of data in time includes two im-
portant aspects: (1) definition of an appropriate estimator 
of abiotic conditions and (2) quantification of historical 
relationships between vegetation and abiotic conditions, 
reflected by a certain present-day vegetation characteristic. 
Both aspects have to be, and implicitly were, considered 
simultaneously to come to unbiased relationships. In this 
paper, we used simple arithmetic means to harmonize 
groundwater levels. At the same time, we are aware that 
the abiotic conditions of 30 years ago will only have a 
minor contribution to the actual species composition. 
We therefore think that harmonization based on time-
weighted means will increase the statistical significance 
of the relationships even more. Unfortunately, more proc-
ess based functions weighing the abiotic history of sites 
are presently unavailable. Nevertheless, our results show 
that a limited period of abiotic measurements should be 
avoided, as there is a fair chance that it biases the derived 
relationships (Table 1). Even the maximum measurement 
period of 22 years for dataset B was still too short to 
make the regression line coincide with dataset C.  Only 
a MSLclimate based on 30 years of measurements was suf-
ficient to create one uniform relationship. So, arithmetic 
means over long periods of time (up to 30 years) improved 
the robustness of the relationships. Presumably, if weighted 
means would have been used, the abiotic conditions of 
30 years ago would still have had a significant weight. 
This indicates that the mean vegetation composition of 
the relevés from each of the three datasets reflect the 
relationships between vegetation and abiotic conditions 
over a long period in the past and thus that generally the 
relevés have a large delayed response. If one of the three 
datasets would have been dominated by relevés with a 
small delayed response, the regression lines would never 
have coincided when considering the same period pre-
ceding the vegetation recordings for each comparison. 
We hypothesize that incorporation of formulations on 
the delayed response of functional species groups (like 
annual and perennial species), as a further refinement of 
deriving relationships between environmental conditions 
and vege tation, might result in an even higher predictive 
value of relationships. 
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Extrapolation to other relations between vegetation 
and abiotic conditions

As well as the relationship between soil moisture re-
gime, described by MSL, and vegetation characteristics, 
the problem outlined here also applies to relationships 
of vegetation characteristics to other soil parameters 
such as soil nitrogen content, soil phosphate content 
and soil pH or climatic variables such as temperature, 
that vary stochastically in time (Cain et al. 1999; Farley 
& Fitter 1999; Kieft et al. 1998). For three reasons, the 
time period to be considered for these relationships 
will be different from the one identified here. Firstly 
because each abiotic process has its own specific char-
acteristic time constant, which quantifies the long-term 
fluctuations of the entity (e.g. pH or concentration of 
soil chemical parameters). This characteristic time will 
vary from weeks to centuries, depending on the time 
scale of the dominant process (e.g. adsorption, erosion 
or precipitation surplus, as in this study). Secondly, the 
characteristic time of the vegetation is important. In this 
paper we used mean indicator value, a constant, which 
by definition has a large characteristic time as indicator 
values are representative for equilibrium conditions. 
Other vegetation characteristics, e.g. the formation of 
aerenchyma (also related to soil moisture conditions) or 
specific leaf area may have shorter time constants, since 
these also vary within species. Thirdly, the considered 
time period depends on the relationships between plant 
species and abiotic parameters. Particularly distur-
bances causing e.g. nutrient pulses through vegetation 
die-back (e.g. van Bodegom et al. 2006) and feedbacks, 
e.g. those controlling nutrient losses (e.g. Knops et al. 
2002), are important in this respect. 

All these factors are known qualitatively, but quan-
titative knowledge is lacking. This implies that the 
optimal period over which data have to be harmonized 
should be determined empirically. The data harmo-
nization procedure, outlined and exemplified in this 
paper, can be used for this in combination with exist-
ing process-based models on the abiotic conditions of 
consideration like nitrogen dynamics (e.g. Rastetter et 
al. 1997), available phosphorus (e.g. Grant & Heaney 
1997) or acidity (e.g. Wade et al. 1999). Through these 
models, error propagation, inherent to interpolation 
and extrapolation involved in data harmonization 
procedures, can be minimized. With time series of 
abiotic conditions thus derived, an analysis similar 
as to ours can be used to obtain generally applicable 
relationships.

Conclusion

Single and short term field measurements of abiotic 
conditions are likely to deviate from the mean conditions 
reflected by vegetation characteristics. Without data 
harmonization, relationships among these variables are 
only valid for environmental conditions resembling those 
during the collection of field data. Application to other 
conditions leads to systematic prediction errors and is 
dissuaded. This problem can be overcome by harmoniza-
tion of abiotic data in time as this (1) eliminates biased 
measurements, (2) results in general applicable relation-
ships between abiotic and vegetation characteristics and 
(3) increases the goodness of fit of these relationships. 
The presented harmonization procedure can be used to 
optimize many relationships between abiotic conditions 
and vegetation characteristics by generating time series 
through process-based models.
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