
The Annals of Statistics
2008, Vol. 36, No. 3, 1435–1463
DOI: 10.1214/009053607000000613
© Institute of Mathematical Statistics, 2008

RATES OF CONTRACTION OF POSTERIOR DISTRIBUTIONS
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Vrije Universiteit Amsterdam

We derive rates of contraction of posterior distributions on nonparamet-
ric or semiparametric models based on Gaussian processes. The rate of con-
traction is shown to depend on the position of the true parameter relative to
the reproducing kernel Hilbert space of the Gaussian process and the small
ball probabilities of the Gaussian process. We determine these quantities for a
range of examples of Gaussian priors and in several statistical settings. For in-
stance, we consider the rate of contraction of the posterior distribution based
on sampling from a smooth density model when the prior models the log
density as a (fractionally integrated) Brownian motion. We also consider re-
gression with Gaussian errors and smooth classification under a logistic or
probit link function combined with various priors.

1. Introduction. Gaussian processes have been adopted as building blocks
for constructing prior distributions on infinite-dimensional statistical models in
several settings. For instance, in the setting of nonparametric density estimation,
a prior distribution on a collection of probability densities (relative to a measure ν)
can be defined structurally as the random density

eWx∫
eWx dν(x)

,(1.1)

where (Wx :x ∈ X) is a Gaussian process indexed by the sample space X of the
observations. The Gaussian process is exponentiated to force the prior to charge
only nonnegative functions, and is next renormalized to integrate to unity. Several
other constructions have also been considered in the literature, for density estima-
tion as well as other statistical problems; see Section 3 and [4, 5, 9, 12, 15, 19–22,
26, 29, 34]. The book [27] makes a connection to machine learning and the website
http://www.gaussianprocess.org lists additional references.

Given a prior and observations, Bayes’ rule yields a posterior distribution on
the parameter space. In the frequentist set-up, in which the data are sampled from
a fixed “true” distribution and the amount of information in the data increases
indefinitely, the corresponding posterior distributions often contract to the fixed
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true distribution, which is referred to as posterior consistency. In this paper, we
study the rate of contraction of the posterior distribution relative to global metrics
on the parameters.

In most cases, the Gaussian process can be viewed as a tight Borel measurable
map in a Banach space, for instance, a space of continuous functions or an Lp-
space. It is well known that the support of a centered (i.e., zero-mean) version of
such a process (the smallest closed set having probability one under the induced
measure) is equal to the closure of the reproducing kernel Hilbert space (RKHS) of
the covariance kernel of the process. Because the posterior distribution necessarily
puts all of its mass on the support of the prior, it follows that consistency can be
valid only if the parameter w0 defining the true distribution of the data belongs to
this support. In the present paper, we prove that the rate of contraction in that case
is expressible in terms of the function

φw0(ε) = inf
h∈H:‖h−w0‖<ε

‖h‖2
H

− log Pr(‖W‖ < ε).(1.2)

In this expression, ‖ · ‖ is the norm of the Banach space in which the Gaussian
process W takes its values, H is the reproducing kernel Hilbert space of the process
and ‖ · ‖H the RKHS-norm. If the norm ‖ · ‖ on the sample space of the process
“combines correctly” with the norm on the parameter space and n describes the
informativeness of the data in the usual way, then the posterior contracts at the rate
εn → 0, satisfying

φw0(εn) ≤ nε2
n.(1.3)

This is the case, for instance, in density estimation on the unit interval with the
log Gaussian process prior given in (1.1) and ‖ · ‖ the uniform norm given by
‖w‖ = sup{|w(x)| :x ∈ X}. This is also the case for regression and classification,
with appropriate norms, as shown below. The rate of contraction εn thus depends
on the position of the true parameter w0 relative to the RKHS and the amount of
mass Pr(‖W‖ < ε) that the prior distribution puts in small balls around zero. In
Section 4, we compute these quantities for a range of priors.

For instance, we prove that log Gaussian densities given in (1.1), combined with
Brownian motion, yield a rate of contraction of n−1/4 whenever the logarithm of
the true density is α-smooth for some α ≥ 1/2 and yield the slower rate n−α/2

for 0 < α ≤ 1/2. That higher smoothness (α large) does not improve the rate of
contraction is disappointing, but perhaps not surprising, given that the Brownian
paths themselves are 1/2-smooth: the data are not capable of smoothing out the
prior roughness of the sample paths. Other, more smooth, Gaussian priors give bet-
ter rates for smooth truths (depending on their RKHS), but worse rates for rough
truths. In Section 4, we exhibit, for every possible smoothness level α, Gaussian
priors that give the optimal rate of contraction if the true parameter possesses reg-
ularity α.
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The function φw0 displayed in (1.2) may seem complicated at first. In fact, it
can be handled for many examples. In particular, the probability Pr(‖W‖ < ε) =
e−φ0(ε) is known as the small ball probability for ε ↓ 0 and has been studied
in many papers in the probability literature (see [24] or the extensive bibliogra-
phy compiled by M. Lifshits on http://www.proba.jussieu.fr/pageperso/smalldev/
biblio.pdf). In Section 4, we discuss a number of examples. The centered small
ball probability exponent φ0(ε) puts a limit on the rate of contraction that depends
only on the prior, while the decentered small ball probability shows how this rate
might deteriorate by the positioning of the true parameter w0 relative to the support
of the prior.

The paper is organized as follows. In Section 2, we recall the definition of the
RKHS of a Gaussian process and state theorems on the concentration of Gaussian
processes that are the basis of the remainder of the paper. In Section 3, we state our
main results on posterior concentration for a number of statistical settings. Next,
in Section 4, we discuss a number of special Gaussian processes and derive the
rates of posterior contraction corresponding to true parameters of various regular-
ity levels. Section 5 contains the proofs.

The notation � is used for “smaller than or equal to a universal constant times”
and � means “proportional up to constants.” We let ‖ · ‖p,ν denote the norm of
Lp(ν), the space of measurable functions with ν-integrable pth absolute power.
Furthermore, h(f, g) = ‖√f − √

g‖2,ν is the Hellinger distance, K(f,g) the
Kullback–Leibler divergence, and V (f,g) = ∫

(log(f/g))2f dν. If the dominat-
ing measure ν is Lebesgue measure, then it may be omitted in the notation. The
notation C[0,1] is used for the space of continuous functions f : [0,1] → R en-
dowed with the uniform norm and, for β > 0, we let Cβ[0,1] denote the Hölder
space of order β , consisting of the functions f ∈ C[0,1] that have β continuous
derivatives for β the biggest integer strictly smaller than β with the βth deriva-

tive f (β) being Lipshitz continuous of order β − β . Finally, Hk[0,1] denotes the
Sobolev space of functions f : [0,1] → R that are k − 1 times continuously dif-
ferentiable with absolutely continuous (k − 1)th derivative that is the integral of a
function f (k) ∈ L2[0,1] and �∞(X) is the space of bounded functions z :X → R

with the uniform norm ‖z‖X = sup{|z(x)| :x ∈ X} (also written as ‖z‖∞).

2. Gaussian priors. In this section, we first recall the definition of the RKHS
and next formulate results on the support of Gaussian processes which will be
basic to the results on rates of posterior contraction in the next section. The proofs
of the results in this section are deferred to Section 5. Relevant results on RKHS
are scattered throughout the literature. Van der Vaart and Van Zanten [30] reviews
facts that are relevant to the present applications.

The definition of an RKHS that is most appropriate for the results in this paper
concerns Gaussian random elements seen as Borel measurable maps in a Banach
space. A Borel measurable random element W with values in a separable Banach

http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf
http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf
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space (B,‖ · ‖) is called Gaussian if the random variable b∗W is normally dis-
tributed for any element b∗ of the dual space B

∗ of B and it is called zero-mean
if the mean of every such variable b∗W is zero. The reproducing kernel Hilbert
space (RKHS) H attached to W is the completion of the range SB

∗ of the map
S : B∗ → B defined by

Sb∗ = EWb∗(W), b∗ ∈ B
∗,

for the inner product

〈Sb∗
1, Sb∗

2〉H = Eb∗
1(W)b∗

2(W).

The element Sb∗ ∈ B is the Pettis integral of the B-valued random element
Wb∗(W)—an element of B such that b∗

2(Sb∗) = Eb∗
2(W)b∗(W) for every b∗

2 ∈ B
∗

(cf. [18], page 42). It can be shown the RKHS-norm on the set SB
∗ is stronger

than the original norm, so the RKHS H, the completion of the set SB
∗ under the

RKHS-norm, can be identified with a subset of B.
A zero-mean Gaussian stochastic process W = (Wt : t ∈ T ) defined on some

probability space (�,U,Pr) and indexed by an arbitrary set T with bounded sam-
ple paths t �→ Wt can be viewed as a map into the Banach space �∞(T ). If it is
Borel measurable and has separable range, then its RKHS is defined above. It can
be shown (e.g., [30]) that this RKHS can be identified with the completion of the
set of maps

t �→ ∑
i

αiK(si, t) = EWtH, H = ∑
i

αiWsi ,(2.1)

under the inner product

〈EW·H1,EW·H2〉H = EH1H2.

Here, K(s, t) = EWsWt is the covariance function of the process and H ranges
over all finite linear combinations. This completion is precisely the set of functions
t �→ EWtH with H ranging over the closure of the set of linear combinations
H = ∑

i αiWsi in L2(�,U,Pr).
For ε > 0, let N(ε,B,d) denote the minimum number of balls of radius ε

needed to cover a subset B of a metric space with metric d (cf. [31]).

THEOREM 2.1. Let W be a Borel measurable, zero-mean Gaussian random
element in a separable Banach space (B,‖ · ‖) with RKHS (H,‖ · ‖H) and let w0
be contained in the closure of H in B. For any numbers εn > 0 satisfying (1.3) for
φw0 given by (1.2), and any C > 1 with e−Cnε2

n < 1/2, there exists a measurable
set Bn ⊂ B such that

logN(3εn,Bn,‖ · ‖) ≤ 6Cnε2
n,(2.2)

Pr(W /∈ Bn) ≤ e−Cnε2
n,(2.3)

Pr(‖W − w0‖ < 2εn) ≥ e−nε2
n .(2.4)
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The three assertions of this theorem can be matched one-to-one with the as-
sumptions of general results on rates of posterior contraction (e.g., Theorem 2.1
of [8]), except that the assertions here use the norm of the Banach space, whereas
the conditions for the posterior rates are in terms of metrics or discrepancies ap-
propriate to the statistical problem under consideration. The rate of contraction εn

is obtained as soon as the latter metrics are comparable to the norm. This is shown
to be the case for various statistical settings in the next section.

The preceding theorem is meant to be used as an asymptotic result as n → ∞,
but is, in fact, a statement for every fixed n. The Gaussian process W and the
“true” parameter w0 may therefore also be taken to be dependent on n, as long as
the corresponding RKHS and function φwn are also taken to be dependent on n.

In the context of sequences of Gaussian processes that approximate a fixed
process, such as truncated Fourier series, working with a sequence of concentration
functions would be unnecessarily cumbersome. We have the following refinement,
which shows that we can use the concentration function of the limit process in
such cases.

THEOREM 2.2. Let Wn be Borel measurable, zero-mean, jointly Gaussian
random elements in a separable Banach space (B,‖ · ‖) such that 10E‖Wn −
W‖2 ≤ 1/n for a Gaussian process W . Let (H,‖ · ‖H) be the RKHS of W and
assume that w0 is contained in the closure of H in B. For any numbers εn > 0
satisfying nε2

n ≥ 4 log 4 and (1.3) with φw0 given by (1.2), and any C > 4 with

e−Cnε2
n < 1/2, there exists a measurable set Bn ⊂ B such that (2.2), (2.3) and

(2.4) hold with W replaced by Wn and εn replaced by 2εn.

The sum W = ∑
i W

i of finitely many independent Gaussian processes Wi is
itself a Gaussian process. It appears that it is not always easy to obtain its RKHS
from the RKHS’s of the components Wi . However, the concentration function of
W can easily be obtained from the concentration functions of the components.

THEOREM 2.3. Let W = ∑
i∈I W i be the sum of finitely many independent

Borel measurable, zero-mean Gaussian random elements in a separable Banach
space (B,‖ · ‖) with concentration functions φi

wi for given wi ∈ B. Then, the con-

centration function φw of W around w = ∑
i∈I wi satisfies

φw(ε|I |) ≤ 2
∑
i∈I

φi
wi (ε/2).

The theorem applies, in particular, to a sum V + W where W possesses the
desired properties (2.2), (2.3) and (2.4) and V is more concentrated at zero than
W , in the sense that Pr(‖V ‖ ≤ ε) ≥ Pr(‖W‖ ≤ ε) for every ε > 0. The theorem
with W 1 = V , w1 = 0 and W 2 = W shows that V will not destroy good properties
of W in that case.
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It is natural to scale a Gaussian process so that its fluctuations are of the same
order of magnitude as the fluctuations thought to exist in the true parameter w0.
Lacking sufficient prior insight regarding w0, one might use a hierarchical prior of
the form AW , where the scale parameter A is chosen from some distribution on
(0,∞), independent of the Gaussian process W . The preceding results extend to
this prior if the support of the prior for A is bounded above. (The rate deteriorates
if the scale parameter is not bounded away from infinity. We do not discuss this
case here.)

THEOREM 2.4. Let W be a Borel measurable, zero-mean Gaussian random
element in a separable Banach space (B,‖ ·‖) independent of the random variable
A that takes its values in an interval (0,K] ⊂ (0,∞). Let w0 be contained in
the closure of the RKHS H of W in B. Let k < 1 < K . For any numbers εn > 0
satisfying (1.3) for φw0 given by (1.2), and any C > 1 with e−Cnε2

n < 1/2, there
exists a measurable set Bn ⊂ B such that

logN(3Kεn,Bn,‖ · ‖) ≤ 6Cnε2
n,(2.5)

Pr(AW /∈ Bn) ≤ e−Cnε2
n,(2.6)

Pr(‖AW − w0‖ < 2Kεn) ≥ Pr(A ≥ k)e−nε2
n/k2

.(2.7)

3. Main results on posterior contraction. Gaussian processes can be used as
building blocks for constructing priors on function spaces in various ways and in
several statistical settings. In order for our general approach to apply, appropriate
metrics on the set of distributions of the observations must correspond to the norm
of the Banach space in which the Gaussian process takes its values. In this section,
we describe several cases where this desirable situation is achieved. These are
motivated by implementations in the literature and do not form an exhaustive set.

3.1. Density estimation. Suppose that we observe an i.i.d. sample X1, . . . ,Xn

from a density p0 relative to a measure ν on a measurable space (X,A). Con-
sider a prior distribution on the set of ν-densities defined structurally as pW for a
Gaussian process W and, for pw , the function defined by

pw(x) = ewx∫
X ewy dν(y)

.

(The notation p0 now denotes both the true density and the density pw with w =
0.) Implementations of this prior were considered in [19, 20, 22] addressing, for
instance, the computation of the posterior mean.

Assume that W has bounded sample paths and can be viewed as a Borel mea-
surable map in the space �∞(X) of bounded functions z : X → R equipped with
the uniform norm. The following theorem shows that the rate of contraction for log
Gaussian prior densities is determined exactly as in (1.2)–(1.3), with w0 = logp0.
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THEOREM 3.1. Let W be a Borel measurable, zero-mean, tight Gaussian
random element in �∞(X). Suppose that w0 = logp0 is contained in the sup-
port of W and let φw0 be the function in (1.2) with ‖ · ‖ the uniform norm
on �∞(X). Then, the posterior distribution relative to the prior pW satisfies
E0	n(pw :h(pw,p0) > Mεn|X1, . . . ,Xn) → 0 for any sufficiently large constant
M and εn given by (1.3).

PROOF. The proof of the theorem is based on Theorem 2.1 of [8] and a com-
parison of the Hellinger and Kullback–Leibler distances between log Gaussian
prior densities to the uniform distance on the Gaussian process, as in the lemma
below.

We choose the set Pn of [8] equal to {pw :w ∈ Bn}, where Bn ⊂ �∞(X) is the
measurable set as in Theorem 2.1, with C a large constant. In view of the first
inequality of Lemma 3.1, for sufficiently large n, the 4εn-entropy of Pn relative to
the Hellinger distance is bounded above by the 3εn-entropy of the set Bn relative to
the uniform distance, which is bounded by 6Cnε2

n, by Theorem 2.1. This verifies
(2.2) of [8]. The prior probability 	(P c

n ) outside the set Pn, as in (2.3) of [8], is

bounded by the probability of the event {W /∈ Bn}, which is bounded by e−Cnε2
n , by

Theorem 2.1. Finally, by the second and third inequalities of Lemma 3.1, the prior
probability as in (2.4) of [8], but with εn replaced by a multiple of εn, is bounded
below by the probability of the event {‖W − w0‖∞ < 2εn}, which is bounded
below by e−nε2

n , by Theorem 2.1. �

LEMMA 3.1. For any measurable functions v,w :X → R, we have the fol-
lowing:

• h(pv,pw) ≤ ‖v − w‖∞e‖v−w‖∞/2;
• K(pv,pw) � ‖v − w‖2∞e‖v−w‖∞(1 + ‖v − w‖∞);
• V (pv,pw) � ‖v − w‖2∞e‖v−w‖∞(1 + ‖v − w‖∞)2.

PROOF. The triangle inequality and simple algebra give

h(pv,pw) =
∥∥∥∥ ev/2

‖ev/2‖2
− ew/2

‖ew/2‖2

∥∥∥∥
2
≤ 2

‖ev/2 − ew/2‖2

‖ew/2‖2
.

Because |ev/2 − ew/2| = ew/2|ev/2−w/2 − 1| ≤ ew/2e|v−w|/2|v − w|/2 for any
v,w ∈ R, the square of the right-hand side is bounded by∫

ewe|v−w||v − w|2 dν∫
ew dν

≤ e‖v−w‖∞‖v − w‖2∞.

This proves the first assertion of the lemma. We derive the other assertions from
the first using the equivalence of K , V and the Hellinger distance if the quotient of
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the densities is uniformly bounded. Because w−‖v −w‖∞ ≤ v ≤ w+‖v −w‖∞,
we have ∫

ew dν e−‖v−w‖∞ ≤
∫

ev dν ≤
∫

ew dν e‖v−w‖∞ .

Taking logarithms, we see that −‖v − w‖∞ ≤ log(
∫

ev dν/
∫

ew dν) ≤ ‖v − w‖∞.
Therefore, ∥∥∥∥log

pv

pw

∥∥∥∥∞
=

∥∥∥∥v − w − log

∫
ev dν∫
ew dν

∥∥∥∥∞
≤ 2‖v − w‖∞.

The second and third inequalities now follow from the first by Lemma 8 of [10].
�

3.2. Classification. Suppose that we observe a random sample of vectors
(X1, Y1), . . . , (Xn,Yn) from the distribution of (X,Y ), where Y takes its values
in the set {0,1} and X takes its values in some measurable space (X,A). Con-
sider estimating the binary regression function f0(x) = Pr(Y = 1|X = x). Given a
fixed, measurable function 
 :X → (0,1), we may construct a prior on the set of
regression functions as fW for a Gaussian process W = (Wx :x ∈ X) and fw the
function

fw(x) = 
(wx).

Here, wx denotes the value at x of a function w :X → R. The likelihood for (X,Y )

factorizes as

pw(x, y) = fw(x)y
(
1 − fw(x)

)1−y
g(x),

that is, into the conditional likelihood of Y given X and the marginal likelihood g

for X. As this causes the marginal density g to cancel from the posterior distribu-
tion for fw , it is not necessary to put a prior on g. We can set the distribution of X

equal to the “true” distribution G into all of the following and incorporate it into
the dominating measure ν so that the factor g can be omitted from the likelihood.
We assume that f0 is never zero and then, with some abuse of notation, can define
w0 by the equation f0 = 
(w0).

The link function 
 is assumed to be a known differentiable function with
bounded derivative ψ . Link functions that lead to agreement between the metrics
on the set of densities pw and the L2-metric on the set of functions w are especially
attractive in the present context. The logistic link function qualifies in this respect.
More generally, there is perfect agreement whenever the function ψ/(
(1 − 
))

is uniformly bounded.
Implementations of this model are described in [19, 20, 27, 34]. The first three

follow [1] in defining latent variables and setting up an MCMC scheme. For pro-
bit regression, the latent variable is a single Gaussian variable Zi which models
Yi = 1Zi>0 and, given Xi = x, possesses mean wx and variance 1. Logistic or
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other link functions are approximated by scale mixtures of Gaussian links, with an
additional latent scale variable. [27] proposes to compute an approximation to the
posterior distribution, either of Laplace form or by an algorithm termed “expecta-
tion propagation,” both applicable to general priors.

THEOREM 3.2. (i) Suppose that the function ψ/(
(1 − 
)) is bounded. Let
W be a Borel measurable, zero-mean, tight Gaussian random element in L2(G).
Suppose that w0 = 
−1(f0) is contained in the support of W and let φw0 be the
function in (1.2) with ‖·‖ the L2(G)-norm. Then, the posterior distribution relative
to the prior pW satisfies E0	n(w : ‖pw −p0‖G,2 > Mεn|X1, Y1, . . . ,Xn,Yn) → 0
for any sufficiently large constant M and εn given by (1.3).

(ii) Suppose that the function w0 = 
−1(f0) is bounded. Let W be a Borel
measurable, zero-mean, tight Gaussian random element in �∞(X). Suppose that
w0 is contained in the support of W and let φw0 be the function in (1.2) with ‖ · ‖
the uniform norm. The same conclusion is then true.

PROOF. This follows from combining Theorem 2.1 of [8] and Theorem 2.1 of
the present paper, in the same fashion as Theorem 3.1 was proved by combining
these two results. The details are as follows.

(i) Because the densities pw are uniformly bounded, the L2-norm on the set of
densities is bounded above by a multiple of the Hellinger distance. Thus, we can
apply Theorem 2.1 of [8] with d equal to the L2(G)-norm. The square L2(G)-
norm and the Kullback–Leibler quantities K and V on the densities pw are all
bounded above by multiples of the square L2(G)-norm on the functions w, by
Lemma 3.2 below. Therefore, Theorem 2.1, with ‖ · ‖ the L2(G)-norm, allows us
to bound the quantities in Theorem 2.1 of [8].

(ii) If the function w0 = 
−1(f0) is bounded, then so are the functions in a
uniform neighborhood of it and so is the function ψ/(
(1 − 
)) on the relevant
domain. The proof can next be completed as before. �

The theorem can be extended to link functions with an unbounded function
ψ/(
(1 − 
)), even if the function w0 = 
−1(f0) is unbounded, by using appro-
priate norms on the Gaussian process. For instance, the probit link function can
be treated as soon as the function w0 = 
−1(f0) is contained in L4(G), with a
combination of the L2((w

2
0 ∨ 1) · G) and L4(G)-norms on the Gaussian process.

This can be proven in the same way as the preceding theorem, using Lemma 3.2
below.

For general link functions, the relationship between the appropriate norms on
the densities and the norm on the Gaussian process is moderated by the function
S : R2 → R given by

S(w,w0) = sup
v:v∈[w,w0]∪[w0,w]

∣∣∣∣ ψ


(1 − 
)
(v)

∣∣∣∣ ∨ 1.



1444 A. W. VAN DER VAART AND J. H. VAN ZANTEN

LEMMA 3.2. If 
 possesses a bounded derivative ψ , then, for any measurable
functions v,w :X → R and any r > 1, we have the following:

• ‖pv − pw‖r = 21/r‖
(v) − 
(w)‖r,G ≤ 21/r‖ψ‖∞‖v − w‖r,G;
• K(pw,pw0) ≤ ‖(w − w0)

√
S(w,w0)‖2

2,G;
• V (pw,pw0) ≤ ‖(w − w0)S(w,w0)‖2

2,G.

For 
 the distribution function of the logistic distribution, the function S is uni-
formly bounded. For 
 the distribution of the normal distribution, K(pw,pw0)

and V (pw,pw0) are bounded above by a multiple of ‖w−w0‖2
2,G0

+‖w−w0‖4
G,4

where G0 is the measure defined by dG0 = (w2
0 ∨ 1) dG.

PROOF. The first assertion follows immediately from the fact that |pv(x,0) −
pw(x,0)| = |pv(x,1) − pw(x,1)| = |
(vx) − 
(wx)| for any x. For the second
inequality, we consider, for fixed w0 ∈ R, the function gw0 : R → R given by

gw0(w) = 
(w0) log

(w0)


(w)
+ (

1 − 
(w0)
)

log
1 − 
(w0)

1 − 
(w)
.

The derivative of this function is g′
w0

(w) = (ψ/
(1 − 
))(w)(
(w) − 
(w0)).
In view of the definition of S and Taylor’s theorem, it follows that |g′

w0
(w)| ≤

S(w,w0)(w − w0)
2. The second assertion is then clear from the fact that

K(pw,pw0) = ∫
gw0(w)dG.

For the third inequality, we note that, by Taylor’s theorem,∣∣∣∣log

(w)


(w0)

∣∣∣∣ ∨
∣∣∣∣log

1 − 
(w)

1 − 
(w0)

∣∣∣∣ ≤ S(w,w0)|w − w0|.
Since V (pw,pw0) is a weighted integral of the squares of the quantities on the
left-hand side, the third inequality follows.

For 
 the logistic distribution function, the function ψ/(
(1 − 
)) is eas-
ily seen to be bounded. The normal distribution function 
 satisfies ψ/(
(1 −

))(x) � x as x → ±∞ and is hence bounded by a multiple of |x| ∨ 1. It fol-
lows that |S(w,w0)| ≤ (|w0| + |w0 − w|) ∨ 1. Substituting this into the bounds on
K(pw,pw0) and V (pw,pw0) readily yields the last assertion of the lemma. �

3.3. Regression with fixed covariates. Suppose that we observe independent
variables Y1, . . . , Yn following the regression model Yi = w0(xi) + ei for unob-
servable N(0, σ 2

0 )-distributed errors ei and fixed, known elements x1, . . . , xn of a
set X. Consider estimating the regression function w0.

As a prior on w, we use a Gaussian process (Wx :x ∈ X). As this is conjugate,
implementation is straightforward (see, e.g., [27], Chapter 2). If the standard de-
viation σ of e is not known, then we may also put a prior on σ , which we assume
to be supported on a given interval [a, b] ⊂ (0,∞) with a Lebesgue density that
is bounded away from zero. Unfortunately, the popular inverse Gamma prior does
not satisfy the latter condition.
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The natural semimetric for this problem is the L2(P
x
n)-norm for the empirical

measure P
x
n = n−1 ∑n

i=1 δxi
of the design variables. For fixed n, the Gaussian sto-

chastic process (Wx :x ∈ X) is important at the design points only and must be
viewed as a Borel measurable map in the Banach space L2(P

x
n). As this varies

with n, it is more convenient to view it as a map in the space �∞(X) of bounded
functions on X, whose norm is stronger than any of the L2(P

x
n)-norms.

THEOREM 3.3. Let W be a zero-mean, tight Gaussian random element in
�∞(X) and suppose that w0 is contained in the support of W . Furthermore, let
S be a random variable with values in an interval [a, b] ⊂ (0,∞) that contains
σ0. Let φw0 be the function in (1.2) with ‖ · ‖ the supremum norm on �∞(X).
Then, the posterior distribution satisfies E0	n((w,σ) :‖w − w0‖n + |σ − σ0| >

Mεn|Y1, . . . , Yn) → 0 for any sufficiently large constant M and εn given by (1.3).

PROOF. Let ‖ · ‖n be the L2(P
x
n)-norm. For the case where the prior on σ is

degenerate at the true value, it is shown in [11] that the rate of posterior contraction
is faster than εn, for which there exist sets Wn satisfying

logN(εn,Wn,‖ · ‖n) ≤ nε2
n,

	n(W
c
n) ≤ e−2nε2

n,

	n(w :‖w − w0‖n ≤ εn) ≥ e−nε2
n .

This result is based on comparisons of the Kullback–Leibler divergence and vari-
ance to the square of the norm ‖ · ‖n, and the construction of tests. It can be ex-
tended to the present case of an unknown scale that is bounded away from zero
and infinity. The theorem then follows from Theorem 2.1. �

3.4. White noise model. Suppose that we observe a sample path of the stochas-
tic process X(n) = (X

(n)
t : 0 ≤ t ≤ 1), defined structurally as, for a given function

w0 ∈ L2[0,1],
X

(n)
t =

∫ t

0
w0(s) ds + 1√

n
Bt ,

for a standard Brownian motion B . Consider estimating the function w0. More
formally, the statistical experiment consists of the set of induced distributions of
the process X(n) on the Borel σ -field of the space C[0,1] of continuous functions
equipped with the uniform norm, as the parameter w varies over a given subset of
L2[0,1].

Consider the prior on the model obtained by modeling the parameter w as the
sample path of a Gaussian process W with values in the space L2[0,1]. As this is
conjugate, the practical implementation is straightforward.

It is immediate from combining the preceding proposition with Theorem 2.1
that the rate of posterior contraction is determined by equations (1.2)–(1.3).
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THEOREM 3.4. Let W be a zero-mean, tight Gaussian random element in
L2[0,1] and suppose that w0 is contained in the support of W . Let φw0 be the
function in (1.2) with ‖ · ‖ the L2[0,1]-norm. Then, the posterior distribution sat-
isfies E0	n(w :‖w − w0‖2 > Mεn|X(n)) → 0 for any sufficiently large constant
M and εn given by (1.3).

4. Examples of Gaussian priors. In this section, we give a number of exam-
ples of Gaussian process priors and compute their concentration functions (1.2) for
“true parameters” of interest. We are especially interested in exhibiting processes
that give the “correct” rates for true parameters of varying smoothness.

4.1. Brownian motion and its primitives. For modeling functions on the one-
dimensional unit interval, Brownian motion is a good starting point. It can be
viewed as a map into the space C[0,1], but also as a map in Lr [0,1]. This does
not affect its RKHS and small ball probabilities, which are both well known. The
RKHS of Brownian motion is the collection of absolutely continuous functions
w : [0,1] → R with w(0) = 0 and

∫
w′(t)2 dt < ∞ with RKHS-norm ‖w‖H =

‖w′‖2. The small ball probabilities of Brownian motion satisfy (cf. [24]), as ε ↓ 0,
for any r ∈ [1,∞],

− log Pr(‖W‖r < ε) �
(

1

ε

)2

.

The support of Brownian motion in C[0,1] is the set of all functions with w(0) =
0. Interestingly, the support as a map in Lr [0,1], for r < ∞, is the full space
Lr [0,1].

The sample paths of Brownian motion are tied down to 0 at 0 and this, of
course, remains the case for the functions in its RKHS. This can be relaxed by
starting the process at an independent standard normal variable. The RKHS of
“Brownian motion started at random” is the space of functions w : [0,1] → R with∫

w′(t)2 dt < ∞ and with square RKHS-norm ‖w‖2
H

= w(0)2 + ‖w′‖2
2.

The small probability leads, by way of (1.3), to the restriction ε−2
n ≤ nε2

n, equiv-
alently εn ≥ n−1/4, on the rate of contraction.

The concentration function (1.2) further depends on the position of the true
parameter w0 relative to the RKHS. We may compute this contribution by ap-
proximation of w0 through a kernel smoother. For φσ (x) = σ−1φ(x/σ) a smooth
kernel, the convolution w0 ∗ φσ is contained in the RKHS and has uniform dis-
tance of the order σβ (as σ → 0) to a function w0 ∈ Cβ[0,1] that is Lipschitz of
the order β ∈ (0,1] and has square RKHS-norm w0 ∗ φσ (0)2 + ‖(w0 ∗ φσ )′‖2

2 of
the order σ−(2−2β) (see below). The choice σ � ε1/β readily yields that

inf{‖h′‖2
2 :‖h − w0‖∞ < ε} � ε−(2−2β)/β .

The concentration function (1.2) is the sum of this and the small ball exponent
(1/ε)2. For β ≥ 1/2, the contribution of the small ball probability to the con-
centration function (1.2) dominates and the rate of contraction εn is n−1/4. For
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β ∈ (0,1/2), the contribution as in the preceding display dominates and will yield
a rate not faster than n−β/2. In particular, higher smoothness of the true parameter
w0 does not lead to a higher rate of contraction than n−1/4 for β > 1/2.

For this reason, or by intuition, Brownian motion may be considered to be too
rough as a prior. Integrating the sample paths one or more times will remedy this
and will give Gaussian priors of smoothness 3/2,5/2, . . . . To fill the gaps be-
tweens these numbers, we consider, more generally, fractional integrals and frac-
tional Brownian motion in the next sections. For ordinary integrals, the result is
simpler and as follows.

Define I 1
0+f as the function t �→ ∫ t

0 f (s) ds and I k
0+f as I 1

0+(I k−1
0+ f ).

THEOREM 4.1. Let W be a standard Brownian motion and Z0, . . . ,Zk in-
dependent standard normal random variables. The RKHS of the process t �→
I k

0+Wt + ∑k
i=0 Zit

i/i! is the Sobolev space Hk+1[0,1] with square norm ‖h‖2
H

=
‖h(k+1)‖2

2 + ∑k
i=0 h(i)(0)2. The concentration function of this process viewed as

a map in C[0,1] for an element w ∈ Cβ[0,1] for β ≤ k + 1/2 satisfies φw(ε) =
O(ε−(2k−2β+2)/β) as ε ↓ 0.

PROOF. That the RKHS takes the present form is well known. See, for in-
stance, [30] for a self-contained proof.

The concentration function of I k
0+W around zero satisfies φ0(ε) � ε−1/(k+1/2)

as ε → 0 by Theorem 2.1 of [23]. The concentration function of the process t �→∑k
i=0 Zit

k is of the order log(1/ε) and hence is much smaller. Thus, the concen-
tration function of I k

0+W + ∑k
i=0 Zit

i/i! around zero is of the order ε−1/(k+1/2).
To compute the concentration function around a function w ∈ Cβ[0,1], we

utilize convolutions w ∗ φσ with a smooth higher-order kernel φσ with scale
σ . As in kernel density estimation, the uniform distance between w ∗ φσ and
w is of the order σβ . The functions w ∗ φσ belong to the RKHS. By writing

(w ∗ φσ )(l) = w(β) ∗ φ
(l−β)
σ for β the largest integer smaller than β , we see that

‖(w ∗ φσ )(l)‖∞ is bounded above by σ−(l−β) if w ∈ Cβ[0,1] and l ≥ β and hence
that the RKHS-norm of w∗φσ is of the order σ−(2k−2β+2) if w ∈ Cβ[0,1]. Setting
σ � ε1/β , we see that

‖w ∗ φσ − w‖∞ � ε, ‖w ∗ φσ‖2
H

� ε−(2k−2β+2)/β .

Thus, the approximation part of φw(ε) is of the order ε−(2k−2β+2)/β . For β ≤
k + 1/2, this dominates the part ε−1/(k+1/2) resulting from the centered small ball
probability. �

For β = k + 1/2, the concentration function, in the preceding theorem becomes
φw(ε) = ε−1/β . For this function, inequality (1.3) is solved by

εn � n−β/(2β+1).
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This is the minimax rate for estimating a function that is known to be β-regular
in various nonparametric models. Combination of the preceding theorem with the
results on posterior contraction shows that the Gaussian prior in this case yields the
optimal rate of convergence. For β �= k+1/2, the Gaussian prior gives consistency
with a rate, but the minimax rate is not achieved. This corresponds to an under- or
over-smoothed prior.

Kimeldorf and Wahba [15] and Wahba [33] have considered priors of the
type t �→ √

bIk
0+Wt + √

a
∑k

i=0 Zit
i/i in the setting of the regression model

Yi = w(xi) + ei . These priors are the same as in the preceding theorem, but with
additional scaling factors

√
b and

√
a. They show that if a → ∞ and b and n are

fixed, then the posterior mean of the regression function tends to the minimizer wn

of the penalized least squares criterion

w �→ 1

n

n∑
i=1

(
w(xi) − yi

)2 + σ 2

nb

∫ 1

0
w(k)(t)2 dt,

where σ 2 is the variance of the regression errors ei . Letting a tend to infinity has
the purpose of making the prior on the finite-dimensional, polynomial part diffuse,
while the infinite-dimensional part of the prior is fixed. The preceding theorem
considers the rate of contraction of the full prior as n → ∞, for fixed a and b, and
hence is not directly comparable to the results of Kimeldorf and Wahba. However,
some intriguing observations can be made. The penalized least squares estimator
is well known to be a smoothing spline and is known to achieve the minimax rate
n−k/(2k+1) for regression functions in Hk[0,1] when the “smoothing parameter”
λn = σ 2/(nb) is set to satisfy λn � n−2k/(2k+1). This would yield a scaling factor
b � n−1/(2k+1), meaning that the infinite-dimensional part of the prior would tend
to zero. In contrast, the preceding theorem shows that a fixed value of b yields
a consistent posterior and a posterior achieving the optimal rate of contraction if
the smoothness β of the true parameter is equal to the smoothness k + 1/2 of the
prior. (The theorem does not allow a diffuse prior on the polynomial part, but it
can be checked that the theorem remains true if the Gaussians in this polynomial
part have variance tending slowly to infinity.) It may be noted that the preceding
theorem appears to indicate that the prior works best for functions in Hk+1/2[0,1],
not Hk[0,1].

Wood and Kohn [34] implements the once-integrated Brownian motion prior
within the setting of the binary regression model, where a large variance is used
on the polynomial part.

4.2. Riemann–Liouville process. For α > 0 and W a standard Brownian mo-
tion, the Riemann–Liouville process with Hurst parameter α > 0 is defined as

Rt =
∫ t

0
(t − s)α−1/2 dWs, t ≥ 0.
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The process R is a centered Gaussian process with continuous sample paths. It can
be viewed as a multiple of the (α + 1/2)-fractional integral of the “derivative dW

of Brownian motion.” For α > 0 and a (deterministic) measurable function f on
[0,1], the (left-sided) Riemann–Liouville fractional integral of f of order α (if it
exists) is defined as

Iα
0+f (t) = 1

�(α)

∫ t

0
(t − s)α−1f (s) ds.

For α a natural number, the function Iα
0+f is just the α-fold iterated integral of f

and for α > 1/2, the Riemann–Liouville process is equal to �(α + 1/2)I
α−1/2
0+ W

for Iα
0+ the fractional integral. It can be shown that Iα

0+ maps β-regular functions
into α + β-regular functions (if α + β is not an integer; see [28]). Since Brownian
motion is “regular of order 1/2,” the Riemann–Liouville process R is a good model
for “α-regular functions.” This intuition is corroborated by the rate results in this
section. For a proof of the following theorem, see Examples 9 and 15 in [13].

THEOREM 4.2. The RKHS of the Riemann–Liouville process with parameter
α > 0 viewed as a random element in C[0,1] is H = I

α+1/2
0+ (L2[0,1]) and the

RKHS-norm is given by

‖Iα+1/2
0+ f ‖H = ‖f ‖2

�(α + 1/2)
.

The Riemann–Liouville process is appropriate for approximating Cα-functions,
except that its definition as an integral from 0 means that its sample paths and their
derivatives are tied down at zero. For α > 0 and α the biggest integer smaller than
α, we shall instead consider the process

Xt =
α+1∑
k=0

Zkt
k + Rα

t ,(4.1)

where Z1, . . . ,Zα+1,R
α are independent, Zi is standard normal and Rα is a

Riemann–Liouville process with Hurst index α. As before, we view this process
as a random element in C[0,1].

THEOREM 4.3. The support of the process X is the whole space C[0,1]. For
any w ∈ Cα[0,1], the concentration function of X satisfies φw(ε) = O(ε−1/α) as
ε ↓ 0.

The proof of this theorem is deferred to Section 5. For α not an integer, it can
be seen by inspection of the proof that the theorem remains true if X is replaced
by the process

∑α
k=0 Zkt

k + Rα
t .

For the concentration function φw(ε) = ε−1/α , inequality (1.3) is solved by εn =
n−α/(2α+1). This is the minimax rate for estimating a function that is known to be
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α-regular in various nonparametric models. Combination of the preceding theorem
with the results on posterior contraction therefore shows that the Gaussian prior
(4.1) yields the optimal rate of convergence in various settings. This is true, for
instance, in the settings of density estimation using a prior of the form t �→ ceXt

on the density, Gaussian regression using X as a prior regression function and
classification using a prior 
(Xt) on the probability Pr(Y = 1|X = t).

4.3. Fractional Brownian motion. Fractional Brownian motion offers a differ-
ent starting point for constructing a Gaussian process of a given smoothness level.
By definition, fractional Brownian motion (fBm) with Hurst parameter α ∈ (0,1)

is the zero-mean Gaussian process X = (Xt : t ∈ [0,1]) with continuous sample
paths and covariance function

EXsXt = 1
2(s2α + t2α − |t − s|2α).

The choice α = 1/2 yields ordinary Brownian motion. To obtain a process of a
given smoothness α > 1, we can take ordinary integrals of fractional Brownian
motion.

The conclusions using fractional Brownian motion are the same as for the
Riemann–Liouville process.

THEOREM 4.4. Consider the fractional Brownian motion with Hurst parame-
ter α ∈ (0,1) as a random element in C[0,1]. For w ∈ Cα[0,1] with w(0) = 0, we
have φw(ε) = O(ε−1/α) as ε → 0.

PROOF. For the fBm X, we have the representation

Xt = cα

∫ ∞
−∞

(
(t − s)

α−1/2
+ − (−s)

α−1/2
+

)
dWs,

where W is a double-sided Wiener process and cα a positive constant [25]. In other
words, we have X = cαR + cαZ, where R and Z are independent processes, R is
a RL-process with parameter α and Z is defined by

Zt =
∫ 0

−∞
(
(t − s)α−1/2 − (−s)α−1/2)

dWs.

By Lemma 3.2 of [23], − log Pr(‖Z‖ < ε) = o(ε−1/α) as ε → 0, with ‖ · ‖ the
supremum norm, hence also with ‖ · ‖ the L2-norm. The theorem therefore follows
from the results for the RL-process and Theorem 2.3. �

4.4. Truncated series. Any Gaussian variable in a separable Banach space can
be expanded as an infinite series

∑
i Zihi for i.i.d. standard normal variables Zi and

elements hi from its RKHS. By Theorem 2.2, the prior obtained by truncating the
series at a sufficiently high level will have the same concentration function and will
hence lead to the same posterior rate of contraction. Because finite sums may be
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easier to handle, it is interesting to investigate special expansions and the numbers
of terms that need to be retained in order to obtain the same contraction rate. In
this section, we consider this question for fractional Brownian motion.

By Theorem 4.4, the fBm with Hurst parameter α ∈ (0,1) as a prior for a
true signal w0 which is Hölder continuous of order α leads to a concentration
function satisfying φw0(ε) � ε−1/α . Consequently, inequality (1.3) is satisfied for
εn � n−α/(1+2α). This implies, for instance, that the rate of posterior contraction
in the white noise model (see Theorem 3.4) is equal to the minimax rate relative to
the L2-norm.

By Theorem 2.2, for any series expansion X = ∑
k Zkhk of the fBm X, the trun-

cated series XK = ∑K
k=1 Zkhk also gives the optimal rate of posterior contraction

if

10 E‖XK − X‖2
2 ≤ 1

n
.(4.2)

It is known that for any such expansion of the fBm, the truncated series XK satis-
fies (cf. [17])

E‖X − XK‖2 �
(

1

K

)α

.

A given expansion is therefore called rate-optimal (for the L2-norm) if E‖X −
XK‖2 � K−α . Several explicit rate-optimal expansions of the fBm are known (see,
e.g., [2, 6, 7, 14]). For these rate-optimal expansions, (4.2) is fulfilled as soon as the
number of terms in the expansion satisfies K = Kn � Cn1/(2α) for a large constant
C. This is somewhat larger than the dimension n1/(2α+1) found in the following
section, which also arises in the usual bias-variance trade-off of series estimators.

4.5. Finite sums. Replacing the coefficients in a series expansion by Gaussian
variables is a natural method to construct a Gaussian prior on a set of functions. In
this section, we use truncated series and study the effect of varying the variances
of the Gaussian variables.

Series priors have been implemented in [20] in the density estimation model
of Section 3.1 and in [21] in semiparametric regression, with Fourier-type series
and coefficients with exponentially decreasing variances. The priors are easy to
implement in Gaussian regression.

Because wavelet expansions give easy control of various norms, we consider
here expansions

w =
∞∑

j=1

2jd∑
k=1

wj,kψj,k

of functions w : [0,1]d → R on a double-indexed basis {ψj,k : j = 1,2, . . . , k =
1, . . . ,2jd} of bounded functions ψj,k : [0,1]d → R. (The unit cube could be re-
placed by another compact subset of R

d .) We consider these functions with the
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norms

‖w‖2 =
∞∑

j=1

( ∑
1≤k≤2jd

|wj,k|2
)1/2

,

‖w‖∞ =
∞∑

j=1

2jd/2 max
1≤k≤2jd

|wj,k|,

‖w‖β|∞,∞ = sup
1≤j<∞

2jβ2jd/2 max
1≤k≤2jd

|wj,k|.

For the base functions ψj,k derived from suitable orthonormal wavelets in
L2[0,1]d , these norms correspond to the L2-norm, the supremum norm and the
Besov (β,∞,∞)-norm, respectively. The last norm measures smoothness of order
β , weaker than a Hölder norm of the same order.

For given truncation levels Jα , which will tend to infinity with n, we consider a
Gaussian prior of the type

W =
Jα∑

j=1

2jd∑
k=1

μjZj,kψj,k,(4.3)

where the μj are positive numbers and the Zj,k are i.i.d. standard normal variables.
The number of terms in the random series is O(2Jαd). For a transparent description
of the main results, we set this number equal to the integer closest to the solution
J̄α of the equation, for a given α > 0,

2J̄αd = nd/(2α+d).

This dimension is well known to be the optimal dimension of a finite-dimensional
model if the true parameter is known to be regular of order α. We next study the
rate of posterior contraction if the true parameter is β-regular under a variety of
choices of the coefficients μj and for a general β > 0, which may be smaller or
larger than the “nominal” value α.

The contribution Wj = ∑2jd

k=1 μjZj,kψj,k of the j th level to the prior satisfies

E‖Wj‖2
2 = μ2

j 2jd .

Therefore, the choice μj = 2−jd/2 gives all levels the same amount of prior un-
certainty. It is natural to choose the constants μj so that the numbers 2jd/2μj are
nonincreasing, but we shall allow these numbers to tend to zero as j → ∞. If
2jd/2μj → 0, then the higher levels receive less weight and hence the prior tends
to be of lower dimension than the nominal dimension 2Jαd . This may be advan-
tageous if the true parameter is of higher regularity (i.e., β > α), for which the
optimal dimension 2Jβd is indeed smaller. On the other hand, if the true parameter
is less regular (i.e., β < α), then the nominal dimension 2Jαd is already too small
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and this would be exacerbated by putting lower weight on the higher levels. We
shall show that the choice 2jd/2μj = 2−jβ is a good compromise: it yields the
optimal rate of contraction n−β/(2β+d) if β ≥ α and the “optimal rate using a 2Jαd -
dimensional model” n−β/(2α+d) if β ≤ α. The choice 2jd/2μj = 1, which gives
equal weight to all levels, is no worse than this if β ≤ α, but yields only the rate
n−α/(2α+d) for β ≥ α.

To be precise, in the following, we establish these rates up to logarithmic factors.
The proof of the following theorem can be found in Section 5.

THEOREM 4.5. Let W be the Gaussian process given by (4.3) viewed as a map
in �∞[0,1]d , with μj 2jd/2 = 2−ja for some a ≥ 0. Let w0 : [0,1]d → R satisfy
‖w0‖β|∞,∞ < ∞. Then, for

εn ≥

⎧⎪⎪⎨
⎪⎪⎩

n−β/(2α+d) logn, if a ≤ β ≤ α,
n−α/(2α+d) logn, if a ≤ α ≤ β,
n−a/(2a+d)(logn)d/(2a+d), if α ≤ a ≤ β,
n−β/(2a+d)(logn)d/(2a+d), if α ≤ β ≤ a,

there exists a measurable set Bn ⊂ �∞[0,1]d such that

logN(3εn,Bn,‖ · ‖∞) ≤ 6Cnε2
n,(4.4)

Pr(W /∈ Bn) ≤ e−Cnε2
n,(4.5)

Pr(‖W − w0‖∞ < 4εn) ≥ e−nε2
n .(4.6)

5. Proofs.

PROOF OF THEOREM 2.1. Inequality (2.4) is an immediate consequence of
(1.3) and (4.16) of [16]. We need to prove existence of the sets Bn such that the
first and second inequalities in the theorem hold.

For B1 and H1 the unit balls in the Banach space B and the RKHS H, respec-
tively, and Mn a positive constant, set

Bn = εnB1 + MnH1.

By Borell’s inequality ([3], Theorem 3.1), it follows that

Pr(W /∈ Bn) ≤ 1 − �(αn + Mn)

for � the distribution function of the standard normal distribution and αn deter-
mined by

�(αn) = Pr(W ∈ εnB1) = e−φ0(εn).

For C > 1, set

Mn = −2�−1(e−Cnε2
n).
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Because φ0(εn) ≤ φw0(εn) ≤ nε2
n by assumption (1.3), and C > 1, we have that

αn ≥ −1
2Mn, whence αn + Mn ≥ 1

2Mn and

Pr(W /∈ Bn) ≤ 1 − �
(1

2Mn

) = e−Cnε2
n .

We conclude that inequality (2.3) is satisfied.
If h1, . . . , hN are contained in MnH1 and are 2εn-separated for the norm ‖ · ‖,

then the ‖ · ‖-balls hj + εnB1 of radius εn around these points are disjoint and
hence

1 ≥
N∑

j=1

Pr(W ∈ hj + εnB1)

≥
N∑

j=1

e(−1/2)‖hj‖2
H Pr(W ∈ εnB1)

≥ Ne−(1/2)M2
n e−φ0(εn),

where the second inequality follows from (4.16) of [16]. If the 2εn-net h1, . . . , hN

is maximal in the set MnH1, then the balls hj +2εnB1 cover MnH1. It follows that

N(2εn,MnH1,‖ · ‖) ≤ N ≤ e(1/2)M2
n eφ0(εn).

By its definition, any point of the set Bn is within distance εn of some point of
MnH1. This implies that

logN(3εn,Bn,‖ · ‖) ≤ logN(2εn,MnH1,‖ · ‖)
≤ 1

2M2
n + φ0(εn)

≤ 5Cnε2
n + φ0(εn),

by the definition of Mn if e−Cnε2
n < 1/2, because �−1(y) ≥ −√

5/2 log(1/y) and
is negative for every y ∈ (0,1/2). Since φ0(εn) ≤ φw0(εn) ≤ nε2

n, this concludes
the verification of (2.2). �

PROOF OF THEOREM 2.2. As a consequence of Borell’s inequality (cf. [32],
Proposition A2.1), we have

Pr(‖Wn − W‖ ≥ εn) ≤ 2e−ε2
n/8E‖Wn−W‖2 ≤ 2e−nε2

n/(8/10)

since E‖Wn −W‖2 ≤ 1/(10n), by assumption. For εn satisfying nε2
n ≥ 4 log 4, the

right-hand side is bounded above by 1
2e−nε2

n . Because Pr(‖Wn − w0‖ < 3εn) ≥
Pr(‖W − w0‖ < 2εn) − Pr(‖Wn − W‖ ≥ εn), it follows from (1.3) that

Pr(‖Wn − w0‖ < 3εn) ≥ 1
2e−nε2

n ≥ e−4nε2
n .

This completes the verification of (2.4) with εn replaced by 2εn.
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We choose Bn = 2εnB1 +MnH
n
1 for H

n
1 the unit ball of the RKHS associated to

Wn, and Mn = −2�−1(e−Cnε2
n), as in the proof of Theorem 2.1. Similarly to the

observation in the preceding paragraph, we have

e−φn
0 (2εn) := Pr(‖Wn‖ < 2εn) ≥ 1

2e−nε2
n ≥ e−4nε2

n .

The verification of (2.3)–(2.4) with 2εn instead of εn can now proceed exactly
as in the proof of Theorem 2.1. For the first, we use that C > 4, so that again
αn = �−1(e−φn

0 (2εn)) ≥ �−1(e−4nε2
n) ≥ −1

2Mn. For the second, we substitute the
inequality φn

0 (2εn) ≤ 4nε2
n. �

PROOF OF THEOREM 2.3. If ‖Wi − wi‖ < ε for every i, then ‖W − w‖ <

ε|I |, where |I | is the cardinality of I . Combined with the independence of the
processes Wi , this implies that Pr(‖W − w‖ < ε|I |) ≥ ∏

i Pr(‖Wi − wi‖ < ε). In
view of Theorem 2 of [16], the concentration function φw(ε) of W is bounded
above by twice the negative logarithm of the left-hand side, which is bounded
above by 2

∑
i φ

i
wi (ε), again by Theorem 2 of [16]. �

PROOF OF THEOREM 2.4. It is easy to see that the RKHS H
a of the process

aW for a fixed value of a is equal to the RKHS H of W , but with norm ‖h‖Ha =
a−1‖h‖H. We define Bn = KεnB1 + KMnH1 = KB1

n for B1
n the set Bn appearing

in Theorem 2.1. Because A ≤ K and Bn is a cone, it is clear that Pr(AW /∈ Bn) ≤
Pr(W /∈ B1

n) ≤ e−Cnε2
n , by Theorem 2.1. Also, N(3Kεn,Bn,‖ · ‖) ≤ N(3εn,B

1
n,

‖ · ‖) ≤ 6Cnε2
n, again by Theorem 2.1.

By Theorem 2 of [16], for any fixed a and ε > 0,

− log Pr(‖aW − w0‖ < 2ε)

≤ inf{‖h‖2
Ha :‖h − w‖ < ε} − log Pr(‖aW‖ < ε)

≤ 1

a2 inf{‖h‖2
H

:‖h − w‖ < ε} − log Pr(‖W‖ < ε/K)

≤ 1

k2 φw(ε/K)

for a > k and 0 < k < 1 < K . We apply this with ε/K = εn and then apply (1.3)
to arrive at (2.7). �

For the proof of Theorem 4.3, we first recall some facts from fractional calculus,
which can be found in [28].

Using Fubini’s theorem, it can be seen that the fractional integration operators
have the semigroup property Iα

0+I
β
0+ = I

α+β
0+ . The fractional integration operator

acts on power functions as one would expect: for α > 0, β > −1 and f (t) = tβ ,

Iα
0+f (t) = �(β + 1)

�(α + β + 1)
tα+β.
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For α ∈ (0,1), the (left-sided) Riemann–Liouville fractional derivative of f of
order α is defined by

Dα
0+f (t) = 1

�(1 − α)

d

dt

∫ t

0
(t − s)−αf (s) ds = d

dt
I 1−α

0+ f (t),

provided it exists. To define the fractional derivative for α ≥ 1, we introduce the
notation [α] and {α} for the integer and fractional parts of α, respectively. For
general α > 0, we define

Dα
0+f =

(
d

dt

)[α]
D

{α}
0+f.

In particular, Dα
0+f is just the αth derivative of f if α is an integer. Observe that

Dα
0+f equals the nth derivative of In−α

0+ f , provided it exists, with n = α + 1.
We say that f has a summable fractional derivative Dα

0+f if In−α
0+ f has n − 1

continuous derivatives and the (n − 1)th derivative is only absolutely continuous
rather than differentiable.

Fractional integration and differentiation are inverse operations, in the sense that
Dα

0+Iα
0+ = Id. However, in general, Dα

0+ is not the right inverse of Iα
0+. If f ∈ L1

has a summable derivative of order α > 0, then, with n = [α] + 1,

Iα
0+Dα

0+f (t) = f (t) −
n−1∑
k=0

Dn−k−1
0+ (In−α

0+ f )(0)

�(α − k)
tα−k−1.

LEMMA 5.1. Suppose that f is twice continuously differentiable and f (0) =
0. For α ∈ (1,2), the function f has a summable fractional derivative Dα

0+f and
can be written as f = Iα

0+Dα
0+f . Furthermore,

Dα
0+f (t) = f ′(0)

�(2 − α)
t1−α + I 2−α

0+ f ′′(t).

PROOF. Since f (0) = 0, we have f (t) = f ′(0)t + I 2
0+f ′′(t), whence

I 2−α
0+ f (t) = f ′(0)

�(4 − α)
t3−α + I 4−α

0+ f ′′(t).

Differentiating this twice and using the identity �(1 + x) = x�(x) yields the ex-
pression for Dα

0+f . The formula preceding the lemma gives

f (t) = Iα
0+Dα

0+f (t) +
1∑

k=0

D1−k
0+ (I 2−α

0+ f )(0)

�(α − k)
tα−k−1.

For k = 1, we get I 2−α
0+ f (0) in the numerator, which vanishes since f is contin-

uous. For k = 0, we get Dα−1
0+ f (0). But since f (0) = 0, we have f = I 1

0+f ′ and

hence Dα−1
0+ f (0) = I 2−α

0+ f ′(0) = 0. �
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Roughly speaking, fractional integration of order α improves the smooth-
ness of a function by α. More precisely, for λ ∈ [0,1] and α ∈ (0,1) such that
λ + α �= 1, it holds that Iα

0+ :Cλ
0 [0,1] → Cα+λ[0,1], where Cλ

0 [0,1] are the func-
tions f ∈ Cλ[0,1] with f (0) = 0. The analogous assertion is true for the frac-
tional derivative. If 0 < α < λ ≤ 1, then Cλ

0 [0,1] ⊂ Iα
0+(L1[0,1]). On the space

Iα
0+(L1[0,1]), the Riemann–Liouville fractional derivative Dα

0+ coincides with the
so-called Marchaud fractional derivative of order α. The latter maps Cλ

0 [0,1] into
Cλ−α[0,1]. Hence, for 0 < α < λ ≤ 1, we have Dα

0+ :Cλ
0 [0,1] → Cλ−α[0,1].

In the following lemma, we use the customary notation Iα
0+ = D−α

0+ for α < 0.

LEMMA 5.2. Let λ ∈ [0,1] and α ∈ [0,1) be such that α + λ ∈ (0,2) and
α + λ �= 1. If f ∈ Cλ[0,1] and g ∈ L1(R) has compact support and satisfies∫

g(u)du = 0 and, in the case that α + λ > 1, also
∫

ug(u)du = 0, then

‖Iα
0+(f ∗ g)‖∞ �

∫
|u|α+λ|g(u)|du.

PROOF. The conditions on g imply that

(f ∗ g)(s) =
∫ (

f (s − u) − f (s)
)
g(u)du for s ∈ (0,1)

and we may assume that f (0) = 0. A change of variables shows that for u ∈ R and
t ∈ (0,1), we have

1

�(δ)

∫ t

0
(t − s)α−1f (s − u)ds = Iα

0+f (t − u),

the right-hand side vanishing by definition if u > t . Using the fact that g has com-
pact support to justify the interchanging of integrals, it follows that

Iα
0+(f ∗ g)(t) =

∫ (
(Iα

0+f )(t − u) − (Iα
0+f )(t)

)
g(u)du.(5.1)

Because Iα
0+ :Cλ

0 [0,1] → Cα+λ[0,1], we have, for α + λ > 1,

|(I δ
0+f )(t − u) − (I δ

0+f )(t) + u(Iα
0+f )′(t)| � |u|α+λ.

Inserting this in the preceding display completes the proof in this case. If α+λ < 1,
then the preceding display is satisfied with the factor u(Iα

0+f )′(t) omitted and the
proof is completed as before. �

PROOF OF THEOREM 4.3. Let Z = X−Rα be the polynomial part of X given
in (4.1).

By Theorem 2.1 of [23], − log Pr(‖Rα‖∞ < ε) behaves as a constant times
ε−1/α as ε → 0. Because each of the probabilities Pr(‖Zkt

k‖∞ < ε) behaves as a
constant times ε as ε → 0, − log Pr(‖Z‖∞ < ε) is bounded above by a constant
times log(1/ε), which is much smaller than ε−1/α .



1458 A. W. VAN DER VAART AND J. H. VAN ZANTEN

In view of Theorem 2.3, the concentration function φw(2ε) of X is bounded by
a multiple of the sum φw−P (2ε;Rα) + φP (2ε;Z) of the concentration functions
of Rα and Z, where w = w − P + P may be an arbitrary split. The RKHS of the
process Z is the set of polynomials Pξ = ∑α+1

i=0 ξit
i with square norm ‖Pξ‖2

H
=∑α+1

i=1 ξ2
i . Therefore, for any such polynomial,

φPξ (ε;Z) �
α+1∑
i=1

ξ2
i + log(1/ε).

We shall apply this with polynomials such that φw−P (2ε;Rα) becomes suitably
small.

Let φ be a smooth, compactly supported, order-α ∨ 2 kernel and, for σ > 0,
define φσ (t) = σ−1φ(t/σ ). We note that, automatically,

∫
φ′(t) dt = ∫

φ′′(t) dt =∫
tφ′′(t) dt = 0. Since w ∈ Cα , we have ‖w − w ∗ φσ‖∞ � σα , whence ‖w − w ∗

φσ‖∞ ≤ ε if σ = Cε1/α for an appropriate constant C.
Let γ = {α} ∈ (0,1] be the fractional part of α. We first consider the case γ ∈

(0,1/2]. By Taylor’s theorem,

w ∗ φσ (t) =
α∑

k=0

(w(k) ∗ φσ )(0)

k! tk + I
α+1
0+

(
w(α) ∗ φ′

σ

)

=
α∑

k=0

(w(k) ∗ φσ )(0)

k! tk + I
α+1/2
0+ I

1/2−γ
0+

(
w(α) ∗ φ′

σ

)
,

by the semigroup property of fractional integrals. The first function on the right
is a polynomial Pσ and the sum of squares of its coefficients can be seen to be
bounded for small σ . By Theorem 4.2, the second function on the right belongs
to the RKHS of Rα and has squared RKHS-norm equal to

∥∥I 1/2−γ
0+ (w(α) ∗ φ′

σ )
∥∥2

2,
which is O(σ−1) = O(ε−1/α), by Lemma 5.2. We now split w = w − Pσ + Pσ

and approximate w − Pσ with the function w ∗ φσ − Pσ in the RKHS of Rα .
In the case where γ ∈ (1/2,1], we apply Lemma 5.1, with the α and function f

in the lemma taken equal to the present γ + 1/2 and I 1
0+(w(α) ∗φ′

σ ), to obtain that

I 1
0+

(
w(α) ∗ φ′

σ

) = I
γ+1/2
0+ (g1 + g2),

with

g1(t) = (w(α) ∗ φ′
σ )(0)

�(3/2 − γ )
t1/2−γ ,

g2(t) = I
3/2−γ
0+

(
w(α) ∗ φ′′

σ

)
(t).
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By integrating the penultimate display α times, we obtain I
α+1
0+ (wα ∗ φ′

σ ) =
I

α+1/2
0+ (g1 + g2) and hence, by Taylor’s theorem,

w ∗ φσ (t) =
α∑

k=0

(w(k) ∗ φσ )(0)

k! tk + I
α+1/2
0+ g1 + I

α+1/2
0+ g2.

Since g2 is square integrable, the third term on the right belongs to the RKHS of
Rα , with squared RKHS-norm equal to ‖g2‖2

2 ≤ ∥∥I 3/2−γ
0+ (w(α) ∗φ′′

σ )(t)
∥∥2
∞. This is

O(σ−1), by Lemma 5.2. The sum of the first two terms is a polynomial of degree
α + 1 and the sum of squares of its coefficients is bounded by a constant times

α∑
k=0

((
w(k) ∗ φσ

)
(0)

)2 + ((
w(α) ∗ φ′

σ

)
(0)

)2
.

The first term is bounded, while the second term is of order σ 2γ−2, which is
O(σ−1), since γ > 1/2. �

PROOF OF THEOREM 4.5. The index k, when nested within a sum over j in
the following, is to be understood to range over all possible values 1,2, . . . ,2jd .
The reproducing kernel Hilbert space of the variable W is the set of functions
w = ∑Jα

j=1
∑

k wj,kψj,k with

‖w‖2
H

=
Jα∑

j=1

∑
k

w2
j,k

μ2
j

< ∞.

For a fixed integer J ≤ Jα (to be determined later), the projection wJ
0 =∑J

j=1
∑

k w0;j,kψj,k is clearly contained in the RKHS, whence, for any ε > 0,

inf{‖w‖2
H

:‖w − wJ
0 ‖∞ < ε}

≤ ‖wJ
0 ‖2

H
=

J∑
j=1

∑
k

w2
0;j,k
μ2

j

≤
J∑

j=1

2j (2a−2β+d)‖w0‖2
β|∞,∞

for μj 2jd/2 = 2−ja . For any numbers αj ≥ 0 with
∑Jα

j=1 αj ≤ 1, we have

Pr(‖W‖∞ < ε) = Pr

(
Jα∑

j=1

2jd/2 max
k

|μjZj,k| < ε

)

≥
Jα∏

j=1

∏
k

Pr(|μj 2jd/2Zj,k| < αjε).
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Therefore, for μj 2jd/2 = 2−ja and αj = (K + d2j2)−1 and a large constant K , it
follows that

− log Pr(‖W‖∞ < εn) ≤ −
Jα∑

j=1

2jd log
(
2�(αjεn2ja) − 1

)

�
∫ 2Jαd

1
− log

(
2�

(
εnx

a/d

K + log2
2 x

)
− 1

)
dx.

To justify the last step, we may choose the constant K sufficiently large that the
function x �→ xa/d/(K + log2

2 x) is nondecreasing on [1,∞).
The function f : [0,∞) → R defined by f (y) = − log(2�(y) − 1)) is decreas-

ing from ∞ at y = 0 to 0 at y = ∞. It is bounded above by a multiple of 1+| logy|
for y in an interval [0, c] and bounded above by a multiple of e−y2/2 for y ≥ c.
[For the latter note that f ′(y) = −2φ(y)/(2�(y) − 1) is bounded above in ab-
solute value by 2φ(y)/(2�(c)−1) for y ≥ c so that f (y) = f (∞)− ∫ ∞

y f ′(x) dx

is bounded in absolute value by 2(1 − �(y))/(2�(c) − 1) on this interval.]
We consider two cases to further bound the integral in the last display. For

εn2Jαa ≤ (K + J 2
αd2), the argument (εnx

a/d)/(K + log2
2 x) is bounded above by

a constant on the integration interval [1,2Jαd ] and hence the function f in the in-
tegral can be bounded above by a multiple of 1 + | log |, yielding as upper bound a
multiple of

∫ 2Jαd

1

(
1 + | log |

(
εnx

a/d

K + log2
2 x

))
dx � 2Jαd(

log(1/εn) + Jα

)
.

Whenever a > 0 and, in particular, if εn2Jαa > (K + J 2
αd2), we can change vari-

ables εnx
a/d = y and rewrite the integral as

(
1

εn

)d/a ∫ εn2Jαa

εn

f

(
y

K + (d/a)2(log2 y + log2(1/εn))2

)
d

a
yd/a−1 dy.

The integral in this expression is bounded above by[∫ 1/εn

0
f

(
y

K + (2d/a)2 log2
2(1/εn)

)

+
∫ ∞

1/εn

f

(
y

K + (2d/a)2 log2
2 y

)]
d

a
yd/a−1 dy

≤ μd/a
n

∫ 1/(εnμn)

0
f (x)

d

a
xd/a−1 dx

+
∫ ∞

0
f

(
y

K + (2d/a)2 log2
2 y

)
d

a
yd/a−1 dy
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for μn = K + (2d/a)2 log2
2(1/εn). The integral in the first term on the right is

bounded as n → ∞, whence the whole expression is bounded by a multiple of
(log(1/εn))

2d/a .
Combining the preceding, we conclude that

φwJ
0
(εn) = inf{‖w‖2

H
:‖w − wJ

0 ‖∞ < εn} − log Pr(‖W‖∞ < εn)

�
J∑

j=1

2j (2a−2β+d) +
⎧⎪⎨
⎪⎩

2Jαd(
log(1/εn) + Jα

)
, if εn2Jαa � J 2

α ,(
1

εn

)d/a

(log(1/εn))
2d/a, if εn2Jαa � J 2

α .

The display gives the concentration function at the projection wJ
0 . By Theorem 2.1,

there exist measurable sets Bn satisfying the three assertions of Theorem 4.5, but
with w0 replaced by wJ

0 and the 4 in the last condition replaced by 2. Since

‖w0 − wJ
0 ‖∞ ≤

∞∑
j=J+1

2jd/2 max
k

|w0;j,k|

≤
∞∑

j=J+1

2−jβ‖w0‖β|∞,∞ � 2−Jβ,

we have the three assertions of Theorem 4.5 as given as soon as

φwJ
0
(εn) ≤ nε2

n and 2−Jβ ≤ εn.

The proof is completed by verifying that εn as given in the theorem satisfies these
inequalities in the various cases, for suitable J (set J = Jα if a ≤ α and J = Ja

otherwise). We omit the (tedious) derivation of this. �
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