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APPROXIMATE ZERO-ONE LAWS AND SHARPNESS OF THE
PERCOLATION TRANSITION IN A CLASS OF MODELS

INCLUDING TWO-DIMENSIONAL ISING PERCOLATION1

BY J. VAN DEN BERG

CWI and Vrije Universiteit

One of the most well-known classical results for site percolation on the
square lattice is the equation pc +p∗

c = 1. In words, this equation means that
for all values �= pc of the parameter p, the following holds: either a.s. there
is an infinite open cluster or a.s. there is an infinite closed “star” cluster. This
result is closely related to the percolation transition being sharp: below pc,
the size of the open cluster of a given vertex is not only (a.s.) finite, but has a
distribution with an exponential tail. The analog of this result has been proven
by Higuchi in 1993 for two-dimensional Ising percolation (at fixed inverse
temperature β < βc) with external field h, the parameter of the model.

Using sharp-threshold results (approximate zero-one laws) and a modifi-
cation of an RSW-like result by Bollobás and Riordan, we show that these
results hold for a large class of percolation models where the vertex values
can be “nicely” represented (in a sense which will be defined precisely) by
i.i.d. random variables. We point out that the ordinary percolation model ob-
viously belongs to this class and we also show that the Ising model mentioned
above belongs to it.

1. Introduction. A landmark in the development of percolation theory is the
proof by Kesten in 1980 ([18]) that the critical probability for bond percolation on
the square lattice equals 1/2. A key argument in his proof is what would now be
called a “sharp-threshold result:” he showed that if n is large and the probability of
having an open horizontal crossing of an n × n box is neither close to 0, nor close
to 1, then there is a reasonable probability to have many (in fact, at least of order
logn) so-called pivotal edges (or cut edges). [These are edges e with the property
that changing the state (open/closed) of e changes the occurrence or nonoccurrence
of an open horizontal crossing.]

The proof of this intermediate key result has a combinatorial-geometric flavor:
it involves a “counting argument” with conditioning on the lowest open crossing
(and the leftmost closed dual crossing of the area above the open crossing just
mentioned). This result, in turn, implies that the derivative (w.r.t. the parameter p)
of the crossing probability is very large (also at least of order logn) if n is very
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large. Since probabilities are at most 1, it is impossible to have such behavior
for all p throughout some interval of nonzero length. On the other hand, other
arguments show that the above mentioned crossing probability is bounded away
from 0 and 1, uniformly in n and p ∈ (1/2,pc). Hence pc must be equal to 1/2.
[It was already known ([14]) that pc ≥ 1/2.]

Soon after Kesten’s result, it was shown ([28] and [32]) that his arguments
can also be used to prove related long-standing conjectures, in particular, that
pc + p∗

c = 1 for site percolation on the square lattice. Here, p∗
c denotes the crit-

ical probability for the so-called matching lattice (or star lattice) of the square
lattice—this is the lattice with the same vertices as the square lattice, but where
each vertex (x, y) has not only edges to its four horizontal or vertical “neighbors”
{(x′, y′) : |x − x′| + |y − y′| = 1}, but also to the nearest vertices in the diagonal
directions, {(x′, y′) : |x − x′| = |y − y′| = 1}.

Russo [29] was the first to put the aforementioned “sharp-threshold” argument
of Kesten in a more general framework by formulating an approximate zero-one
law. This approximate zero-one law is not itself a percolation result. It is, as the
name indicates, a “finite” approximation of Kolmogorov’s zero-one law. Recall
that the latter says (somewhat informally) that if X1,X2, . . . are i.i.d. Bernoulli
random variables (say, with parameter p) and A is an event with the property that
the occurrence or nonoccurrence of A cannot be changed by changing a single Xi ,
then A has probability 0 or 1. Russo’s approximate law says that if A is an increas-
ing event with the property that for each i and p, the probability that changing the
state of Xi disturbs the occurrence or nonoccurrence of A is very small, then for
all p, except on a very small interval, the probability of A is close to 0 or close
to 1.

Given this approximate zero-one law, the combinatorial-geometric argument in
Kesten’s work discussed above [to get a lower bound for the (expected) number
of pivotal items] can be (and was, in Russo’s paper) replaced by the considerably
simpler (and “smoother”) argument that the probability that a given edge (or, for
site percolation, site) is pivotal is small when n is large.

It should be noted that for the other, more standard, part of the proof, the ap-
proximate zero-one law does not help: a “separate” argument of the form that if the
probability of an open crossing of a square is sufficiently large, then there is an in-
finite open cluster is needed. For this argument, which is often called a “finite-size
criterion,” the RSW theorem ([27] and [30]; see also [13], Chapter 11) is essential.
Informally, this theorem gives a suitable lower bound for the probability of hav-
ing an open crossing (in the “long” direction) of a 2n × n rectangle, in terms of
the probability of having a crossing of an n × n square. The classical proof uses
conditioning on the lowest crossing. For ordinary Bernoulli percolation, this works
fine, but, as remarked earlier, in dependent models, such conditioning often leads
to very serious, if not unsolvable, problems. An important recent achievement in
this respect is a “box-crossing” theorem obtained in [8], the proof of which is
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much more robust than that of the “classical” RSW result and does not use such
conditioning. We will come back to this later.

Refinements, generalizations and independent results with partly the same fla-
vor as Russo’s approximate zero-one law have been obtained and/or applied by
Kahn, Kalai and Linial [17], Talagrand [31], Friedgut and Kalai [10], Bollobás
and Riordan (see, e.g., [7]), Graham and Grimmett [12], Rossignol [25] and oth-
ers, and have become known as “sharp-threshold results.”

Although such results take Kesten’s key argument in a more general context,
involving “less geometry,” Kesten’s proof is still essentially the shortest and, from
a probabilistic point of view, intuitively the most appealing, self-contained proof
of pc = 1/2 for bond percolation on the square lattice: none of the aforemen-
tioned general sharp-threshold theorems has a short or probabilistically intuitive
proof. Moreover, the combinatorial-geometric ideas and techniques in Kesten’s
proof have turned out to be very fruitful in other situations, for instance, in the
proof of one of the main results in Kesten’s paper on scaling relations for two-
dimensional percolation ([20]).

On the other hand, there are examples of percolation models where Kesten’s
argument is difficult and cumbersome to carry out, or where it is even not (yet)
known how to do this. An example of the latter is the Voronoi percolation model,
for which Bollobás and Riordan ([8]; see also [9]) proved (using a sharp-threshold
result from [10]) that it has critical probability 1/2. This had been conjectured
for a long time, but carrying out Kesten’s strategy for that model led to (thus far)
unsolved problems.

An example of the former is percolation of + spins in the two-dimensional Ising
model with fixed inverse temperature β < βc and external field parameter h (which
plays the role of p in “ordinary” percolation). Higuchi ([15] and [16]) showed that
for all values of h, except the critical value hc, either (a.s.) there is an infinite
cluster of vertices with spin + or (a.s) there is an infinite * cluster (i.e., a cluster
in the * lattice) of vertices with spin −. (The result is stated in [16], but much
of the work needed in the proof is done in [15].) Higuchi followed the scheme
of Kesten’s arguments. However, to carry them out (in particular the “counting
under conditioning on the lowest crossing,” etc.), he had to overcome several new
technical difficulties due to the dependencies in this model. This makes the proof
far from easy to read.

REMARK. It should be mentioned here that there is also a very different proof
of pc = 1/2 for bond percolation on Z

2 (and pc + p∗
c = 1 for site percolation),

namely, by using the work of Menshikov [23] and of Aizenman and Barsky [1].
They gave a more “direct” (not meaning “short” or “simple”) proof, without using
the results or arguments indicated above, that for every d ≥ 1, the cluster radius
distribution for independent percolation on Z

d with p < pc has an exponential
tail. However, their proofs use (and need) the BK inequality ([5]) and since our
interest is mainly in dependent percolation models (for which no suitable analog
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of this inequality seems to be available), these proof methods will not be discussed
in more detail here.

In the current paper, we present a theorem (Theorem 2.2) which says that the
analog of pc +p∗

c = 1 holds for a large class of weakly dependent two-dimensional
percolation models. Roughly speaking, this class consists of systems that have
a proper, monotone, “finitary” representation in terms of i.i.d. random variables.
From the precise definitions, it will be immediately clear that it contains the ordi-
nary (Bernoulli) percolation models. We give (using results obtained in the early
1990s by Martinelli and Olivieri [22] and modifications of results in [6] which were
partly inspired by [24]) a “construction” of the earlier mentioned two-dimensional
Ising model which shows that this model also belongs to this class.

We hope that our results improve insight into the Ising percolation model and
will help to show that many other (not yet analyzed) weakly dependent percolation
models also belong to the aforementioned class.

The theorem is based on:
(a) One of the sharp-threshold results mentioned above, namely Corollaries 1.2

and 1.3 in [31] (and a recent generalization in [26]), which are close in spirit to,
but quantitatively more explicit than, Russo’s approximate zero-one law. The rea-
son for using these sharp-threshold results rather than those in [10] (which, as
stated above, were applied to percolation problems by Bollobás and Riordan) is
that the latter assume certain symmetry properties on the events to which they are
applied. In many situations, this causes no essential difficulties, but it gives much
more flexibility to allow an absence of such symmetries (see the remark following
property (iv) near the end of Section 2.1).

(b) A modification/improvement (obtained in [4]) of an RSW-like box-crossing
theorem of Bollobás and Riordan [8]. As indicated in the short discussion of
Russo’s paper above, some form of RSW theorem seems unavoidable. For many
dependent percolation models, it is very hard (or maybe impossible) to carry out
the original proof of RSW. The Bollobás–Riordan form of RSW (and its modifica-
tion in [4]) is weaker (but still strong enough) and much more robust with respect
to spatial dependencies.

In Section 2, we introduce some terminology and state Theorem 2.2, which
says that a large class of two-dimensional percolation models satisfies an analog
of pc +p∗

c = 1. We also state some consequences/examples of the theorem. In par-
ticular, we show that the Ising percolation model studied by Higuchi satisfies the
conditions of Theorem 2.2 so that his result mentioned above can be alternatively
derived from our theorem.

In Section 3, we state preliminaries needed in the proof of Theorem 2.2: Tala-
grand’s result mentioned above and an extension of his result to the case where the
underlying random variables can take more than two different values, and where
the events under consideration do not necessarily depend on only finitely many of



1884 J. VAN DEN BERG

these underlying variables. In that section, we also explain that the earlier men-
tioned (modification of the) RSW-result of Bollobás and Riordan applies to our
class of percolation models and we prove other properties that are used in the
proof of Theorem 2.2.

In Section 4, we finally prove Theorem 2.2, using the ingredients explained in
Section 3.

Apart from the proofs of the RSW-like theorem and of Talagrand’s sharp-
threshold result mentioned above, the proof of Theorem 2.2 is practically self-
contained.

2. Statement of the main theorem and some corollaries.

2.1. Terminology and set-up. In this subsection, we will describe the (depen-
dent) percolation models on the square lattice for which our main result, a gener-
alization of the well-known pc + p∗

c = 1 for ordinary percolation, holds.
Throughout this paper, we use the norm

‖v‖ := |v1| + |v2|,
where v = (v1, v2) ∈ Z

2.
Let k be a positive integer and let μ(h), h ∈ R, be a family of probability mea-

sures on {0,1, . . . , k}, indexed by the parameter h, with the following two proper-
ties:

(a) for each 1 ≤ j ≤ k, μ(h)({j, . . . , k}) is a continuously differentiable, strictly
increasing function of h;

(b) limh→∞ μ(h)(k) = limh→−∞ μ(h)(0) = 1.

Let I be a countable set. Before we go on, we need some notation and a defini-
tion. We use “⊂⊂” to indicate “finite subset of.” The special elements (0,0,0, . . .)

and (k, k, k, . . .) of {0, . . . , k}I are denoted by 0 and k, respectively.
Let f : {0, . . . , k}I → R be a function. Let V ⊂⊂ I and let y ∈ {0, . . . , k}V . For

x ∈ {0, . . . , k}I , we write xV for the “tuple” (xi, i ∈ V ). We say that y determines
(the value of) f if f (x) = f (x′) for all x, x′ with xV = x′

V = y.
Let Xi , i ∈ I , be independent random variables, each with distribution μ(h). Let

P (h) denote the joint distribution of the Xi’s. The Xi’s will be the “underlying”
i.i.d. random variables for our percolation system. We will assume that the “actual
spin variables,” which take values +1 (“open”) and −1 (“closed”) and which will
be denoted by σv, v ∈ Z

2 below, are “suitably described” in terms of the underlying
X variables: for each v ∈ Z

2, its spin variable σv is a function of the (Xi, i ∈ I ).
These functions do not themselves depend on h, but changing h will change the
distribution of the X variables and thus that of the σ variables. More precisely, we
assume that σv, v ∈ Z

2, are random variables with the following properties:
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(i) (Monotonicity.) For each v, σv is a measurable, increasing, {−1,+1}-valu-
ed function of the collection (Xi, i ∈ I ) and, moreover, for each v ∈ Z

2, σv(0) =
−1 and σv(k) = +1;

(ii) (Finitary representation.) There exist C0 > 0 and γ > 0 such that for each
v ∈ Z

2, there is a sequence i1(v), i2(v), . . . of elements of I such that for all posi-
tive integers m and all h ∈ R,

P (h)((Xi1(v), . . . ,Xim(v)

)
does not determine σv

) ≤ C0

m2+γ
;

(iii) (Mixing).

∃α > 0 ∀v,w ∈ Z
2 ∀m < α‖v − w‖,

(1)
{i1(v), . . . , im(v)} ∩ {i1(w), . . . , im(w)} = ∅;

(iv) for each h, the distribution of (σv, v ∈ Z
2) is translation invariant and in-

variant under rotations by 90 degrees, and under vertical and horizontal axis re-
flection.

REMARK. Note that in property (iv), we do not require that we can identify
I with Z

2 in such a way that there is a stationary mapping (i.e., a mapping which
commutes with shifts) from the process (Xi, i ∈ Z

2) to the process (σv, v ∈ Z
2). In

many cases, there will be such identification, but we found its requirement unnec-
essarily strong for our purposes (see, e.g., the example of the Ising model below,
where the mapping under consideration is not of this form). A consequence of the
absence of this requirement is an absence of certain symmetries needed to apply
the sharp-threshold results in, for example, [10]. This is the main reason for using
the results in [31].

DEFINITION 2.1. If a random field (σv, v ∈ Z
2) has the properties (i)–(iv)

above, we say that the process has a nice, finitary representation (in terms of the
X process and with parameter h ∈ R).

2.2. Statement of the main theorem and some special cases. Now we consider
percolation in terms of the σ variables: we interpret σv = +1 (resp. −1) as the
vertex v being open (resp. closed) and are interested in (among other things) the
existence of infinite paths on which every vertex is open. As usual, in our notion of
“ordinary” paths, we allow only horizontal and vertical steps and we use the term
“star paths” when, in addition to these steps diagonal steps are also allowed. Sim-
ilarly (and, again, following the usual conventions), we define “ordinary” clusters
as well as star clusters. When we speak simply of a “cluster,” we will always mean
an “ordinary” cluster.

The + cluster of a vertex v will be denoted by C+
v ; the −∗ cluster of v (i.e., the

− cluster of v in the star lattice) will be denoted by C−∗
v , etc. If v = 0 [the vertex

(0,0)], we will often omit the subscript v.
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Recall that P (h) denotes the probability distribution of the collection (Xi, i ∈ I ).
We will also use it for the probability measure on {−1,+1}Z

2
induced by the map

from the X variables to the σ variables. Since the context in which it is used will
always be clear, this should not cause any confusion.

THEOREM 2.2. Let (σv, v ∈ Z
2) be a spin system with a nice, finitary repre-

sentation, with parameter h ∈ R (in the sense of Definition 2.1).
Then there is a critical value hc of h such that:

(a) ∀h > hcP
(h)(|C+| = ∞) > 0 and the distribution of |C−∗| has an exponen-

tial tail;
(b) ∀h < hcP

(h)(|C−∗| = ∞) > 0 and the distribution of |C+| has an exponen-
tial tail.

REMARK. Note that it follows from the statement of the theorem that hc sat-
isfies

hc = inf
{
h :P (h)(|C+| = ∞) > 0

} = sup
{
h :P (h)(|C−∗| = ∞) > 0

}
.

Also, note that if reversal of h corresponds with a spin-flip [more precisely, if
the distribution of σ under P (h) is the same as the distribution of −σ (= (−σv, v ∈
Z

2)) under P (−h)], the above theorem immediately implies that

hc + h∗
c = 0, where h∗

c = inf
{
h :P (h)(|C+∗| = ∞) > 0

}
.(2)

2.2.1. Special cases.

Bernoulli site percolation on the square lattice, with parameter p. This model,
where the vertices are open (+1) with probability p and closed (−1) with proba-
bility 1 − p trivially satisfies the conditions of Theorem 2.2: simply take I = Z

2,
k = 1 (i.e., the Xi’s take values 0 and 1) and σv = 2Xv − 1, v ∈ Z

2. Finally, take,
for instance, [note that we want μ(h)(1) to go 1 (resp. 0) as h → ∞ (−∞)]

μ(h)(1) = exp(h)

exp(h) + exp(−h)
.

Taking p = μ(h)(1) completes the “translation.” It is easy to see that reversing
h corresponds with a spin-flip, so (2) holds, which is equivalent to the well-known

pc + p∗
c = 1

for this model.
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Models defined explicitly in terms of i.i.d. random variables. In the previous ex-
ample, the representation in terms of i.i.d. random variables was explicit and triv-
ial. It is easy to find many other examples with explicit (but less trivial) represen-
tations. For instance, take I = Z

2 and let the X variables be i.i.d. Bernoulli with
parameter p. Define, for each v ∈ Z

2, σv as follows. Consider, for each n, the dif-
ference between the number of 1’s and the number of 0’s in the 2n × 2n square
centered at v. Take the smallest n where this difference has absolute value larger
than some constant, say 5. Define σv as the sign of the aforementioned difference
(number of 1’s minus number of 0’s) for that n. It is easy to check that this defin-
ition corresponds to a nice, finitary representation, in the sense of Definition 2.1.
More interesting (in the context of the subject of this paper) are those weakly
dependent models that are not a priori explicitly defined in terms of such a rep-
resentation. One can then search for a possible “hidden” representation. A major
example where this works is the following.

Ising model with (fixed) inverse temperature β < βc and external field parame-
ter h. We first recall some definitions and standard results for these models. Ising
measures μβ,h on {−1,+1}Z

2
, with inverse temperature β ∈ [0,∞) and external

field h ∈ (−∞,∞), are probability measures that satisfy, for η ∈ {0,1} and v ∈ Z
2,

μβ,h(σv = η | σw,w �= v)
(3)

= exp(βη(h + ∑
w∼v σw))

exp(βη(h + ∑
w∼v σw)) + exp(−βη(h + ∑

w∼v σw))
,

where w ∼ v means that ‖v − w‖ = 1.
It is well known that there is a critical value βc such that for β < βc, there is

a unique measure satisfying (3), while for β > βc, there is more than one such
measure.

The Ising model is one of the most well-known examples of a Markov random
field: the conditional distribution of the spin value of a vertex v, given the spin
values of all other vertices, depends only on the spin values of the neighbors of v.

The “single-site” conditional distributions in (3) will often be used in the
remainder of this subsection and will be denoted by qα

v . More precisely, for
v ∈ Z

2, let ∂v denote the set of (four) vertices that are neighbors of v. Fur-
ther, for α ∈ {−1,+1}Z2

and V ⊂⊂ Z
2, let αV denote the “restriction” of α to

V ; that is, αV = (αw,w ∈ V ). For α ∈ {−1,+1}∂v and η ∈ {−1,+1}, we define
qα
v (η) = qα

v (η;β,h) as the conditional probability that σv equals η, given that σ∂v

equals α:

qα
v (η) := exp(βη(h + ∑

w∼v αw))

exp(βη(h + ∑
w∼v αw)) + exp(−βη(h + ∑

w∼v αw))
.(4)

Note that the dependence on the “neighbor configuration” α is only through the
number of + (and hence of −) spins in α. Therefore, it is also convenient to define,
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for m = 0, . . . ,4,

q(m)
v (η) = qα

v (η),(5)

where α may be any element of {−1,+1}∂v with the property that the number of
w ∼ v with αw = +1 equals m.

The following result is well known and goes back to [2] and [21]. Higuchi [15]
proved and used a stronger result, but the weaker version below is sufficient for
our purposes.

THEOREM 2.3. There exist C1 > 0 and λ1 > 0 (which depend on β , but not
on h) such that

μβ,h

(
σ0 = +1 | σ∂	(n) ≡ +1

) − μβ,h

(
σ0 = +1 | σ∂	(n) ≡ −1

)
(6)

≤ C1 exp(−λ1n).

Here, 	(n) denotes the set of vertices [−n,n]2 and ∂	(n) the boundary of this
set.

Martinelli and Olivieri (Theorem 3.1 in [22]) have proven, for a large class of
spin systems, that such a spatial mixing property implies exponential convergence
(to equilibrium) for certain dynamics. For the Ising model, this dynamics is as
follows. First, we define the notion local update. Let α ∈ {−1,+1}Z

2
and v ∈ Z

2.
By a local update of the spin value of v (in the configuration α), we mean that
we draw a new value, say η, according to the distribution qα∂v

v (·) and leave α

unchanged everywhere, except at v, where we replace αv by η. The dynamics can
now be described as follows. Start from some initial configuration. Each vertex
is activated at rate 1. When a vertex is activated, a local update at that vertex is
made. The Martinelli–Olivieri result (for the special case of the Ising model) says
that the distribution at time t , starting from any initial configuration, converges
exponentially fast (uniformly in h) to μβ,h. In particular, the probability that 0 has
spin value +1 at time t converges exponentially fast (and uniformly in h and in the
initial configuration) to μβ,h(σ0 = +1).

As observed in [6], this also holds for certain discrete-time versions of the dy-
namics. The discrete-time dynamics in [6] involves auxiliary random variables, in
terms of which the dynamics is not monotone. For the purposes of [6], that did not
matter, but this dynamics is not suitable for our current purpose—to “construct” the
Ising measure in such a way that it fits with Definition 2.1. The following dynamics
is suitable for our purposes and the Martinelli–Olivieri proof (with straightforward
modifications) works for this dynamics as well. In this discrete-time dynamics, we
update all even vertices at the even times and all odd vertices at the odd times.
[A vertex is even (resp. odd) if the sum of its coordinates is even (resp. odd).] Note
that these “parallel” updates are well defined since the update of an even (resp.



SHARPNESS OF PERCOLATION TRANSITION 1889

odd) vertex only involves the “current” spin values of its neighbors, each of which
is odd (resp. even).

To describe the Ising model as a nice, finitary representation, in the sense of
Definition 2.1, we describe these local updates as follows in terms of i.i.d. ran-
dom variables Yi(t), i ∈ Z

2, t ∈ N, which take values in {−1,0, . . . ,4}. Here (and
further), σω

v (t) denotes the spin value at vertex v at time t for the system start-
ing at time 0 with configuration ω. Sometimes, we will omit the superscript ω. At
each even time t , we do the following, for each even vertex v: if the number of
w ∼ v with σt (w) = −1 is at most Yv(t), we set σv(t + 1) := +1, otherwise we set
σv(t + 1) := −1. For odd t , we perform the analogous actions for all odd v. It is
easy to see [recall (5)] that if we take the following distribution for the Y variables,
these actions correspond exactly with the earlier defined notion of local updates:

P
(
Yv(t) ≥ m

) = q
(4−m)
0 (+1;β,h), 0 ≤ m ≤ 4.

An advantage of using such auxiliary variables is that it enables the coupling
of systems starting from different initial configurations. Define σω(t) = (σω

v (t),
v ∈ Z

2) as the configuration at time t for the system that starts at time 0 with
configuration ω and follows the aforementioned dynamics (involving the Y vari-
ables). We will simply replace the superscript ω by + when we start with the initial
configuration where each vertex has value +1, and by − when we start with − val-
ues. As said before, the Martinelli–Olivieri result concerning exponential conver-
gence to equilibrium extends to this dynamics. In terms of the above notation, this
Martinelli–Olivieri result tells us that there are positive C2 and λ2 (which depend
on β but not on h) such that for all t ,

P
(
σ+

v (t) �= σ−
v (t)

) ≤ C2 exp(−λ2t).(7)

Also, note that we can extend the collection of Y variables to negative t and
that for all integers s, t with s ≤ t , and all configurations ω ∈ {−1,+1}Z

2
, we can

define σω(s, t) = (σω
v (s, t), v ∈ Z

2) as the configuration at time t for the system
that starts at time s with configuration ω and evolves as described above. Analo-
gously as in [6] (which was partly inspired by the perfect simulation ideas in [24]),
we observe that if t < 0 and σ+

v (t,0) = σ−
v (t,0), then (by obvious monotonic-

ity) σω
v (s,0) = σω′

v (s,0) for all s ≤ t and all ω,ω′. From this observation, (7) and
standard arguments, it follows that if we define

τ(v) = max{t < 0 :σ+
v (t,0) = σ−

v (t,0)}, v ∈ Z
2

and

σ(v) = σ+
v (τ (v),0) (= σ−

v (τ (v),0)), v ∈ Z
2,(8)

then we have that σ := (σ (v), v ∈ Z
2) has the Ising distribution μβ,h and that

P
(
τ(v) ≥ n

) ≤ C2 exp(−λ2n).(9)



1890 J. VAN DEN BERG

This shows that the Ising distribution indeed has a nice, finitary representa-
tion (in the sense of Definition 2.1). Take I = {(v, t) :v ∈ Z

2, t ∈ Z, t < 0} and
X(v,t) = Yv(t), (v, t) ∈ I . Then (i) is clear. To see (ii), note that for each t < 0,
σ+

v (t,0) and σ−
v (t,0) are completely determined by the variables Yw(s), t ≤ s < 0,

‖w − v‖ < s.
So, for the sequence i1(v), i2(v), . . . , we can take (v,−1), followed by an enu-

meration of the (finite) set {(w,−2) :w ∈ Z
2,‖w − v‖ < 2}, followed by an enu-

meration of {(w,−3) :w ∈ Z
2,‖w − v‖ < 3}, etc. The upper bound in (ii) (in fact,

even a stronger bound) for the probability that Xi1(v), . . . ,Xim(v) does not deter-
mine σv follows from (9) and the fact that the set {(w, s) :‖w−v‖ < |s|, t ≤ s < 0}
has of order |t |3 elements. Property (iii) is now also clear. Property (iv) is standard
(and has nothing to do with the above description of the Ising model in terms of
the Y variables: since β < βc, there is a unique Ising measure with parameters β,h

and this measure inherits the symmetry properties in the definition of the model).
Hence, we may apply Theorem 2.2. Moreover, the spin-flip symmetry men-

tioned in the remark preceding (2) is clearly satisfied. So, we get the following,
which is the result by Higuchi mentioned earlier (see Theorem 1 (and Corollary 2)
in [16]).

THEOREM 2.4. Let β < βc and consider the Ising measures μβ,h, h ∈ R, on
the square lattice. Statements (a) and (b) of Theorem 2.2 above (with P (h) = μβ,h),
as well as equation (2), hold for this model.

REMARKS. (i) The sharp-threshold result in [12] may provide yet another
route to prove this result for the Ising model. However, that sharp-threshold result
is not suitable for the proof of our general Theorem 2.2 because the random field
σi, i ∈ Z

2 in Theorem 2.2 does not necessarily satisfy the strong FKG condition
needed in [12].

(ii) We hope that, like the Ising model, many other models which at first sight
are not covered by Theorem 2.2 can be constructed or represented in such a way
that this theorem does apply. However, we do not claim that this theorem gives a
completely general recipe. For instance, attempts to bring the models treated in [3]
(which have some of the flavor of the Ising model) into the context of this theorem
have, thus far, not been successful.

3. Preliminaries.

3.1. Approximate zero-one laws. A key ingredient in our proof of Theorem 2.2
is a sharp-threshold result (or approximate zero-one law). As stated in Section 1,
there are several such results in the literature. The one we use is Corollary 1.2 from
Talagrand’s paper [31], which is somewhat similar in spirit to Russo’s approximate
zero-one law ([29]), but more (quantitatively) explicit.
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These threshold results are, although particularly useful for percolation, of a
much more general nature. Consider the set � := {0,1}n, which, for the moment,
serves as our sample space. For ω, ω′ ∈ �, we say that ω ≤ ω′ (or, equivalently,
ω′ ≥ ω) if ωi ≤ ω′

i for all 1 ≤ i ≤ n. Following the standard terminology, we say
that an event (subset of �) is increasing if for each ω ∈ A and each ω′ ≥ ω, we
have ω′ ∈ A. For ω ∈ � and 1 ≤ i ≤ n, we define ω(i) as the configuration obtained
from ω by flipping ωi . More precisely, ω

(i)
j is equal to ωj for j �= i, and 1 − ωj if

j = i.
Let A be an increasing event, ω ∈ � and 1 ≤ i ≤ n. We say that i is an internal

pivotal index (for A, in the configuration ω) if ω ∈ A, but ω(i) /∈ A. It is easy to see
from the fact that A is increasing that this implies that ωi = 1.

By Ai , we denote the event that i is an internal pivotal for A; that is,

Ai = {
ω :ω ∈ A but ω(i) /∈ A

}
.

Let, for p ∈ (0,1), Pp be the product measure with parameter p. Talagrand’s
result to which we referred above is the following.

THEOREM 3.1 ([31], Corollary 1.2). There is a universal constant K1 such
that for all n, all increasing events A ⊂ {0,1}n and all p,

d

dp
Pp(A) ≥ log(1/ε)

K1
Pp(A)

(
1 − Pp(A)

)
,(10)

where ε = ε(p) = supi≤n Pp(Ai).

REMARK. In fact, Corollary 1.2 in [31] is somewhat sharper, namely with K1
above replaced by Kp(1 − p) log[(2/(p(1 − p))], where K is also a universal
constant. Since p(1 − p) log[(2/(p(1 − p))] is bounded from above, Theorem 3.1
above follows immediately.

Let p1 < p2. Noting (as in Section 3 of [31]) that (10) is equivalent to

d

dp
log

(
Pp(A)

1 − Pp(A)

)
≥ log(1/ε)

K1

and integrating this inequality over the interval (p1,p2) gives the following.

COROLLARY 3.2 ([31], Corollary 1.3). There is a universal constant K1 such
that for all n, all increasing events A ⊂ {0,1}n and all p1 < p2,

Pp1(A)
(
1 − Pp2(A)

) ≤ (ε′)(p2−p1)/K1,(11)

where

ε′ = sup
p1≤p≤p2

max
1≤i≤n

Pp(Ai).(12)
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REMARK. In the definition of ε′ in the statement of Corollary 1.3 in [31], the
supremum involving p is over the interval [0,1] instead of [p1,p2], but it is clear
that the result with ε′ defined as in (12) holds.

We want to apply similar results to the family of distributions P (h), h ∈ R, in the
statement of Theorem 2.2. Recall that P (h) is the product over I of the distribution
of μ(h) and that the latter is a probability distribution on {0, . . . , k}. First, we must
“generalize” some of our definitions.

The notion of increasing event is extended in the obvious way. The extension
of the notion of being pivotal is somewhat less obvious. Let A ⊂ {0,1, . . . , k}I
be an increasing event. We say that index i ∈ I is an internal pivotal index (in a
configuration ω ∈ {0, . . . , k}I and for a given increasing event A) if ω ∈ A, but
ω(i) /∈ A, where, now, ω(i) is defined as the configuration ω′ which has ω′

j = ωj

for all j �= i and ω′
i = 0. (It follows immediately from the definition that if i is

pivotal, then ωi > 0.)
We cannot immediately use Corollary 3.2 because of the following two issues:

one is that k may be larger than 1, the other is that I is not finite, but countably
infinite. As to the first issue, an extension of Corollary 3.2 to k > 1 can be obtained
by suitably “coding” {0,1, . . . , k}-valued random variables in terms of 0–1 valued
random variables. As to the second issue, that can be overcome by restricting to a
suitable subclass of increasing events (which turns out to be sufficient, but is not
very satisfactory). The strategy followed by Rossignol (see [26]) is considerably
more powerful. Roughly speaking, he extends Theorem 1.5 in [31] (which is a
“functional” generalization of Theorem 1.1 in [31], of which Theorem 3.1 above
is an easy consequence) and, from that extension, obtains the following extension
of Corollary 3.2.

THEOREM 3.3 ([26], Corollary 3.1). If the event A ⊂ {0,1, . . . , k}I is increas-
ing, then for all −∞ < h1 < h2 < ∞,

P (h1)(A)
(
1 − P (h2)(A)

) ≤ (ε̄)(h2−h1)c(h1,h2)/K2,(13)

where K2 is a constant, ε̄ = supi suph∈(h1,h2)
P (h)(Ai) and

c(h1, h2) = inf
h∈[h1,h2]

min
1≤j≤k

d

dh
μ(h)({j, . . . , k}).

REMARK. In fact, Corollary 3.1 in [26] is somewhat sharper (see the remark
at the end of Section 3 in [26]), but Theorem 3.3 is sufficient for our purposes.

3.2. Mixing property. In this subsection, we show that random variables
σv, v ∈ Z

2 that satisfy properties (i)–(iv) in Section 2.1 have certain, very con-
venient, spatial mixing properties.
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We say that a vertex v is l determined (w.r.t. the X configuration) if Xi1(v), . . . ,

Xil (v) determine σv . A set of vertices W is said to be l determined if every v ∈ W

is l determined. From property (ii) in Section 2.1, we have

P (h)(W not l determined) ≤ |W |max
v∈W

P (h)(v not l determined)

(14)

≤ |W | C0

l2+γ

with C0 as in property (ii).
The distance between two subsets U,V ⊂ Z

2 is defined as minu∈U,v∈V ‖u−v‖.

LEMMA 3.4. Let k be a positive integer and let U and V be finite subsets of
Z

2 that have distance larger than k to each other. Let A be an event that is defined
in terms of the random variables σv, v ∈ U and B an event that is defined in terms
of the random variables σv, v ∈ V . Then, with α and γ as in properties (ii) and (iii)
from Section 2.1,

∣∣P (h)(A ∩ B) − P (h)(A)P (h)(B)
∣∣ ≤ 2(|U | + |V |) C0

�αk�2+γ
.(15)

PROOF. Let Â be the event A ∩ {U is �αk� determined} and B̂ the event B ∩
{V is �αk� determined}. Note that for each vertex v and each integer l, the event
that v is l determined depends only on the random variables Xi1(v), . . . ,Xil(v).
This, property (iii) in Section 2.1 and the fact that U and V have distance larger
than k collectively imply that Â and B̂ are independent:

P (h)(Â ∩ B̂) = P (h)(Â)P (h)(B̂).(16)

Further, using (14),

P (h)(A \ Â) ≤ P (h)(U not �αk� determined) ≤ |U | C0

�αk�2+γ
(17)

and, similarly,

P (h)(B \ B̂) ≤ P (h)(V not �αk� determined) ≤ |V | C0

�αk�2+γ
.(18)

From (16)–(18), Lemma 3.4 follows straightforwardly. �

3.3. Positive association. The next lemma concerns positive association.

LEMMA 3.5. The system (σv, v ∈ Z
2), described in Section 2.1, is positively

associated. That is, for all increasing (in terms of the σ variables) events A and B ,
P (h)(A ∩ B) ≥ P (h)(A)P (h)(B).
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PROOF. The random variables (Xi, i ∈ I ) are independent {0,1, . . . , k}-
valued random variables and hence, by FKG (or, in this special case, Harris’
inequality for positive association), positively associated. Since the σ variables
are increasing functions of the X variables, the statement of the lemma follows.

�

REMARK. Note that the σv, v ∈ Z
2 do not necessarily satisfy the strong FKG

condition.

3.4. RSW properties. As stated in the Introduction, Bollobás and Riordan (see
Theorem 4.1 in [8]) obtained a new RSW-like result for the Voronoi percolation
model. The conclusion of their RSW theorem is weaker than that of the classical
RSW theorem, but its proof is more robust: it does not (like the proof of “classical”
RSW) involve conditioning on the lowest crossing. It works, as they pointed out,
not only for the Voronoi model, but also for a large class of percolation models. In
fact, the conditions are as follows (see [9] and Section 4.3 in [4]):

(a) crossings of rectangles must be defined in terms of “geometric paths” in
such a way that (e.g.) horizontal and vertical crossings meet (this enables the often-
used tool of pasting together paths to be used);

(b) certain increasing events (in particular, events of the form that there is a +
path between two given sets of vertices) must be positively correlated;

(c) the distribution of the random field (σv, v ∈ Z
2) should be invariant under

the symmetries of Z
2;

(d) finally, certain mixing properties are needed.

The model in Theorem 2.2 satisfies the above conditions: as for (a), these are
simply well-known properties for percolation on the square lattice and its match-
ing lattice, and have nothing to do with the distribution P (h). As for (b) and (c),
these are taken care of by Lemma 3.5 and by property (iv) in Section 2.1, respec-
tively. Finally, as for (d), the following property (here formulated in our notation)
is more than enough (see Remark 4.5 in [4]): for each ε > 0, there is an l such
that for all k > l, all k by 2k rectangles R1 and R2 that have distance larger than
k/100 to each other and all events A and B that are defined in terms of the ran-
dom variables (σv, v ∈ R1) and the random variables (σv, v ∈ R2), respectively,
|P (h)(A ∩ B) − P (h)(A)P (h)(B)| < ε. For our model, this is immediately guaran-
teed by Lemma 3.4. Hence, our model belongs to the class of models mentioned
above.

For this class of models, the Bollobás–Riordan RSW-like theorem says that if
the lim inf, as s → ∞, of the probability of having a horizontal crossing of the box
[0, s] × [0, s] is positive, then for every ρ > 0, the lim sups→∞ of the probability
of a horizontal crossing of the box [0, ρs] × [0, s] is positive.

It is pointed out in [4] that small modifications of the proof of Theorem 4.1 in
[8] in fact give the stronger result (for the same class of models as described above)



SHARPNESS OF PERCOLATION TRANSITION 1895

that if for some ρ > 0, the lim sups→∞ of the probability that there is a horizontal
crossing of the box [0, ρs] × [0, s] is positive, then this holds for all ρ > 0. (Note
the occurrence of lim sup and lim inf.) Or, equivalently, if for some ρ, lims→∞ of
the probability that there is a horizontal crossing of the box [0, ρs]×[0, s] equals 0,
then this limit equals 0 for every ρ > 0. As remarked above, our current percolation
model satisfies the required properties. So we get the aforementioned RSW result.
Before we state this explicitly, we introduce the following notation. Let H(n,m)

[resp. V (n,m)] denote the event that there is a horizontal (resp. vertical)+crossing
of the box [0, n]× [0,m]. Further, let H−∗(n,m) and V −∗(n,m) be the analogs of
H(n,m) and V (n,m) for − crossings in the ∗ lattice. In this notation, the above
mentioned RSW-like statement is as follows.

LEMMA 3.6. (a) If

lim
n→∞P (h)(H(ρn,n)) = 0 for some ρ > 0,

then

lim
n→∞P (h)(H(ρn,n)) = 0 for all ρ > 0.

(b) The analogous result, with H replaced by H−∗, also holds.

Note that since a box either has a horizontal + crossing or a vertical −∗ crossing
(and using rotation symmetry), we have that for each k and l, P (h)(H(k, l)) = 1 −
P (h)(H−∗(l, k)). Combining this with Lemma 3.6 immediately gives the following
corollary.

COROLLARY 3.7. (a) If

lim
n→∞P (h)(H(ρn,n)) = 1 for some ρ > 0,

then

lim
n→∞P (h)(H(ρn,n)) = 1 for all ρ > 0.

(b) The analogous result, with H replaced by H−∗, also holds.

3.5. Finite-size criterion.

LEMMA 3.8. There is an ε̂ > 0 and an integer N̂ such that for all N ≥ N̂ , the
following hold:

(a) if P (h)(V (3N,N)) < ε̂,(19)

then the distribution of |C+| has an exponential tail;

(b) if P (h)(V −∗(3N,N)) < ε̂,(20)

then the distribution of |C−∗| has an exponential tail.
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PROOF. The proof below follows the main line of reasoning in the proof of
the analogous well-known result for ordinary percolation (see [19]). Let N and ε

be such that P (h)(V (3N,N)) < ε. Cover Z
2 by squares

QN(x) := Nx + [0,N]2, x ∈ Z
2.

We will often simply write QN for QN(0).
We say that an x ∈ Z

2 is good if QN(x) contains a vertex of C+. A set W ⊂ Z
2

is called good if every x ∈ W is good. Let S denote the set of good vertices. From
the definition of “good,” it is easy to see that S is a connected subset of the square
lattice and that 0 ∈ S unless C+ = ∅ (in which case, also S = ∅). It is also clear
that |S| ≥ |C+|/|QN | and hence that

P (h)(|C+| ≥ n) ≤ P (h)

(
|S| ≥ n

|QN |
)
, n = 1,2, . . . .(21)

Let, for x ∈ Z
2, R1(x) denote the 3N × N rectangle “north” of QN(x). More

precisely,

R1(x) := Nx + [−N,2N ] × [N,2N ].
Similarly, let R2(x) be the 3N ×N rectangle south of QN(x) and let R3(x) and

R4(x) be the N × 3N rectangles east, respectively west, of QN(x).
Define, for each x ∈ Z

2, the following event (where “easy” stands for “vertical”
in the case of a 3N × N rectangle and for “horizontal” in the case of an N × 3N

rectangle):

Ax := {∃i ∈ {1, . . . ,4} such that Ri(x) has a + crossing in the easy direction}.
It is standard (and easy to check) that for all (except a finite number, say C1)

x ∈ Z
2, the following inclusion of events holds:

{x is good} ⊂ Ax.(22)

Let R(x) = ⋃4
i=1 Ri(x). Recall the definition of “l determined” in Section 3.2.

We trivially have

Ax ⊂ Bx,(23)

where

Bx := (
Ax ∩ {R(x) is N determined}) ∪ {R(x) is not N determined}.

We then get

P (h)(Bx) ≤ P (h)(Ax) + P (h)[R(x) is not N determined]
≤ 4ε + |R(0)|max

x
P (h)(x is not N determined)

(24)

≤ 4ε + C2N
2 C0

N2+γ

≤ 4ε + C3(N), where C3(N) → 0 as N → ∞
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and where the first inequality is trivial, the second follows from our choice of N

and ε, the third follows from (14) and C2 is a constant.
Let α be as in property (iii) in Section 2.1. It is easy to see that there is a con-

stant C4 = C4(α) such that for every finite set of vertices x(1), . . . , x(m) satisfying
min1≤i<j≤m ‖x(i)− x(j)‖ > C4(α), the events Bx(i), 1 ≤ i ≤ m, are independent.

From this [and (22)–(24)], it follows easily that there exist a C5(α) and C6(α)

such that for every finite set of vertices W ,

P (h)(W is good ) ≤ (
4ε + C3(N)

)�(|W |−C1)/C5(α)�
(25)

≤∗ (
4ε + C3(N)

)|W |/C6(α)
,

where the mark * in the last inequality means that inequality holds for all values
of |W | that are sufficiently large.

We now apply this to (21). To do this, note that if |S| ≥ n/|QN |, then there is
a good lattice animal W of size � n

|QN | �. (A lattice animal is a connected set of
vertices containing 0.) Using this, (21), (25) and the fact that there is a constant C7
such that the number of lattice sites of size k is at most Ck

7 , we get

P (h)(|C+| ≥ n) ≤ C
�n/|QN |�
7

(
4ε + C3(N)

)�n/|QN |�/C6(α)

(26)
≤ C8(ε,N)

[(
C7

(
4ε + C3(N)

)1/C6(α))1/|QN |]n
.

Now, take ε̂ and N̂ such that C7(4ε̂+C3(N̂))1/C6(α) < 1 for all N ≥ N̂ [which can
be done since C3(N) → 0 as N → ∞]. From (26), it follows that for this choice
of ε̂ and N̂ , the statement in part (a) of Lemma 3.8 holds. By exactly the same
arguments (and, if necessary, by decreasing, resp. increasing, the values of ε̂ and
N̂ obtained above), part (b) also follows. �

From the above lemma, we easily get the following.

COROLLARY 3.9. Let ε̂ and N̂ be as in Lemma 3.8.

(a) If there is an n ≥ N̂ with P (h)(V (3n,n)) < ε̂, then P (h)(|C−∗| = ∞) > 0.
(b) If there is an n ≥ N̂ with P (h)(V −∗(3n,n)) < ε̂, then P (h)(|C+| = ∞) > 0.

PROOF. We only prove part (a) here; the proof of (b) is completely analogous.
If the condition of Corollary 3.9 holds, then by Lemma 3.8, the distribution of |C+|
has an exponential tail. Exactly as in the Peierls argument in ordinary percolation
(see, e.g., [13]), this implies that the probability that there is a + circuit having 0
in its interior is less than 1 and hence that P (h)(|C−∗| = ∞) > 0. �

LEMMA 3.10. If P (h)(|C+| = ∞) > 0, then P (h)(|C−∗| = ∞) = 0.
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PROOF. There are various standard ways to prove this. One is as follows. The
law of (σv, v ∈ Z

2), is positively associated (by Lemma 3.5), translation invariant,
invariant under horizontal axis reflection and vertical axis reflection [property (iv)
in Section 2.1] and mixing (in the ergodic-theoretic sense, w.r.t. horizontal transla-
tions as well as to vertical translations). The last follows from Lemma 3.4. Hence,
by the main result in [11], P (h)(|C−∗| = ∞) = 0. �

4. Proof of Theorem 2.2. We use the notation θ(h) for P (h)(|C+| = ∞) and
θ−∗(h) for P (h)(|C−∗| = ∞). Let

hc := sup{h : θ(h) = 0}.
It is quite easy to see that hc < ∞. Take n ≥ N̂ with N̂ defined as in Lemma 3.8.
From properties (b), (i) and (iii) in Section 2.1, it follows that for all v ∈ Z

2,
P (h)(σv = +1) → 1 as h → ∞ and hence that P (h)(H(3n,n)) → 1 as h → ∞,
which is equivalent to P (h)(V −∗(3n,n)) → 0 as h → ∞. So, there is an h such
that P (h)(V −∗(3n,n)) < ε̂ with ε̂ as in Corollary 3.9. By part (b) of that corol-
lary, θ(h) > 0 for such h. Hence, we indeed have that hc < ∞. Using analogous
arguments, it follows that hc > −∞.

PROOF OF THEOREM 2.2. We now start with the proof of part (a) of The-
orem 2.2, where we will use the following notation. B(n) denotes the square
[−n,n]2 and ∂B(n) its boundary [the set of all vertices v that are not in B(n),
but for which there is a w ∈ B(n) with ‖v − w‖ = 1]. For n ≤ m, A(n,m) denotes
the annulus B(m) \ B(n). For v ∈ Z

2 and n ∈ N , B(v;n) will denote the set B(n)

shifted by v.
Let h be larger than the above-defined hc. So, P (h)(|C+| = ∞) > 0. We will

first show that

P (h)(H(n,n)) → 1 as n → ∞.(27)

This is done in a quite standard way. Let δ > 0. Take K sufficiently large that

P (h)(B(K) ↔ ∞)
> 1 − δ.(28)

By Lemma 3.10, we can take N > K so large that

P (h)(∃ a + circuit in A(K,N) surrounding B(K)
)
> 1 − δ.(29)

For all n ≥ N , the following holds. First, by (28), we have, of course, that
P (h)(B(K) ↔ ∂B(n)) > 1 − δ. Since our model has the positive association prop-
erty (see, Lemma 3.5), we can apply the usual “square root trick” (see, e.g., [13]),
which gives that P (h)(B(K) ↔ r(B(n))) > 1 − δ1/4, where r(B(n)) denotes the
right-hand side {n} × [−n,n] of B(n). By this and its analog for the left side
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l(B(n)) of B(n), together with (29) (and again positive association), we get, for all
n ≥ N ,

P (h)(H(n,n))

≥ P (h)(B(K) ↔ r(B(n)),B(K) ↔ l(B(n)),+ circuit in A(K,n)
)

(30)

≥ (1 − δ1/4)2(1 − δ).

Since we can take δ arbitrary small, (27) follows.
Application of Corollary 3.7 now gives that P (h)(H(3n,n)) → 1 as n → ∞

and hence that P (h)(V −∗(3n,n)) → 0 as n → ∞.
Finally, by part (b) of Lemma 3.8, this implies that the distribution of |C−∗| has

an exponential tail. This completes the proof of Theorem 2.2(a).
It is important to note that part (b) of the theorem cannot simply be concluded

by replacing “+” by “−∗” (and vice versa) in the arguments above. The problem
is that our definition of hc in the beginning of the proof is “asymmetric.” If we
could show that the above defined hc is equal to inf{h :P (h)(|C−∗| = ∞) = 0}
or, equivalently [since we already know, by Lemma 3.10, that there is no h for
which both θ(h) > 0 and θ−∗(h) > 0], that θ−∗(h) > 0 for all h < hc, we would
be able to conclude (b) by exchanging + and −∗ in the arguments of (a). Below,
it will be shown, using the approximate zero-one laws in Section 3.1, that, indeed,
θ−∗(h) > 0 for all h < hc.

Proof of (b). Suppose there is an h1 < hc with θ−∗(h1) = 0. We will show
that this leads to a contradiction. Let h2 ∈ (h1, hc). Then, for all h ∈ [h1, h2], by
monotonicity [see properties (a) and (i) in Section 2.1], θ(h) = θ−∗(h) = 0. Let
H(n,m) and H−∗(n,m) be the box-crossing events defined in Section 3.4. Since
θ+ ≡ 0 on [h1, h2], we have, by Corollary 3.9 (b) [noting that P (h)(V −∗(3n,n)) =
1 − P (h)(H(3n,n))], that

∀h ∈ [h1, h2] ∀n ≥ N̂ P (h)(H(3n,n)) < 1 − ε̂(31)

with ε̂ and N̂ as in Lemma 3.8.
On the other hand, P (h1)(H(n,3n)) = P (h1)(V (3n,n)), which [again by Corol-

lary 3.9 and because θ−∗(h1) = 0] is at least ε̂ for all n ≥ N̂ . Hence, by Lemma 3.6,

lim sup
n→∞

P (h1)(H(3n,n)) > 0.

Using this, monotonicity and (31), it follows straightforwardly that there is a δ ∈
(0,1) and an infinite sequence n1 < n2 < n3 < · · · such that

P (h)(H(3ni, ni)) ∈ (δ,1 − δ) for all i and all h ∈ [h1, h2].(32)

To reach a contradiction, we will show that the sequence (εn), defined by

εn := sup
j∈I,h∈[h1,h2]

P (h)((H(3n,n))j ),
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satisfies

εn → 0 as n → ∞,(33)

where, as before (Section 3.1), Aj denotes the event that j is an internal pivotal
index for the event A.

REMARK. It is important to note that, here, we do not (as in ordinary percola-
tion and in Higuchi’s treatment) consider pivotality in terms of the vertices of the
lattice (the indices of the σ variables), but in terms of the indices of the underlying
X variables [i.e., in the special case of the Ising model, the space-time variables
Yv(t) in Section 2.2.1, which control the updates in the dynamics].

We will first show that (32) and (33) indeed give a contradiction. By Theo-
rem 3.3 we have, for all i = 1,2, . . . ,

P (h1)(H(3ni, ni))
(
1 − P (h2)(H(3ni, ni))

) ≤ (εni
)c(h1,h2)(h2−h1)/K2

with εni
as defined above.

By (33), the right-hand side in this last inequality goes to 0 as n → ∞. However,
for all i, the left-hand side is at least δ2 by (32)—a contradiction.

So, part (b) of the theorem is proved once we prove (33), which we will do now.
In the following, X stands for the collection of random variables (Xi, i ∈ I ).

Note that, by the definition of internal pivotal,

P (h)((H(3n,n))j ) = P
(
X ∈ H(3n,n),X(j) /∈ H(3n,n)

)
,(34)

where X(j) is the element of {0, . . . , k}I that satisfies X
(j)
i = Xi for all i �= j and

X
(j)
j = 0.

Now, recall that for each v ∈ Z
2, we have the sequence i1(v), i2(v), . . . intro-

duced in property (ii) of Section 2.1. We will use the following terminology. If
im(v) = j , we say that j has rank m for v. If j does not occur at all in the se-
quence i1(v), i2(v), . . . , we say that the rank of j for v is infinite. The rank of j

for v will be denoted by rv(j). Suppose that rv(j) = m. Then we say that v needs
j if (Xi1(v),Xi2(v), . . . ,Xim−1(v)) does not determine σv .

Let v be a vertex in the box [0,3n]× [0, n]. We use the notation H(3n,n;v) for
the event that v is on a horizontal + crossing of that box. Using the terminology
and observation above, we have that the right-hand side of (34) is at most

P
(∃v ∈ Z

2 such that X ∈ H(3n,n;v), but X(j) /∈ H(3n,n;v)
)

≤ ∑
v∈Z2

P
(
X ∈ H(3n,n;v),X(j) /∈ H(3n,n;v)

)

(35)
≤ ∑

v∈Z2

P (h)(H(3n,n;v), v needs j)

≤ ∑
v∈Z2

min
(
P (h)(H(3n,n;v)),P (h)(v needs j)

)
.
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Further, note that if v is on a horizontal + crossing of the rectangle [0,3n] ×
[0, n], there must be a + path from v to ∂B(v;n). By this, and translation in-
variance [property (iv) of Section 2.1], the first of the two probabilities in the
expression in the summand in the last line of (35) [i.e., P (h)(H(3n,n;v))] is at
most P (h)(0 ↔ ∂B(n)), which, by monotonicity, is, of course, at most P (h2)(0 ↔
∂B(n)). Let us denote this last probability by f (n). Also, note that property (ii) of
Section 2.1 states that

P (h)(v needs j) ≤ C0

(rv(j) − 1)2+γ
.

These considerations imply that the last line of (35) is, for each positive inte-
ger K , at most

f (n) × |{v ∈ Z
2 : rv(j) ≤ K}| + C0

∞∑
k=K

|{v : rv(j) = k}|
(k − 1)2+γ

.(36)

Consider the set in the first term in (36). Let u and w be two vertices which
both belong to this set. That is, ru(j) ≤ K and rw(j) ≤ K hold and hence the sets
{i1(u), . . . , iK(u)} and {i1(w), . . . , iK(w)} have nonempty intersection. It follows
from property (iii) of Section 2.1 that ‖v−w‖ is at most K/α. Hence, the set under
consideration has diameter ≤ K/α. The cardinality of this set therefore satisfies

|{v ∈ Z
2 : rv(j) ≤ K}| ≤ C9K

2

α2(37)

for some constant C9.
From this [and using the fact that (k − 1)2+γ is decreasing in k], it is easy to see

that the sum in (36) satisfies
∞∑

k=K

|{v : rv(j) = k}|
(k − 1)2+γ

≤ C10

α2Kγ
+

∞∑
k=K+1

C10

α2k1+γ
(38)

for some constant C10.
Note that in (36), we are free to choose K . In the following, we let K(n) be the

largest integer k for which

C9k
2

α2 ≤ 1√
f (n)

.

Taking together (34)–(38) we get, choosing K = K(n) in (36),

P (h)((H(3n,n))j ) ≤ f (n)
1√
f (n)

+ C10

α2K(n)γ
+

∞∑
k=K(n)+1

C10

α2k1+γ
.(39)

Note that the right-hand side of (39) does not depend on j and h, and [since
f (n) → 0 as n → ∞, γ > 0 and K(n) → ∞ as n → ∞] goes to 0 as n → ∞.
This proves (33) and thus completes the proof of the first statement in part (b) of
the theorem. The second statement of part (b) now follows in exactly the same way
as its analog in (a). �
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