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ADAPTIVE BAYESIAN INFERENCE ON THE MEAN OF 
AN INFINITE-DIMENSIONAL NORMAL DISTRIBUTION 

BY EDUARD BELITSER AND SUBHASHIS GHOSAL 

Utrecht University and North Carolina State University 

We consider the problem of estimating the mean of an infinite- 
dimensional normal distribution from the Bayesian perspective. Under the as- 

sumption that the unknown true mean satisfies a "smoothness condition," we 
first derive the convergence rate of the posterior distribution for a prior that is 
the infinite product of certain normal distributions and compare with the min- 
imax rate of convergence for point estimators. Although the posterior distrib- 
ution can achieve the optimal rate of convergence, the required prior depends 
on a "smoothness parameter" q. When this parameter q is unknown, besides 
the estimation of the mean, we encounter the problem of selecting a model. In 
a Bayesian approach, this uncertainty in the model selection can be handled 

simply by further putting a prior on the index of the model. We show that if 

q takes values only in a discrete set, the resulting hierarchical prior leads 
to the same convergence rate of the posterior as if we had a single model. 
A slightly weaker result is presented when q is unrestricted. An adaptive point 
estimator based on the posterior distribution is also constructed. 

1. Introduction. Suppose we observe an infinite-dimensional random vector 
X = (X1, X2, ...), where Xi's are independent, Xi has distribution N(Oi, n-1), 
i = 1, 2,..., and 0 = (01,92,...) E e2, that is, •z 1O2 < 0oo. The parameter 0 
is unknown and the goal is to make inference about 0. Let P,, n stand for the 
distribution of X; here and throughout, we suppress the dependence of X and 

Po 
= 

PO, n on n unless indicated otherwise. We shall write II| 11 for the e2 norm 
throughout the paper. 

We also note that X may be thought of as the sample mean vector of the 
first n observations of an i.i.d. sample Y1, Y2,..., each taking values in R' 
and distributed like Y= (Y1, Y2, ...), where Yi's are independent and Yi has 
distribution N(0i, 1), i = 1, 2,.... Since the sample mean is sufficient, these two 
formulations are statistically equivalent. To avoid complicated notation, we shall 
generally work with the first formulation. However, the latter formulation will help 
us apply the general theory of posterior convergence developed by Ghosal, Ghosh 
and van der Vaart (2000). 

The interest in the infinite-dimensional normal model is partly due to its 
equivalence with the prototypical white noise model 

dXe(t) = f(t) dt + edW(t), O < t < 1, 
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where X,(t) is the noise-corrupted signal, f(.) e L2[0, 1] is the unknown signal, 
W(t) is a standard Wiener process and e > 0 is a small parameter. The statistical 
estimation problem is to recover the signal f (t), based on the observation X, (t). 
The above model arises as the limiting experiment in some curve estimation 
problems such as in density estimation [Nussbaum (1996); Klemeli and Nussbaum 
(1998)] and nonparametric regression [Brown and Low (1996)], where e = n-1/2 
and n is the sample size. 

Suppose that the functions {fi, i = 1, 2,...} form an orthonormal basis in 
L2[0, 1]. Under the assumption f () E L2[0, 1], we can reduce this problem to the 
problem of estimating the mean 0 = (01, 02,...) E 2 of an infinite-dimensional 
normal distribution. Indeed, 

Xi 
-Oi+ 

E i, i= 1,29 
.... 

where Xi = foT i (t) dXe (t), Oi = foT ji(t)f(t) dt and i = fS i (t) dW(t), so 
that the i's are independent standard normal random variables. In so doing, we 
arrive at the infinite-dimensional Gaussian shift experiment with e = n-1/2. The 
signal f(t) can be recovered from the basis expansion f(t) = 

il 
Oi 0i (t) and 

the map relating f and 0 is an isometric isomorphism. 
Coming back to the infinite-dimensional normal model, if a Bayesian analysis 

is intended, one assigns a prior to 0 and looks at the posterior distribution. 
Diaconis and Freedman (1997) and Freedman (1999) considered the independent 
normal prior N(0, r2) for Oi, i = 1, 2,..., and comprehensively studied the 
nonlinear functional 110 - 0112, where 0 is the Bayes estimator, both from the 
Bayesian and the frequentist perspectives. As a consequence of their main results, 
they established frequentist consistency of the Bayes estimator for all 0 e e2 if 

i= 
2 r< oo00. A peculiar implication of their result is that the Bayesian and 

frequentist asymptotic distributions of 110 - 0112 differ, and hence the Bernstein- 
von Mises theorem fails to hold for this simple infinite-dimensional problem. 
A similar conclusion was reached earlier by Cox (1993) in a slightly different 
model. 

This estimation problem was first studied in a minimax setting by Pinsker 
(1980). He showed that if the unknown infinite-dimensional parameter 0 is 
assumed to belong to an ellipsoid q q(Q) {0 :"Y i I2q0 Q}, then the exact 

asymptotics of the minimax quadratic risk over the ellipsoid eq (Q) are given by 

(1.1) lim inf sup n2q/(2q+l)Eol 0-0112 = Q1/(2q+l)y(q), 
n 0 0 EOq(Q) 

where y(q)= (2q + 1)1/(2q+l)(q/(q + 1))2q/(2q+l) is the Pinsker constant 
[Pinsker (1980)] and Eo denotes the expectation with respect to the probability 
measure Po generated by X given 0. 

Zhao (2000) considered the independent normal prior with r2 
= 

r2(q) 
= 

i-(2q+1), i = 1, 2, ... [considered also by Cox (1993) and Freedman (1999)], 
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and showed that the posterior mean attains the minimax rate 
n-q/(2q+l). 

We 
shall write TIq to denote this prior. We show in Theorem 2.1 that the posterior 
distribution Hq (.IX) 

obtained from the prior Hfq also converges at the rate 
n-q/(2q+l) in the sense that, for any sequence Mn - co, 

Inq{O:nq/(2q+1)110 _0011 > MnIX} 
-> 

0 

in P00-probability as n -- oo, where the true value of the parameter 0o belongs 
to the linear subspace 6q = {0: E•i i2q02O < 00}. It has long been known that 
for finite-dimensional models the posterior distribution converges at the classical 
n-1/2 rate, but for infinite-dimensional models results have only been obtained 
recently by Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasserman 
(2001). 

Our main goal in the present paper is to construct, without knowing the value 
of the smoothness parameter q, a prior such that the posterior distribution attains 
the optimal rate of convergence. In this case, instead of one single model 0 e •q, 
we have a nested collection of models 0 E 0q, q e 

(_. 
The inference based on 

such a prior is therefore adaptive in the sense that the same prior gives the optimal 
rate of convergence irrespective of the smoothness condition. Here, besides the 
problem of estimation, we encounter the problem of model selection. In a Bayesian 
framework, perhaps the most natural candidate for a prior that gives the optimal 
rate over various competing models is a mixture of the appropriate priors in 
different models, indexed by the smoothness parameter q. So we consider a 
mixture of lHq's over q, that is, a prior of the form E .q HIq, where Xq > 0, 
E Xq = 1 and the sum is taken over some countable set. We show that the resulting 
hierarchical or mixture prior leads to the optimal convergence rate of the posterior 
simultaneously for all q under consideration. Similar results were also found by 
Ghosal, Lember and van der Vaart (2002) in the context of density estimation and 
Huang (2000) for density estimation and regression. 

The problem of adaptive estimation in a minimax sense was first studied by 
Efromovich and Pinsker (1984). They proposed an estimator 0 of 0 which does 
not assume knowledge of the smoothness parameter q, yet attains the minimum 
in (1.1). 

The organization of the paper is as follows. In the next section we study the case 
when the smoothness parameter is known. Then we formulate the main result of 
the paper, which states that if the smoothness parameter is unknown but lies in a 
discrete set, the optimal rate can be achieved by a mixture prior simultaneously 
for different smoothness values. In Section 4, we construct an adaptive estimator 
based on the posterior distribution that pointwise achieves the optimal rate of 
convergence in the frequentist sense. The proof of the main result is based on 
several auxiliary lemmas among which Lemma 3.1 is of interest on its own. The 
proofs of these lemmas are given in Sections 5 and 6. In Section 7, we consider 
the case where q can take any value in the continuum and present a slightly weaker 
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result. Uniformity of the convergence of the posterior distribution with respect to 
the parameter lying in an infinite dimensional ellipsoid is discussed in Section 8. 

From now on, all symbols O and o refer to the asymptotics n -+ 00 unless 
otherwise specified. By [Lx, we shall mean the greatest integer less than or equal 
to x. 

2. Known smoothness. Recall that we have independent observations Xi 
distributed as N (Oi, n- ), i = 1,2,....From now on, we assume that the unknown 
parameter 0 = (01, 02,...) belongs to the set 0q = {1 :fCli2qo2 I< c, 
a Sobolev-type subspace of e2. Note that q measures the "smoothness" of 0, 
since, in the equivalent white noise model with the standard trigonometric Fourier 
basis, the set eq essentially corresponds to the class of all periodic functions 
f (-) E L2[0, 1] whose L2[0, 1] norm of the qth derivative is bounded, when q is an 
integer (otherwise the qth Weyl derivative is meant). So, in some sense q stands for 
the "number of derivatives" of the unknown signal in the equivalent white noise 
model. For this reason, q will often be referred to as the smoothness parameter 
of 0. 

Let Oo = (010, 020, ...) denote the true value of the parameter so that we have 

00 E Eq. Let the prior Hp be defined as 

0i's are independent N(0, i-(2p+l)). 

Then the posterior distribution of 0 given X is described by 

Oi's are independent N( 
nXi 

n + i2p+l' n + i2p+l 

The posterior mean is given by 0 = (01, 02,...), where 

nXi i = i =1, 2,.... n + i2p+1 ' 

Note that the posterior distribution of Oi depends on X only through Xi. In 
Theorem 5.1 of Zhao (2000) [and implicitly in Section 3 of Cox (1993) and 
Theorem 5 of Freedman (1999)], it is shown that 0 converges to 00 at the rate 
n-min(p, q)/(2p+l). By a slight extension of Zhao's (2000) argument, we observe 
that the posterior distribution also converges at this rate. 

THEOREM 2.1. For any sequence Mn -- o, 

(2.1) 
-'p{0:nmin(p' 

q)/(2p+l) | - OoII > MnIX} -~ 0, 

in Poo-probability as n --+ oc. In particular, if we know q, we can choose p = q, 
that is, select the prior Hq to achieve the best possible rate n-q/(2q+1) of 
convergence. 
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PROOF. Applying Chebyshev's inequality, the posterior probability in (2.1) is 
at most 

Mn-2n2min(p, q)/(2p+l) ((i -i0)2 
+ var(Oi IXi)). 

i=1 

It suffices to show that the Poo-expectation of the above expression tends to zero. 
Now it is easy to see that 

Lvar(Oi Xi) = (n ? i2p+l)- = 0 (n-2p/(2p+1)). 
i=1 i=1 

It follows from Theorem 5.1 of Zhao (2000) that 
00 

SE0o(Oi 
- Sio2 = O (n-2min(p,q)/(2p+l)) 

i=1 

and hence the result follows. F1 

REMARK 2.1. Shen and Wasserman (2001) also calculated the rate of 
convergence of the posterior distribution using a different method for the special 
case when Oio = i-P and also showed that the obtained rate is sharp. 

REMARK 2.2. Interestingly, as Zhao (2000) pointed out, although the pri- 
or Hp with p = q is the best choice (among independent normal priors with 
power-variance structure) as far as the convergence rate is concerned, Hq has 
a peculiar property. Both the prior and the posterior assign zero probability 
to eq. This is an easy consequence of the criterion for summability of a random 
series. It is also interesting to note that summability of ~iq=l9 8i2 is barely 
missed by the prior since 

<_l 
i2pO < oo almost surely for any p < q and 

so q = sup{p: Y• i2po2 < ~o almost surely). To fix this problem, Zhao (2000) 
proposed a compound prior 

k_1 
wkTk, where under Jrk, the Oi 's are independent 

with distribution N(0, i-(2q+l)) for i = 1, ..., k and degenerate at 0 otherwise, 
and the wk's are weights bounded from below by a sequence exponentially 
decaying in k. She showed that, on the one hand, the posterior mean attains the 
minimax rate of convergence and, on the other hand, assigns probability 1 to eq. 

3. Discrete spectrum adaptation. So far our approach relies heavily on the 
fact that we know the smoothness, that is, we have chosen a single model as 
the "correct" one from the collection of possible models corresponding to different 
choices of q > 0. In general, when the parameter specifying the model is not 
chosen correctly, this may lead to suboptimal or inconsistent procedures, since 
further analysis does not take into account the possibility of other models. 

In Theorem 2.1, it is appropriate to use the prior Hp with p = q only if we 
know the smoothness parameter q correctly, that is, we know that o0 E )q and 
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the assertion holds for no larger value of q. If actually 00 E eqi for some q' > q, 
then we lose in terms of the rate of convergence since we could have obtained 
the better rate n-q'/(2q'+1) by using the prior Hq,. On the other hand, if 00 E 

q,, q' < q only, then the model is misspecified. In general, one expects inconsistency 
in this type of situation. In this case, however, since all the models are dense in f2, 
the posterior is nevertheless consistent. Still, there is a loss in rate of convergence 
again as we only get the rate n-q'/(2q+l) from Theorem 2.1 instead of the rate 

n-q'/(2q'+l) achievable by the prior Hq,. 
Therefore, we intend to present a prior H that achieves the posterior rate 

of convergence n-q/(2q+1) at 0o whenever 00 E q for different values of the 
smoothness parameter q. Let (2 = {..., q-i,qo q0, 

1 ....} be a countable subset of 
the positive real semiaxis without any accumulation point other than 0 or oc. Such 
a set may be arranged in an increasing sequence that preserves the natural order, 
that is, 0 < ... < q_l1 < q0 < ql < - . We show that there is a prior r for 0 such 
that whenever 00 E q, q E 0 , the posterior converges at the rate n-q/(2q+1) 

We may think of q as another unknown parameter. So, instead of one single 
model, we have a sequence of nested models parameterized by a "smoothness" 
parameter q ranging over the discrete set (2. In a Bayesian approach, perhaps 
the most natural way to handle this uncertainty in the model is to put a prior 
on the index of the model or the "hyperparameter" q. The resulting prior I is 
therefore the two-level hierarchical prior 

given q, the Oi's are independent N(0, i-(2q+l)); 

q has distribution X. 

The main purpose of this article is to show that this simple and natural procedure 
is rate adaptive, that is, the mixture prior achieves the convergence rate n-q/(2q+l) 
whenever 0 E Oq and q E GQ. 

Let Xm = , (q = q,). Henceforth, we shall write -m for 
lqm,. 

We thus have 
H = E00o 

, 

om 
"m. 

Throughout, we shall assume that Xm > 0 for all m. 
Without loss of generality, we may assume that 00 E eqo. Otherwise, we simply 

relabel. 

THEOREM 3.1. For any sequence Mn -- oo, the posterior probability 

(3.1) H{n0:nq0/(2q0+l)11O -0011 > MIX} -* 0 

in Poo-probability as n 
--+ 

o. 

Since q serves as a parameter, we can talk about its posterior distribution. The 
idea behind the proof is first to show that the posterior probability of q being 
smaller than qo is small for large n in P00-probability, that is, the probability of 
selecting a coarser model from the posterior is small. This effectively reduces the 
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prior to the form ,0m>o ,m Im. For such a prior we then show that the posterior 
probability of {0 ~: E 1 i2qoO2 > B, q > qo} is small for a sufficiently large B, 
while Theorem 2.1 implies that {0: nq0/(2q0+1l) 1|0 - o01 > Mn, q = qo} converges 
to 0 in Poo-probability. Therefore, the effective parameter space is further reduced 
to {0o 

:i• 
i2qo0 2 B} for which the general theory developed by Ghosal, Ghosh 

and van der Vaart (2000) applies. 

REMARK 3.1. It should be noted that the cases q < qo and q > qo are not 
symmetrically treated. Unlike q < qo, we do not show that n(q > qoIX) tends 
to 0. An obvious reason is that it may still be possible that 00 E eqm for m > 0. 
For instance, if i20 decreases exponentially with i, then 00 E 

•q 
for all q. In 

such cases, clearly it is not to be expected that rH(q > qojX) tends to 0. Even 
if 00 0 eq1, 1q > q0, it is still possible that F(q > 

qo0X) 
does not tend to 0. 

Indeed, considering two values {qo, ql} and the special case Oio = i-p, a referee 
exhibited that if p > qi + 1 - (2qi + 1)/(2(2qo + 1)), then H(q = q Ix) -- 1 in 
probability. In general, the HIq prior leads to a slower posterior convergence rate 
than the required n-qo/(2qo+l) for a general 00 E 

•0q, 
so it seems at first glance that 

our mixture prior cannot simultaneously achieve the optimal rate. The apparent 
paradox is resolved when one observes, as the referee does, that the latter happens 
only when p < qi + 1 - (2ql + 1)/(2(2qo + 1)). 

The following lemma shows that, given the observations, the conditional 
probability of misspecifying the model in favor of a coarser model (than the true 
one) from the posterior converges to zero. 

LEMMA 3.1. There exist an integer N and a constant c > 0 such that for any 
m < 0 and n > N, 

(3.2) E00E(q = qm IX) < X exp[-cnl/(o?+qm+)] 
- • 

and, therefore, 

(3.3) I (q < 
qo0X) -+ 0 

in Poo-probability as n -+ -o. 

The proof of the Lemma 3.1 is somewhat lengthy and involves some messy 
calculations. We defer it to Section 5. 

REMARK 3.2. Note that if the observation X is interpreted as the sample mean 
(Y1 + 

" 
. + Yn)/n, where the Yi's are as in the Introduction, then (3.3) holds in 

the almost sure sense. We, however, do not use this fact. 
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According to Lemma 3.1, the posterior mass is asymptotically concentrated on 
q > qo. We separate two possibilities: q = qo and q > qo. For m > 0, introduce 

m- 
= m/,C -l )Xj, and I- = 1 

m_ 

L 
mlH-m. The next lemma shows that the 

posterior HI(. X) is effectively concentrated on the set 
{O'f 
0: i2q02 < B} for 

a large B. The proof of this lemma is postponed to Section 6. 

LEMMA 3.2. 

(3.4) lim 
supEo0H 0:O i2qo 2 > B X = 0. 

B-+oon>l i= 
I 

Finally, the following lemma shows that the posterior converges at rate 
n -qo/(2q0+1). In the proof which is given in Section 6, we exploit the general theory 
of posterior convergence developed by Ghosal, Ghosh and van der Vaart (2000). 

For m > 0, introduce Xm = ,Xm / E•=o~ 
and l = E'o oXmHm. Note that, 

unlike in H, the possibility q = qo is not ruled out here. 

LEMMA 3.3. For any B > 0 and Mn -+ oo, 

(3.5) lim EcoH 0I " :noq/(2q?+l)|10 _- o001 > Mn, i2qo02 < B X 
-0. 

With the help of Lemmas 3.1-3.3 and Theorem 2.1, the main result can be easily 
proved now. 

PROOF OF THEOREM 3.1. For the sake of brevity, denote rn = rn (q0) = 
nqo/(2qo+l). Clearly, 

H{jO: rn l|0 - 0011 > MnIX} 
00 

SrH 0:rnllO - Ooll > Mn,,q > go, i2qo02 > B X 
i=1 

+ * 1 : rn 110 - 00 1 > Mn, q > qo, i2qo0? < B X 

+ HI{0:rnO - 0o011 > Mn,q < qoiX} 

+ H{0 :rn10 - 0ol > Mn, q = qolX} 

< nl o i2qoo2> B X H(q > qolX) 

+ 0 rn0 -o > Mn, q > qo, i2q02 sB X 
i=1 
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+ H{O : rnI0 - 0011 > Mn, q < q0oX} 
+ 1-o{ : rnIlO -o0 > MnIX}H(q = qoIX) 

<[ 0 : i:2q0o2 > B X 
i= 1 

SI 0: rn ll0 
- 

o01 
> Mn, i2qo2 < 

B 
X 

i=1 

+ H(q < q0ojX) 

+ Ho{0:rnI10 -0011 > MnIX}. 

Given e > 0, B can be chosen sufficiently large to make the first term less than e 
by Lemma 3.2. For this B, apply Lemma 3.3 to the second term. The third term 
goes to zero in P00-probability by Lemma 3.1, while the last term converges to 
zero by Theorem 2.1. The theorem is proved. D 

REMARK 3.3. In place of rm, Zhao's (2000) mixture prior described in 
Remark 2.2 may also possibly be used. However, we do not pursue this approach 
for the following reasons. First, the expressions will be even more complicated. 
Second, we think that when f2 is considered as the parameter space, the property 
that Hm assigns zero probability to 8q is not as bad as it might first appear since 
@q is not closed and its closure, the whole of e2, obviously receives the whole 
mass. Indeed, both "Im and Zhao's mixture prior have support of the whole of f2. 
Finally, the criterion that "?q should receive the whole mass" loses much of its 
original motivation in the present context of adaptation, when e2 is the grand 
parameter space. 

4. Adaptive estimator. As a consequence of the result on adaptivity of the 
posterior distribution, we now show that there is an estimator 0 based on 
the posterior distribution that is rate adaptive in the frequentist sense. The problem 
of adaptive estimation in a minimax sense was first studied by Efromovich 
and Pinsker (1984). They proposed an estimator which attains the minimum 
in (1.1) without knowledge of the smoothness parameter q. Their method is based 
on adaptively determining optimal damping coefficients in an orthogonal series 
estimator. 

To construct an estimator based on the posterior distribution, one may maximize 
the posterior probability of a ball of appropriate radius as in Theorem 2.5 of 
Ghosal, Ghosh and van der Vaart (2000). However, their construction requires 
knowledge of the convergence rate and hence does not apply to the adaptive 
setup of the problem. The following modification of their construction is due to 
van der Vaart (2000). Let 

(4.1) 8** = inf {,:n TI(O : 1O - O'| < Sn IX) > 3/4 for some O' E e2. 
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Take any point 0 E 2 which satisfies 

(4.2) n(0: 110 - 0|1 < 8~ + n-' X) > 3/4. 

In words, 0 is the center of the ball of nearly the smallest radius subject to the 
constraint that its posterior mass is not less than 3/4. Note that while defining 0, 
we have not used the value of the smoothness parameter. The next theorem shows 
that 0 has the optimal frequentist rate of convergence n-qo/(2q0+1) and hence is an 
adaptive estimator. 

THEOREM 4.1 [van der Vaart (2000)]. For any Mn -+ oo and Oo E 0qo, 

P90 {nqo/(2qo+1) 
|10 - 0011 > Mn } -- 0, 

where 0 is defined by (4.1) and (4.2). 

PROOF. By Theorem 3.1, we have that for any Mn -+ co, 

(4.3) 1{0: 110 - o00 l < Mnn-qo/(2q+1l) |X} 
_ 

3/4 

with Po0-probability tending to 1. 
Let B(0, r) = {0': 110'- 11 < r} denote the ball around 0 of size r. The 

balls B(O, ,* + 1/n) and B(00, Mnn-o0/(2qo+l)) both have posterior probability 
at least 3/4, so they must intersect; otherwise, the total posterior mass would 
exceed 1. Therefore, by the triangle inequality, 

II0 - o0011 6 + n-' + Mnn-qo/(2q0+l) < 2Mnn-qo/(2q0+l) +n-1 
since by the definition of 

S" 
and (4.3), 8" 

< Mnn-qo/(2q0+l). The proof follows. 
F- 

5. Proof of the Lemma 3.1. We begin with a couple of preliminary lemmas. 
We recall that given 0, the Xi's are independent and distributed as N(Oi, n-1), 

and given q = 
qm, 

the Oi 's are independent and distributed as N(0, i-(2qm+1)). 
Therefore, given q = qm, the marginal distribution of X is given by the countable 

product of N(0, n-' + i-(2qm+l)), i = 1, 2, .... Let us denote this measure by Pm. 
Let P) =- km Pnm, the marginal distribution of X when q is distributed 
according to X.. The true distribution of X is, however, P00, the countable product 
of N(Oio, n-1), i = 1, 2.... 

LEMMA 5.1. For any n > 1 and Oo E e2, Ph and P90 are mutually absolutely 
continuous. 

PROOF. It suffices to show that for any m, Pm and Poo are mutually absolutely 
continuous. Abbreviate qm by q. Recall that the affinity between two probability 
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densities f(x) and g(x) on the real line is defined by A(f, g) = = / f(x)g(x) dx. 
The affinity between two normal densities N(g/ 1, r 2) and N (A2, -2 ) is therefore 
given by 

(L l - a2)2 11/2 (0 1 - /12)2 

o- 
2 2 exp 

4(r2 2) 

Since both Pm and Poo are product measures, according to Kakutani's criterion 
[see, e.g., Williams (1991), page 144], we need only to show that the infinite 
product 

F1 A(N(O, n-1 + i-(2q+l)), N(Oo, n-)) 
i=1 

or, equivalently, 

(5.1) ((n-1 + i-(2q+l))1/2 
_- n1/2)2 

2n-1 + i-(2q+1) 

and 

(5.2) H exp 
-4(2n 

o 
+ 

i-(2q+1)) i=1 

do not diverge to zero. A product of the form HJ'l 1(1 - ai), ai > 0, i = 1,2,..., 
converges if 1 ai converges. Also, (a - b)2 < a2 - b2 for a > b > 0. Therefore, 
(5.1) converges as 

00 i-(2q+1) 
n 

00 

2n-1 + i-(2q+1) - 2 -(2q) i=1 i=1 

The product in (5.2) also converges since 

00 o2 00 
io < _\E02 

8n-1 + 4i-(2q+1) - 8 i i=1 i=1 

The lemma is proved. FO 

The following lemma estimates the posterior probability of the mth model. 

LEMMA 5.2. For any integers m and n > 1, 

Xm [1 
0 (i-(2qo+l) - (2qm+1) 

)(-(2qo+l) ) 
EoH (q = 

qm X) < exp - 
0o [2 

i_-2(qo+qm+1) - 2n-i-(2q0+1) -2 i---1 
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PROOF. By the martingale convergence theorem [see, e.g., Williams (1991), 
page 109], 

I-I(q = qmlX) = lim H(q = qmlXI,..., Xk) a.s. [Px]. 
k-+oo 

Therefore, by Lemma 5.1, f (q = qm IX, ..., Xk) converges, as k -+ oo, to 
H(q = qm, X) a.s. [P0]. Since these, being probabilities, are bounded by 1, the 
convergence also takes place in L1 (Peo). By Bayes theorem, 

rH(q = qmlX1,..., Xk) 

Am 
mi 

(n-1 + i-(2qm+l))-1/2exp[_ (n- + i-(2qm+1l) -lX1 

S=-oo lI 
1l H (n-1 + i-(2ql+l))-1/2 exp[-1 

•il(n-1 
+ i-(2ql+l))-1 X2] 

im 1 
(n- + i-(2qm+l))-1/2exp[- 

k (n - + i-(2qm+l))- X2] 

)o Il=I (n- + i-(2qo+l))-1/2 exp[ 2 k (2qo+1))-1 

Put ai = (n-1 + i-(2qm+l))-1 - (n-1 + i-(2q0+1))-1. Exploiting the independence 
of the Xi's under Poo and using 

E exp X2 exp 
-12a 2 1 ?+ a2r- 

[ 2(1 + ao2)J 

for X distributed as N(g, c2) and a > 
-o"-2, 

we obtain 

E00o (q = qm IX) 

= lim E00(q = 
qm,IX1,..., Xk) 

k--oo 

Sm 
k i 

-l1 
i-(2qo+l) 

1/2 ( ai2 < o lim sup n- + i-(2qm + l) E00 exp [ Xi 
-- 0 k 

x-- ii=1iI(/ 

m (-1+ i-(2qo+l) 1/2 ai 1/2 [ aiO20 
S-(2qm+ 

1 + -- exp - 
io 

o = n-1 + i-(2+1)n 2(1 + (ai/)) 

m ____i_-(2qo+l) 
1/2 ai02 1 =M 1 + exp - 

o 1 -r+ 
(ai /n) 2(1 + (ai/n)) 

< hm exp ai (i-(2qo+1) _ o2) 
- 0 2 . 1 - (ai/n) 

Xm 
exp 

[ (i-(2q0+1) _ i-(2qm+l))(i-(2q0+1) 
_ 

2) 
= exp - 

.o 2 i-2(q0+qm+1) + 2n-li-(2qo+l) 
4--2 

The last three steps follow from some algebra and the inequality 1 + x < ex for 
all x. [ 
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REMARK 5.1. By exactly the same arguments, we can also conclude that for 
any 1, 

[m exp I2o 
(i-(2ql+1) _-i-(2qm+l))(i-(2q+1) 

_ Q2 
Eo E 

(q = qm IX)<-exp - iO 
- 1- 1 i-2(qi+qm+l) + 2n-li-(2q+l) + n-2 

PROOF OF LEMMA 3.1. Set 
oo (i-(2qo+) _ i-(2qm+l))i-(2q+1) 

=s = i-2(qo+qm+1) + 2n-li-(2qo+1) + n-2 

and 

00 (i-(2qo+) _ i-(2qm+l))20 
S2 - -2(qo+qm+l) + 2n-li-(2q0+l) 

i 

n-2' i=1 

We shall show that there exists an N not depending on m, m < 0, such that for 
n > N, 

(5.3) Si <l-nll/(qo+qm+l) 

and 

(5.4) S2 < 1nl/(qo+qm+l) - 24 

Note that 

S-(2m+) 0, for all i, 

i-(2ql) _ i-(2qml) < - i-(2qm+1) for i > I, 

where I = 21/(2(qo-q-1)). Also if n > N1 = 2(qo+q-l+1)/(qo-q-1), then for i < 

n1/(qo+qm+f), the first term in the common denominator in the expressions for 
S1 and S2 dominates the other two terms. Piecing these facts together, we see 
that the terms in S1 are less than or equal to -1/6 for I < i < nl/(qo+qm+l) and 
less than or equal to zero in general. Thus 

S1 < 

--1(L[n1/(qo+qm+l)j] 
I) < 

-In/(qo+qm+l) S6 - T12 

if n > N2 = (21 + 2)2qo+1, and so (5.3) follows. 
Let Co = max(l, ~ 

i2q020). 
Now for any k, 

00 i-(2qm+1)02 
S2 iO 

S2.<i-2(qo+qm+l) + 2n-li-(2q0+l) ? n-2 i= 1 

k 00 

(5.5) 
-- 

i2q0+1820 n2 
Z 

-(2qm+1)i20 
i=1 i=k+l 

oo 

< kCo + n2(k + 1)-(2qo+2qm+l) i2qo?i20 
i=k+l 
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The first term can be made less than or equal to (48)-'nl/(qo+qm+1) by choosing 
k = [(48Co)-'nl/(qo+qm+l)J. Since k + 1 > (48Co)-'n1/(2qo+l), the second term 
is also less than or equal to (48)-ln1/(qo+qm+l) for n > N3, where N3 is the 
smallest n such that 

(5.6) i2qo02 < (48Co)-2(2qO+1) 

i>(48C0)-1nl/(2q0+1) 

Note that N1, N2 and N3 do not depend on a particular m < 0. Thus for n > N = 
max(N1, N2, N3), (5.3) and (5.4) follow. Equation (3.2) now follows from 
Lemma 5.2. Equation (3.3) is an immediate consequence of (3.2). D 

6. Proof of Lemmas 3.2 and 3.3. To simplify notation, we drop the overhead 
tildes from Hi and mk's and simply write H = E' m riHm, where E' . m =1. 

PROOF OF LEMMA 3.2. By Chebyshev's inequality, 
00 00 

n : 0 aqi2qoo2 > B X < B-1 i2qoE(o0Ix). 

Now 
00 

E(921 X)= 1 H(q -=qm X) E(0?2IX, q = qm) 
m=1 

001 n 2X? 
= l(q = qm X) + 

m=1 
n + + i2qm+ ( qm+1)2 

1 n2X? 
< + 1 
- n + i2ql+l (n + i2qo+1)2' 

Therefore, 
00 

Eoo H1- 0 •: i2qo02 > B X 
i=1 

SBl i2qo 
00 n2E X 

i=1 

n 

+- 
i2ql+1 ( i2q0+1)2 

i2qo nn2 2qo 02 co• 2q 
= B 

n + i2q1+1 + 
nZi2qo+0)2 +L(n 

2qo+1)2 

It therefore suffices to show that the sums in the above display are finite and 
bounded in n. The first two sums are clearly so because these are bounded by the 
convergent series 1i• 1-l2(ql-0) and 

Cil" 
i2q0o20, respectively. We split the 
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last sum into sums over ranges {i:1 < i < k} and {i: i > k}, with k = 
[nl/(2q0+l)j. 

Then 

n0ni2qo 
k 00 

n( 
n-1 

I 

i2q? +- n 
i-2qo-2 

(n + i2qo+1)2 
- 

i= i=1 i=k+l 

< -lk2qo+1 + n(k + 1)-2q0-1 

2qo + 1 

which is bounded by 2/(2qo + 1). OI 

To prove Lemma 3.3, it is more convenient to view the sample as n i.i.d. 
observations Y1, Y2, ..., Yn, where each Yj is distributed like Y = (YI, Y2,...) 
with distribution Po: the Yi's are independently distributed as N(Oi, 1), i = 

1, 
2,..... 

Note that here we distinguish between this Po and Po, n, the distribution 
of X. We need some preparatory lemmas. 

LEMMA 6.1. For any 0, Oo E 0e2: 

(i) Po is absolutely continuous with respect to Poo. 
(ii) 

Li~1=(Yi 
- Oio)(Oi - Oio) converges a.s. [P0O] and in L2(Po0), and has 

mean 0 and variance 110 - 0o112. 

(iii) dP (Y) exp (Yi - io)(i 
- 

io) - 110 - ol 

dPo 
2 

(iv) -flog dPo (y)dPoo(y) = 110 - 0oI12 d Poo 2 

(v) flog (y) 
2 

dPeo(y) = 110 - 012 + |i0 - 0ol4. 

(vi) The Hellinger distance 

H(00o, 0))= f)L(y)1-dP d Poo(y)) 

satisfies 

(6.1) H2(0o, 0) = 2(1 - exp[- |10 - 0o112]), 

so that, in particular, H(o0, 6) < 110 -0ol1, and if 110 -o II 
_ 

1, then H(Oo, 6) > 
e-1/16116 - 0oII/2. 
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PROOF. Whereas P0 and Poo are product measures and the infinite product 
of affinities of their respective components converges to exp[- l0 - 00112], 
(i) follows from Kakutani's criterion as in the proof of Lemma 5.1. For (ii), 
consider the mean zero martingale Sk = = (Y - Oio)(Oi - OiO) and note that 

supk>l ES2 I 0 - 00112 < oo. The martingale convergence theorem [see, e.g., 
Williams (1991), page 109] now applies. For (iii), note that on the sigma-field 
generated by (YI, Y2, ..., Yk), the Radon-Nikodym derivative is given by 

[k 

k 

expY 
_,(Y 

- Oi)(O_ - i) - 1(O_ - i0)21. 
i=1 i=1 

The rest follows from (ii) and the martingale convergence theorem. Assertions 
(iv) and (v) are immediate consequences of (ii) and (iii). For (vi), note that 
H2(00, 0) = 2 - 

2E00((dPo/dPoo)(Y))1/2. 
To evaluate Eo0((dPo/dPo0)(Y))1/2, 

consider the martingale 
k k 

Sk = exp [ i - io)(Oi - io) - k(i - 0io)2 
i=1 i=1 

Clearly Sk is positive, has unit expectation and bounded second moment, 
so its limit 

(dPo/dPoo)1/2(Y) exp[ j10 - 00112] also has expectation 1. This 
implies (6.1). The next assertion in (vi) now follows from the inequality 
1 - e-x < x and the last from the mean value theorem. D 

The following lemma, which estimates the probability of a ball under product 
normal measure from below, will be used in the calculation of certain prior 
probabilities. The result appeared as Lemma 5 in Shen and Wasserman (2001). 
Its simple proof is included for completeness. 

LEMMA 6.2. Let W1,..., WN be independent random variables, with Wi 
having distribution N(-4i, i-2d), d > 0. Then 

Pr W?<862 > 2-N/2e-dN exp L- i2d 2 Pr Vi2 
< 2S2N2d 

i=1 i=1 i=1 

where V1, ..., VN are independent standard normal random variables. 

PROOF. Using (a + b)2 < 2(a2 + b2), N! > e-NNN and the change of 
variable vi = ./'Ndwi, we obtain 

Pr 
j-Wi2 

< 82 

= 
l 

-- 
I(2r)-/i 

d 

exp[-i2dwi + i)2] 

dwl"' 

dwu 
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i(2x)wN/2-d 
z 

exp 
-- 

i2d(w + 
i2) 

dwl 
. . . dwu 

> (2er)-N/2(N!)d exp - i2d2) 

S Ni=1 

N 
N2< 

> (N!)d exp - 
i2d?i2 2-N/2N-dN-(27r)-N/2 

S Ni=1 

> 2-N/2e-dN exp - f i2d i2 Pr Vi2 < 
2N2d 2 

i=-1 
i=1 

For simplicity, we now drop the overhead bars from H and X and simply write 
n 

•m 
= 

0I-om 
- m, where m = 1. 

LEMMA 6.3. There exist positive constants C, c such that for all e > 0, 

(6.2) n{0: 11 - o011 I } 
_ 

CXo exp[-ce-1/qo]. 

PROOF. Clearly the left-hand side (LHS) of (6.2) is bounded from below by 

.o1o {0": 
[ 1 (0i - 0io)2 < e2}. Now by independence, for any N, 

H1o 0: (Oi - 0io)2< 
2 

i=1- I 

N 00 

S-o 0 j:E(Oi, -Oi)2 <2/2Ho0 : (i - io 9)2 <82/2 . 
i=1 i=N+1 

Also 

i=N+1 i=N+1 i=N+1 

The second sum in (6.3) is less than or equal to 
00 2 

32N-2q) i2q_0? 
2 < 2N-2q0CO < 

i=N+I 
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whenever N > N1 = 
(8Co)1/2q0?-'/qo, 

where Co = iCj i2qo020. By Chebyshev's 
inequality, the first sum on the right-hand side (RHS) of (6.3) is less than e2/4 with 
probability at least 

8 o 8 0 4 1 
1- - Eno(Oi2) =1 2 1i-(2qo+l)> 02 >2 

i=N+1 i=N+1 qoN2qo,2 2 

if N > N2 = (8/qo)1/2q08-1/qo. To bound o I{0 :i" 
-(Oi 

- 0i0)2 < 
e2/2}, 

we apply Lemma 6.2 with d = qo + 2, ?i = Oio and 82 = 2/2. Note that by 
the central limit theorem, the factor Pr{EN 1 Vi2 < 282N2d} on the RHS of the 

inequality from Lemma 6.2 is at least 1 if 232N2d > N and N is large, that is, 
if N > N3 = E-1/qo and N > N4. Choosing N = max(N1, N2, N3, N4) and noting 
that LN, I i2q0+120 

2 
NCo, (6.2) is obtained. D 

The final lemma gives the entropy estimates. Recall that for a totally bounded 
subset S of a metric space with a distance function d, the e-packing number 

D(E, S, d) is defined to be the largest integer m such that there exist si, ... , m E S 
with d(sj, Sk) > e for all j, k = 1, 2, ..., m, j : k. The e-entropy is log D(e, S, d). 
A bound for the entropy of Sobolev balls was obtained in Theorem 5.2 of Birman 
and Solomjak (1967). It may be possible to derive a bound similar to that in 
Lemma 6.4 from their result by a Fourier transformation. However, the exact 
correspondence is somewhat unclear because of the possible fractional value of the 
index q. Below, we present a simple proof which could be of some independent 
interest as well. 

LEMMA 6.4. For all e > 0, 

(6.4) logD , O: i2qO2 B , II II < (8B)1/(2q) log (4(2e)2q) -1/q 

i=1 

PROOF. Denote 'q(B) 0 : E i2q B). If E2 > 4B, then 

00 00 2 

Y02 j \ i2q02 < B<- 
i=1 i=14 

and hence for any two 0, 0' e q(B), 110 - 0'11 < e, implying that D(e, 
Oq (B)) = 1. Thus (6.4) is trivially satisfied for such an e. We shall therefore 
assume that e2 < 4B. 

LetO1,...,Om E eq(B) be such that JOi - Oj ] > e, j, k = 1,2,..., m, j 
-k. For an integer N, consider the set 

oq, 
N(B)= (01, 

...,N 
O, 0,...): i2q02 . 

i=1 
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With 0 = (1, ...,ON, 0,...), note that for any 0 e 6q(B), 
00 2 

110-0 112 02<(u+l)-2q B<- 
i=N+1- 8 

if N = [(8B)1/(2q)E-l/qJ . For this choice of N, we have 

(6.5) 1 < N < (8B)l/(2q)E-1/q < N + 1 < 2N. 

Therefore, for j, k = 1, 2, ... , m, j / k, 
2 

82 < I10j - 0k I2 = I0j - OkI2 + II(0j - 0j) - (Ok - 0k)II2 < 10j - Ok i2 + 4 

implying that 110j - OkI1 > e/V/2. The set Oq,N(B) may be viewed as an 
N-dimensional ellipsoid and the 0j's as N-dimensional vectors in IRN with the 
usual Euclidean distance. For t = (tl, ..., tN) and 6 > 0, let B(t, 8) stand for the 
Euclidean ball with radius 3 centered at t. The balls B(Oj, e/2/-2) 

are clearly 
disjoint. Note that if t e eq(B) and t' = (t, ..., t') e B(t, e/2)/2j, we have 

N N N 2 

i2q < 2 i2q t2 + 2 i2q (t - ti)2 < 2B + 2N2q < 4B 
i=1 i=1 i=1 8 

by (6.5), and hence 

U B 
(0 2/2 C eq, N(4B). 

j=1 

Let VN stand for the volume of the unit ball in RN. Note that the volume of the 

ellipsoid {t: J i=1 azt? < Al is given by VNAN/2/ N . Bounding the volume 
of 

UTjl 
B(0j, e/2/2) by that of Jq, N (4B), we obtain 

S2 N/2 

_N 

m (8 VN < 
(4B)N/2VN 

i-q 
= 

(4B!)N/2VN.(N-q i=1 

Since N! > NNe-N for all N > 1, we arrive at the estimate 

(6.6) m 
<(32Be2q)N/222 

From (6.5), we also have N2q 2 > 23-2qB. Substituting in (6.6), the required 
bound is obtained. O 

To prove Lemma 3.3, we shall use the following variation of Theorem 2.1 of 
Ghosal, Ghosh and van der Vaart (2000). 
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THEOREM 6.1. Suppose we have i.i.d. observations Yi, Y2, ... from a 
distribution P having a density p (with respect to some sigma-finite measure) 
belonging to a class P. Let H(Po, P) denote the Hellinger distance between 
Po and P. Let H be a prior on P and 

P• C PY. Let ne be a positive sequence 
such that n -> 0 and ne2 ~-- oc and suppose that 

(6.7) log D(en, Y, H) < cine2 

and 

(6.8) H P: - log dPo 
< <n, f(log 

2 
dPo } n > -c3n 

for some constants c l, c2, c3, where po stands for the density of Po. Then for a 
sufficiently large constant M, the posterior probability 

(6.9) {IP E 
•~: H(Po, P) > Men IY1, Y2, ..., Yn} --+ 0 

in Pon-probability. 

PROOF OF LEMMA 3.3. Take P = {Po:0 e 2} and np = {j I:E i2qo x 

02 < B}. By part (vi) of Lemma 6.1, the Hellinger distance H(P0o, Po) is 
equivalent to the e2 distance 11Oo - 0 11, so in (6.7) and in the conclusion (6.9), the 
former may be replaced by the latter. Lemma 6.4 shows that (6.7) is satisfied by a 
multiple of n-qo/(2qo+l). For (6.8), note that by parts (iv) and (v) of Lemma 6.1, 
the set 

dPo d Po (y) <2 

0:-Eoo 
log dP (Y) <' e2, Eo log dP Y) < E 

contains {0: 110 - 00112 < p2/2) for e < 1. Therefore, by Lemma 6.3, (6.8) is also 
satisfied by a multiple of n-qo/(2qo+l). The result thus follows. O 

7. Continuous spectrum adaptation. Suppose now that q0 E Q, where Q is 
an arbitrary subset of the positive semiaxis R+. Since our basic approach relies 
on the assumption that the smoothness parameter can only take countably many 
possible values, we proceed as follows. Choose a countable dense subset Q9* of Q 
and put a prior A on it such that X(q = s) > 0 for each s E *. 

THEOREM 7.1. For any sequence Mn --+ 
0 and for any given S > 0, the 

posterior probability 

H{0 'qo/(2q+l1)- l 9o -001| > MnIX} 
-~ 0 

in Poo-probability as n --+ co. 
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Note that the prior does not depend on 8, so the obtained rate is almost optimal. 
The proof of the following theorem is very similar to that of Theorem 3.1. The 
main differences in the proofs are indicated in the outline of the proof below. 

OUTLINE OF THE PROOF. The true qo0 may not belong to (9*, but we may 
choose q* E (s(-*, q* < q0 arbitrarily close to qo. Choose also q, q e Q* which 
satisfy q < q* < q < qo, and hence 0o E 6qo C 04 C Eq* C 

O.* Lemmas 3.1 and 3.2 go through in the sense that H(q < q*|X) - 0 as n - 00oo 
and 

0i=1 
sup H1je:Li j2qiO>Bq>q*IX}- 0 as B -+ oo 

in Poo-probability. To see this, apply Lemma 3.1 with qo replaced by q and q-1 
by q* and Lemma 3.2 with qo replaced by q and qi by q*. 

As in the proof of Theorem 3.1, we obtain the bound 

({ 0: n/(2q+1)10 -0011 > MnIX} 
= Hl{0:nq/(2q+l)110 - 00ll > Mn,q > q*JX} 

+ -{0 :nq/(2q+l) 11 _-011 > Mn, q <q*IX} 

< HF 0: •i2qO > B,q q * X 
i= 1 

+ HI 0:nq/(2q+l) 10 - 0011 > Mn, 
2 
i2q < B, q > q* X 

i=1 

+ H (q < q*IX). 
Note that the fourth term on the RHS of the series of inequalities in the proof of 
Theorem 3.1 has been absorbed into the first two terms on the RHS of the last 
inequality. Now, the second term on the RHS of the last display converges to zero 
by Lemma 3.3 with q0 replaced by 4c. Therefore all the terms go to zero. Since 

c can be made arbitrarily close to qo, this means that for any given S > 0, the 
posterior converges at least at the rate n-qo/(2qo+l)+3 in e2. O 

REMARK 7.1. The loss of a power 8 is due to the fact that the q's are not 
strictly separated. It is intuitively clear that the requirement of strict separation 
stems from the fact that the closer the possible values of the smoothness parameter 
are, the more difficult it is to distinguish between them. 

REMARK 7.2. It is also natural to use a prior X on the whole set l, for 
instance, a positive density X(q) on R+. This time, however, our approach based 
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on the estimates in Lemmas 5.2 and 6.3 does not seem to work because of the 
absence of point masses. Nevertheless, we believe that Theorem 7.1 continues 
to hold in this case, but a complete analogue of Theorem 3.1 will possibly not 
hold. The intuition behind our belief is essentially the same as in Theorem 7.1. 
Since the slightest deviation in the assumed value of q from the true qo affects the 
rate by a power on n, and without a point mass at qo, one can at best hope for a 
concentration of the posterior distribution of q values in a neighborhood of qo0, the 
rate of convergence of the posterior distribution will be affected by an arbitrarily 
small power of n. 

8. Uniformity over ellipsoids. It is of some interest to know the extent 
to which the posterior convergence in Theorems 2.1, 3.1 and 7.1 is uniform 
over 00; see Brown, Low and Zhao (1997) in this context. For Theorem 2.1, it 
is immediately seen from the proof that (2.1) holds uniformly over an ellipsoid, 
that is, for any Q > 0 and Mn -+ oo00, 

sup 
Eoolq{0 

:nq/(2q+l)10 - o0011 > Mn X} -_ 0. 

OOEOq(Q) 
For Theorem 3.1, such a proposition is much more subtle. One needs to check 

uniformity in each of Lemmas 3.1, 3.2 and 3.3. In Theorem 8.1 below, we show 
that a local uniformity holds in the sense that for every 00 E 0, there exists a 
small ellipsoid around it where the convergence is uniform. 

THEOREM 8.1. For any 0* E 9qo 
there exists E > 0 such that 

sup Eo0flq{0 
: no/(2q0+l) 10 - 0011 > MnjX} -+ 0, 

OOE9qo (0*, E) 

where Gq0(O*, e) = Oo: FYo i2qo (0i0 - 0*)2 <E. 

OUTLINE OF THE PROOF. We need to check the uniformity in every step of 
the proof of Theorem 3.1. Going through the proof of Lemma 3.2, it is easily seen 
that for any Q > 0, 

lim sup sup E00n Z0 i2qo2 > B X = 0. 
B- oo 0o e(Q) n>1 i=1J 

For the uniform version of Lemma 3.3, we need to show that for any B > 0, 

(8.1) lim sup E0-TI ':r, 1• -o011 
> M, i2qo02, B X = 0. 

nI-+ OO10 (XQ) i=1 
Further, note that (6.9) in Theorem 6.1 could have been stated as an inequality [see 
the proof of Theorem 2.1 of Ghosal, Ghosh and van der Vaart (2000)], 

2 1 
E00fl{P e P: H(Po, P) > MenIY1, 

Y2, ... , Yn} 
< 

C-Cnen 
? f 

nr2 
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where C and c are positive constants depending on cl, c2 and c3 that appeared 
in the conditions of Theorem 6.1. Therefore, (8.1) holds if the conditions of 
Theorem 6.1 hold simultaneously for 0o E qo(Q). The entropy equation (6.7) 
does not depend on the true value 80 [see relation (6.4) in Lemma 6.4], so cl is free 
of 00. It is possible to choose the same c2 and c3 for 00 belonging to the ellipsoid 
eq (Q) by the estimates given by Lemmas 6.2 and 6.3. Therefore, it remains to 
check uniformity in Lemma 3.1. 

However, (3.3) in Lemma 3.1 does not hold uniformly over 00 E eq0 (Q) for a 
given Q > 0. The problem is that by varying 00 over eq0 (Q), one can encounter 
arbitrarily slow convergence of the LHS of (5.6) to zero, making the integer N3 
defined there dependent on 0o. Nevertheless, for a given 0* = (00*, 90*,...) E 90q 
it is possible to choose an e > 0 such that 

(8.2) lim sup E90 l1(q < qojX) -+ 0. 
n-+ *oo 

00E (0, 
) 

The proof is largely a repetition of the arguments given in the proof of 
Lemma 3.1, so we restrict ourselves only to those places where modifications are 
needed. 

First, if 0 < e < 1, 0o E &(0*,e) and Co = L0 i2q0o( )2, then using 
(a - b)2 < 2(a2 + b2), we have 

L.= 
i2qo20 < Do, where Do = 2Co + 2. Proceed 

as in the proof of Lemma 3.1 with k = [(48Do)-nl/(0o+qm+l)J. If we choose 

e = 4-1(48D0)-2(2qo+1) and N3 the smallest integer n such that 

Ei i2qo(i*)2 < 4-1 (48D0o)-2(2q0+1) 

i>(48Do)- n1/(2q0+1) 

then it easily follows that for n > N3, 

i2qo02 < (48D0)-2(2q0+l) 

i>(48Do)-l n1/(2q0+1) 

The proof of (8.2) now follows as before and, hence, the theorem is proved. O 

REMARK 8.1. The uniformity holds for 00 belonging to a compact set in the 
topology generated by the norm 

(j-]i i2qo02)1/2 on eq0. 
REMARK 8.2. In a similar manner, one can formulate the uniform version of 

posterior convergence for the case of a continuous spectrum as well. 
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