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HAMMERSLEY'S PROCESS WITH SOURCES AND SINKS 

BY ERIC CATOR AND PIET GROENEBOOM 

Delft University of Technology 

We show that, for a stationary version of Hammersley's process, with 
Poisson "sources" on the positive x-axis, and Poisson "sinks" on the positive 
y-axis, an isolated second-class particle, located at the origin at time 
zero, moves asymptotically, with probability 1, along the characteristic of 
a conservation equation for Hammersley's process. This allows us to show 
that Hammersley's process without sinks or sources, as defined by Aldous 
and Diaconis [Probab. Theory Related Fields 10 (1995) 199-213] converges 
locally in distribution to a Poisson process, a result first proved in Aldous 
and Diaconis (1995) by using the ergodic decomposition theorem and a 
construction of Hammersley's process as a one-dimensional point process, 
developing as a function of (continuous) time on the whole real line. As a 

corollary we get the result that EL(t, t)/t converges to 2, as t -* oc, where 
L(t, t) is the length of a longest North-East path from (0, 0) to (t, t). The 

proofs of these facts need neither the ergodic decomposition theorem nor the 
subadditive ergodic theorem. We also prove a version of Burke's theorem for 
the stationary process with sources and sinks and briefly discuss the relation 
of these results with the theory of longest increasing subsequences of random 

permutations. 

1. Introduction. Let Ln be the length of a longest increasing subsequence 
of a random permutation of the numbers 1,...,n, for the uniform distri- 
bution on the set of permutations. As an example, consider the permuta- 
tion (5, 3, 6, 2, 8, 7, 1,4, 9). Longest increasing subsequences are (3, 6, 7, 9), 
(3, 6, 8, 9), (5, 6, 7, 9) and (5, 6, 8, 9). In this example the length of a longest in- 
creasing subsequence is equal to 4. 

In Hammersley (1972) a discrete-time interacting particle process was intro- 
duced, which has at the nth step a number of particles equal to the length of 
a longest increasing subsequence of a (uniform) random permutation of length n. 
This process is defined in the following way. 

Start with zero particles. At each step, let, according to the uniform distribution 
on [0, 1], a random particle U in [0, 1] appear; simultaneously, let the nearest 
particle (if any) to the right of U disappear. Then, as shown in Hammersley (1972), 
the number of particles after n steps is distributed as Ln. Hammersley (1972) uses 
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this discrete-time interacting particle process to show that EL,n/ln converges to 
a finite constant c > 0, which is also the limit in probability [and, as noticed later by 
H. Kesten in his discussion of Kingman (1973), the almost sure limit] of LI/ n. 
To prove that ELn/l-n converges to a finite constant c > 0 is the first part of 
"Ulam's problem," the second part being the determination of c. 

Aldous and Diaconis (1995) introduce a continuous-time version of the 
interacting particle process in Hammersley (1972), letting new particles appear 
according to a Poisson process of rate 1, using the following rule: 

EVOLUTION RULE. At times of a Poisson (rate x) process in time, a point U 
is chosen uniformly on [0, x], independent of the past, and the particle nearest to 
the right of U is moved to U, with a new particle created at U if no such particle 
exists in [0, x]. 

For our purposes the following alternative description is most useful. Start with 
a Poisson point process of intensity 1 on R2. Now shift the interval [0, x] vertically 
through (a realization of) this point process, and, each time a point is caught, 
shift to this point the previously caught point that is immediately to the right. Let 
L(x, y) be the number of particles in the interval [0, x] after shifting to height y. 
Then, by Poissonization of the length of the random permutation, we get 

LN, 
=- L(x, y), 

where 

=x,y = #{points of Poisson point process in [0, x] x [0, y]} = Poisson(xy). 

In an alternative interpretation, L(x, y) is the maximal number of points on a 
North-East path from (0, 0) to (x, y) with vertices at the points of the Poisson point 
process in the interior of 

2+, 
where the length of a North-East path is defined as the 

number of vertices it has at the points of the Poisson point process in the interior 
of IR2. The reason is that a longest North-East path from the origin to (x, y) has 
to pick up a point from each space-time path crossing the rectangle [0, x] x [0, y]. 
Aldous and Diaconis (1995) call the evolving point process y ? L(., y), y > 0, of 
newly caught and shifted points Hammersley's interacting particle process. 

We can also introduce the evolving point process x + L(x, .), x > 0, running 
from left to right. Analogously to the description above of the process running up, 
we shift in this case an interval [0, y] on the y-axis to the right through the point 
process in the interior of the first quadrant, and, each time a point is caught, shift to 
this point the previously caught point that is immediately below this point (if there 
is such a point). By symmetry, it is clear that the processes y H L(., y), y > 0, and 
x ~- L (x, .), x > 0, have the same distribution. 

A picture of the space-time paths corresponding to the permutation (5, 3, 6, 2, 8, 
7, 1,4, 9) is shown in Figure 1. In this case [0, x] x [0, y] contains nine points, and 
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(O,y) (cY) 

(0, 0) x a-point * 3-point (x, 0) 

FIG. 1. Space-time paths of Hammersley's process, contained in [0, x] x [0, y]. 

one can check graphically that there are four longest North-East paths (of length 4) 
from (0, 0) to (x, y), corresponding to the subsequences (3, 6, 7, 9), (3, 6, 8, 9), 
(5, 6, 7, 9) and (5, 6, 8, 9). Following a terminology introduced in Groeneboom 
(2001), we call the points of the Poisson point process in the interior of R2+ 
a-points and the North-East corners of the space-time paths of Hammersley's 
process fl-points. In fact, the actual x-coordinates of the a-points in the picture are 
different from the numbers 3, 6, ..., but the ranks of these x-coordinates are given 
by 3, 6, and so on, if we order the a-points according to the second coordinate. 

We use a further extension of Hammersley's interacting particle process, where 
we have not only a Poisson point process in the interior of R2, but also, 
independently of this Poisson point process, mutually independent Poisson point 
processes on the x- and y-axis. We call the Poisson point process on the x-axis 
a process of "sources," and the Poisson point process on the y-axis a process of 
"sinks." The motivation for this terminology is that we now start the interacting 
particle process with a nonempty configuration of "sources" on the x-axis, which 
are subjected to the Hammersley's interacting particle process in the interior 
of R+, and which "escape" through sinks on the y-axis, if such a sink appears 
to the immediate left of a particle (with no other particles in between). Figure 2 
shows how the space-time paths change if we add two sources and three sinks 
(at particular locations) to the configuration in Figure 1. 

The interacting particle process with sources and sinks was studied in Section 4 
of Groeneboom (2002), where it was proved that, if the intensity of the Poisson 
processes on the x- and y-axes are .X and 1 /X, respectively, and the intensity of the 
Poisson process in the interior of R2 is 1, the process is stationary in the sense that 
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(O,y) (, y) 

(0,0) (X,0) 

FIG. 2. Space-time paths of Hammersley's process, with sources and sinks. 

the crossings of the space-time paths of the half-lines R+ x {y} are distributed 
as a Poisson point process of intensity ., for all y > 0. The stationarity of the 
process was proved by an infinitesimal generator argument. It also follows from 
the computations in the Appendix of the present paper. The process is studied from 
an analytical point of view in Baik and Rains (2000) (see Remark 3.1 in Section 3). 

In Section 2 we compare Hammersley's interacting particle process, as 
introduced in Aldous and Diaconis (1995), with the stationary extension of this 
process, with sources on the x-axis, and sinks on the y-axis. However, as an 
intermediate step, we introduce a process with Poisson sources on the positive 
x-axis, but no sinks on the y-axis. From Theorem 2.1 in the present paper we can 
deduce that this particle process, with Poisson sources of intensity X on the positive 
x-axis, but no sinks on the y-axis, behaves below an asymptotically linear "wave" 
of slope X2 through the /-points as a stationary process. 

In a coupling of the process with the stationary process, having both sources and 
sinks, this wave can be interpreted as the space-time path of an isolated second- 
class (or "ghost") particle with respect to the stationary process. For the concept 
"second-class particle" in the context of totally asymmetric simple exclusion 
processes (TASEP), see, for example, Ferrari (1992) or Liggett [(1999), Chapter 3]. 
The second-class particle jumps to the previous position of the particle that exits 
through the first sink at the time of exit, and successively jumps to the previous 
positions of particles directly to the right of it, at times where these particles jump 
to a position to the left of the second-class particle; see Figure 3. The space-time 
path of the isolated second-class particle moves asymptotically, with probability 1, 
along the characteristic of a conservation equation for the stationary process. Here 
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(0,t) Xt (x,t) 

(0,0) (,o0) 
FIG. 3. Path of isolated second-class particle in the configuration of Figure 2. 

we establish a connection with the theory of totally asymmetric simple exclusion 
processes. Although we use similar techniques as used for the study of the behavior 
of second-class particles in TASEP, the situation is in a certain sense simpler in 
our case, since we do not have to condition on having a second-class particle at the 
origin at time zero. 

In a similar way we prove that Hammersley's process, with Poisson sinks of 

intensity 1/X, , > 0, on the positive y-axis, but no sources on the x-axis, behaves 

asymptotically as a stationary process above a wave through the f3-points of 

slope X2, if the Poisson sinks on the positive y-axis and the points of the Poisson 
process (of intensity 1) in the interior of R2 are independent. By a coupling 
argument, these processes can be compared directly to Hammersley's process, as 
defined in Aldous and Diaconis (1995), which has empty configurations on the 
x- and y-axis. The coupling argument gives a direct and "visual" proof of the local 
convergence of Hammersley's process to a Poisson point process with intensity X., 
if one moves out along a "ray" y = ;.2x, which is the main result Theorem 5 of 
Aldous and Diaconis (1995). The convergence of EL(t, t)/t to 2, as t -- 00, then 
also easily follows. This implies that ELn/x/In converges to 2, a result first proved 
by Logan and Shepp (1977) and Vershik and Kerov (1977). 

In Section 3 we study the /-points of the stationary Hammersley process. For 
these points we prove a "Burke theorem," showing that these points inherit the 
Poisson property from the a-points. This allows us to show, using a time reversal 
argument, that in the stationary version of Hammersley's process, a longest 
"weakly" North-East path (allowing horizontal and vertical pieces along the 
x- or y-axis) only spends a vanishing fraction of time on the x- or y-axis. 
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2. Path of an isolated second-class particle and local convergence of 
Hammersley's process. Fix X > 0, and let t - L L(., t) be Hammersley's 
process, now considered as a one-dimensional point process, developing in time t, 
generated by a Poisson process of sources on the positive x-axis of intensity X, 
X > 0, a Poisson process of sinks on the time axis of intensity 1/, and a Poisson 
process of intensity 1 in R2, where the Poisson process on the x-axis, the Poisson 
process on the time axis and the Poisson process in the plane are independent. It is 
helpful to switch from time to time the point of view of Hammersley's process 
as a process of space-time paths in R2 and Hammersley's process as a one- 
dimensional point process, developing in time. This is somewhat similar to the two 
ways one can view the Brownian sheet. Since the second coordinate can (mostly) 
be interpreted as "time" in the sequel, we will denote this coordinate by t instead 
of y, although, with slight abuse of language, we will continue to call the vertical 
axis the "y-axis," following standard terminology. 

We add an isolated second-class particle to the process, which is located 
at the origin at time zero. A picture of the trajectory of the isolated second- 
class particle for the configuration shown in Figure 2 is shown in Figure 3. 
Theorem 2.1 shows that the space-time path of the second-class particle is 
asymptotically linear with slope ,2. This is to be expected from results on totally 
asymmetric simple exclusion processes (TASEP), as given in, for example, Ferrari 
(1992). For TASEP Burgers' equation is the relevant conservation equation in a 
continuous approximation to the process. The analogue of Burgers' equation for 
a macroscopic approximation to Hammersley's process (with neither sources nor 
sinks) is 

au(x, t) 2au(x,t) 
(2.1) + u (x, t) = 0, at ?ax 
where u(x, t) is the intensity of the crossings at (x, t); see Liggett [(1999), 
page 316], where the corresponding equation is given for the integrated intensity. 

This leads us to expect that, analogously to the TASEP results, 

t-1Xt 
-- 1/)•2, 

t -+ o, 
a.s where Xt is the x-coordinate of the second-class particle, and where ---4 denotes 

almost sure convergence, since in this case the path {(x, t) = (t/X2, t): t > 0} is a 
characteristic for (2.1); compare to, for example, (12.1) in Section 12 of Ferrari 
(1992). 

THEOREM 2.1. Let t 
Lk(., 

t) be the stationary Hammersley process, 
defined above, with intensities X and 1/X on the x- and y-axis, respectively. Let 
Xt be the x-coordinate of an isolated second-class particle w.r.t. Lh at time t, 
located at the origin at time zero. Then 

(2.2) t-1Xt 4 1/. 2 t -+ o. 
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The proof of Theorem 2.1 is based on Lemma 2.1. To formulate this lemma 
we first introduce some notation. Let t, t > 0, be the stationary point process, 
obtained by starting with a Poisson point process with intensity y > 0 in (0, oo) 
at time 0, and letting it develop according to Hammersley's process on (0, 00), 
with Poisson sinks of intensity 1/y on the y-axis, and a Poisson point process 
of intensity 1 in the interior of the first quadrant. Furthermore, let ar, t > 0, 
be the stationary process, coupled to rt, t > 0, by using the same points in 
the first quadrant as used for q, and starting with a (8/y)-"thickening," 6 > y, 
of the Poisson point process with intensity y > 0 on the x-axis, obtained by 
adding independently a Poisson point process of intensity S - y, and letting at 
develop according to Hammersley's process on (0, oo). To get stationarity for the 
process a, we replace the sinks on the y-axis by a y/S-thinned set, obtained by 
keeping each sink with probability y/1, independently for each sink. Then the 
sinks on the y-axis for the process a have intensity 1/S. Finally, we let t -+ t be 
the process of second-class particles of q w.r.t. a, that is, the points of ?t denote the 
locations where the point process at has extra particles w.r.t. the point process qrt. 

We use the notation qt [0, x] for the number of particles of qt in the interval 
[0, x] at time t, with the convention that particles, escaping through a sink in the 
time interval [0, t], are located at zero. We define at [0, x] similarly. Furthermore, 
we use the notation or (0, x] (at (0, x]) for the number of particles of qt (at) in the 
open half-open interval (0, x] at time t. Finally we define the "flux" F? (x, t) of ( 
through x at time t by 

(2.3) F? (x, t) = at [0, x] - rt [0, x]. 

The flux F? (x, t) is equal to the number of second-class particles in (0, x] at time t 
minus the number of removed sinks in the segment {0} x [0, t] (through which 

space-time paths of second-class particles start moving to the right). Relation (2.3) 
is in fact a conservation law. 

A picture of the processes r and 4 is shown in Figure 4. In this case the 
process a (inside the rectangle [0, x] x [0, t]) is obtained from the process qr 
by adding two sources at the locations z1(0) and Z2(0) and removing a sink 
at height So. The crossings of horizontal lines of the space-time paths of the 

process a are the unions of the crossings of (the same) horizontal lines of the 

space-time paths of the processes q and ?. 

LEMMA 2.1. (i) Let 7 be Hammersley's process, defined above, with sources 
of intensity y > 0 and sinks of intensity 1/y, and let S > y. We add independently 
a Poisson point process of intensity S - y to the Poisson process of sources, and 
perform a y/S-thinning of the Poisson pointprocess of sinks of intensity 1/y on the 
y-axis. Let a be Hammersley's process, coupled to r, and having the augmented 
set of sources with intensity S and the thinned set of sinks with intensity 1/5. 
Finally, let Zt be, at time t, the location of the second-class particle for which 
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(0, t) Zt = zo(t) zi (t) (r, t) 

So < 

(0,0) zi(0) Z2(0) (x,0) 

FIG. 4. Processes r and (. 

the space-time path starts moving to the right through the smallest removed sink. 
Then 

Zt I 
lim = a.s. 

t-*o0 t y8 

(ii) Let ql' represent Hammersley's process developing from left to right, with 
sources (on the x -axis) of intensity y > 0 and sinks (on the y-axis) of intensity 1/y, 
and let 0 <8 < y. We add independently a Poisson point process of intensity 
6-1 - y-1 to the Poisson process of sinks of intensity y-1, and perform a 
8/y -thinning of the Poisson point process of sources of intensity y on the x-axis. 
Let a' be the process developing from left to right, coupled to rli, and having the 
augmented set of sinks with intensity 8-1 as sources and the thinned set of sources 
with intensity 8 as sinks. Finally, let Z' be the location of the second-class particle 
of a' w.r.t. qj',for which the space-time path leaves the x-axis through the smallest 
removed source (of the original process r7). Note that the smallest removed source 
of rl is a removed sink for r•. Then 

Z/ 
lim 

• 

= y6 a.s. 
t - 00 t 

PROOF. (i) Let x > 0. We have 

rn [O, nx] I 
lim = -- + x y a.s., 

n * n y 

since nnn[0, nx] equals qn(0, nx] plus the number of sinks for the process rq, 
contained in {0} x [0, n] (where n is a positive integer), and since in (0, nx] 
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and the number of sinks contained in {0} x [0, n] have Poisson distributions 
with parameters nxy and n/y, respectively. Here we use the stationarity of the 
process ri, implying that r, (0, nx] has a Poisson distribution with parameter nxy. 
Note that, for each e > 0, 

P{jn(0, nx]- nxyl > nE} < o, 
n=l 

and hence, by the Borel-Cantelli lemma, 

P{Ilrn(0, nx] - nxyl > ne infinitely often} = 0, 

implying the almost sure convergence of rn(0, nx]/n to xy, as n --+ 00. The 
almost sure convergence to 1/y of the number of sinks for the process 7, contained 
in {0} x [0, n], divided by n, follows in the same way. 

Similarly, 

man [O, nx ] 1 
lim = - + x8 a.s. 

n- 00 n 6 

Hence, by (2.3), 

F(2.4) limF(nx,n) 1 1 1 (2.4) lim - x (8 - y)= - (1 - y) =- - x a.s. 
n-*oo n 8 y y 

This limit is negative for 0 < x < 1/(yS) and positive for x > 1/(y ). 
We can number the particles of ? according to their position at time 0, so that, 

for i > 0, particle i is the ith second-class particle to the right of the origin at 
time 0. We then let zi (t) be the position of the ith second-class particle at time 
t > 0. For i <0, we let zi(t), i = 0, -1, -2,..., be the second-class particles at 
time t, for which the space-time paths leave the y-axis through the removed sinks 
So, S1,..., respectively, ordering these removed sinks according to the height of 
their location on the y-axis; note that Zt = zo(t) (see Figure 4). 

Hence F? (x, t) has the representation 

(2.5) F? (x, t) = #{i > 0: zi(t) < x} - #{i < 0: zi(t) > x}. 

Note that second-class particles zi (.), i O0, starting their space-time path to the 
right at a removed source in {0} x [0, t], and satisfying zi (t) e [0, x], do not give 
a contribution to (2.5), since they give a contribution to it [0, x] as a particle 
of rt, located at zero, and a contribution to at [0, x] as a particle of at in the 
interval (0, x]. These two contributions cancel in (2.3). It is also clear from (2.5) 
that, for fixed t, the flux Fg (x, t) is nondecreasing in x. 

Relation (2.5) shows that F (Zn, n) = F(zo(n), n) is equal to zero at each 
time n, and since Fg (nx, n) is nondecreasing in x for fixed n, we get from (2.4), 

Zn 1 
lim -- a.s. 

n-+oo n y8 
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But, since Zt is nondecreasing in t, we then also have 

Zt I 
lim 

= 
a.s. 

(ii) The result is obtained from part (i) by reflecting the processes w.r.t. the 
diagonal, and noting that the reflected processes have the same probabilistic 
behavior, but with the role of sources and sinks interchanged. The limit 1/(y8) 
changes to y8 because of the interchange of x- and y-coordinate. D 

PROOF OF THEOREM 2.1. We couple the process t F (L(.-, t), Xt) with the 
process t ->- (t, at), where the processes q7 and a are defined as in part (i) of 
Lemma 2.1, and where Lh(-, t) = qt and 8 > y = X,. Then Zt < Xt, for all t > 0, 
where Zt is defined as in part (i) of Lemma 2.1. This is seen in the following way. 

At time zero, we have Zo = Xo = 0. Since the process a is obtained from the 
process r by a thinning of the sinks and a "thickening" of the sources, and the 
space-time path of Zt leaves the axis {0} x R+ through the smallest removed sink, 
it will leave this axis at a time which is larger than or equal to the time the space- 
time path of Xt leaves the axis, since the space-time path of Xt will leave the axis 
through the smallest sink in the original set of sinks. Note that since a has less 
sinks and more sources: 

(2.6) qt (0, x] < at (0, x], t > 0, x > 0. 

This means that not only Zt becomes positive at a time that is at least as large as 
the time that Xt becomes positive, but also moves to the right at a speed that is 
not faster than that of Xt. Also note that if Zt jumps to a position x > Zt-, an 

qr-particle jumps over it from a position x' > x. Here and in the sequel we use the 
notation Zt- to denote limt, t Zt', with a similar convention for Xt-. 

If 
Xt- 

< x and 
Zt- 

< 
Xt-, Xt will jump to x'. Since Zt, x', Zt can never 

overtake Xt. Note that we can have x' > x if several second-class particles are 
next to each other, without a first-class particle in between. In this case Zt does not 
have to move to the position of the r particle, but can move to the position of the 
closest second-class particle to the right of it. 

Hence we have, with probability 1, 

Xt Zr 1 1 
liminf > lim Zt 
t-0oo t -t0oo t - Y 

Since this is true for any 8 > ., we get 

Xt 1 
liminf > 
t--oo 

t - 
.2 

For the reverse inequality, we switch the role of the sources and the sinks, 
and view Hammersley's process as developing from left to right. This time we 
add independently a Poisson point process of intensity 6-1 - y- to the Poisson 



HAMMERSLEY'S PROCESS 889 

process of sinks of intensity y-l, and perform a S/y-thinning of the Poisson point 
process of sources of intensity y on the x-axis, where y = XL and 0 < S < y, and 
use the process q' and a', defined in part (ii) of Lemma 2.1. Note that r' has the 
same space-time paths as the process r, defined above. In the coupling we now 
consider LA as a process developing from left to right and take L (t, .) = 

rt. Let 
Xx 

be an isolated second-class particle for the process running from left 
to right in the same way as Xt is an isolated second-class particle for the process 
running upward. Trajectories of X and X' are shown in Figure 5. 

We have 

(2.7) X(X'(x)) < x, x > 0, 

writing temporarily X'(x) instead of X' and X (u) instead of Xu. Equation (2.7) is 

equivalent to noting that the trajectory of (Xt, t) lies above the trajectory of (x, X,) 
(see also Figure 5). This follows from the fact that if (Xt, t) hits a space-time path 
at a point North-West of the point where (x, X') hits the same space-time path, 
this must also be true for the next space-time path, since the first trajectory moves 

up, and the second trajectory moves to the right. 
By Lemma 2.1 and the argument above, now applied on the process moving 

from left to right, we get the relation 

X' Z' 
(2.8) liminf X > lim x = 

R, x --oo x -- x 

with probability 1. But the almost sure relation lim infx,,, X/lx > >D implies for 

(0, t) (XIt) (X, t) 

(0, 0) (, 0) 

FIG. 5. Trajectories of (Xt, t) and (x, X). 
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the process t ? Xt the almost sure relation 

Xt 
(2.9) lim sup - 1/ 

t -OQ t 

since we get for each k' > 1/(8•), with probability 1, 

x(t/X') x(X'(t)) t 
lim sup < lim sup < lim - = 

( 
), 

t-)(o t/kI' - t*oo t/,' -too t/.' 
using (2.8) in the first inequality and (2.7) in the second inequality. 

Since (2.9) is true for any 6 < X, we get, with probability 1, 

Xt I 
lim sup - - 

t t X- 2 

The result now follows. O 

REMARK 2.1. The second-class particle 
Xx, 

introduced at the end of the proof 
of Theorem 2.1, plays the same role for Hammersley's process, running from left 
to right, as the second-class particle Xt plays for Hammersley's process, running 
up. It therefore has to satisfy 

X' 
(2.10) lim x X 2 

x --oo X 

with probability 1. Note that we get an interchange of the x and t coordinate which 
leads to X2 in (2.10) instead of the 1/2 in (2.2), but that the line along which 
(x, X') tends to oc is in fact the same as te as the line along which (Xt, t) tends to 00. 

The following lemma will allow us to show that Theorem 2.1 implies both the 
local convergence of Hammersley's process to a Poisson process and the relation 
c = 2 [which is the central result Theorem 5 on page 204 in Aldous and Diaconis 
(1995)]. 

LEMMA 2.2. Let L, be the stationary Hammersley process, defined in The- 
orem 2.1. Furthermore, let L, -Y be the process obtained from L by omitting the 
sinks on the y-axis, and let L-x be the process obtained from Lx by omitting the 
sources on the x-axis. LxY is coupled to L , by using the same point process in 
the interior of R2, and the same set of sources on the x-axis, and L'x is coupled 
to L , by using the same point process in the interior of IR, and the same set of 
sinks on the y-axis. Then: 

(i) The processes LA and L- have the same space-time paths below the 
space-time path t o (Xt, t) of the isolated second-class particle Xt for the 
process t - Lk(', t). 



HAMMERSLEY'S PROCESS 891 

(ii) The processes LA and L-x have the same space-time paths above the 
space-time path t F-- (t, X) of the isolated second-class particle X, for the 
process t -+ Lx(t, .), running from left to right. 

PROOF. Omit the first sink at location yl on the y-axis. Then the path of LA 
leaving through (0, yi) is changed to a path traveling up through the f-point with 
y-coordinate yl to the right of (0, yl) until it hits the next path of the original 
process. At this level the path of the changed (by omitting the smallest sink) 
process is going to travel to the left, and the next path will go up (instead of to 
the left) through the closest f-point to the right. And so on. The "wave" through 
the P-points that is caused by leaving out the first sink is in fact the space-time 
path of the isolated second-class particle Xt (see Figure 3). 

We can now repeat the argument for the situation that arises by leaving out the 
second sink. This will lead to a "wave" through P-points that is going to travel 
North of the first wave that was caused by leaving out the first sink. This wave 
is the space-time path of an isolated second-class particle in the new situation, 
where the first sink is removed. Below the first wave the space-time paths remain 

unchanged. The argument runs the same for all the remaining sinks. 
(ii) The argument is completely similar, but now applies to the process running 

from left to right instead of up (see the end of the proof of Theorem 2.1). O 

In the proof of Corollary 2.1 we will need the concept of a "weakly North-East 
path," a concept also used in Baik and Rains (2000). 

DEFINITION 2.1. In the stationary version of Hammersley's process, a weakly 
North-East path is a North-East path that is allowed to pick up points from either 
the Poisson process on the x-axis or the Poisson process on the y-axis before 

going strictly North-East, picking up points from the Poisson point process in the 
interior R2. The length of a weakly North-East path from (0, 0) to (x, t) is the 
number of points of the Poisson processes the axes anon the axes and the interior of R on 
this path from (0, 0) and (x, t). A strictly North-East path is a path that has no 
vertical or horizontal pieces (and hence no points from the axes). 

Note that the length of a longest weakly North-East path from (0, 0) to (x, t) in 
the stationary version of Hammersley's process is equal to the number of space- 
time paths intersecting [0, x] x [0, t], just as in the case of Hammersley's process 
without sources or sinks (in which case only strictly North-East paths are possible). 

COROLLARY 2.1 [Theorem 5 of Aldous and Diaconis (1995)]. Let L be 
Hammersley's process on R++, started from the empty configuration on the axes. 
Then: 
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(i) For each fixed a > 0, the random particle configuration with counting 
process 

y ? L(t + y, at) - L(t, at), y > -t, 

converges in distribution, as t --+ o, to a homogeneous Poisson process on R, with 

intensity .fa. 
(ii) 

lim EL(t, t)/t = 2. 
t -+oO 

PROOF. (i) Fix a' > a, and let, for 
- 

= a', L-Y be Hammersley's process, 
starting from Poisson sources of intensity X on the positive x-axis, and running 
through an independent Poisson process of intensity 1 in the plane (without 
sinks). Then we get from Theorem 2.1 and Lemma 2.2 that the counting process 
yH L-v(t + y, at) - LX (t, at) converges in distribution to a Poisson process of 
intensity X, since the process, restricted to a finite interval, lies with probability 1 at 
level t to the right of the space-time path of the isolated second-class particle Xt, 
as t - oo. 

If we couple the original Hammersley process and the process L Y via the same 
Poisson point process in the plane, we get that at any level the number of crossings 
of horizontal lines of the process L is contained in the set of crossings of these 
lines of the process L .v, since the latter process has sources on the x-axis and 
no sinks on the y-axis. Hence, for a finite collection of disjoint intervals [ai, bi), 
i = 1, ..., k, and nonnegative numbers 01, ..., Ok, we obtain 

E exp - Oi{L(t + bi, at) - L(t + ai, at) } 

>E exp - i {L (t + bi, at) - L (t + ai, at) 

But the right-hand side converges by Theorem 2.1 and Lemma 2.2 to 

exp - Z (bi - a){1 - e-0i 
i--1 

so we get 

liminf Eexp - O{L(t bi, at) - L(t + ai, at)} 
t --oo 

(2.11) 
>e Z_ X(bi-ai){1-e-Oi } 

A similar argument, but now comparing the process L with a process L-x, 

having sinks of intensity 1/ 
- 

1/ a on the y-axis (which can be considered to 
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be "sources" for Hammersley's process, running from left to right), but no sources 
on the x-axis, shows 

limsup E exp - Oi {L(t + bi, at) - L(t + ai, at)} 
t-+ i=1 

(2.12) 

< e- =•i (bi-ai){1-e-?i 
} 

for any a' < a, since in this case the crossings of horizontal lines of the process L 
are supersets of the crossings of these lines by the process L-x. 

That the crossings of horizontal lines of the process L are supersets of the 

crossings of horizontal lines by the process L-x 
can be seen in the following way. 

Proceeding as in the proof of Lemma 2.2, we can, for the process L., omit the 
sources one by one, starting with the smallest source. The omission of the smallest 
source will generate the path of a second-class particle X', and the paths of LX 
will, at the interior of a vertical segment of the path of X', have an extra crossing 
of horizontal lines w.r.t. the paths of the process with the omitted source. On the 
other hand, the process with the omitted source will have extra crossings of vertical 
lines, since some particles will make bigger jumps to the left. We can now repeat 
the argument by omitting the second source, which will lead to a further decrease 
of crossings of horizontal lines, and so on. 

Combining (2.11) and (2.12), we find 

lim Eexp - Oi{L(t + bi,at) - L(t + ai,at)} = e- 
(bi-ai)-{1-e-?i} 

i=1 

and the result follows. 
(ii) Since the length of a longest strictly North-East path is always smaller than 

or equal to the length of a longest weakly North-East path, in the situation of 
a stationary process with Poisson sources on the positive x-axis and Poisson sinks 
on the positive y-axis, both with intensity 1, we must have, for each t > 0, 

EL(t, t)/t < 2, 

since the expected length of a longest weakly North-East path from (0, 0) to (t, t) 
is 2t for the stationary process. 

The latter fact was proved in Groeneboom (2002), and comes from the simple 
observation that the length of a longest weakly North-East path from (0, 0) to (t, t) 
is equal to the total number of paths crossing {0} x [0, t] and [0, t] x {t}. Since the 
number of crossings of {0} x [0, t] has a Poisson(t) distribution by construction, 
and the number of crossings of [0, t] x {t) also has a Poisson(t) distribution, this 
time by the stationarity of the process Lh, where X = 1 in the present case, we get 
that the expectation of the total number of crossings of the left and upper edge is 
exactly 2t. 
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To prove conversely that lim 
inft_-,, 

EL(t, t)/t > 2, we first note that L(t, t) is 
in fact the number of crossings of Hammersley's space-time paths with the line 

segment [0, t] x {t }. Take a partition 0, tlk, 2t/k,..., t of the interval [0, t], for 
some integer k > 0. Then the crossings of the space-time paths of L of the segment 
[(i - 1)t/k, it/k] x {t} contain the crossings of this line segment by the paths of a 
Hammersley process L-x with sinks of intensity 1/?,i 1/,/a, ai < k/i, on the 
y-axis, but no sources on the x-axis. 

But, by Theorem 2.1 and Lemma 2.2, the crossings of the process L7-x with the 
segment [(i - 1)t/k, it/k] x {t} belong, as t -- oc, to the stationary part of the 

process with probability 1, since ai < k/i. 
We now have 

lim t-1EL-x (it/k, t) - L ((i - 1)t/k, t)} = 
t 

1 E 
k ; ((i - 

1)t/k, 
t) 

}--k 
by uniform integrability of t-IL -x(yt, t), y e (0, i/k], t > 0, using, for example, 
the fact that the second moments are bounded above by the second moments of 
the corresponding stationary process with sources of intensity Xi and sinks of 
intensity 1/Xi. Hence we get, by summing over the intervals of the partition, 

1 
k 

liminf EL(t, t)/t > - . t-oo k0k 
t= 

Letting ai ? k/ i, we obtain (still for fixed k) 
k 

liminfEL(t, t)/t 

>_ 

1/ -ik = 2(1 + 0(1/k)), 
i= 1 

and (ii) follows by letting k -- oc in the latter relation. O 

3. Burke's theorem for Hammersley's process. In this section we show 
that, in the stationary version of Hammersley's process with sources on the 
x-axis and sinks on the y-axis, the P-points inherit the Poisson property from 
the a-points. One could consider this as a version of Burke's theorem for 
Hammersley's process. Burke's theorem [see Burke (1956)] states that the output 
of a stationary M/M/I I queue is Poisson. An interesting generalization of Burke's 
theorem is discussed in O'Connell and Yor (2002). A version of Burke's theorem 
for totally asymmetric simple exclusion processes is given in Ferrari [(1992), 
Theorem 7.1]. Burke's theorem is essentially based on a time-reversibility property 
and for our result on the /-points this is also the case. Our version of Burke's 
theorem runs as follows. 

THEOREM 3.1. Let Lh be a stationary Hammersley process on [0, 7Ti] x 
[0, T2], generated by a Poisson process of "sources" of intensity X on the positive 
x-axis, a Poisson process of intensity 1/X of "sinks" on the positive y-axis and 
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a Poisson process of intensity 1 in R2+, where the three Poisson processes are 

independent. Let L, denote the point process of 18-points in [0, Ti] x [0, T2], that 
is, the North-East corners of the space-time paths of the process L., restricted 
to [0, Ti] x [0, T2], Ln the entries of the space-time paths on the East side of 
[0, Ti] x [0, T2] and Lout the exits of the space-time paths on the North side. Then 
L is a homogeneous Poisson point process with intensity 1 in [0, Ti] x [0, T2], 
Ln is a homogeneous Poisson process of intensity 1/. and Lout is a homogeneous 
Poisson process of intensity X, and all three processes are independent. 

PROOF. We define a state space E as the possible finite point configurations 
on [0, Ti ], so E = 

L- 
E, where 

En = 
{(xl,...,xn):0x_< 

i <_ 
_<Xn 

< T1} (n > 1) 

and E0 = {0}, the empty configuration. We endow each En with the usual 
topology, which makes E into a locally compact space. We define a Markov 
process (Xt)o<t<T2 on E such that Xt is the point configuration of the Hammersley 
process L on the line [0, T1] x {t}. In particular we have that Xo is distributed 
according to a Poisson process with intensity L. From the definition of the 
Hammersley process it is not hard to see that the generator G of this Markov 
process is given by 

I T,1 
Gf(x) f (tx) dt + - f (?x) - + TI f (x) 

where f E Co(E), X corresponds to an exit to the left and Rt corresponds to an 
insertion of a new Poisson point at t, so 

?: E 
-- 

E: ?x = (X2, n) if x E En (n > 2), 
10, if x E E0 U El, 

and for 0 < t < T1, 

(xl ... , xi- , t, i+l, ... , Xn), 
Rt : E -> E ,:tx = if xi-l < t < xi (x E En), 

(xl, ... I, xn, t), ifxn < t (x E En). 

Here we use the convention that xo = 0. To prove that G is indeed the generator, 
we fix f e Co(E) and x e E and consider the transition operators 

Pt f (x) = E(f(Xt)IXo = x) (t > 0). 

We will consider the process for a time interval [0, h] (h 4 0) and call Ah the 
number of Poisson points in the strip [0, T1i] x [0, h] and Sh the number of sinks 
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in {0} x [0, h]. Then 

Ph f (x) = f (x)P(Ah = 0 and Sh = 0) 

+?1 1T f (,tx) dt- P(Ah = 1 and Sh = 0) 

+ f(Ix)P(Ah =0 and Sh = 1) + O(h2) 

f|h f 

oT1 

+ h(h 2 
Sf(x) 1- Tlh-h - +h f (Rtx)dt +-f(x)+ O(h2 

This shows that for every f E Co(E) and every x E E, 
d 

dt t=0oPt 
f (x) = Gf (x). 

Since Xt is clearly a homogeneous Markov process, we get for t E [0, T2], 

(3.1) 
dss=tPs 

f(x) =G Pt f(x). 

Now we note that G is a continuous operator on Co(E), so etG exists and is also a 
continuous operator. Since 

d esG f(x) = GetG f(x), ds s=t 

(3.1) together with the uniqueness of solutions of a differential equation proves 
that 

Pt f(x) = etG f(x). 

The key idea to prove the theorem is to consider the time-reversed process 

Xs 
= lim XT2-s' (XT2 = Xo). 

We take the left-limit of the original process X to ensure the cadlag property 
of (Xs)o<s<T2. Since, given Xt, the past of the process X is independent 
of the future, it follows immediately that X is a Markov process, possibly 
inhomogeneous. However, if we define g as the probability measure on E induced 
by a Poisson process of intensity X, then Xo - and [t is a stationary measure for 
the generator G, which implies that X also is stationary and homogeneous. The 
stationarity of X was shown in Groeneboom (2002), but will also be a consequence 
of calculations done in the Appendix. Now consider the transition operators 

Pt f(x) = E(f (Xt)IXo = x) (t > 0) 
for the time-reversed process. Then, for f, g E Co(E) and h > 0, 

E(f(Xt+h)g(Xt)) = 
E(g(Xt)E(f(Xt+h)lXt)) 

= E(Ph f (Xt)g(X,)) 

= Phf(x)g(x),t(dx). 
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We also have 

E(f (Xt+h)g(Xt)) = E(f (Xt+h)E(g(Xt)lXt+h)) 

= E(f(Xt+h)Phg(Xt+h)) 

= f(x)Phg(x)gt(dx). 

We use that, due to the stationarity of the process X, Xt and Xt+h both have 
marginal distribution Lt. Combining these results gives 

(3.2) fEPhf (x)g(x)x)(dx) =E f (x)Phg(x)/L(dx). 

In the Appendix we calculate the operator G*, defined by the equation 

(3.3) fE G f(x)g(x)g(dx) 
-= 

f(y)G*g(y)i(dy) for all f, g E Co(E). 

It is shown there that 

(3.4) G*g(y) = g (Jsy) ds + -g(R'y) - - + Tig(y), 

where in an analogous way as before we define ~: E - E as an exit to the right 
and Xs : E -* E as a new point at s such that the point directly to the left of s 
moves to the right. 

We will use (3.4) several times. First of all, since G*1 = 0, it shows that It is a 
stationary measure. Second, we see that for g e L' (It) 

IIG*g|ll 
2( 2 + Ti) Ig|L, 

which proves that G is in fact a continuous operator on L1 (i), as well as a 
continuous operator on Co(E). Since Pt = etG, Pt is also a continuous operator 
on L1([t). Therefore, (3.2) now shows that Pt = 

Pt 
= etG*, so in fact, using the 

same argument as before, G = G*. So the reversed process has the generator G*. 
Now we define a reflected Hammersley process XV as follows: we take the 

original stationary Hammersley process and reflect all the space-time paths with 

respect to the line segment {? T1} x [0, T2]; call this a vertical reflection. So all 
points now move to the right and exit on the East side. One verifies that the 
generator for XV is given by G* in the same way we did it for the process X, 
and as XV also starts with a Poisson distribution of intensity k, it has the same 
distribution as X. Note that if one wishes to make a picture of the space-time paths 
of X, one can take the original Hammersley process and reflect all the space-time 
paths with respect to the line-segment [0, Ti1] x { 4 T2 }, a horizontal reflection. 

Since in XV all the jumps in (0, Ti) x (0, T2) are made toward a point of 
a vertically reflected Poisson process, and in the process X all these jumps are 
made to the horizontally reflected /-points of the original Hammersley process, 
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we have proved that the /-points are distributed according to a Poisson process 
with intensity 1. Furthermore, in the process XV paths exit on the East side 
according to a Poisson process with intensity 1/X,, and this corresponds to Lin 
horizontally reflected. The process Lout, also horizontally reflected, corresponds to 
the entries of XV at the x-axis, and is therefore Poisson with intensity 

,. 
Finally, 

the independence of the three processes follows from the fact that this is true (by 
construction) for Xv. D 

Theorem 3.1 allows us to show that a longest weakly North-East path 
from (0, 0) to (t/.2, t) only spends a vanishing proportion of time on either the 
x- or y-axis. For the concept of longest weakly North-East path, see Definition 2.1. 

COROLLARY 3.1. Under the same conditions as Theorem 3.1, a longest 
weakly North-East path from (0, 0) to 

(t/.2, 
t) spends a vanishing proportion of 

time on either the x- or y-axis, in the sense that the maximum distance from (0, 0) 
of the point where a longest weakly North-East path leaves the x - or y -axis, divided 
by t, tends to zero with probability 1, as t -- *o. 

PROOF. Consider a longest weakly North-East path from (0, 0) to (t/X2, t). 
Such a path can be associated with a path of a second-class particle from (t/X2, t) 
to (0, 0) for the time-reversed process, running through the same a-points as the 
longest weakly North-East path, but for which the roles of a- and P-points are 
interchanged. This means that for the reversed process the associated path lies 
below or coincides with the path of the second-class particle that starts moving 
through the crossing of the upper edge [0, t/X2] x {t}, closest to (t/X2, t), moves 
down to the first a-point on the path of the crossing, then moves to the left until it 
hits the path below the highest path crossing the rectangle [0, t/X2] x [0, t], then 
moves down again, and so on. Similarly this path lies above or coincides with the 
path of the second-class particle that starts moving to the left through the crossing 
of the right edge {t/l2} x [0, t], closest to (t/X2, t), starts moving down when it 
hits the a-point on the path of the crossing, moves to the left when it hits the next 
path, and so on. 

According to Theorem 2.1 and Remark 2.1, now applied on the reversed 
process, the "P waves" of the lower and upper path are asymptotically linear 
along the line through the origin with slope X2. This implies the statement of 
Corollary 3.1. O 

REMARK 3.1. It is proved in Baik and Rains (2000) that t-1/3 {L(t, t) - 2t}, 
where 

L,(t, 
t) is the length of a longest North-East path from (0, 0) to (t, t) in the 

stationary Hammersley process (as defined in Theorem 3.1, with X = 1), converges 
in distribution to a distribution function Fo, which is related to, but different from 
the Tracy-Widom distribution function. This has the interesting consequence that 
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the correlation between the number of points on the left edge and the number of 
crossings of the upper edge of the square [0, t]2 tends to - 1, as t -+ oo. Otherwise 
the variance of L,(t, t) would be larger than qt, for some r > 0, instead of being 
of order O(t2/3). We do not need their result in our argument, however. Baik and 
Rains (2000) use an analytical approach, applying the Deift-Zhou steepest descent 
method to an appropriate Riemann-Hilbert problem (after using a representation 
of the distribution function in terms of Toeplitz determinants). This approach is 
rather different from the approach taken here. 

As noted in Baik and Rains (2000), the stationary process is a transition between 
two situations: if the intensities of the Poisson processes on the x-axis and y-axis 
are strictly smaller than 1, we get that t-1/3[ {L (t, t) - 2t} converges in distribution 
to the Tracy-Widom distribution. On the other hand, if one of these intensities is 
bigger than 1 (but the intensities are not equal), we get convergence of Lx(t, t) 
to a normal distribution, with the usual t-1/2 scaling (and a different centering 
constant). 

REMARK 3.2. In Groeneboom (2001) a signed measure process Vt was 
introduced, counting a- and 3-points contained in regions of the plane. The 
Vt-measure of a rectangle [0, x] x [0, y] is defined as the number of a-points 
minus the number of 1-points in the rectangle [0, tx] x [0, ty], divided by t. The 

Vt-process has the property that 

Vt(S) -- V(S), 

almost surely, for rectangles S in the plane, where V is a positive measure with 

density 

def a2 
(3.5) f(, ) V(x, y)= , x, y > 0. 

ax ay 4-/XY 
Here we use the notation V(x, y) to denote the V-measure of the rectangle 
[0, x] x [0, y]. Likewise we write Vt (x, y) for the Vt-measure of the rectangle 
[0, x] x [0, y]. 

The problem of proving part (ii) of Corollary 2.1 of the present paper was 
reduced to showing that 

(3.6) Vt (u, v)d Vt (u, v) ~V(u, 
••V(u,v)= 

c2xy, 

where 

Vt (u, v) = d 
Vt 

(u', v'). 

Although (3.6) indeed has to hold, the argument for it, given in Groeneboom 
(2001), is incomplete, and needs a result like Theorem 2.1 of the present paper to 
be completed. [The difficulty is caused by the locally unbounded variation of the 
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measure Vt, as t -+ oc, which has to be treated carefully to explain why we need Vt 
as integrand in the integral in the left-hand side of (3.6) instead of, e.g., Vr, which 
leads to an integral that is asymptotically twice as large.] But since Theorem 2.1 
allows us to prove both the local convergence to a Poisson process and convergence 
of EL(t, t)/t to 2, we did not pursue the approach in Groeneboom (2001) any 
further in the present paper. 

APPENDIX 

The purpose of this Appendix is to prove (3.4). Remember that 

00 

E--jEn n=0 

where E0 = {01 and 

En = 
{(xl ..., xn):0 < xl < X <xn T< }. 

A Poisson process of intensity X induces a probability measure u on E. Denote 
by an the restriction of i to En, so t#n(dx) = 

- e-aTI dx. The generator was 
given by 

G:Co(E) Co(E) : G f (x) = f (Rtx) dt + - f (Xx) - + Tj f (x). 

Define G+f = Gf + (1/X + T1)f; we will calculate the dual of G+. Let 
f, gE Co(E): 

JE G+ f(x)g(x)t(dx) 

O0 

-TI' G+f((0)g(0) + • G+f (x)g(x)A n(dx) 

+ eXTI ? n 

En 
f(,Rtx)g (x) dt dx + Xn-1 f f (x)g(x) dx] 

nn=l 

=1 

T 
1 

= 
e-T• f ({()g(0) + eT T f (t)g (0) dt 

n= 
1 o 7 

00 
n 

+e-TI 

i n I 
f(x, 

..., Xi-1, t, Xi+l ... 
, Xn) 

n=1 i=1 {xe En,xi- <t<xi)} 

x g(x) dx dt 
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" 
e-?,T1 I:.n f f 

(xl 
, . . .f , Xn, 

t)g(x) dx dt 

n=1J{xeEn,t>xn} 

+ 
e-T' )n-1 fE f (x2, 

... Xn)g(x) 
dx. 

n=1 n 

Now we make a change of variable for each term in such a way that we get f (y) 
in each of the integrals: 

JE 
G+ f(x)g(x)pl(dx) 

= e- T1 
f (0)g((0) +- e-'T f (y)g((0) dy 

oon 

+ e-T' Z i ffs(Y)g(Yi, , Yi-, s, 
n=1 i=1 {[yEEn,Yi<s<yi+1I 

Yi+l, ... , Yn) dy ds 

+ 
e-• 

*n f (Y)g(YI, 
., 

n) dy 

+ e-xr TI LXn-1 f f (y)g(s, yi, ..., Yn-1) dy ds 
n=1 {yeEnE 

l,ssyl} 
1 1 f 

= -f(0)g(0)Auo(Eo) + - If(y)g(0)I(dy) 

oo 
n 

+ I: Y f (Y)g(Yl, 
. 

, yi-1, s, 
n=1 i=1{yEEn,yi<s<yi+} 

Yi+l, Lfy ,, 
Yyn)ln(dy) 

ds 

? 3 J f(y)g(s, 
yl,..., yn)un(dy)ds 

+ J fY f (Y)g(yd..., +Yn-1)n)(dy) 
n=2 

-- f (Y) g(Zsy) ds r 
n (dy) + ,f (y) g ( y) 

Mn 
(dy) 

-- f (y) g(?sy) ds + 
-:-g(Ry) U(dy). 
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Here we define R as an exit to the right and ?s as a new point at s such that the 
point directly to the left of s moves to the right, that is, 

:(x1 ..., Xn-1), if x E En (n > 2), 
01, if x E Eo u E1, 

and for 0 < s < T1, 

(xl, ..., xi-1, 
s, Xi+I ... 

, xn), 

Cs : E 
-- 

E: ,?sx = Iif xi < s < xi+ (x E En), 

(S, ,X1 .. ,x,1), if s < xl (x En). 

Since G*g = G*g - (1/'1 + TI)g, we have shown that 

G*g(y) = 
g(?sy) 

ds + -g(Ry) - - +TI g(y). 
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