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KREIN'S SPECTRAL THEORY AND THE PALEY-WIENER 
EXPANSION FOR FRACTIONAL BROWNIAN MOTION 

BY KACHA DZHAPARIDZE AND HARRY VAN ZANTEN 

Center for Mathematics and Computer Science and Vrije Universiteit Amsterdam 

In this paper we develop the spectral theory of the fractional Brownian 
motion (fBm) using the ideas of Krein's work on continuous analogous of 

orthogonal polynomials on the unit circle. We exhibit the functions which 
are orthogonal with respect to the spectral measure of the fBm and obtain an 

explicit reproducing kernel in the frequency domain. We use these results to 
derive an extension of the classical Paley-Wiener expansion of the ordinary 
Brownian motion to the fractional case. 

1. Introduction. Let X = (Xt)t>o be a fractional Brownian motion (fBm) 
with Hurst index H E (0, 1), that is, a continuous, centered Gaussian process with 
covariance function 

EXsXt = (s2H + t2H - I - t12H). 

Say the process is defined on the probability space (Q, F, I P), and for some fixed 
time horizon T > 0, define the linear space J4T as the closure in L2(P) of the 

(complex) linear span of a collection of random variables {Xt : t E [0, T]}. 
So-called linear problems for the fBm are problems in which it is required 

to find elements of the Hilbert space W'T with certain specific properties. In the 
1960's the basic linear problems like prediction, interpolation, moving average 
representation etc. were treated by various authors; see Molchan (2003) for an 
overview of these contributions. However, these results did not become widely 
known. Many of them were rediscovered during the last decade when new 

application areas like telecommunication networks and mathematical finance 
stimulated a renewed interest in the fBm. Recent contributions dealing with 
linear problems can be found, for instance, in Gripenberg and Norros (1996), 
Decreusefond and Usttinel (1999), Norros, Valkeila and Virtamo (1999), Nuzman 
and Poor (2000) and Pipiras and Taqqu (2001). 

There exist several representations of the fBm that give insight into the structure 
of the linear space WT. An important example is the spectral representation 

n- 
(ei'kt 

- 1)(e-i •s -- 
1) 

EXsXt 
f 

2 -)I(dX) 
= (et, es)C,, 
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where it(dX) = (2r)-' sin(7rH)F(1 + 
2H)l•I1-2H 

dX is the spectral measure 
of the fBm and et(X) = (ei't - 1)/1iX [see, e.g., Yaglom (1987), page 407 or 
Samorodnitsky and Taqqu (1994), page 328]. If we define ?T as the closure 
in L2(I) of the (complex) linear span of the collection of functions {et : t E [0, T]}, 
this representation gives rise to an isometry between JeT and the function 
space 7T, determined by the relation Xt <?- et. We can use this spectral isometry 
to reformulate a linear problem for the fBm in spectral terms. It then becomes a 
linear problem in the function space 7T, which has the advantage that we have 
mathematical tools like Fourier-type techniques, at our disposal. 

In this paper we present new results regarding the fine analytical structure of 
the frequency domain ?T7. In particular, we exhibit certain "orthogonal functions" 
with respect to the spectral measure ct of the fBm and we obtain an explicit 
reproducing kernel for ?T, turning it into a reproducing kernel Hilbert space 
(RKHS). To illustrate the significance of these new frequency domain results for 
the fBm, we apply them to derive a generalization to the fractional case of the 
classical Paley-Wiener expansion of the ordinary Brownian motion [cf. Paley 
and Wiener (1934)]. In spectral terms, obtaining a series expansion translates to 
finding an orthonormal basis of the space ? 7. We achieve this by using the RKHS 
structure and the explicit expression that we have for the reproducing kernel. 

It is well known that orthogonal polynomials on the unit circle are very useful in 
the spectral analysis of stationary time series. They can be used to solve problems 
like prediction and interpolation, and are also useful in connection with likelihood 
estimation and testing [see, e.g., Grenander and Szego6 (1958)]. In a classical paper, 
Krein (1955) introduced certain continuous analogues of orthogonal polynomials 
on the unit circle. We refer to Akhiezer and Rybalko (1968) for a more elaborate 
treatment, including detailed proofs of Krein's statements. As was shown by 
Kailath, Vieira and Morf (1978), Krein's orthogonal functions play the same role in 
the spectral theory of continuous-time processes with stationary increments as the 
orthogonal polynomials do in times series theory. For a certain class of processes 
with stationary increments, Kailath, Vieira and Morf (1978) pointed out how the 
orthogonal functions describe the structure of the frequency domain. In the present 
paper we develop the spectral theory of the fBm along the same lines. 

The results of Akhiezer and Rybalko (1968) and Kailath, Vieira and Morf 
(1978) highly depend on the "signal plus white noise" structure of the processes 
that they consider. It turns out, however, that Krein's ideas are also applicable 
for the fBm, which is not of the latter type. The key point is that the fBm can 
be "whitened" in the sense that integration of an appropriate deterministic kernel 
with respect to the fBm yields a continuous Gaussian martingale, the so-called 
"fundamental martingale." This was first proved in the 1960's by Molchan [cf. 
Molchan (2003)]. For alternative, more recent approaches see also Decreusefond 
and Ustiinel (1999), Norros, Valkeila and Virtamo (1999), Nuzman and Poor 
(2000), Pipiras and Taqqu (2001) or Dzhaparidze and Ferreira (2002). Conversely, 
it is well known that by integrating a certain deterministic kernel with respect to 
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the fundamental martingale, we can recover the fBm. Since these results play an 

important role in this paper, their precise statements will be recalled in Section 2. 
The whitening and moving average formulas for the fBm provide us with the 

starting point for the development of the spectral theory. They give rise to a 
Hilbert space isometry U between ?T and the space L2([0, T], V), where V is 
the variance function of the fundamental martingale. In the ordinary Brownian 
case H = 1/2 this isometry is simply the Fourier transform. We will show that, 
for H =A 1/2 it is also a Fourier-type integral transformation, and obtain an explicit 
expression for the Fourier kernel in terms of Bessel functions. Using this Fourier 
kernel, we then introduce a function ST that will turn out to be a reproducing 
kernel on Tr. An explicit expression for this kernel will be derived in a number of 

steps. First we shall use the Bessel differential equation to prove that the properly 
normalized Fourier kernels satisfy Krein's continuous version of the recurrence 
relation for orthogonal polynomials. It will then be rather straightforward to obtain 
a Christoffel-Darboux-type formula for ST. In combination with the expression for 
the Fourier kernel, this will lead to an explicit formula for the reproducing kernel 
on ?T. This program is carried out in Sections 3-6. 

In Sections 7 and 8 we use the new results on the structure of the space ?T to 
derive an extension to the fractional case of the classical Paley-Wiener expansion 
of the ordinary Brownian motion. We will first use the reproducing kernel to find 
a suitable orthogonal basis of ?T. By transporting of this basis to the space 3jT, 
we will prove that the fBm admits the series expansion 

e2iwcnt- 1 

e. 
2i(On-IZn, tE [0, 1], 

where the ,n are the real-valued zeros of the Bessel function J1-H and the Zn are 

independent, complex-valued Gaussian random variables with zero mean and a 
variance that can be expressed explicitly in terms of Bessel functions and their real 
zeros. Using the fact that /-J1/2(z) = -/7r sin z, it can be seen that for H = 1/2 
this indeed reduces to 

e2innt -t 
2it Zn t[0, 1], 

nEZ 

with the Z, i.i.d., standard Gaussian. This is the expression that Paley and Wiener 
(1934) used as the definition of the standard Brownian motion. 

We will also briefly consider questions like the rate of convergence of the Paley- 
Wiener expansion, and possible extensions to the fractional Brownian sheet. In 

particular, we will argue that the expansion is rate-optimal, in the sense of Kiihn 
and Linde (2002). This is obviously a desirable feature if the expansion is used for 
simulation purposes and is also relevant in connection with the small ball problem 
for the fractional Brownian sheet [see, e.g., Li and Linde (1999) and Li and Shao 
(2001) for the precise connections]. 



SPECTRAL THEORY FOR THE FBM 623 

2. Auxiliary facts and notation. The spectral representation can be used to 
define a stochastic integral with respect to X of a large class of deterministic 
integrands. In this paper we denote the indicator function 1L(0,t) of the interval (0, t) 
simply by lit. Using this notation, as well as the previous notation et()- = 

(exp(i t) - 1)/i , we may write et = lt. Here and elsewhere below we adopt the 
usual convention to denote the Fourier transform of a function f E L2(R) by f, 
that is, 

f (X) = 
fR 

f(x)ei dx. 

Now consider the class of functions IT = {f e L2[0, T]: f e L2(R, ( (IR), ,)} 
and endow it with the inner product (f, g)L, = (f, g),. Then the spectral 
representation can be written as EXsXt = (Is, 11t)IT. In particular, the mapping 
lit --+ Xt extends to a linear map IT:T 

--+ reT with the property that I (llt) = Xt 
and for f, g IT, 

EI(f)I(g) = (f, g),. 

We denote the random variable I(f) by f dX or fo' f(t) dXt, and call it the 
integral of f with respect to X. We note that, in general, not every element of •Tr 
can be represented as such an integral since for H > 1/2 the space IT is not 
complete [see Pipiras and Taqqu (2001)]. 

Let us now introduce an integral with respect to X which plays an important 
role in this paper. For t > 0, define the kernel mt by 

(2.1) mt(u)= 12H(H 1/2)(3/22-H(t 
_ 

)/2-Ht(U)' 2Hr(H + 1/2)r(3/2 - H) 

where I denotes Euler's gamma function. Then, for every t E [0, T], it holds that 
mt E T, and in view of Poisson's integral formula for the Bessel function [e.g., 
Watson (1944), Section 3.3], it is not hard to see that the Fourier transform rt 
of mt is given by 

/ 
t 1-H 

ht/2 e- e X1 - H=,14 01 

2HF(H 
+ 1/2) K) 

2JH 
) 

(2.2) 
rht -- 

t 
2H2tr 2-2Hk=0 2H(H + 1/2)F(2- H)22-2H 0, 

where J1-H is the Bessel function of the first kind of order 1 - H [for details see 
Dzhaparidze and Ferreira (2002), Proposition 2.2]. On evaluating rit at = 0, one 
has to take into consideration the basic property 

1 
(2.3) z vJp(z) -~+ as z -+ 0 

2VF(v + 1) 
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of the Bessel function. For convenience, we introduce a special notation d2 for 
the constant that occurs in the second line of (2.2). In the literature this constant is 
often given in an alternative form, namely, 

(24) d r(3/2 - H) 
H 2HF(H + 1/2)F(3 - 2H) 

The identity of the two expressions is a result of Legendre's duplication formula 
for the gamma function. 

Now, for t E [0, T], we can consider the random variable 

(2.5) Mt = mt (u) dXu = mt(u) dXu 

in 3rT. As is proved in Dzhaparidze and Ferreira (2002), Theorem 2.3, it holds that 

EMsMt = (Ms, 9rt) = msAt(0). This shows that the process M defined by (2.5) 
is a continuous Gaussian martingale with bracket (M) = 6M(0). For convenience, 
this variance function will be denoted by V, so that due to (2.2), we have 

(2.6) Vt = EM2 = d2 t2-2H 

for all t > 0. Following Norros, Valkeila and Virtamo (1999), we call the 

process M the fundamental martingale. 
Next we recall the moving average representation of the fBm, which is the 

converse of (2.5). Let xt be defined by 

xt(u) 
= tH-1/2(t - u)H-1/2 - 

(t - v)H-1/2 dvH-1/2 
)t(u). 

Then it holds that 

(2.7) Xt = xtI(u)dM, 
for all t > 0, where M is the fundamental martingale. More precisely, the process 
on the right-hand side defines an fBm with Hurst index H, so, in particular, we 
have that xt E L2([0, T], S[0, T], V) for all t E [0, T] and 

(2.8) EXsXt = xs(u)xt(u)dVu = (xs,xt)v 

for s, t E [0, T]. We therefore consider the space XT, defined as the closure 
in L2([0, T], [0, T], V) of the (complex) linear span of the collection of 
functions {xt :t E [0, T]}. By construction, relation (2.8) shows that we have 
an isometry between XT and XT, under which the correspondence Xt <t- xt 
holds true. Observe that under this isometry, we also have Mt <-+ it, so, 
for every t E [0, T], the indicator function fit belongs to ET. It follows that 
XT = L2([0, T, f[0, T], V). 

In the remainder of the paper we write L2(1) and L2([0, T], V) instead of 
L2(R, (IR), ,) and L2([0, T], ?[0, T], V), respectively. 
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3. The transformation JCT -+ ?T. We have now associated three isometric 
Hilbert spaces with the fBm: the linear space rT, the frequency domain ?T 
and the space of integration kernels XT. The aforementioned isometries between 

-r and CT and between CT and XT, determined by the relations Xt *-~ et 
and Xt *-* xt, respectively, induce a direct isometry between the function spaces 
XT and CT. We denote the map from XT to ?T by U. 

Our first result gives an explicit analytic description of the isometry U':XT -- 
CT. The theorem states that it is a Fourier-type integral transformation. The 
integration kernel is defined in terms of the function p: RI -- C, given by 

(3.1) qp(z) = ['(1 
- H) eiz/2(J-H + iJ-, H 0 

1, z = 0. 
Here, as before, F is Euler's gamma function and J, is the Bessel function of the 
first kind of order v. Observe that, in fact, qp is defined on the whole complex plane. 
Moreover, property (2.3) of the Bessel function implies that 

qo 
is an entire function. 

Evoking the well-known property 

(3.2) z" J(z) = zV Jv-(Z) dz 

of the Bessel function, one can easily see that the function (p evaluated at Xt and 
the earlier introduced Fourier transform Mht (X) are related by the identity 

(3.3) p (t) = 
drMt (0) 

We need the following simple estimates for the function ?p. The notation a < b 
means that a < cb, where c is positive constant that is universal or at least fixed 
throughout the paper. 

LEMMA 3.1. For every X IR, the function u -+ qp(uX) belongs to CT and its 
norm satisfies 

(3.4) I < 
1 

A 
IXH-1/2 

H < 1/2, 

v(3.4) IX)iv lIH-1/2, H > 1/2. 

PROOF. The fact that y is analytic implies that it is bounded in a neighborhood 
of 0. Using also that /zJ (z) is bounded for izl -+ 0c, we see that for real z, 

IP(z)l is of order IzlH-1/2 for large Izi. So for H < 1/2 we have kp(z)l $ 
1 A lzIH-l/2, whence 

1T 
i(uX)l2dVu 

< T(U12H A 2lH1 )du < 1 A )~iH 
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For H > 1/2, it holds that Ip(z)I < 1 v IzlH-1/2, so 

lo (u).) 
2dVu < (ul-2H V 1112H-1)du < 1 V p12H-1 

This completes the proof. D-i 

The following theorem gives a complete description of the isometry U: XT 
-- ?CT. 

THEOREM 3.2. The linear transformation U:XT -- + T is a Hilbert space 
isometry. For f E X , it holds that 

(3.5) U f () = f f(u)p(uX) dVu 

for ,-almost all E IR, where 9 is given by (3.1). The class offunctions 

(3.6) ?T={VV EXT: f I(p( v) I I*(X) Iit(dA) < cx 

is dense in ?7T and for c ?e 
' we have 

(3.7)= UI(u)=U (u) = (fR f(X)y(uX),L(dX) 

for V-almost every u E [0, T]. Here U* denotes the adjoint of U. 

PROOF. By the Cauchy-Schwarz inequality and Lemma 3.1, 

(3.8) fT f(u)?p(u)dVu < iIyo()lviIfIv < oo 

for every c IE . Hence, the right-hand side of (3.5) defines a linear transformation 
on XT. Let us denote this transformation by A. 

Under the isometry XKT --+ eT, the indicator function 1it E XT is mapped to 
the random variable Mt 3XT, given by (2.5). Under the spectral isometry, Mt is 

mapped to the function X m M t(X) in XiT, given by (2.2). So to prove (3.5), we 
have to verify that the mapping A, defined on XT by the right-hand side of (3.5), 
coincides with the isometry U which is determined by the fact that Uilt = rizt for 
t E [0, T]. 

By (3.3), we have 

(3.9) rmt(0) = 
fop(u 

) dVu. 

So, indeed, 
A1.t 

= zt for every t e [0, T] and by linearity, U coincides with A 
on the set of simple functions in rT. Now take an arbitrary f e XTT. The 
simple functions are dense in XKT, whence we can choose a sequence 

f,n 
of 
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simple functions such that f, -+ f in XT. Then since U is an isometry, we 
have Afn = Ufn -- Uf in ?T 

_ 
L2(g/). On the other hand, (3.8) implies that 

Afn -+ Af pointwise on R. But then Af and Uf must coincide for p/-almost all 
X R, which proves (3.5). 

Both the isometry T --+ MT and the spectral isometry X3T - ?CT preserve 
inner products, so the same holds for their composition U: XT - CT. This 
implies that U is unitary, that is, that U-1 = U*, where U*:?CT -+ XT is the 
adjoint of U, determined by the relation (Uf, 4), = (f, U*V/)v for all f E XT 
and E ?CT. Using (3.5), we see that, for fr ?CT, we have 

(UWf, 
i)t = 

Jf Uf(X),*(X)i(dX) 

= 

f(J0 
f(u)((uuX)dVuj)u 

(X)t(dX). 

For 4 E X', we may interchange the integrals, since by the preceding lemma and 
Cauchy-Schwarz, 

fR OIf (u) lIp(u0)1dVu ) 
I(k)I(dX)_< I f Iv I f 

(.R)llvlvPO.) ii(d.), 
which is finite by definition of C'. It follows that 

(Uf, fr1), =-f 
f (u)(f l(X)pq(uX)L(dX)) dVu, 

which proves (3.7). 
It remains to prove that ?'• is dense in ?T. Let the 4 be the Schwarz space 

of rapidly decreasing functions on IR, that is, C"-functions f on IR such that for 
all m, n, the derivative f(n) satisfies lxImIf(n)(x)I - 0 as Ix --+ oo, and let 4T be 
the space of Schwarz functions with support in [0, T]. By the preceding lemma, 
it clearly holds that -f n CT C ', so it is enough to show that 4 n CT is dense 
in CT. 

Fix t E [0, T] and choose a sequence w, of CO probability densities such that 
supp(wn) _ 

[0, t] and such that the associated probability measures converges 
weakly to the dirac measure St concentrated at t. Define 

Af(u) = ft1s(u) wn(s) ds fI Wn (s)ds, u <t 

0, u e (t, T]. 

Then fn is a C"-function with compact support, so fn e 4T. For fixed X E IR, 
the function s - s (k) is bounded and continuous, whence the weak convergence 
implies that 

fn()-= 1s (-)Wn(s) ds -+ 1s((X)St(ds) = it(X) 
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for every , 
E R. Observe also that, for X E R, 

t 1 

Ifn~(1)2 0 
I•1(1)•)12W 

n(s)ds <I 1 A 2 

By dominated convergence, it follows that fn --+ lt in L2([L). Since the Fourier 
transform maps ST into 4, the functions fn belong to 4 n ?T. So for every 
t e [0, T], 1t is the L2(AL)-limit of a sequence of functions in 8 n 

?T. Since 
?• 

is 
the closure in L2(ji) of the linear span of the functions it, t E [0, T], this shows 
that 8 c ?CT is, indeed, dense in oT. O 

Observe that since we have 

2 2 
(3.10) J1/2(Z)= - sinz, J-1/2(z)= 

- 
cosz, z 0 

7r z 7r z 

and F(1/2) = -7-r, it holds that 'p(z) = e"z in the standard Brownian motion case 
H = 1/2. So in that case, the map U is simply the Fourier transform. For general 
H E (0, 1), we can view it as a fractional version of the Fourier transform. 

It seems worth mentioning that fractional integration theory enters in the present 
context via the simple observation that the Fourier transform Mrt of the kernel mt, 
defined by (2.1), is expressible in terms of the fractional integral of order 3/2 - H 
of the function u -+ ul/2-H exp(iuX). This can be seen by comparing (2.2) with 
formula 9.1.10 of Samko, Kilbas and Marichev (1993). Specifically, we have that 

1 I 3/2-H (u/2-Hiu)(t) 

F(H + 1/2)10+ 

By (3.3), it follows that, for the Fourier-kernel of the map U, it holds that 

Vt'(Xt) 1 I 1/2-H (u1/2-Heiux)(t). 
F(H + 1/2) o+ 

Hence, using fractional integration by parts, we see that, for f E ET, 

Uf(W)= 
I T 

t 
112-Hei Otli/2-H 

f (t) dt 
f() (H + 1/2) o " f(tdt 

= 1 (U112H2-Hf())( F(H + 1/2) T- 

provided, of course, that the fractional integral of order 1/2 - H of f and 
the Fourier transform (denoted by Y) exist. The composition rule of fractional 
integration operators implies that, for E i T, 

U-lr(t) 
= F(H + 

1/2)I?H-1/2(uH-1/2 1-1(u))(t). 
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Note, for instance, that for a deterministic integrand f E 1T, the latter expression 
for U-1, in combination with the spectral isometry, yields the relation 

Tf (u)dXu 
= (H + 1/2) 

T IH-/2 H-1/2f(u))(t) dMt, 

where M is the fundamental martingale. For f = it, this reduces to the 
moving average representation (2.7). In general, the expression of the operators 
U and U-1, in terms of Riemann-Liouville operators, can be very useful for the 
evaluation of the transforms in concrete cases, since many explicit formulas for 
fractional integrals are known. We will, however, not need this connection in the 
present paper. The proofs of our results do not use any fractional calculus. 

Relation (3.5) gives an analytic description of the functions in ?T. In particular, 
it allows us to prove that every function in ?T is the restriction to R of an entire 
function. Strictly speaking, the elements of ? 7 are, of course, equivalence classes 
of functions. Two functions represent the same element if they coincide i-almost 
everywhere. Theorem 3.2 implies that every equivalence class can be represented 
by an entire function. 

COROLLARY 3.3. Every element of ?T has a version that is the restriction 
to R of an entire function. 

PROOF. For f E X~T, consider the complex function 

(3.11) z F-+ f (u)p(uz)dVu. 

Since ?p is entire, this function is well defined and easily seen to be continuous 
on C. To prove that the function is analytic, consider a closed path y in the complex 
plane. By Fubini's theorem and Cauchy's theorem, 

( T f 
(u)qp(uz)dVu) 

dz = f (u) (j 
(uz)dz) 

dVu=0. 

Hence, by Morera's theorem, the function defined by (3.11) is entire. LO 

In the remainder of the paper, if we consider an element r e ?tT, we will always 
assume this to be the smooth version. 

4. The reproducing kernel on OCT. As was established in Theorem 3.2, 
the transformation U is of Fourier-type, generated by the Fourier kernel qp. This 
motivates us to introduce the function ST on R x R, defined by 

ST(Wc, ) = p(ucw)yp(uX) dVu, 

where 9 is, of course, given by (3.1) again, and V by (2.6). The Cauchy-Schwarz 
inequality and Lemma 3.1 imply that ST is well defined. Moreover, (3.5) implies 
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that, for fixed w E R, the function 
. 

- ST(Cw, ?,) is the image under U of the 
function u F-+ ?p(uco). In particular, we see that X -+ ST (w, X) belongs to ?T 
for every w e R. It clearly holds that ST(w, X) = ST(P, w). Since p(0) = 1, 
relation (3.9) implies that ST(0, 0) = VT and ST(0, X) = 

r~T (). 
The following theorem states that ST acts as a reproducing kernel on the spectral 

space •T, turning it into an RKHS. 

THEOREM 4.1. For every * E ?T, we have 

fi P())ST(0w, 
X)it(dX) = (w), 

for all w E IR. 

PROOF. Suppose first that *r E 8 n ?T, where 8 is the Schwarz space of 
rapidly decreasing functions. Then by Fubini's theorem and Theorem 3.2, 

f 
rf(W)ST (o, 

X)It(d X) = 
f *(j)(po o(uw)(uX) dVu)(d•) 

= jT (uf)(R * (X)(p (uX))(dX)) dVu 

= 
g(uw)U-1 

f(u) d Vu 

-= U(U-l(w)) = Vr (W) 
for pt-almost all wco R. The interchanging of the integration order is justified by 
the fact that 4 is rapidly decreasing. 

Now let 4 E T be arbitrary. Since 4 n XT is dense in ?X (see the proof 
of Theorem 3.2), we can choose functions IEn E n X?T such that 

n/, 
-, -- 

in L2(It). By the remarks preceding the theorem, the function k - 

ST(o), X) 
belongs to L2(/t) for fixed wo E R. So by Cauchy-Schwarz, we have 

fiR 

*n(k))ST(o), X))Lt(d 
X) - 

()f)ST 
(O, )X) 

tt(d)X) R< IIRn - /[ IILJIST(Co, i')I~ - 0 

for every wo IR. By the preceding paragraph, the first integral on the left-hand 
side equals n, (co) for p-almost every w. So the functions I/n converge p/-almost 
everywhere to the function 

Co* f4'(X)ST(cX)~(dX), 

and they converge in L2(pt) to 4. Then the two limits must coincide p-almost 
everywhere. Since both functions are continuous (Corollary 3.3), the proof is 
complete. O 
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A first simple consequence of the RKHS structure is that the "kernel functions" 
X F ST (w, X) span ?T. 

COROLLARY 4.2. The space ?T is the closure in L2Q(i) of the linear span of 
the collection offunctions {X H- ST (C, X) :w E R1}. 

PROOF. We already noted in the beginning of the section that every func- 
tion ST(cO,-) belongs to ?TX, so the closure of the linear span of 

{, 
- 

ST (WC, X) :c IR} is certainly contained in ?7T. 
To prove the inclusion in the other direction, take *r E ?XT and suppose that l is 

orthogonal to every kernel function ST (co, .), that is, 

JR (*) ST 
(C)w, X)itg(dX) 

= 0 

for all co R I. Then, by the reproducing property of ST, we see that i/ vanishes 
A-almost everywhere. D 

It seems useful to briefly discuss the relation between the preceding frequency- 
domain results and the so-called "time-domain RKHS." The latter space is 
constructed by associating to every element H e JXT a function t F- lEHXt 
on [0, T]. These functions are the elements of the time-domain RKHS and the 
inner product of two functions t -* EHXt and t ?-+ EH'Xt is defined as EHH'. 
By construction, the resulting Hilbert space is isometric to MT, and the covariance 
function r(s, t) = EXsXt is the reproducing kernel on the space. 

The following theorem clarifies the relation between the two reproducing kernel 
Hilbert space structures. 

THEOREM 4.3. The time-domain RKHS is the closure of the linear span of 
the collection offunctions {t ~ -t(X) X e IR} with respect to the inner product 

(t ILt(W), t F.- it()) = ST(CO, X). 

PROOF. The spectral isometry shows that the time-domain RKHS is given 
by all functions t ~ (rt, t) on [0, T], where st runs through ?T, the inner 

product of two elements t ( t, it), and t 1 ( ), ,t, being given by (V/, ) 
.- By Corollary 4.2, it follows that the time-domain RKHS is the closure of the linear 

span of collection of functions {t F-+ (STr(X, 
.), 

t),: E IR}. By the reproducing 
property, we have (ST (X, -, it)) 

= it (X) and the inner product between the 
functions t v lt(X) and t - -it (w) equals ST(w, X). D 

We note that the moving average representation of the fBm implies that the 
inner products in the time-domain RKHS can be expressed in terms of Riemann- 
Liouville fractional integration operators [cf., e.g., Hult (2003)]. Theorem 4.3 thus 
yields an expression for the reproducing kernel STr of ?7T in terms of fractional 
integrals. In the present paper this connection plays no further role, however, and 
we will now return to the frequency domain analysis. 
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5. Differential equations. Our next intension is to obtain an explicit analytic 
expression for the reproducing kernel ST. This goal is achieved in Corollary 6.2 
below. In this section we will show that the Fourier kernel y0 is subject to a 
"recursion relationship" that is also encountered in the study of other types of 

processes with stationary increments [see, e.g., Kailath, Vieira and Morf (1978), 
where a short account can be found of the classical result of Krein (1955) 
concerning the "signal plus white noise" model]. 

The Bessel function J, satisfies the second order ordinary differential equation 

1 2 
(5.1) JV(z) + - 1(z) + 1 - 1(z)=-0. 
In view of the representation (2.2), this yields the following differential equation 
for the functions 

tt 
E 12CT 

LEMMA 5.1. For every ? E IR, we have 

Sah t . mt) i () at2 at at 2 
where Yt = (H - 1/2)/t. 

PROOF. By (2.2), we have rit(X) = cxfv(z)Jv(z), where cx is a constant 

(depending on X), z = Xt/2, v = 1 - H and fv(z) = zv exp(iz). It is easily verified 
that 

a fv(z)(v + iz) a2 fv(z)((V + iz)2 - V) 
t t at2f t2 

The differential equation is now a straightforward consequence of (5.1). D 

This differential equation for the functions t H 
tint 

(X) gives rise to a differential 

equation for the Fourier kernel p(tX). We present this as a system of equations for 
the function P(t, X), defined for t > 0 by 

(5.2) P(t, ) = 
?po(tX))vdVt/dt, 

and its reciprocal 

(5.3) P*(t, X) = eiXt P(t, X). 

Note that 

(5.4) ST (W, )X) 
=- 

P(t, X)P(t, X) dt. 

We also observe that since the functions rt correspond to the fundamental 
martingale M under the spectral isometry, the functions 

S(s, -)ds P0 d 
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correspond to an ordinary Brownian motion. In particular, we have that 

fj P(u, )duf P(v,X.) dv L(dX) s A t. 

If we interchange the integrals on the left-hand side and differentiate, we get the 
formal expression 

f P(s, k)P (t, X)It(dX) = 8(t - s). 

In this sense, the functions P(t, -) are orthogonal with respect to the spectral 
measure /. 

The following theorem shows that the orthogonal functions satisfy Krein's 
continuous analogue of the usual recurrence formulas for orthogonal polynomials 
on the unit circle. 

THEOREM 5.2. For every E IR, the function P(t, X) and its reciprocal 
P*(t, k), defined by (5.2) and (5.3), satisfy the equations 

8P(t, ,) P(t, = i) XP(t, j) - ytP*(t, X) 
at 

and 

8 P* (t, h) (t -Yt P (t, X), 
at 

where Yt = (H - 1/2)/t. 

PROOF. First of all, let us express P(t, -) and P*(t, -) in terms of the 
function hMt given by (2.2). We have diizt(X) 

-= 
?p(tX) dVt and Vt = d2 t2-2H [see 

(3.3) and (2.6)], hence, 

tH-1/2m4 
(A) 

(5.5) P(t, X) 
(2-2H)d 

where the prime denotes differentiation with respect to t. It follows that 

tH-1/2( 
^ 

)*0,) (5.6) P*(t, X) = 

,(2 
- 2H)d 

where 
(ht)* 

() = 
exp(iht)ht 

(A) is the reciprocal of 
mt. 

Observe that 

,(1) 
iA (1) = 

ei'.t/2 
d 

(e-i.t/2t t(.)), 
mt 2 dt 
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so that 

't(?) - 
--mt 

() = 
eitei t/2 (e-i0t/2^t()) 2 "dt 

- 

ei•t/2 
(e-it/2ht (X)) dt 
iX 

t mt0 
- 2 P 

Since mtt is self-reciprocal, that is, t^ * () - exp(i tf)iM't (k) - Mt (.k), the latter 

identity implies that 
(it)*(.)- 

i'(X) - iXrht(X). Combining this with (5.6), we 
find that 

t H 
-1/ Z1 t 

(t)) (5.7) P*(t, ?-) = 
(2- 2H)dH 

The first statement of the theorem now follows from differentiation of (5.5), 
taking Lemma 5.1 and (5.5) and (5.7) into account. Similarly, the second statement 
is obtained by differentiating (5.7). -1 

6. Christoffel-Darboux formula. As in the theory of orthogonal polynomi- 
als and their continuous analogous, the "recurrence relations" presented in Theo- 
rem 5.2 allow us to derive a closed-form expression for the reproducing kernel ST 
[cf., e.g., Grenander and Szeg6 (1958), Section 2.3, and Kailath, Vieira and Morf 
(1978), formula (48)]. 

THEOREM 6.1. Let P(t, X) and its reciprocal P*(t, k) be defined by (5.2) 
and (5.3). For all T > 0 and o, X e IR, we have 

(6.1) i(X - wc)ST(w, X) = P(T, w)P(T, X) - P*(T, ow)P*(T, X). 

PROOF. We view the left-hand side and right-hand side of (6.1) as functions 
in T. Recall that we have (5.4). Using Theorem 5.2, a straightforward calculation 
shows that 

i(X - w)P(t, w)P(t, .)= ) -((P(t, w)P(t, X) - P*(t, w)P*(t, 2)). at 
This shows that the functions on both sides of (6.1) have the same derivative with 

respect to T, which implies that their difference is independent of T. So for every 
T > 0, we have 

(6.2) i ( - co)ST(wo, ) = P(T, cow)P(T, ) - P*(T, co)P*(T, ) + C(w, X) 

for some constant C(w, X), and it remains to show that C(cw, X) = 0. 
For H < 1/2, the functions t 

- 
P(t, X) are bounded for every X E IR and it 

holds that P(0, X) = 0. So in this case we can let T -- 0 in (6.2) to see that 
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C(o, X) = 0. Since the Bessel function J, is analytic in v [see Watson (1944), 
page 44], (6.2) shows that as a function in H, C(o, X) can be extended to an 
analytic function on the open disc of diameter 1, centered at 1/2. We just saw 
that it vanishes for all H in the interval (0, 1/2), whence a standard result from 
complex function theory implies that it vanishes on the entire disc [cf. Rudin 
(1987), Theorem 10.19]. In particular, C(w, X) = 0 for all HE (0, 1). D 

In combination with the explicit expression that we have for the orthogonal 
functions yp(tX), the preceding theorem yields an explicit analytic expression for 
the reproducing kernel ST. 

COROLLARY 6.2. The reproducing kernel ST admits the following represen- 
tation: 

(i) Forw X, 

ST(2W, 2)= (2- 2H)F2(1 -H) T20) iT 
ST (0, O 0)-4) 

J-H(To)J1-H(T)))- J1-H(To)J-H(Tk) 
X 

T(X - ow) 

(ii) For o E IR, 

ST(2W, 2W) 

_TW\22H 
ST 
(0, 

2) = (2 - 2H)2 (1 - H) I2 
ST(O0, 0) 2 

x (2-H(TWo) + J-H 

• 
_H(T)JH(T) +J2H(T)) 

PROOF. Part (i) follows by straightforward calculations from the preceding 
theorem, the definition (5.2) of P(t, X), the explicit expression (3.1) for y0 and the 
fact that dVt/dt = (2 - 2H)Vt/t. 

To prove part (ii), we note that St is analytic and, in particular, continuous, so 
we may derive an expression for St (w, wc) by letting X -+ co in the expression that 
we found in part (i). It suffices to observe that as X -+ w, we have 

J-H (t) J1-H () - J1-H(tw) J-H (t) 
X -- 0 

J1-H(tX) - J1-H(tW) J-H(tX) - J-H(tCO) = 
J-Hn(tX) 

- 1- H(t ) 
JHt) 
X--co X--co 

_ a 
- J-H(tW) J1-H(to) - J1-H(tco)- JH(tco) 

= t J-H (tw) + + - 
J-H(to)J1-H(to) -? j2(to)) . 
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In the last step we have used the recurrence formulae 

d v 
(6.3) Jv (z) = - Jv(Z) - Jv+l (z) dz z 
and 

2v ? 2 
(6.4) Jv+2(Z) = 

2v + 2 
I+ (z) - 

Jo 
(z) 

[see Watson (1944), page 45]. LI 

7. Orthonormal basis in -?T. By the reproducing property, the inner product 
of the kernel functions X - ST(2o, X,) and X i ST(2(', X) in ?T is given by 
ST (2w, 2w'). Hence, by Corollary 6.2, these functions are orthogonal in ?7r if Tw 
and Tw' are different zeros of JI-H. In this section we prove that if we let Tw 

range over all zeros of 
J1-H-, 

we obtain an orthogonal basis of ? T. 
We first recall some facts about the zeros of the Bessel function of the first 

kind [see, e.g., Erd61yi, Magnus, Oberhettinger and Tricomi (1953), Section 7.9]. 
For v > -1, the Bessel function Jv has a countable number of positive zeros that 
can be ordered according to magnitude. We denote them by Xv,I < X'v,2 < 

"". For positive v, the function J, satisfies J,(0) = 0 and its negative zeros are given 
by -hv,1 > -Xv,2 > - - - . Hence, for v > 0, the zeros of J, can be ordered as 
... < ,-1 

< X Xv,0o = 0 < X,, I < - - . To prove the completeness of the system of 

orthogonal functions, we need the following lemma, which is a consequence of 
the multiplicative decomposition of the Bessel function, or, more precisely, of the 
formula 

Jv+l(z) 2z 
(7.1) = 2 J (z) x2 

2, 
k=1 ,k 

2 

see Erd61yi, Magnus, Oberhettinger and Tricomi [(1953), formula 7.9.3]. 

LEMMA 7.1. Let Jv be a Bessel function of the first kind of nonnegative order 
v > 0 and let ... < kl < = o0 < X1 < .. be its real zeros. Then 

Jv+l(Z) JV,+I(W) z - 

W- JV(z) Jv (w) n0O (n - z)(X - w) 

for all z, w E , for which the expressions are well defined. 

PROOF. Since the zeros of J, satisfy ,-n 
= -Xn for all n E N, it holds that 

Z 
=_w 

ZW-/ Z --+ ) 
n$O 
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Now observe that we have the identity 
a - b a - b 2a 2b 

(c - a)(c - b) (c + a)(c + b) c2 - a2 c2 - b2' 

for all a, b, c e IR for which the expression makes sense. It follows that 

z-w 2z 2w 

_- E- X2- Z2 ) 2 - W (Xn 
- z)( - W) n2 nEN 

2 2 
nO nENnEN 

By (7.1), the right-hand side is equal to 

Jv+l (z) Jv+ I(W) 

Jv (z) Jv (w) 
and the proof of the lemma is complete. DO 

We can now present the orthonormal basis in ?T and the associated expansion 
formula. 

THEOREM 7.2. Let ... < ow_1 < oo = 0 < w < ... be the real zeros of J1-H 
and, for n E Z, define the function *n on R by 

ST (2w(n/ T, 
T ) 

1 Sr (2wn / T, 
")lt 

and put 

22(on 2(on 
2 (Wn) = ST 

T('T 
T 

(7.2) (2 -f 2H) F2(1 - H) Q2 
H 

(n) 
J w )VT, (On 

0, 
2 
2 H V, 

VT, on = 0. 

The functions tn form an orthonormal basis of ?T and every function E ?E T 
can be expanded as 

PI()= OLr(o(n) 
2( 

T 
j 

)*n(X),W 
nEZ 

the convergence taking place in L2(QL). 

PROOF. By the remarks in the beginning of the section, the functions /n are 
orthogonal, and they have unit norm by construction. Let us prove that the system 
is complete. 

By Corollary 4.2, it suffices to show that every kernel function -* 
ST- 

(w, ( ) is 
in the closure of the linear span of the i/n. We claim that, for (, A E IR, 

ST(2w, 2) = = 
i/n (2) in (2A). 

neZ 
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To prove this, note that we have 

Sr (2Co, 0) ST(0, 2D) 
E # n (2 

o) #n (2=) 
= 

ncz7 ST(O, O) 
(7.3) (7.3)Sr (20, 22n / T)ST (20n / T, 2.) 

no ST (2Wn / T, 2t)n / T) 

By Corollary 6.2, the sum on the right-hand side equals 

4 ) n( (T)T( (Wn - T.)(wn - Tow) 

where c = (2 - 2H)F2(l - H)VT. By the preceding lemma, the sum in the last 
display equals 

I ( 
J2-H(TX) _ J2-H(TW)) 

T(X - w) J-H(TX) Jl-H(ToW)) 
In view of (6.4), multiplication by J-IH(TX) J1iH(T) yields 

J2-H(TX)J1-H(Tw) - J2-H(TCo)J1-H(TX) 

J-H(To)J1-H(TX) - J-H(TX)J1-H(To) 
T (X -ow) 

2-2H 
T X 

J1-H(T) J1-H 
(Tc). T2X)co 

Hence, using Corollary 6.2 again, we see that the sum on the right-hand side 
of (7.3) equals 

( 

T24) 

H 
2H-2H 

STr(2o, 2X) - c T2Xw)HeiT()1-) 
2 - 2H 

JH(TX)J1-H(To) 4 T2 co 
Therefore, our claim follows from the fact that the second term in the last display 
is equal to 

ST 
(2o, 

0) ST(0, 2x) _r 
r (2)r T (2cw) 

ST (0, 0) r T (0) 
[recall that ST(O, 0) = rnT(X) and ST(O, 0) = VT = rhT(0)]. To check this, evoke 

expression (2.2). 
So, indeed, the functions /tn form a complete, orthonormal system. It follows 

that every 4 E ?T can be written as 
4- 

= E(4r, /n)gn. By the reproducing 
property, 

f( )_ (,)Sr (2wn / T, X)p(dX) _ (2wn / T) 
II ST (2wn / T, .)Il II ST (2wn / T, ) II. 
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Another application of the reproducing property yields 

ST (2 2I) 2aS 2wn , 0-2(09n). 

The explicit expression in (7.2) of the normalizing factor C (con) follows from the 
second assertion of Corollary 6.2. O 

We remark that, instead of the zeros of J1-H, we can also use the zeros of J-H 
to obtain a second orthonormal basis of ?7. Since the reasoning is completely 
analogous to the JI-H case, we omit the details and mention only that all the 

consequent results of this paper can be easily reformulated in terms of the zeros 
of J-H [like in the case H = 1/2 of the Brownian motion, where there exist 

expansions in terms of the zeros of the sine and the cosine, cf., e.g., Yaglom (1987), 
Section 26.1]. 

Using the isometry U: XT --+ ?7, we can now easily obtain an orthonormal 
basis of the function space XT = L2([0, T], V) and the corresponding series 

expansion. Note that in the case H = 1/2 it reduces to the Fourier series expansion, 
given for f E L2[0, T] by 

f(u) = 
f(2 )e(2in/T)u 

nEZ 
Z 

COROLLARY 7.3. Let ... < w-1 < wo = 0 < w < ... be the real zeros 

of J 1-H and let qp be given by (3.1). Then the functions 

?p((2wn / T)u) 

u- 
, nE Z, 

ikop((2won/ T).) l v 

form an orthonormal basis of •T 
= L2([0, T], V). Every f E XT can be 

expanded as 

f(u) 
U f (2wn / T)?((2cn / T)u) 

I I p((2wn /T)-)211V 

the convergence taking place in L2([0, T], V). 

PROOF. Just note that ST(w, .) is the image under the isometry U:JXT --* XT 
of the function u p- q(uw). O 

8. Paley-Wiener expansion. In this section we use the orthonormal basis 
of ?7T to obtain a series expansion of the fBm. Paley and Wiener (1934) use 
a series expansion to introduce the standard Brownian motion, which they call 
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the "fundamental random function" [see also L6vy (1965), Section 13 of the 
Complement]. They first consider the series 

Y eint Zn, t E [0, 27r], 
nEZ 

where the Zn are i.i.d., complex-valued, standard Gaussian random variables. This 
series corresponds to white noise, but the series does not converge in the usual 
sense. So instead they consider its formal integral 

eint - 1 

i Zn. in 
nEZ 

The latter series is shown to converge almost surely and is taken as the definition 
for the (complex-valued) Brownian motion. 

We can now present the extension to the case H - 1/2 of this expansion. It 
is natural to consider a complex-valued fBm. This is a centered, complex-valued 
Gaussian process X with covariance structure 

EXXt = 1(s2H + t2H - Is 
- 

tI2H 

THEOREM 8.1. Let .. < w_ < wo = 0 < ol <.- be the real zeros of Jl-H 
and let Zn, n E Z, be independent, complex-valued Gaussian random variables 
with mean zero and variance EIZn 2 1.= O2(WOn), where cr2(On) is given by (7.2). 
Then, with probability one, the series 

e 2iwnt/T 

2i 2Wn / T 

converges uniformly in t E [0, T] and defines a complex-valued fBm with Hurst 
index H. 

PROOF. By Theorem 7.2, we have 

i()= Lo(w)i(T)mn( 

neZ 

where ln is a complete orthonormal system in ?T. It follows that, for s, t E [0, T], 

(8.1) (is, It), =i Or2(U(n)Ts t) *( T 

By the spectral representation of the fBm, the left-hand side of the display equals 
the covariance function of the fBm. Hence, the equality shows that the series in the 
statement of the theorem converges in mean square sense for every t e [0, T] and 
defines a Gaussian process with the same covariance structure as the fBm. 
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The fact that the series converges uniformly with probability one can be deduced 
from the ItO-Nisio theorem [cf., e.g., Ledoux and Talagrand (1991)]. See, for 
instance, the proof of Theorem 4.5 of Dzhaparidze and Van Zanten (2004) for 
details. D 

For H = 1/2, we have w, = n7r [see (3.10)] and EIZn12 = 1/T, so, indeed, we 
recover the classical Paley-Wiener expansion of the ordinary Brownian motion in 
this case. 

The Paley-Wiener theorem for the fBm shows that the (complex-valued) fBm 
on [0, 1] can be viewed as the formal integral of the process 

Se2ic(nt Zn. 

In view of (7.2) and the fact that z -+ iJv(z) is bounded, the latter can be seen 
as a random signal in which the weight of the component with frequency wn is (up 

1/2-H to a constant) approximately equal to wn 
The real-valued version of the expansion is as follows. 

COROLLARY 8.2. Let X, (Yn)neN and 
(Zn,)nEN 

be independent, real-valued 
Gaussian random variables with mean zero and variance 

EX2 =I EY2 = EZ2 - VT' 
n n 2 

where a2 (O) is given by (7.2). Then, with probability one, the series 
00 sin 2wn t/ T 

0 
(cos 2on t / T - 1) 

tX+ w YTn+ ,' Zn + E nI/ T +On/ T 
n= n=1 

converges uniformly in t E [0, T] and defines a real-valued fBm with Hurst 
index H. 

PROOF. Note that the terms indexed by n and -n in the sum in equation (8.1) 
are complex conjugates, hence, 

2oo 220)n 2a)n 
(s, =t), 

r = 
2(0)st + 2 c((O(n)1 ( s T T n=1 

Since 

( (20n 2(On 
.1(ix T )t(T 

sin2ws/T sin2iwnt/T (cos2w,ns/T 
- 1) (cos2wnt/T - 1) 

2wn / T 2wn / T 2wn / T 2mn / T 

this shows that the series in the statement of the corollary converges in mean square 
sense and that the resulting process has the same covariance structure as the fBm. 
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Uniform convergence with probability one can be argued as in the proof of the 
theorem. O 

In the paper Dzhaparidze and Van Zanten (2005) we proved that a related series 
expansion of the fBm is rate-optimal in the sense of Kiihn and Linde (2002). This 
means that the rate of uniform convergence is N-H log N. Exactly the same 
reasoning as in Dzhaparidze and Van Zanten (2005) can be used to prove the 
optimality of the Paley-Wiener expansion of Theorem 8.1. The main idea is simply 
to use the asymptotic properties an -, nr and J2H (on) ( ~ 

2/nr2 for n --+ >o [cf. 
Watson (1944)] to estimate the size of the terms in the expansion. We omit the 
details and just give the optimality result. 

THEOREM 8.3. The expansion of the fBm of Theorem 8.1 is rate-optimal. It 
holds that 

e2iw,,?ntT - HT E sup Z N-logZ NN-H 
t [o, T] InN 2iOn/ T n 

Let us mention that related optimal series expansions for the so-called odd and 
even parts of the fBm, and, consequently, also of the fBm itself, can be found in 
Dzhaparidze and Van Zanten (2004). Compared with the Paley-Wiener expansion 
of Theorem 8.1, the representation of Dzhaparidze and Van Zanten (2004) has the 
drawback that it requires both the positive zeros of J1 -H and of J-H. 

Another expansion optimal in the sense of Kiihn and Linde (2002) is obtained by 
Ayache and Taqqu (2005). Their construction is of a completely different type. It 
involves a doubly indexed array of i.i.d. Gaussian random variables Zj,k, weighted 
by functions t ? 2-jH (4H (2j t - k) - IH (-k)), defined in terms of the Fourier 
transform of an appropriate mother wavelet 4T. 

Finally, we want to mention the possibility to extend the expansion results 
to the fractional Brownian sheet (fBs). This can be achieved by taking suitable 
tensor products like in the paper of Dzhaparidze and Van Zanten (2005), where 
our earlier double series expansion [cf. Dzhaparidze and Van Zanten (2004)] is 
extended to the fBs. On extending the Paley-Wiener expansion of Theorem 8.1, 
the construction is analogous and even simpler because we now have only one 
sequence of Bessel zeros. The resulting expansion of the fBs is again rate-optimal, 
as can be shown by using the asymptotic properties of the Bessel function and its 
positive zeros. 

Acknowledgment. Thanks to Michael Lifshits for pointing out some silly 
miscalculations. 
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