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CONVERGENCE RATES OF POSTERIOR DISTRIBUTIONS FOR 
NONIID OBSERVATIONS 

By Subhashis Ghosal1 and Aad van der Vaart 

North Carolina State University and Vrije Universiteit Amsterdam 

We consider the asymptotic behavior of posterior distributions and Bayes 
estimators based on observations which are required to be neither indepen 
dent nor identically distributed. We give general results on the rate of con 

vergence of the posterior measure relative to distances derived from a test 

ing criterion. We then specialize our results to independent, nonidentically 
distributed observations, Markov processes, stationary Gaussian time series 

and the white noise model. We apply our general results to several examples 
of infinite-dimensional statistical models including nonparametric regression 
with normal errors, binary regression, Poisson regression, an interval censor 

ing model, Whittle estimation of the spectral density of a time series and a 

nonlinear autoregressive model. 

1. Introduction. Let (X{n), A{n), P^n) 
: 9 e 0) be a sequence of statistical 

experiments with observations X^n\ where the parameter set 0 is arbitrary and n 

is an indexing parameter, usually the sample size. We put a prior distribution n? 
on 6 e 0 and study the rate of convergence of the posterior distribution Yln('\X^n>}) 
under Pq , where #o is the "true value" of the parameter. The rate of this conver 

gence can be measured by the size of the smallest shrinking balls around #o that 

contain most of the posterior probability. For parametric models with independent 
and identically distributed (i.i.d.) observations, it is well known that the posterior 
distribution converges at the rate n~x/2. When 0 is infinite-dimensional, but the 

observations are i.i.d., Ghosal, Ghosh and van der Vaart [14] obtained rates of con 

vergence in terms of the size of the model (measured by the metric entropy or 

existence of certain tests) and the concentration rate of the prior around #o and 

computed the rate of convergence for a variety of examples. A similar result was 

obtained by Shen and Wasserman [27] under stronger conditions. 

Little is known about the asymptotic behavior of the posterior distribution in 

infinite-dimensional models when the observations are not i.i.d. For independent, 

nonidentically distributed (i.n.i.d.) observations, consistency has recently been ad 
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dressed by Amewou-Atisso, Ghosal, Ghosh and Ramamoorthi [1] and Choudhuri, 
Ghosal and Roy [7]. The main purpose of the present paper is to obtain a theo 

rem on rates of convergence of posterior distributions in a general framework not 

restricted to the setup of i.i.d. observations. We specialize this theorem to several 

classes of non-i.i.d. models including i.n.i.d. observations, Gaussian time series, 
Markov processes and the white noise model. The theorem applies in every situa 

tion where it is possible to test the true parameter versus balls of alternatives with 

exponential error probabilities and it is not restricted to any particular structure on 

the joint distribution. The existence of such tests has been proven in many special 
cases by Le Cam [20-22] and Birge [3-5], who used them to construct estimators 

with optimal rates of convergence, determined by the (local) metric entropy or "Le 

Cam dimension" of the model. Our main theorem uses the same metric entropy 
measure of the complexity of the model and combines this with a measure of prior 
concentration around the true parameter to obtain a bound on the posterior rate 

of convergence, generalizing the corresponding result of Ghosal, Ghosh and van 

der Vaart [14]. We apply these results to obtain posterior convergence rates for 

linear regression, nonparametric regression, binary regression, Poisson regression, 
interval censoring, spectral density estimation and nonlinear autoregression. van 

der Meulen, van der Vaart and van Zanten [30] have extended the approach of this 

paper to several types of diffusion models. 

The organization of the paper is as follows. In the next section, we describe 
our main theorem in an abstract framework. In Sections 3, 4, 5 and 6, we special 
ize to i.n.i.d. observations, Markov chains, the white noise model and Gaussian 

time series, respectively. In Section 7, we discuss a large number of more concrete 

applications, combining models of various types with many types of different pri 
ors, including priors based on the Dirichlet process, mixture representations or 

sequence expansions on spline bases, priors supported on finite sieves and conju 
gate Gaussian priors. Technical proofs, including the proofs of the main results, 
are collected in Section 8. 

The notation < will be used to denote inequality up to a constant that is 
fixed throughout. The notation Pf will abbreviate f f dP. The symbol |_*J will 
stand for the greatest integer less than or equal to x. Let h(f,g) = 

(f(f1^2 
? 

g1/2)2 d[i)X12 and K(f, g) = f f log(f/g) d/x stand for the Hellinger distance and 
Kullback-Leibler divergence, respectively, between two nonnegative densities / 
and g relative to a measure jjl. Furthermore, we define additional discrepancy 
measures by Vk(fg) = f f\log(f/g)\kdfi and Vk#(f,g) = f f\log(f/g) 

- 

K(f> g)\k d\x, k > 1. The index k = 2 of V2 and V2,o may be omitted and these 
simply written as V and Vb, respectively. The symbols N and E will denote the 
sets of natural and real numbers, respectively. The ^-covering number of a set 0 
for a semimetric d, denoted by N(s, &,d), is the minimal number of d-balls of 
radius s needed to cover the set 0; see, for example, [31]. 
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2. General theorem. For each neN and 9 e 0, let P#n) admit densities p^ 
relative to a a-finite measure pSn\ Assume that (x, 9) \-+ Pq (x) is jointly mea 

surable relative to A ? ?, where <? is a a-field on 0. By Bayes' theorem, the 

posterior distribution is given by 

(2.D imji^.H'"^'"-"0, 
??* 

/0^n)(x(-))jnn(e) 

Here, X^ is an "observation," which, in our setup, will be understood to be gen 
erated according to 

P^' 
for some given #o 0. 

For each n, let dn and en be semimetrics on 0 with the property that there exist 

universal constants ? > 0 and K > 0 such that for every e > 0 and for each 9\ e 0 

with <4(#i, 0o) > ?? there exists a test 0n such that 

(2.2) PinV,<^n?2, sup Pin)(l-d>n)<e-Kne\ 
0e@:en{e,0x)<?$ 

Typically, we have dn < en and in many cases we choose dn = en, but using 
two semimetrics provides some added flexibility. Le Cam [20-22] and Birge 
[3-5] showed that the rate of convergence, in a minimax sense, of the best 

estimators of 9 relative to the distance dn can be understood in terms of the 

Le Cam dimension or local entropy function of the set 0 relative to dn. For our 

purposes, this dimension is a function whose value at s > 0 is defined to be 

logN(ei;, {0 : dn(0,9o) < s},en), that is, the logarithm of the minimum number 

of dn -balls of radius e% needed to cover an en-ball of radius e around the true pa 
rameter #o- Birge [3, 4] and Le Cam [20-22] showed that there exist estimators 

9n = 0n(XM) such that dn(0n, 00) = 0P(sn) under 
P^], 

where 

(2.3) sup log tf(e$, {9 : dn(9, 90) < e}, en) 
< 

ne2n. 
s>sn 

Further, under certain conditions sn is the best rate obtainable, given the model, 
and hence gives a minimax rate. 

As in the i.i.d. case, the behavior of posterior distributions depends on the size 

of the model measured by (2.3) and the concentration rate of the prior Tln at #o 
For a given k > 1, let 

Bn(90, e;k) = {9e&: K(p%\ p^) 
< ne2, V*f0(/>?\ pf) 

< nk'2ek}. 

An appropriate condition will appear as a lower bound on nn(Bn(9o; e, k)) with 

k = 2 being good enough to establish convergence in mean. For almost sure con 

vergence, or convergence of the posterior mean, better control may be needed 

(through a larger value of k), depending on the rate of convergence. 
The following result, generalizing Theorem 2.4 of Ghosal, Ghosh and van der 

Vaart [14] for the i.i.d. case, bounds the rate of posterior convergence. 
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THEOREM 1. Let dn and en be semimetrics on 0 for which tests satisfying 

(2.2) exist. Let en > 0, sn -> 0, (ne2)~x 
= 0(1), k > I, and &n C 0 be such that 

for every sufficiently large j e N, 

(2.4) sup log#(-?$, {9 e ?n : dn(9, 90) < e], en) 
< ne2n, 

?>?n \2 / 

Yln(9 e &n : jen < dn(9, 0O) < 2jen) Kns2j2/2 
\Z.j) -< e n . 

Y[n(Bn(60,sn;k)) 
Then for every Mn ?y oo, we have that 

(2.6) Pe")nn{9 
e ?n'.dn(9,9Q) > 

Mnen\X{n)) 
-* 0. 

The theorem uses the fact that @n C 0 to alleviate the entropy condition (2.4), 
but returns an assertion about the posterior distribution on &n only. The comple 

mentary assertion P^ n?(0 \ &n\X^) 
? 0 may be handled either by a direct 

argument or by the following analog of Lemma 5 of [2]. 

LEMMA 1. // nn^S5^)) 
= ?(e~2n?l) f?r some k>l> then 

Pel)nn(? \ 

@n\X(n))-+0. 

The choice &n = 0, which makes the condition of Lemma 1 trivial, imposes 
a much stronger restriction on (2.4) and is generally unattainable when 0 is not 

compact. 

The following theorem extends the convergence in Theorem 1 to almost sure 

convergence and yields a rate for the convergence under slightly stronger condi 
tions. 

THEOREM 2. In the situation of Theorem 1, 

(i) if all X^ are defined on a fixed sample space and sn > n~a for some 
a e (0, 1/2) such that k(l 

? 
2a) > 2, then the convergence (2.6) also holds in the 

almost sure sense; 

(ii) if en > n~a for some a e (0, 1/2) such that k(l 
? 

2a) > 4a, then the left 
side of (2.6) is O(si). 

If 0 is a convex set and d2 is a convex function in one argument keeping the 

other fixed and is bounded above by B, then for 9n = J 9dYln(9\X^), we have, 

by Jensen's inequality, that 

d2(L90) < 
jd2(9,9o)dnn(9\X(n)) 

< e2n + B2Yln(dn(9,90) > sn\X(n)). 

This yields the rate en for the point estimator 9n under the conditions of Theorem 1. 
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The complicated-looking condition (2.5) can often be simplified in infinite 
dimensional cases, where, typically, ne^ 

-> oo. Because the numerator in (2.5) is 

trivially bounded by one, a sufficient condition for (2.5) is that Yln (Bn (9o, sn, k)) > 

e-cnen jfe jocaj entr0py jn condition (2.4) can also often be replaced by the global 
entropy logN(s^/2, 0?, en) without affecting rates. Also, if the prior is such that 
the minimax rate given by (2.3) satisfies (2.5) and the condition of Lemma 1, then 

the posterior convergence rate attains the minimax rate. 

Entropy conditions, however, may not always be appropriate to ensure the ex 

istence of tests. Ad hoc tests may sometimes be more conveniently constructed. 
A more general theorem on convergence rates, which is formulated directly in 
terms of tests and stated below, may be proven in a similar manner. 

THEOREM 3. Let dn be a semimetric on 0, en -> 0, (ne%)~1 
= 0(1), k > 1, 

K > 0, 0n C 0 and <t>n be a sequence of test functions such that 

(2.7) P^ct>n 
-> 0, sup Pf\l 

- 
cPn) < e~K^n 

0een:jen<dn(0,e0)<2jen 

and (2.5) holds. Then for every Mn ?> oo, we have that Pq" Tln(9 e ?n 

dn(9,9o)>MnSn\X^)^0. 

3. Independent observations. In this section, we consider the case where 

the observation XM is a vector X^ = (X\, X2,..., Xn) of independent observa 

tions Xi. Thus, we take the measures Pq of Section 2 equal to product measures 

?"=1 Pej on a product measurable space ?"=i(X/, At). We assume that the dis 

tribution Pqj of the /th component X( possesses a density p$j relative to a a -finite 
measure /x; on (3t/, A(),i 

= 
I,... ,n. In this case, tests can be constructed relative 

to the semimetric dn, whose square is given by 

(3.1) d2(9,9f) = 
^J2 j"(Vp?7- V^7)2^ 

1=1 

Thus, d2 is the average of the squares of the Hellinger distances for the distribu 

tions of the individual observations. 

The following lemma, due to Birge (cf. [22], page 491, or [4], Corollary 2 on 

page 149), guarantees the existence of tests satisfying the conditions of (2.2). 

LEMMA 2. If Pq are product measures and dn is defined by (3.1), then there 

exist tests 0? such that P 4>n < e-indn^0^ and P^n)(l -0n) < e-li"4(OoA) for 

all 9 e 0 such that dn(9, 9\) < j%dn(9o,9\). 

The Kullback-Leibler divergence between product measures is equal to the 
sum of the Kullback-Leibler divergences between the individual components. 
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Furthermore, as a consequence of the Marcinkiewiz-Zygmund inequality (e.g., 
[9], page 356), the mean Yn of n independent random variables satisfies E\Yn 

? 

EYn\k < Ckn~kl2\ Ya=\ E|y,-1* for ifc > 2, where Ck is a constant depending only 
on k. Therefore, the set Bn(9o, s; k) contains the set 

B*(eo9e;k)= \9e&:-J2Ki(9o,9)<82, 
- 
? Vk,0;i(Oo,0) < Ckek \, 

where Kt(90,9) = 
K(P$0j, P0j) and V*,o;j-(flo,0) 

= 
V*,o(*V> Pqj). Thus, we 

can work with a "ball" around #o relative to the average Kullback-Leibler diver 

gence and the average kth order moments, as in the preceding display, and simplify 
Theorem 1 to the following result: 

THEOREM 4. Let Pq be product measures and dn be defined by (3.1). Sup 

pose that for a sequence sn 
? 0 such that ns2 is bounded away from zero, some 

k > I, all sufficiently large j and sets &n C 0, the following conditions hold: 

(3.2) sup logN(s/36, {9eQn: dn(9, 90) < s}, dn) < ne2n\ 
e>en 

(3.3) 
nn(e\Q,) el 

nn(B*(90,en;k)) 

n?(6> ?n : jsn < dn(0,Go) < 2jen) nei iIA 
(3.4) -< e nJ ' . 

nn(B-(9o,sn;k)) 

Then 
P^TlniO 

: dn(9, 90) > Mnen\X{n)) -? Ofor every Mn -> oo. 

The average Hellinger distance is not always the most natural choice. It can 

be replaced by any other distance dn that satisfies (3.2)-(3.3) and for which the 
conclusion of Lemma 2 holds. Often, we set k = 2 and work with the smaller 

neighborhood 

(3.5) Bn(9o,s)= 9:-J2Ki(9o,9)<s2,-Tv2-i(Oo,0)<s2 
. 

n *?' 
n f?f i i=\ i=\ ) 

4. Markov chains. For 9 ranging over a set 0, let (x, y) h* po (y \x) be a col 
lection of transition densities from a measurable space (X, A) into itself, relative 
to some reference measure v. Thus, for each 9 e 0, the map (x, y) h-> po(y\x) is 

measurable and for each x, the map y i-> po(y\x) is a probability density relative 
to ix. Let Xo, X\,... be a stationary Markov chain generated according to the tran 

sition density po, where it is assumed that there exists a stationary distribution Qq 
(n) 

with /x-density qe. Let Pq be the law of (X$, X\,..., Xn). 
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Tests satisfying the conditions of (2.2) can be obtained from results of Birge [4], 
which are more refined versions of his own results in [3]. A special case is pre 
sented as Lemma 3 below. Actually, Birge's result ([4], Theorem 3, page 155) is 

much more general in that it also applies to nonstationary chains and allows dif 
ferent upper and lower bounds, as seen in the following display. 

Assume that there exists a finite measure v on (X, A) such that, for some 

k, I e N, every 9 e 0 and every x e X and Ae A, 

1 * 
(4.1) P0(Xi e A\X0 = x)< v(A) < 

- 
? Pe(Xj e A\X0 = x), 

7 = 1 

where P# is the generic notation for any probability law governed by 9. For in 

stance, if there exists a /^-integrable function r such that r(y) < po(y\x) < r(y) 
for every (x, y), then (4.1) holds with the measure v given by dv(y) = 

r(y) dfi(y). 
Define the square of a semidistance d by 

(4.2) d2(9,9f) = 
jjyPe(y\x)-Jpe>(y\x)fdii(y)dv(x). 

LEMMA 3. If there exist k, I and a measure v such that (4.1) holds, then there 
exist a constant K depending only on (k,l) and tests (j)n such that 

Ptcl>n 
< e-Knd2^\ sup pf\l 

- 
(Pn) < e~Knd2^\ 

6> 0:</(<9,6?i)<rf(<9o,6>i)/8 

The preceding lemma is also true if the chain is not started at stationarity. If, 
as we assume, Xq is generated from a stationary distribution under 9$, then the 

Kullback-Leibler divergence of P$" and Pq satisfies 

(4.3) K(P^\ P^n)) 
= 

nj 
K(pe,(-\x), Po('\x))dQ0o(x) + K(q0o, qe). 

To handle the neighborhoods Bn(9o,e\ 2), we need a bound on 
V(P^\ P$ ), 

which will also be of the order of n times an expression depending only on individ 

ual observations, under a variety of conditions. In the following lemma, we use an 

a-mixing assumption. For a sequence {Xn}, let the a-mixing coefficient be given 

by ah = sup{|Pr(X0 eA,XheB)-Pr(X0 e A)Vr(Xh eB)\:A,Be ?(R)}. 

LEMMA 4. Suppose that the Markov chain Xo,X\,... is a-mixing under 9o, 

with mixing coefficients a/*. Then for every s > 2, V(p^ 
, p? ) is bounded by 

s~2t^Q \JJ I Pe(y\x) ) 
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Proof. We can write 

,A A\ 1 P$0 V^l POo(Xi\Xi-l) . ! ^O(^O) ^ . ry 
(4.4) log -^ 

= 
2^ log 

? + log 
? =: "F? + Z0, 

/^ 
; 

~i pe(Xi\Xi-\) qe(Xo) 

where 7/ = log(poQ(Xi\Xi-l)/pe(Xi\Xi.i)) and Z0 = log(^0(X0)/^(*o)). 
Then Y\, Y2,... are a-mixing with mixing coefficients an-{. Therefore, the vari 
ance of the left-hand side of (4.4) is bounded above by n(E\Y(\s)2/s x 4s(s 

? 

2)~l EhLi <xn-2iS> by the bound of Ibragimov [18]. D 

Let ?i c 0 be the set of parameter values such that K(qe0, qe) and V(q$0, qo) 
are bounded by 1. Then from (4.3) and Lemma 4, it follows that for large n and 

s2 > 2/n, the set Bn(9o, e\ 2) contains the set B*(9o, s; s) defined by 

\e 
e 0i rPfiblogf^CXHXo)) 

< 
\e2,Ve, log^(Xi|X0)' < 

Cses\, I \ po / 2 po J 

where the power s must be chosen sufficiently large to ensure that the mixing coef 

ficients satisfy J^h=oah~ 
< ?? and where CJ = 16s (2 

? 
s)~l J2h=oah~ 

The contributions of Qo0(log(qo0/qo)) and Qo^lo^qo^/qe))2 may also be incor 
porated into the bound. 

The above facts may be combined to obtain the following result. 

THEOREM 5. Let Pq be the distribution of(Xo, X\,..., Xn)for a stationary 
Markov chain Xo, X\,... with transition densities pg(y\x) and stationary density 
qo satisfying (4.1) and let d be defined by (4.2). Assume, further, that the chain is a 

mixing with coefficients a^ satisfying Y^h*=Oah 
< ??for some s > 2. Suppose 

that for a sequence sn -> 0 such that ns2 > 2, some s > 2, every sufficiently large 
j and sets 0ncQ, the following conditions are satisfied: 

(4.5) sup logN(e/16, {9eSn: d(0, 90) < e], d) 
< 

ne2n\ 
?>?n 

(4.6) 
nn(e\e?) = 2 

nn(B*(9o,e?;s)) 

n?(6 ?? : (; 
- 

\)sn < d(0,90) < jsn) Kn^aj% (4./) -< e nJ i 

Tln(B*(9o,?n',s)) 

for the constant K of Lemma 3. Then 
P^T\n{e 

: d*(9, 90) > Mnen\X(n)) -> Ofor 
every Mn 

? oo. 

A Markov chain with rc-step transition probability Pn(x, ) = Pr(Xn e A\Xo = 

x) and stationary measure Q is called uniformly ergodic if \\Pn(x, ) 
? 

Q\\ 
? 0 

as n -> oo, uniformly in x, where || || is the total variation norm. It can be 
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shown that the convergence is then automatically exponentially fast (cf. [23], The 
orem 16.0.2). Thus, the a-mixing coefficients are exponentially decreasing and 

hence satisfy YlT=oah~ 
< ?? f?r every s >2. Hence, it suffices to verify (4.7) 

with some arbitrary fixed s > 2. If sup{/ \peQ(y\x\) 
- 

Pe0(y\x2)\d/jL(y): x\, X2 e 
R} < 2, then integrating out X2 relative to the stationary measure qo0, we see that 
Condition (16.8) of Theorem 16.0.2 of [23] holds and hence the chain is uniformly 
ergodic. 

5. White noise model. Let 0 c L2[0,1] and for 9 e 0, let P^n) be the dis 
tribution on C[0,1] of the stochastic process X(n) = (x\n) : 0 < t < 1) defined 

structurally as x\ 
= 

f^9(s)ds + -j= Wt for a standard Brownian motion W. This 

is the standard white noise model, which is known to arise as an approximation 
of many particular sequences of experiments. An equivalent experiment is ob 

tained by the one-to-one correspondence of X^ with the sequence defined by 

Xnj 
= 

(X^n\ et), where ( , ) is the inner product of L2[0,1] and {e\,e2,...} is a 

given orthonormal basis of Z>2[0,1]. The variables Xn,\, Xn,2,... are independent 
and normally distributed, with means (9, et) and variance n~l. In the following, 
we use this concrete representation and abuse notation by identifying X^ with 

the sequence (Xn,i, Xn,2, ) and 9 e 0 with the sequence (0i, 02,...) defined by 
9t = (9,ei). In the latter representation, we have that 0C4 the space of square 
summable sequences. Let ||0||2 = /q1 92(s)ds = 

J^fli 0? denote the squared L2 
norm. 

Tests satisfying the conditions of (2.2) can easily be found explicitly, namely, as 

the likelihood ratio test for 0o versus 9\, where we can use the L2-norm for both dn 
and en. Furthermore, the Kullback-Leibler divergence and discrepancy V2,o also 
turn out to be multiples of the L 2 -norm. 

LEMMA 5. The test </>n = 1{2(9X 
- 

90,XM) > ||0i||2 
- 

||0O||2} satisfies 

P^<Pn 
< I ~ *Ol|0i 

- 
ft) 11/2) and P^n)(l 

- 
<t>n) < 1 - *(Vh||0i 

- 
ft)||/4) 

for any 0 e 0 such that \\9 -9\\\< \\0\ 
- 

90\\/4. 

LEMMA 6. For every 0,0O e 0 C L2[0, 1], we have 
K(P^\ P^n)) 

= 
\n\\9 

- 

0O||2 and 
V2fi(p?)> pen)) 

= nW? 
~ 

eof- Consequently, we have Bn(90, s; 2) = 

{9e?:\\9-90\\<s}. 

Proof of lemma 5. The test rejects the null hypothesis for positive val 
ues of the statistic Tn = (0i 

- 
ft), X(n)) 

- 
\\\9\\\2 + \\\9q\\2, which, under 9, is 

distributed as (0i 
- 0O,0 

- 
0\) + J||0i 

- 
90\\2 + -?=<0i 

- ft>, W). The variable 

(01 
? 

0o? W) is normally distributed with mean zero and variance \\9\ 
? 

0o||2. Un 

der 0 = 0o, the mean of the test statistic is equal to ? 5 ||0o 
? 

0i II2, whereas for 

II0 
- 

01II < ? II01 
- 

00II and ? e (0, \), the mean of the statistic under 0 is bounded 
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below by (\ 
? 

f) ||#o 
? #i II2, in view of the Cauchy-Schwarz inequality. The lemma 

follows upon choosing f = 1/4. D 

Proof of lemma 6. We write 
log(p{^/p^n)) =n(90- 9, X^n)) 

- 
? ||0O||2 + 

| \\91|2, whence the mean and variance under 9o are easily obtained. 

In the preceding lemmas, no restriction on the parameter set 0 c L2[0,1] was 

imposed. The lemmas lead to the following theorem, which gives bounds on the 

rate of convergence in terms of quantities involving the L 2 -norm only. 

(n) 
THEOREM 6. Let Pq be the distribution on C[0, 1] of the solution of the dif 

fusion equation dXt = 9(t) dt + n~l/ dWt with Xo = 0. Suppose that for sn ?> 0, 

(ne2)~x 
? 

0(1) and 0 C L2[0, 1], the following conditions are satisfied: 

(5.1) sup log tf (e/8, {9 e 0 : \\9 
- 

9o\\ < e), || ||) < ne2n, 
?>Sn 

for every j e N 

(5 2) Yln(9e@:\\9-9o\\<J8n) < 2j2/64 
nn(9e&:\\9-9o\\<8n) 

~ 

Then 
P^TlniO 

e 0 : \\9 
- 

90\\ > Mnsn\Xin)) -> Ofor every Mn -+ 00. 

In Section 7.6, we shall calculate the rate of convergence for a conjugate prior. 

6. Gaussian time series. Suppose that X\, X2,... is a stationary Gaussian 

process with mean zero and spectral density /, which is known to belong to 
a model 3r. Let Yh(f) 

? 
Jln elhx f(k)dk be the corresponding autocovariance 

function. Let P? be the distribution of (X\,..., Xn). 
For this situation, we can derive the following lemma from [3]. Let H/H2 and 

11/1| 00 be the L2-norm relative to Lebesgue measure and the uniform norm of a 

function / : (?n, n] 
? 

R, respectively. 

LEMMA 7. Suppose that there exist constants T and M such that || log /||oo ^ 
r and J2hL-oo \h\Yh (/) ? M for every f e T. Then there exist constants ? and 
K depending only on T and M such that for every s > l/y/n and every /o, /1 ? F 
with ||/1 

? 
/oil2 5: ??, we have 

(6.1) <VnV SUp Pf\\-<j>n)<e-Kne\ 
/ ?-:||/-/i||oo<?s 

Proof. It follows from the assumptions that J2\h\>n/2Yh(f) 
< 2M/n. This 

is bounded by e2 for s > y/2M/n. The assertion follows from Proposition 5.5, 

page 222 of [3], with 4>n = l[log(p%>/pfj) 
> 0}. D 
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The preceding lemma shows that tests satisfying the conditions of (2.2) exist 
when dn is the /^-distance and when en is the uniform distance, leading to condi 
tions in terms of N(st=, {/ e !F : ||/ 

- 
/0II2 < ?}, II lloo)- We do not know if the 

Loo-distance can be replaced by the L2-distance. The uniform bound on || log /1| 00 
is not unreasonable as it is known that the structure of the time series changes dra 

matically if the spectral density approaches zero. The following lemma allows the 

neighborhoods Bn(fo, s; 2) to be dealt with entirely in terms of balls for the L2 
norm. 

LEMMA 8. Suppose that there exists constant T such that || log /* ||oo < T 

for every f e !F. Then there exists a constant C depending only on V such 

that for every fgeF, we have 
Pf (log(pf / p^)) 

< Cn\\f 
- 

g\\2 and 

warpin)(log(pi;)/p^)) 
< Cn\\f 

- 
g\\2. 

Proof. The (k,l)th element of the covariance matrix Tn(f) of XM = 

(X\,..., Xn), given the spectral density /, is given by f*n elX-(k~l) f(\) dk for 1 < 

k,l <n. Using the matrix identities det(A5_1) 
= det(7 + B~l/2(A 

- 
B)B~l/2) 

and A~l - B~l = A'1 (A 
- 

B)B~l, we can write 

p{n) 1 
log -?- 

= -- 
l0gdet(7 + Tn(g)-l/2Tn(f 

- 
g)Tn(g)-1'2) 

Pg l 

- 
X-(XW)TTn(f)-XTn(g 

~ 
f)Tn(g)-lX^. 

For a random vector X with mean zero and covariance matrix E, we have 

E(XT AX) = tr(E A) and var(Xr AX) = tr(E AS A) + tr(E AS AT). Hence, 

/ P(n) \ I 

P^(l0g^j 
= 

--l0gdet(/ + Tn(g)-l/2Tn(f 
- 

g)Tn(g)-112) 

-?tr(Tn(g-f)Tn(g)-1), 

(n) 

4varp(n)^log^y) 
= 

tr{Tn(g 
- 

f)Tn(g)-lTn(g 
- 

f)Tn(grl) 

+ tr{Tn(g 
- 

f)Tn(g)-lTn(f)Tn(g)-lTn(g 
- 

f)Tn(fyl). 

Define matrix norms by ||A||2 = YlkIliakj 
= tr(AAr) and \A\ = sup{||Ax|| : 

||jc|| = 1}, where ||jc|| is the Euclidean norm. Then tr(A2) < ||A||2 and ||AB|| < 

|A|||#||. Furthermore, as a result of the inequalities ?\ix2 
< log(l + fi) 

? 

/x < 0, for all \x > 0, we have for any nonnegative definite matrix A that 
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-\ix(A2) 
< logdet(/ + A) 

- 
tr(A) < 0. In view of the identities xTTn(f)x 

= 

f\Ekxkeikx\2f(^)dk and xTTn(l)x = 27t\\x\\2, we also have that \Tn(f)\ < 

2^:||/1|oo and \Tn(f)~l\ 
< 

(27i)-l\\l/f\\OQ. To see the validity of the second in 

equality, we use the fact that ||A_11| < c"1 if \\Ax\\ > c\\x\\ for all x. For / e F, 
ll/lloo < oo and ||l//||oo < oo. Furthermore, 

(6.2) |IW)||2= J](n-|/z|)^2(/)<27rn f f2(k)dk. 
\h\<n 

J~n 

Using the preceding inequalities and the identity tr(AB) = tr(5A), it is straight 
forward to obtain the desired bounds on the mean and variance of 

\og(pp/pf ). 

The preceding lemmas can be combined to obtain the following theorem, where 
the constants ? and K are those introduced in Lemma 7. 

THEOREM 7. Let PJ1 be the distribution of (X\,... ,Xn) for a stationary 
Gaussian time series {Xt : t = 0, ?1,...} with spectral density f e !F. Assume 
that there exist constants F and M such that || log /1| co < T and J2h Ih I Yh (/) ? ^ 

for every f e Jr. Let en > 1/?Jn satisfy, for every j e N, 

sup logN(t;e/2, {feF:\\f- f0\\2 < e}, \\ ||oo) < ne2n, 
?>?n 

n(f:\\f-fo\\2<js) < ^2^.2/g 
n(/:||/-/ol|2<e) 

~ 

Then 
P^Tl(f 

: \\f 
- 

f0\\2 > Mnen\Xx, ...,Xn)^ Ofor every Mn -> oo. 

7. Applications. In this section, we present a number of examples of applica 
tion of the general results obtained in the preceding sections. The examples con 
cern combinations of a variety of models with various prior distributions. 

7.1. Finite sieves. Consider the setting of independent, nonidentically distrib 
uted observations of Section 3. We construct sequences of priors, each supported 
on finitely many points such that the posterior distribution converges at a rate 

equal to the solution of an equation involving bracketing entropy numbers. Be 
cause bracketing entropy numbers are often close to metric entropy numbers, this 
construction exhibits priors for which the prior mass condition (2.5) is automati 

cally satisfied. The construction is similar to that for the i.i.d. case given by Ghosal, 
Ghosh and van der Vaart [14], Section 3. However, in this case, some extra care 
is needed to appropriately define the bracketing numbers in the product space of 
densities. In the following, we consider a componentwise bracketing. 
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Consider a sequence of models !PM = 
{P$ : 0 e 0} of rc-fold product mea 

sures Pq , where each measure is given by a density (x\,..., xn) i-> n?=i Poj (xi) 
relative to a product-dominating measure ?"=1 M/. For a given n and ? > 0, we de 

fine the componentwise Hellinger upper bracketing number for 0 to be the small 
est number TV such that there are integrable nonnegative functions ujj for j 

= 

1,2,..., N and i = 1, 2,..., n, with the property that for any 0 e 0, there exists 
some j such that poj < 

ujj for all i = 1, 2,..., n and Y!i=\ h2(pej,Ujj)2 
< ns2. 

We shall denote this by Nf?(e, &,dn). 

Given a sequence of sets &n t ? and ?n -* 0 such that log N"?(sn, ?n>dn) < 

ne2, let (w7?; : j = 1,2,..., N, i ? 1,2,..., n) be a componentwise Hellinger 
upper bracketing for 0? [where TV = N"?(en, <dn,dn)]. From this bracketing, 
we construct a prior distribution nrt on the collection of densities of product 
measures, by defining Yln to be the measure that assigns mass N~l to each of 

the joint densities p" 
= 

?ni=x(uj^/ f ujj dfii), j = 1,2,..., N. The collection 

$>n = [py 
: j 

= 1,2,..., N} forms a sieve for the models P^ and can be con 

sidered as the parameter space for a given n. Although it is possible for the spaces 
Pn to not be embedded in a fixed space, Theorem 4 still applies and implies the 

following result. 

Theorem 8. Let ?n t ? ond 0o e ?. Assume that logN"?(en, ?n,dn) < 

ne2 for some sequence en -> 0 wjY/i n?2 ? oo. Le? Tln be the uniform measure 

on the renormalized collection of upper product brackets, as indicated previously. 
Then for all sufficiently large M, 

(7.1) <B)nrt(pW 
: 
4(p%\ pM) > Ms2n\XuX2,..., Xn) -> 0. 

Proof. As Pn consists of finitely many points, its covering number with re 

spect to any metric is bounded by its cardinality. Thus, (3.2) holds and (3.3) holds 

trivially. 
Let 0o e ?n for all n > no. For a given n > no, let jo be the index for which 

Po0,i 
< 

ujoJ and Xw=i h2(POoJ,ujo,i) 
- nsn- If P is a probability density, u is an 

integrable function such that u > p and v = u/ fu, then because 2ab < (a2 + b2), 
it easily follows that h2(p, v) < (f ud[x)~xl2h2(p, u). 

For any two probability densities p and q, we have (see, e.g., Lemma 8 of [17]) 
2 

K(p,q)<h2(p,q)(l+\0g\m ), V(p,q)<h2(p,q)(l+log \?-, ). V Ik II oo/ V II #1100/ 

Together with the elementary inequalities 1 + log* < 2^/x and (1 + logx)2 < 

(4xl/4)2 
= 16jc1/2 for all x > 1, the bounds imply that 

II d 1/2 <, v l1/2 
K(p,q)<h2(p,q)p 

, V(p,q)<h2(p,q) ^ , . 
II 9 loo 9 II OO 
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Because (po0,i/vj0,i) 
< 

fujojdfx, it follows that n~l Y%=i K(P%J> vjoj) ~ 8l 
and n~l YTi=l V(p6oj, vjoJ) 

< 
e2n. Thus, fGU Vjo,i gets Prior probability equal to 

N~l > e~n " and hence relation (3.4) also holds for a multiple of the present sn. 

Thus, the posterior converges at the rate sn with respect to the metric dn. 

7.1.1. Nonparametric Poisson regression. Let X\,X2,... be independent 
Poisson-distributed random variables with parameters \//(zi), ty(Z2), , where 

xfr : R -* (0, oo) is an unknown increasing link function and z\, Z2,... are one 

dimensional covariates. We assume that L < yfr < U for some constants 0 < L < 

U < oo. 

If / < f < u, then for any z and jc, we have e~^{z)(\j/(z))x/x\ < e~l{z)(u(z))x/ 
xl. For a pair of link functions / < u, let g/,w(x,z) 

= 
^~/(z)(w(z))x/x! and put 

fi(nJ(xu*2,.'-,Xn) 
= 

n?=i?/,?Ui^i). For any constants L < Ai,A2,/xi,M2 < 

?/, we have 

oo 
// 

a: 
x 1/2 / x, 1/2x2 

S((--^) -(?-^) ) 
= 

(e_(^+^)/2 
? ^~(A2+M2)/2\2 _^ 2^~(;il+A2)/2(^^1+^2^2 

- 
e^^iM) 

< 
Q 

+ 
^L-1^-^] 

- A2|2 + \m - H2\2). 

Let l\ <u\ and /2 < ?2 be two pairs of link functions taking their values in the in 
terval [L,U]. Therefore, with Ffl=n~l X!?=i &zt being the empirical distributions 

of zu Z2, , zn, we have that 
<?(/?>,, /g2) 

< 
/(|/i 

- 
/2|2 + |m 

- 
u2\2)d?n. 

Hence, an e-bracketing of the link functions with respect to the L2(P^)-metric 
yields a componentwise Hellinger upper bracketing whose size is a multiple of e. 

Now the e-bracketing entropy numbers of the above class are bounded by a mul 

tiple of e~x, relative to any L2-metric (cf. Theorem 2.7.5 of [31]). Equating this 
with ns2, we obtain the rate n~x^ for posterior convergence, which is also the 
minimax rate, relative to dn. 

In this example, the normalized upper brackets for the densities are also Pois 
son mass functions corresponding to the link functions equal to the upper brackets. 

Hence, the prior can be viewed as charging the space of link functions and the dis 
tance dn can also be induced on this space. This makes interpretations of the prior 
and the posterior, as well as the posterior convergence rate, more transparent. Fur 

ther, as the space of link functions is a fixed space, proceeding as in Theorem 3.1 
of [14], a fixed prior not depending on n may be constructed such that the posterior 
converges at the same n~1/3 rate. 

7.2. Linear regression with unknown error distribution. Let X\,..., Xn be 

independent regression response variables satisfying Xt = a + fizt + ?/, i = 

1,2, ...,n, where the z/'s are nonrandom one-dimensional covariates lying in 
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[?L, L] for some L and the errors et are i.i.d. with density / following some 

prior n. Amewou-Atisso et al. [1] studied posterior consistency under this setup. 
Here, we refine the result to a posterior convergence rate. Assume that | f'(x) \ < C 

for all x and all / in the support of n. The priors for a and fi are assumed to be 

compactly supported with positive densities in the interiors of their supports and 

all the parameters are assumed to be a priori independent. Let the true value of 

(/, a, fi) be (fo, ao, fio), an interior point in the support of the prior. 
Let H(e) be a bound for the Hellinger ?-entropy of the support of n and 

suppose that fo(x)/f(x) < M(x) for all x, where f Msfo < oo, 8 > 0. Then 
by Theorem 5 of [33], it follows that max{^(/0, /), V(/0, /)} < h2(f0, f) x 

log2(l/h(fo, /)). Let a(s) = 
?logU(h(fo, f) < e). The posterior convergence 

rate for density estimation is then en, given by 

(7.2) mzx{H(en),a(enl(loge-x))) <ne2n. 

The following theorem shows that Euclidean parameters do not affect the rate. 

THEOREM 9. Under the above setup, if fo(x 
? 

ao 
? 

Poz)/f(x 
? a ? 

fiz) < 

M(x) for all x,z,a, fi, then the joint posterior of (a, fi, f) concentrates around 

(ao, A), /o) at the rate sn defined by (7.2), with respect to dn. 

Proof. We have, by (a + b)2 < 2(a2 + b2), that h2(f\ ( 
- 

ol\ 
- 

?iz), /2(- 
- 

ot2 ~ fcz)) < 2h2(fi, f2) + 4C2|ai 
- 

?2|2 + 4C2L2|i8i 
- 

?2|2, which leads to 

and hence the dn -entropy of the parameter space is bounded by a multiple of 

H(e)+logl-<H(e). 
To lower bound the prior probability of Bn((fo, ao, A)), 6> 2) defined by (3.5), 

by Theorem 5 of [33] with h = h(fo(- 
? 

ao 
? 

/?oz), f('~a 
? 

Pz))> we have 

that^(/o(--a0-i8oz),/(--a-^))</i2logiandV(/oO-ao-)6oz),/( 
a ? fiz)) ^ h2 log2 p Thus, a multiple of ?-2e-ca(?/l?g? ) lower bounds the prior 

probability of (3.5) and the first factor can be absorbed into the second, where c is a 

suitable positive constant. Thus, Theorem 4 implies that the posterior convergence 
rate with respect to dn is en. 

More concretely, if the prior is a Dirichlet mixture of normals (or its sym 

metrization) with the scale parameter lying between two positive numbers and 

the base measure having compact support, and if the true error density is also a 

normal mixture of this type, then by Ghosal and van der Vaart [16], it follows that 

the convergence rate is (logn)/*/n. The assumption of compact support of the 

base measure can be relaxed by using sieves. Compactness of the support of the 

prior for a and fi may be relaxed by using sieves |a| < clog a if these priors have 
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sub-Gaussian tails. Also, it is straightforward to extend the result to a multidimen 

sional regressor. For more general error densities, one has to allow arbitrarily small 

scale parameters and apply the results of Ghosal and van der Vaart [17] to obtain a 

slower rate. 

Often, only the Euclidean part is of interest and an n~1^2 rate of convergence is 

generally obtained in the classical context. The posterior of the Euclidean part is 

also expected to converge at an n~1/2 rate and the Bernstein-von Mises theorem 

may hold; see [26] for some results. However, as we consider (/, a, fi) together 
and obtain global convergence rates, it seems unlikely that our methods will yield 
these improved convergence rates for the Euclidean portion of the parameter. 

7.3. Whittle estimation of the spectral density. Let {Xt : t e Z} be a sec 

ond order stationary time series with mean zero and autocovariance function 

Yr = E(XtXt+r). The spectral density of the process is defined (under the as 

sumption that Er WA < oo) by f(X) = i E^-oo Yre-irnX, X e [0,1]; here, we 
have changed the original domain [?n, it] of spectral density to [0,1] by using 
symmetry and then rescaling. Let In(X) = (2nn)~] \ J%=1 Xte~it7tk\2, A e [0,1], 
denote the periodogram. Because the likelihood is complicated, Whittle [32] pro 

posed as an approximate likelihood that of a sample U\,..., Uv of indepen 
dent exponential variables with means f(2j/n), j = l,...,v, evaluated with 

Uj 
= In(2j/n), where v ? [n/2\. The Whittle likelihood is motivated by the 

fact that if knj -> A/, / = 1,..., m, then under reasonable conditions such as 

mixing conditions, (In(Xn,i), , In(Xn,m)) converges weakly to a vector of in 

dependent exponential variables with mean vector (f(X\),..., /(Am)); see, for 

instance, Theorem 10.3.2 of Brockwell and Davis [6]. Dahlhaus [10] applied the 

technique of Whittle likelihood to estimating the spectral density by the minimum 
contrast method. A consistent Bayesian nonparametric method has been proposed 
by Choudhuri, Ghosal and Roy [7]. Below, we indicate how to obtain a rate of 

convergence using Theorem 4. 
As in the proof of consistency, we use the contiguity result of Choudhuri, Ghosal 

and Roy [8], which shows that for a Gaussian time series, the sequence of laws of 

(In(2/n),..., In(2v/n)) and the sequence of approximating exponential distribu 
tions of (U\,..., Uv) are contiguous. Thus, a rate of convergence of the posterior 
distribution under the actual distribution follows from a rate of convergence under 
the assumption that U\,..., Uv are exactly independent and exponentially distrib 
uted with means f(2/n),..., f(2v/n), to which Theorem 4 can be applied. 

Let d2(fi,f2) = v-1 ELi(/i(2i/?) 
- 

f2(2i/n))2. If fi and f2 are spectral 
densities with m < fi, fi< M pointwise, then it follows that 

(7-3) 
4^2(/i'/2) 

-d"ifi'h) - 
i^(/i?/2)- i!l/i 

_/211 

where dn is given by (3.1) and || ||oo is the uniform distance. If the spectral densi 
ties are Lipschitz continuous, then a rate for the discretized /^-distance dn will 
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imply a rate for the ordinary /^-distance || H2 by the relation ||/i 
? 

/2II2 ̂ 
dn(f\, fi) + (L + M)/n, where L and M are the Lipschitz constant and uni 
form bound, respectively. To see this, note that ^/n/vdn(f,0) 

= \\fn\\2> where 

fn = J2Vj=\ f(2j/n)l((2j-2)/n,2j/n] and hence 

111/112 - 
V^dn(f90)\ < \\f - fn\\2 < ̂̂  + (1 

- 
?Wlloo. n \ n J 

It follows that for the verification of (3.2), we may always replace dn by dn and if 
the spectral densities are restricted to Lipschitz functions with Lipschitz constant 

Ln and where en 3> Ln/n, then we may also replace dn by the L2-norm || H2. 
Now, by easy calculations, for all spectral densities /, fo taking values in 

[m, M], we have that v"1 ?Li K(PfoJ, PfJ) 
< d2(f0, f) < \\f 

- 
/0I& and 

V"1 ELi v2,o(PfoJ> Pf,i) 
< 

dl(h, /) < 11/ 
- 

/ol&, hence it suffices to estimate 
the prior probability of sets of the form {/ : || / 

? 
/o II00 5 s} Alternatively, if the 

spectral densities under consideration are Lipschitz, then we may estimate the prior 
mass of an L2-ball around /o. 

As a concrete prior, we consider the prior used by Choudhuri, Ghosal and 

Roy [7], namely / = xq, where r = var(Xr) has a nonsingular prior density 
and q, a probability density on [0,1], is given the Dirichlet-Bernstein prior of 

Petrone [24]. We then restrict the prior to the set K = {/ : m < f < M}. The order 

of the Bernstein polynomial, k, has prior mass function p, which is assumed to 

satisfy e~P{klogk < p(k) < e~^lk. Let n denote the resulting prior. 

Clearly, as /o e K, restricting the prior to K can only increase the prior proba 

bility of {/ : ||/ 
- 

/olloo < eh Therefore, following Ghosal [12], n(||/ 
- 

/olloo < 

e) > e~c? loge . Hence, en of the order n~l^(logn)1^3 satisfies (3.4). 
Consider a sieve !Fn for the parameter space K, which consists solely of Bern 

stein polynomials of order kn or less. All of these functions have Lipschitz constant 
at most k2 and are uniformly bounded away from zero and infinity by construc 
tion. The ^-entropy of 5^ relative to dn can be bounded above by that of the 

simplex, which is further bounded above by k logk + k log e-1. Hence, by choos 

ing kn of the order n1//3(logn)2//3, the convergence rate at fo on 5^ with respect to 

dn is given by max (ft-1/2/;,/ (logn)1/2, n~1/3 (logn)1/3, k2/n) 
= 

n~x/3(logn)4/3. 

NOW, 11(5?) 
= P(k > kn) < e~M? = e-^1/30og?)2/3 = e-Pn(n-^(logn)^)\ 

Thus, the posterior probability of 5^ goes to zero by Lemma 1 and hence the 

convergence rate on K is also n~l^3(logn)x^3. The minimax rate n~~2^ may be 

obtained, for instance, by using splines, which have better approximation proper 
ties. 

7.4. Nonlinear autoregression. Consider the nonlinear autoregressive model 

in which we observe the elements X\,..., Xn of a stationary time series {Xt : t e 

Z} satisfying 

(7.4) X,- = /(X/-i) + e,-, i = l,2,...,n, 
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where / is an unknown function and s\, ?2,..., ?n are i.i.d. N(0, a2). For sim 

plicity, we assume that a = 1. Then Xn is a Markov chain with transition den 

sity p/(;y|jc) 
= (p(y 

- 
fix)), where </>(x) = (2n)~l/2e~x2/2. Assume that / F, 

a class of functions such that |/(jc)| < M and \f(x) 
? 

f(y)\ < L\x 
? 

y\ for all 
x, y and f e !F. 

Set r(y) = \((j>(y 
- 

M) + c/>(y + M)). Then r(y) < pf(y\x) < r(y) for all 
x,y E and / F. Further, sup{/|/?(j|xi) 

- 
p(y|x2)|rfy : jci,jc2 E} < 2. 

Hence, the chain is a-mixing with exponentially decaying mixing coefficients and 

has a unique stationary distribution Qf whose density q/ satisfies r <qf <r. Let 

\\f\\s = (f\f\sdr)l/s. 
Because h2(N(^i\, I), N(/jl2, 1)) = 2[1 

- 
exp(-|/xi 

- 
/x2|2/8)], it easily fol 

lows for fi,fi F, d defined in (4.2) and dv = rdk that ||/i 
- 

/2II2 < 

d(fi, fi) ^ II/l 
? 

/2ll2- Thus, we may verify (4.5) relative to the L2(r)-metric. 
It can also be computed that 

Pf0 l0g 
p/Six') =\f(f?~ f)1 qf0 dX~U~ /0||2' 

Pf*log WY2|'y \} f ~ /l/o 
- flSqf?dk - U - M 

Pf(A2\Xi) I J 

Thus, B*(fi,?;s) D {/ : 11/ 
- 

/oL < c^} for some constant c > 0, where 

B*(fi, ?; s) is as in Theorem 5. Thus, it suffices to verify (4.7) with s > 2. 

7.4.1. Random histograms. As a prior on the regression functions /, consider 
a random histogram as follows. For a given number K e N, partition a given com 

pact interval in E into K intervals I\,..., Ik and let Io = E \ \Jk Ik. Let the prior 
Tln on / be induced by the map ot\-> fi given by fi 

= 
Ef=i a* 1/*, where the co 

ordinates a\,... ,otK of a e E^ are chosen to be i.i.d. random variables with the 
uniform distribution on the interval [?M, M] and where K = Kn is to be chosen 
later. Let r(Ik) = 

/^ 
r dA. 

The support of Yln consists of all functions with values in [?M, M] that are 

piecewise constant on each interval Ik for k = 1,..., K and which vanish on Io. 
For any pair /a and fi of such functions, we have, for any s e [2, 00], ||/a 

? 

fp\\s 
? 

ll? 
? 

)8||s> where ||a||5 is the r-weighted ls-noxm of a = (?i, ...,<*/<:) e 

E^ given by \\a\\ss 
= 

J2k \^k\sr(Ik). The dual use of || ||5 should not lead to any 
confusion as it will be clear from the context whether || ||5 is a norm on functions 
or on vectors. The L2(r)-projection of fi onto this support is the function fi0 
for ao,* = JikfirdX/r(Ik), whence, by Pythagoras' theorem, \\fi 

? 
fi\\\ 

= 

ll/a 
" 

/colli + II/?o 
- 

/0II2 for any a e t~M' M^K-In Particular, ||/a 
- 

/0||2 > 

c\\ot 
? 

ofolb for some constant c and hence, with &n denoting the support of Yln, 

N(?,{f z?n:\\f 
- 

fo\\2<lte},\\-\\2) 
< N(?, (?eK^: ||ar 

- 
a0||2 < 16ce}, || ||2) < (80c)*, 
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as in Lemma 4.1 of [25]. Thus, (4.5) holds if ne2n 
> K. 

To verify (4.7), note that for X = (X(h),..., *(/*)), 

H/?o-/ollS=/ \fo\sdk + 
Y,[ \ao,k-Msrdk<Msr(I0) + Ls\mss. Jh k Jlk 

Hence, as /o e 3r, for every a e [-M, M]K, 

II/? 
" 

/oL < ll? 
- 

"oils + r(I0)l/s + \\M\s < \\a 
- 

aolloo + r(I0)l/s + \\X\\S, 

where || ||oo is the ordinary maximum norm on RK. For r(Io)l^s + \\k\\s < s/2, 
we have that {/ : ||/ 

- 
foh <s}D {fa : ||<* 

- 
aolloo < s/2}. Using ||a 

- 
a0||2 < 

c\\fa 
~ 

/0II2, for any e > 0 such that r(I0)l/s + \\k\\s < s/2, we have 

nn(f : 11/ 
- 

/0II2 < ye) < nn(ot: \\a 
- 

Qr0||2 < je) 
n?(/ : 11/ 

- 
/oil, < s) 

~ 
Tln(a : ||or 

- 
aolloo < ec/2)' 

We show that the right-hand side is bounded by eCn? /8 for some C. 

For Ujt 4, a regular partition of an interval [?A, A], we have that ||A||5 =2A/K 
and since r(Ik) > 

k(Ik)infxejk r(x) for every k > 1, the norm || H2 is bounded 

below by y/2A(j)(A)/K > y/<f>(A)/K times a multiple of the Euclidean norm. In 
this case, the preceding display is bounded above by 

(CjeJK/<KA)/(2M))KvolK _ (jV2^\K 
I 

(ec/(4M))K ^VV0(A)/ yfrK' 
by Stirling's approximation, where vol*: is the volume of the ̂ -dimensional 

Euclidean unit ball. The probability r(Io) is bounded above by 1 
? 

20(A) < 0(A). 
Hence, (4.7) will hold if ATlog(l/0(A)) < ns2n, <t>(A) < ssn and A/K < en. All 

requirements are met for sn equal to a multiple of n~l^3(logn)1^2 [with K ~ 

y/log(l/sn)s~x and A ~ y/log(l/en)]. This is only marginally weaker than the 

minimax rate, which is n~xl3 for this problem, provided the autoregression func 

tions are assumed to be only Lipschitz continuous. 

The logarithmic factor in the convergence rate appears to be a consequence 
of the fact that the regression functions are defined on the full real line. The 

present prior is a special case of a spline-based prior (see, e.g., Section 7.7). If / 
has smoothness beyond Lipschitz continuity, then the use of higher order splines 
should yield a faster convergence rate. 

7.5. Finite-dimensional i.n.i.d. models. Theorem 4 is also applicable to finite 

dimensional models and yields the usual convergence rate as shown below. The 

result may be compared with Theorem 1.10.2 of [19] and Proposition 1 of [13]. 

THEOREM 10. Let X\,...,Xn be i.n.i.d. observations following densities 

poj, where 8cR^. Let Oo be an interior point of 0. Assume that there exist 
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constants a > 0 and 0 < q < C/ < oo with, for every 9,9\,92 ?, 

1 n 1 n 

(7.5) c = liminf - Y^q > 0, C = limsup 
- Y^ C; < oo 

"^?o a f-f n-^oo n f-r 

swc/i rtaf Pflb./dog ^f) 
< C, \\9 

- 
9o\\2a, Pflb./Oog 5f)2 

^ C< H* 
- 

^oll2a and 

(7.6) c,-||0i -02||2a <h2{peui,P62j) <Q||di -02||2a. 

Assume that the prior measure Tl possesses a density n which is bounded away 

from zero in a neighborhood of 9o and bounded above on the entire parameter 

space. Then the posterior converges at the rate H_1/(2a) w^ reSpect to the Euclid 
ean metric. 

For regular families, the above displays are satisfied for a = 1 and the usual 

ft~1//2 rate is obtained; see [19], Chapter III. Nonregular cases, for instance, when 
the densities have discontinuities depending on the parameter [such as the uniform 
distribution on (0,9)], have a < 1 and faster rates are obtained; see [19], Chap 
ters V and VI and [13]. 

Proof of Theorem 10. By the assumptions (7.5) and (7.6), it suffices to 

show that the posterior convergence rate with respect to dn defined by (3.1) is 

n~l/2. Now, by Pollard ([25], Lemma 4.1), 

N(?/l8,{9e@:dn(9,9o)<?},dn) 

< 
N((?2/(36C)){/(2a\ {9 e @ : ||0 

- 
90\\ < (2?2/c)1' }, || ||) 

which verifies (3.2). For (3.4), note that 

_n(9:dn(po,po0) <j?)_ 
me :n~l E?=i Kt(9o,9)<?2,n-1 ??=i V2.,i(90, 9) < ?2) 

< mO'-\\0-Oo\\<(2j2?2/c)1^) < ,d/a - 
n(0 : \\9 

- 
90\\ < (?2/(2C))xl^)) 

~ J 

for sufficiently small ? > 0, where A is a constant depending on d, c, C and the 

upper and lower bounds on the prior density. The conclusion follows for ?n = 

M/y/n, where M is a large constant. 

The condition that the Hellinger distance is bounded below by a power of the 
Euclidean distance excludes the possibility of unbounded parameter spaces. This 
defect may be rectified by applying Theorem 3 to derive the rate. If there is a 
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uniformly exponentially consistent test for 0 = 60 against the complement of a 

bounded set, then the result holds even if 0 is not bounded. Often, such tests exist 

by virtue of bounds on log affinity, as in the case of normal distributions, or by 
large deviation type inequalities; see [20] and [14], Section 7. Further, if the prior 
density is not bounded above, but has a polynomial or subexponential majorant, 
then the rate calculation also remains valid. 

7.6. White noise with conjugate priors. In this section, we consider the white 

noise model of Section 5 with a conjugate Gaussian prior. This allows us to com 

plement and rederive results of Zhao [34] and Shen and Wasserman [27] in our 

framework. Thus, we observe an infinite sequence X\, X2,... of independent ran 

dom variables, where X; is normally distributed with mean 0,- and variance n~l. 
We consider the prior Tln on the parameter 0 = (6\, 62,...) that can be struc 

turally described by saying that 6\,..., 0k are independent with 0/ normally dis 
tributed with mean zero and variance a2k and that 0*+i, 0*+2?... are set equal to 

zero. Here, we choose the cutoff k dependent on n and equal to k = [nx^2ci+l^\ 
for some a > 0. Zhao [34] and Shen and Wasserman [27] consider the case 

where a2k 
= i-(2a+V for i = 1, ...,k and show that the convergence rate is en = 

n-a/(2a+i) jf the true parameter 0o is "a-regular" in the sense that J2hL\ #0/'2(* 
K 

oo. We shall obtain the same result for any triangular array of variances such that 

(7.8) min{a2^/2a : 1 < i < k} 
~ k~l. 

For instance, for each k, the coefficients 6\,..., 6k could be chosen i.i.d. normal 

with mean zero and variance &-1 or could follow the model of the authors men 

tioned previously. 

Theorem 11. If k ~ nl/&*+i) an(^ ^ g) holds, then the posterior converges 
at the rate en = n~a/{2a+l) for any 0o such that Ylfli so,ii2a 

< ?? 

PROOF. The support ?n of the prior is the set of all 0 g I2 with 0/ = 0 for 

/ > k and can be identified with Rk. Moreover, the ^2-norm || || on the support 
can be identified with the Euclidean norm || \\k on Rk. Let Bk(x, s) denote the k 

dimensional Euclidean ball of radius e and center jcgMj. For any true parameter 

00 I2, we have ||0 
- 

0o|| > ||P0 
- 

P0olU, where P is the projection on 0?, and 
hence 

N(s/S, {0 G &n : ||0 
- 

4)|| < s], || ||) < N(s/8, Z?*(P0o, s), \\ |U) < (40)*. 

It follows that (5.1) is satisfied for ne2 > k, that is, in view of our choice of k, 

Sn>n-^2a+l\ 

By Pythagoras' theorem, we have that ||0 
- 

0O||2 = ||P0 
- 

P0oll2 + E/^o,; 
for any 0 in the support of Yln. Hence, for Y,i>k ?oi - 8n/2> we have that 

n?(0 g &n : ||0 
- 

0oll < sn) > n?(0 G Rk I ||0 
- 

P0o|U < en/2). 
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By the definition of the prior, the right-hand side involves a quadratic form in 
Gaussian variables. For E the k x k diagonal matrix with elements a2k, the quo 
tient on the left-hand side of (5.2) can be bounded as 

Un(9 e &n : 110 
- 

9p\\ < jen) < Nk(-P90, S)(fl(0, J?n)) 
Un(9 &n : \\0 

- 
Oo\\ < ?n) 

" 
Nk(-P90, E)(fi(0, en/2))' 

The probability in the numerator increases if we center the normal distribution at 
0 rather than at ?P#o, by Anderson's lemma. Furthermore, for any /x e Rk, 

^k(^) = e-^-^l^ > ̂/2^-Et^?/^ 
dNk(o,i:/2y 

' 
j?e-^9?,ah 

" 

Therefore, we may recenter the denominator at 0 at the cost of adding the factor 
on the right (with // = 9o) and dividing the covariance matrix by 2. We obtain that 
the left-hand side of (5.2) is bounded above by 

Afc(0, E/2)(fl((W2)) 

< 2*/2e2-. <%,/<>?* (dk\ 
Nk(0,a2I)(B(0,jen)) 

\<Lk' Nk(0,a2I/2)(B(0,sn/2)y 
where ak and g_k denote the maximum and the minimum of auk for i = 1,2,..., k. 
The probabilities on the right-hand side are left tail probabilities of chi-square 
distributions with k degrees of freedom, and can be expressed as integrals. The 

preceding display is bounded above by 

\g_k) 
jf^2Oxk/2-ie-x/2dx 

The exponential in the integral in the numerator is bounded above by 1 and 
hence this integral is bounded above by jk?k/(kak). We now consider two sep 
arate cases. If ?2/g}k remains bounded, then we can also bound the exponen 
tial in the integral in the denominator below by a constant and have that the 

preceding display is bounded above by a multiple of 4kjk cxp(J2k=\ 9q t/a2k). 
If ?l/(L2k 

- 
??> then we bound the integral in the denominator below by 

(rj/2)k/2-1 f}]/2e-x/2dx 
for rj = ?2/(2a2k). This leads to the upper bound be 

ing a multiple of Skjk exp(?f=1 9liof?)?nlg_~^ exP(??^2/8)- BYthe assumption 
(7.8), we have that g2, > k~^2a+1} ? n~l. We also have that k ~ n?2. It follows that 

en/Q-k ~ n6n anc* ̂at ^k' *s bounded by a polynomial in k. We conclude that with 

our choice of k ~ nl/(2a+l), (5.2) is satisfied if sn satisfies Ya=\ ?oi/ah ~ nsl 

andE/>^02/<^/2. 
It follows that the posterior concentrates at 9o at the rate ?n that satisfies these 

requirements as well as the condition ?n > n~a^2a+1\ If the true parameter 9q 
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satisfies J2fZ\ @o i*2** 
< ??> then all three inequalities are satisfied for sn a multiple 

of n-?/(2?+1>. The rate n~a/{2a+l) is the minimax rate for this problem. 

Our prior is dependent on n, but with some more effort, it can be seen that the 
same conclusion can be obtained with a mixture prior of the form J2n Xn Tln for 

suitable Xn. 

1.1. Nonparametric regression with Gaussian errors. Consider the non 

parametric regression model, where we observe independent random variables 

X\, ...,Xn distributed as X; = /fo) + ?; for an unknown regression function /, 
deterministic real-valued covariates z\,..., zn and normally distributed error vari 

ables s\, ...,sn with zero means and variances a2. For simplicity, we assume that 
the error variance a2 is known. We also suppose that the covariates take values 

in a fixed compact set, which we will take as the unit interval, without loss of 

generality. 
Let /o denote the true value of the regression function, let Pfj be the distribu 

tion of Xi and let 
Pj 

be the distribution of (Xi,..., Xn). Thus, Pfj is the normal 

measure with mean /fo) and variance a2. Let Wn=n~l Y11=\ &n be the empirical 
measure of the covariates and let || ||? denote the norm on L2(P*). 

By easy calculations, K(PfoJ, Pfi) 
= |/0fo) 

- 
/fo)|2/(2a2) and V2MPfo,i> 

Pfti) 
= |/ofo) 

? 
f(zi)\2/cr2 for all i = 1, 2,..., n, whence the average Kullback 

Leibler divergence and variance are bounded by a multiple of \\fo 
? 

f\\2/cr2 and 

hence it is enough to quantify prior concentration in || ||? -balls. The average 

Hellinger distance, as used in Theorem 4, is bounded above by || ||?, but is equiv 
alent to this norm only if the class of regression functions is uniformly bounded, 
which makes it less attractive. However, it can be verified (cf. [5]) that the like 

lihood ratio test for /o versus f\ satisfies the conclusion of Lemma 2 relative to 

|| ||? (instead of dn and 0,- = /). Therefore, we may use the norm || ||? instead of 

the average Hellinger distance throughout. 
We shall construct priors based on series representations that are appropriate if 

/o G Ca[0,1], where a > 0 could be fractional. This means that /o is ?o times 

continuously differentiable with ||/o||a < oo, c*o being the greatest integer less 

than a and the seminorm being defined by 

l/(ao)(*)-/(aoV)l (7.9) ||/L = sup 
'7 

, ," 
" 

x?x> \x-xf\<* 
a? 

7.7.1. Splines. Fix an integer q with q > a. For a given natural number 

K, which will increase with n, partition the interval (0,1] into K subintervals 

((k 
? 

l)/K, k/K] for k = 1, 2,..., K. The space of splines of order q relative 

to this partition is the collection of all functions / : (0,1] -> R that are q 
? 2 

times continuously differentiable throughout (0,1] and, if restricted to a subin 

terval ((k 
? 

l)/K,k/K], are polynomials of degree strictly less than q. These 
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splines form a. J = (q + K ? 
1)-dimensional linear space, with a convenient basis 

B\,B2,...,Bj being the B-splines, as defined in, for example, [11]. The B-splines 

satisfy (i) Bj >0, j = 1,2,..., J, (ii) ]C/=i Bj 
= 1, (iii) Bj is supported inside 

an interval of length q/K and (iv) at most q of B\(x),..., Bj(x) are nonzero 

at any given x. Let B(z) = (B\ (z),..., Bj(z))T and write pTB for the function 

z^ZjPjBjiz). 
The basic approximation property of splines proved in [11], page 170, shows 

that for some /3oo e RJ (dependent on /), 

(7.10) ll^-/o||cx)</"a||/olla. 

Thus, by increasing J appropriately with the sample size, we may view the space 
of splines as a sieve for the construction of the maximum likelihood estimator, as 

in Stone [28, 29], and for Bayes estimates as in [14, 15] for the problem of density 
estimation. 

To put a prior on /, we represent it as fp(z) 
= 

fiTB(z) and induce a prior on 

/ from a prior on p. Ghosal, Ghosh and van der Vaart [14], in the context of 

density estimation, choose f}\,..., fij i.i.d. uniform on an interval [?M, M], the 

restriction to a finite interval being necessary to avoid densities with arbitrarily 
small values. In the present regression situation, a restriction to a compact interval 
is unnecessary and we shall choose f}\,..., fij to be a sample from the standard 
normal distribution. 

We need the regressors z\,zi, -,zn to be sufficiently regularly distributed in 

the interval [0, 1]. In view of the spatial separation property of the B-spline func 

tions, the precise condition can be expressed in terms of the covariance matrix 

Xn = (fBiBjdFn), namely 

(7.H) J-l\\P\\2<PTVnP<J-l\\P\\2, 

where || || is the Euclidean norm on Ey. 
Under condition (7.11), we have that for all fi\, ft Ey, 

(7.12) c\\pi 
- 

ft || < V7II//5, 
- 

U2\\n < c'Wx 
- 
ft || 

for some constants C and C'. This enables us to perform all calculations in terms 
of the Euclidean norms on the spline coefficients. 

THEOREM 12. Assume that the true density j?q satisfies (1.10) for some a > A, 
let (1.II) hold and let Xlnbe priors induced by a Nj (0,1) distribution on the spline 
coefficients. If J = Jn 

~ 
nl^l+2a\ then the posterior converges at the minimax 

rate n-?/(1+2?) relative to \\ ||w. 

Proof. We verify the conditions of Theorem 4. Let fpn be the L2(P?) 
projection of fo onto the /-dimensional space of splines fp 

= 
/3TB. Then 

II/ft, 
- 

fp\\n < II/o 
- 

fp\\n for every fi eRJ and hence, by (7.12), for every ? > 0, 
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we have {fi : \\fp 
- 

fo\\n <s}C{fi: \\fi 
- 

fin\\ < C^fls}. It follows that the s 

covering numbers of the set {fp :\\fp 
? 

/olU < s) for || ||? are bounded by the 

C\/^/^-covering numbers of a Euclidean ball of radius C\fJs, which are of the 
order DJ for some constant D. Thus, the entropy condition (3.2) is satisfied, pro 
vided that J <ne2. 

By the projection property, with fioo as in (7.10), 

(7.13) \\fpn 
- 

fo\\n < IIZ/Joo 
" 
M\n < Ufa 

~ 
/Olloo < /"". 

Combining this with (7.12) shows that there exists a constant C" such that for 

every e > 2J~", {fi :\\ffi- f0\\n <s}D{fi: \\fi 
- 

ft || < C"V7e). Together with 
the inclusion in the preceding paragraph and the definition of the prior, this implies 
that 

IW : 11/ 
~ 

/olli. < je) ^ Nj(0,1)(fi : \\fi 
- 

ft [| < C'jVJe) 
nn(f : 11/ 

- 
/olU < s) 

~ 
Nj(0,1)(fi : \\fi 

- 
fin\\ < C'jVle) 

< Nj(0,I)(fi:\\fi\\<CjVJs) - 
2-J/2e-WM2Nj(0,1)(fi : \\fi\\ < C'jy/Je/y/T)' 

In the last step, we use Anderson's lemma to see that the numerator increases if we 

replace the centering fin by the origin, whereas to bound the denominator below, 
we use the fact that 

dNj(finJ) e-W-^'2 
^^ 

dNj(0,I/2)yHJ (V2)Je-W2 
~ 

Here, by the triangle inequality, (7.12) and (7.13), we have that \\fin\\ < 

V^II/aJU ^ \/J(J~a + II/olloo) <; >/7. Furthermore, the two Gaussian proba 
bilities are left tail probabilities of the chi-square distribution with J degrees of 

freedom. The quotient can be evaluated as 

? r(C')2j2Je2 j/2-\-x/2 jr 

2J/2 wn\\2k_x 
e ax 

jiC"Wl\jl2-xe-x,2dx 

This is bounded above by (Cj)J for some constant C if \fls remains bounded. 

Hence, to satisfy (3.4), it again suffices that ne2 > J. 

We conclude the proof by choosing J = Jn^ n i/0+2a) 

7.7.2. Orthonormal series priors. The arguments in the preceding subsection 

use the special nature of the B-spline basis only through the approximation in 

equality (7.10) and the comparison of norms (7.12). Theorem 12 thus extends to 

many other possible bases. One possibility is to use a sequence of orthonormal 

bases with good approximation properties for a given class of regression func 

tions /o. Then (7.11) should be replaced by 

(7.14) \\fix 
- 

ft|| < ||/A 
- 

fh\\n < lift 
- 

ft||. 
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This is trivially true if the bases are orthonormal in L2(P?), but this requires that 
the basis functions change with the design points z\,..., zn- One possible example 
is the discrete wavelet bases relative to the design points. All arguments remain 

valid in this setting. 

7.8. Binary regression. Let X\,...,Xn be independent observations with 

P(X( = 1) = 1 ? P(Xt = 0) = F(a + fizi), where Zi is a one-dimensional co 

variate, a and ft are parameters and F is a cumulative distribution. Within the 

parametric framework, logit regression, where F(z) = (1 + e~z)~l, or probit re 

gression, where F is the cumulative distribution function of the standard normal 

distribution, are usually considered. Recently, there has been interest in link func 

tions of unknown functional form. The parameters (F, a, ft) are separately not 

identifiable, unless some suitable restrictions on F (such as given values of two 

quantiles of F) are imposed. For Bayesian estimation of (F, a, ft), one therefore 

needs to put a prior on F that conforms with the given restriction. However, in 

practice, one usually puts a Dirichlet process or a similar prior on F and, inde 

pendently of this, a prior on (a, ft, and makes inference about, say, zo, where 

F(a + fizo) = 112. Recently, Amewou-Atisso et al. [1] showed that the resulting 
posterior is consistent. In this section, we obtain the rate of convergence by an 

application of Theorem 4. 

Because we directly measure distances between the distributions generating the 

data, identifiability issues need not concern us. The model and the prior can thus be 

described in a simpler form. We assume that X\, X2,... are independent Bernoulli 

variables, X\ having success parameter H(zi) for an unknown, monotone link 
function H. As a prior on H, we use the Dirichlet process prior with base measure 

}/(( 
? 

a)/ft, for "hyperparameters" (a, ft) distributed according to some given 
prior. This results in a mixture of Dirichlet process priors for H. Let the true value 
of H be Ho, which is assumed to be continuous and nondecreasing. 

In practice, y is often chosen to have support equal to the whole of E and (a, ft 
chosen to have support equal to E x (0, 00) so that the conditions on y and (a, ft 
described in the following theorem are satisfied. 

THEOREM 13. Assume that z\,Z2, - ,zn He in an interval [a,b] strictly 
within the support of the true link function Ho so that Ho(a?) > 0 and Ho(b) < 1. 
Let H be the given mixture of Dirichlet process priors described previously with y 
and (a, ft having densities that are positive and continuous inside their supports. 
Assume that there exists a compact set K inside the support of the prior for (a, ft) 
such that whenever (a, fi) e K, the support of the base measure y((> 

? 
a)IP) 

strictly contains the interval [a, b]. Then the posterior distribution of H converges 
at the rate n_1//3(logn)1//3 with respect to the distance dn given by (3.1). 

PROOF. Because the Hellinger distance between two Bernoulli distributions 
with success parameters p and q is equal to (p1//2 

? 
q1^2)2 + ((1 

? 
ft1//2 

? 
(1 

? 
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g)1/2)2, we have 

d2(Hu H2) < 
j \h\'2 

- 
H}/2\2dFn + 

/ 
Id - #i)1/2 " (1 ~ H2)1/2\2dFn, 

where Fn is the empirical distribution of z\, Z2, , zn> Both the classes {Hl/2 : 

H is a c.d.f.} and {(1 
? 

H)l/1: H is a c.d.f.} have ^-entropy bounded by a multiple 
of e~l, by Theorem 2.7.5 of [31]. Thus, any sn > n~l/3 satisfies (3.2). 

By easy calculations, we have 

MHo, H) = Ho(z,)tog^ 
+ (1 

- 
flbto^log1"^, //fo) l-M(Zi) 

*,(*. ?) < 
^(l* fg)2 

+ 20 - tfofe?(,og ??$)*. 
Under the conditions of the theorem, the numbers //ofo) are bounded away from 

0 and 1. By Taylor's expansion, for any 8 > 0, there exists a constant C (depending 
on 8) such that 

sup sup (//log ?) + (1 - /?)(log ?^) ) 
< Cs2, r = 1, 2. 

5<p<l-S ?:|4-/?|<A \ <?/ V l-qj J 

Therefore, with ||# 
- 

flblloo = sup{|#(z) 
- 

H0(z)\ : z G [a,fe]}, we have 
rnaxtn-1 ELi *?(?>, H),n~l ELi ^;/(#o, #)) < \\H 

- 
flbllL- Hence>in or 

der to satisfy (3.4), it suffices to lower bound the prior probability of the set 

[H :\\H- //olloo <?} 
For given a and fi, the base measure is y (( 

? 
a)/ fi). For a given ? > 0, partition 

the line into N <s~l intervals E\, 2s 2,..., En such that Ho(Ej) <e and such that 

the y (( 
? 

a)/fi)-probability of every set Ej (for j = 1, 2,..., N) is between As 

and 1 for a given positive constant A. Existence of such a partition follows from 

the continuity of Ho. It easily follows that for every H such that 
H7L1 \H(Ej) 

~~ 

Ho(Ej)\ <?,we have \\H 
? 

HoWoc <s. Furthermore, the conclusion is true even 

if (a, fi) varies over K. By Lemma 6.1 of [14], the prior probability of the set of 

all H satisfying ?f=i \H(Ej) 
- 

H0(Ej)\ < s is at least exp(-ce_1 logs'1) for 
some constant c. Furthermore, a uniform estimate works for all (a, fi) e K. Hence, 

(3.4) holds for sn, the solution of ne2 = s~l logs-1, or for sn = n~l^3(logn)1^3, 
which is only slightly weaker than the minimax rate n~1^3. 

7.9. Interval censoring. Let T\, T2,..., Tn constitute an i.i.d. sample from a 

life distribution F on (0, 00), which is subject to interval censoring by intervals 

(l\,u\),..., (ln, un). We assume that the intervals are either nonstochastic or else 

we work conditionally on the realized values. Putting (8\, r]\),..., (8n, r]n), where 

Si = 1{7/ < /,-} and rn = 1{/,- < 7/ < U[\, i ? 1, 2,..., n, the likelihood is given 

by VCi=\(P(U)tl(P(ui) 
- 

F(U))^(l 
- 

F(ui))l-8i-^. We may put the Dirichlet 
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process prior on F. Under mild assumptions on the true Fo and the base mea 

sure, the convergence rate under dn turns out to be n~l^3(logn)1^, which is the 

minimax rate, except for the logarithmic factor. Here, we use monotonicity of F 

to bound the ? -entropy by a multiple of ?~x and we estimate prior probability 
concentration as exp(?c?~l logs-1) using methods similar to those used in the 

previous subsection. The details are omitted. 

8. Proofs. In this section, we collect a number of technical proofs. For the 

proofs of the main results, we first present two lemmas. 

LEMMA 9. Let dn and en be semimetrics on ?for which tests satisfying the 

conditions of (2.2) exist. Suppose that for some nonincreasing function s h+ N(e) 
and some ?n > 0, 

(8.1) # 
(y 

> {0e@: dn(9, 90) < ?}, en\ < N(e) for all ? > en. 

Then for every ? > ?n, there exist tests (pn, n > 1, (depending on ?) such that 

Po"]<t>n 
< N(?) e~K^ne2 

and P^n)(l 
- 

(pn) < e-Kne2J2 for all 9 e 0 such that 

dn(9, 9o) > j? and for every j e N. 

Proof. For a given j e N, choose a maximal set of points in &j 
= {9 e & : 

j? < dn(9, 9o) < (j + l)?} with the property that en(9, 9f) > j?% for every pair of 

points in the set. Because this set of points is a j??-net over 0y for en and because 

(j + 1)^ < 2j?, this yields a set @r of at most N(2je) points, each at dn-distance 
at least j? from Oq, and every 9 e 07 is within ^-distance j?% of at least one of 

these points. (If ?j is empty, we take ?'. to be empty also.) By assumption, for 

every point 9\ e 0', there exists a test with the properties as in (2.2), but with ? 

replaced by j?. Let (j)n be the maximum of all tests attached in this way to some 

point 9\ g 
?'j 

for some j e N. Then 

oo oo ?Kne2 

<"V? 
< ? E e-^2 ? E N(2js)e-K^2 < N(s) *_ 

7=1 0,6?; J = l 

and for every j e N, 

sup Pe(n)(l 
- 

4>n) < supe-^"'262 
< e-Knj2s\ 

8e[Ji>j ?/ i>j 

where we have used the fact that for every 9 e @,;, there exists a test </> with 4>n><t> 

and /^ (1 
- 

0) < e~ *"'V. This concludes the proof. 
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LEMMA 10. For k > 2, every e > 0 and every probability measure tln sup 

ported on the set ft (0o, s;k),we have, for every C > 0, 

(8.2) 

,?(/^<(ft.(9)<.-<.^)<_I_lJ^. 
Proof. By Jensen's inequality applied to the logarithm, with ln,o 

= 
log(pg / 

p%>), 
we have log f(pln)/pff)dnn(9) 

> fln,odfln(e). Thus, the probability in 

(8.2) is bounded above by 

(8.3) 
P^{j{lnte 

- 
P^ln,o)dnn(e) 

< -n(l + C)e2 - 
J P^ln,edYln(9)y 

For every 0 g ft(0o, s; k), we have 
P^ln%e 

= 
-K(p%\ p^n)) 

> -ns2. Conse 

quently, by Fubini's theorem and the assumption that tln is supported on this set, 
the expression on the right-hand side of (8.3) is bounded above by ?Cm2. An 

application of Markov's inequality yields the upper bound 

Pif\f(ln,0-P^ln,0)dfln(0)A0\k ̂ P f \ln,Q - 
PffW <*fl"(g) 

(Cns2)k 
~ 

(Cne2)k 

by another application of Jensen's inequality. The right-hand side is bounded by 

C~k(ns2)~kl2, by the assumption on Xln. This concludes the proof. 

Proof of Theorem 1. By Lemma 9, applied with N(s) = 
exp(rce2) (con 

stant in e) and e = Msn in its assertion, where M > 2 is a large constant to be cho 

sen later, there exist tests <j>n that satisfy P^} <f>n < ene"(l 
- e~KnM ^n)-^e~KnM e* 

and P^n)(l 
- 

4>n) < e-KnM2snJ2 for all 0 G &n such that dn(6, 0O) > Msnj and for 

every j g N. The first assertion implies that if M is sufficiently large to ensure that 

KM2 ? 1 > KM2/2, then as n ?> oo, for any / > 1, we have 

(8.4) P^[Yln(dn(e, 0O) > JMen\xM)4>n] 
< 

P^Un 
< e~KMln^2. 

Setting @nj 
= {0 G 0? : Msnj < dn(6, 0O) < Men(j + 1)} and using (2.2), we 

obtain, by Fubini's theorem, 

Fix some C > 0. By Lemma 10, we have, on an event A? with probability at least 

1 - C-k{ne2n)-k'2, 

r n(n) C D(n) 2 

/ ?j-dnn(e)> / ^-rdnn(0)>e-^+C)"snnn(Bn(eo,en;k)). J pW JBn(Oo,sn;k) p?> 
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Hence, decomposing {9 e ? : dn(9,9o) > JM?n} = 
^j>j?nj and using (8.5), 

the last display and (2.5), we have, for every sufficiently large /, 

P^[Yln(9 
e ?n:dn(9,9o) > JenM\Xw)(l 

- 
<t>n)lAn] 

< 
-y e-ne2n{KM2j2-\-C-\KM2j2)^ 

by assumption (2.5). This converges to zero as n -> oo for fixed C and fixed, 

sufficiently large M and J if n?2 ? oo; it converges to zero for fixed M and C as 

J = Jn 
? oo if n?2 is bounded away from zero. 

Combining the preceding results, we have, for sufficiently large M and J, 

P^Un(9 
e 0 : dn(9,90) > M?nJ\X{n)) 

(8-6) l , 2 -KM2ne2/2 , V- -ne2{\KM2j2-\-C) 
-CHn?2)k'2+ 

+ 
^/ 

The rest of the conclusion follows easily; see the proof of Theorem 2.4 of [14]. 

Proof of Theorem 2. Ife? >n-amdk(l-2a) >2forae (0,1/2), then 

n?2 ? oo and Y^Li (n?2)~k^2 < oo. For C = 1/2, the first term on the right-hand 
side of (8.6) dominates and the sum over n of the terms in (8.6) converges. The 

result (i) follows by the Borel-Cantelli lemma. 

For assertion (ii), we note that ?n > n~a and ?(1 
? 

2a) > 4a together imply 
that (n?2)~k/2 < ?2. The other terms are exponentially small. 

Proof of Lemma 1. Because 
PofiPo^/Pof) ^ *> Fubini's theorem im 

plies that 
P^[f@\@n(Pen)/Pol))dnn(9)] 

< Tln(? \ 0?). Let the events An be as 
in the proof of Theorem 1, so that the denominator of the posterior is bounded 

below by e~^l+C)nenTln(Bn(9o, en; k)) on An. Combining this with the preceding 
display gives 

0 
Yln(Bn(9o,?n\k)) 

by the assumption on Yln(?\?n)- The rest of the proof can be completed along 
the lines of that of Theorem 2.4 of [14]. 
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