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POSTERIOR CONVERGENCE RATES OF DIRICHLET 
MIXTURES AT SMOOTH DENSITIES 

By Subhashis Ghosal1 and Aad van der Vaart 

North Carolina State University and Vrije Universiteit, Amsterdam 

We study the rates of convergence of the posterior distribution for 

Bayesian density estimation with Dirichlet mixtures of normal distributions 

as the prior. The true density is assumed to be twice continuously differ 

entiable. The bandwidth is given a sequence of priors which is obtained by 

scaling a single prior by an appropriate order. In order to handle this problem, 
we derive a new general rate theorem by considering a countable covering of 

the parameter space whose prior probabilities satisfy a summability condi 

tion together with certain individual bounds on the Hellinger metric entropy. 
We apply this new general theorem on posterior convergence rates by com 

puting bounds for Hellinger (bracketing) entropy numbers for the involved 

class of densities, the error in the approximation of a smooth density by nor 

mal mixtures and the concentration rate of the prior. The best obtainable rate 

of convergence of the posterior turns out to be equivalent to the well-known 

frequentist rate for integrated mean squared error n 
' 

up to a logarithmic 
factor. 

1. Introduction. Kernel methods for density estimation have been in use for 

nearly fifty years. Bayesian kernel density estimation using a Dirichlet process 
on the mixing distribution has been considered more recently (cf. [5, 12]), where 
the density is viewed as a mixture of normals with an arbitrary mixing distribu 
tion and a Dirichlet process (cf. [4]) is used as a prior on the mixing distribution. 
Efficient Gibbs sampling algorithms for the computation of the posterior based 
on a Dirichlet mixture process have been developed; see, for instance, [3]. Under 
certain conditions, posterior consistency of such a Dirichlet mixture prior with a 
normal kernel has been obtained by Ghosal, Ghosh and Ramamoorthi [7]. Ghosal 
and van der Vaart [9] obtained rates of convergence of the posterior for the Dirich 
let mixture in the case that the true density is a location or location-scale mixture 
of normals with standard deviations bounded away from zero and infinity. Un 
der natural conditions on the prior, they showed that the posterior converges at 
rate (log/?)*/\fn, where k depends on the tail behavior of the base measure of the 
Dirichlet process. The rate of convergence was obtained by finding a sharp entropy 
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698 S. GHOSAL AND A. VAN DER VAART 

estimate and prior concentration rate for this problem and then applying the gen 
eral posterior convergence rate theorem of Ghosal, Ghosh and van der Vaart [8]. 
The fast rate of convergence (\ogn)K /^/n arises because a mixture of normals with 

standard deviations bounded by two positive numbers is "super-smooth." Super 
smooth densities can be approximated by kernel estimators with a bandwidth that 

approaches zero at a logarithmic rate and super-smooth mixtures can be well ap 

proximated by finite normal mixtures with a small number of components (cf. 
Lemma 3.1 of [9]). This leads to small entropy numbers and high prior concentra 

tion (comparable to those of finite-dimensional models) with a nearly parametric 
convergence rate as a consequence. As a consequence of entropy bounds for nor 

mal mixtures, Ghosal and van der Vaart [9] also obtained essentially the same 

convergence rate (\ogn)/^/n for sieved maximum likelihood estimators (MLE). 
Under the same super-smoothness condition, Genovese and Wasserman [6] earlier 

obtained the much weaker convergence rate n~l^6(logn)^l+8^6 for some 8 > 0 for 

sieved MLEs based on Gaussian mixtures. 

While it is interesting to observe nearly parametric rates of convergence, the 

super-smoothness of the true density with a bounded known range for the standard 

deviation is a restrictive assumption. Scricciolo [13] considered the situation where 

the true density is still super-smooth, but the prior for the bandwidth parameter 
contains zero in its support. The resulting rate of convergence is much slower in 

this case and depends on the decay rate of the prior for the bandwidth at zero. 

In this paper, we consider the more realistic situation where the density of the 

observations is smooth, but may not be a mixture of normal densities. A smooth 

density can be approximated by mixtures of normals, but it is necessary to let 

the bandwidth (standard deviations of the components) tend to zero and allow an 

increasing number of components. This increases the complexity of the model and 

leads to larger entropy and smaller prior concentration, with, as a consequence, 
a slower rate of convergence of the posterior distribution. 

More specifically, we assume that the density of the observations is twice con 

tinuously differentiable. Under some regularity conditions, the optimal rate of con 

vergence of a kernel estimator is then n~2^5. The main purpose of this paper is to 

establish that the posterior distribution based on a Dirichlet mixture of normal 

prior attains the same rate, up to a logarithmic factor. In addition, we obtain the 

same rate for the sieved maximum likelihood estimator using a sieve consisting 
of normal mixtures. It may be noted that, even though the estimation of a smooth 

density is a considerably harder problem than that of a super-smooth density, our 

obtained rate, which is nearly optimal for the given problem, is still much better 

than the n~1^6 rate Genovese and Wasserman [6] obtained for sieved MLEs in the 

super-smooth case. 

1.1. Notation. Throughout the paper Xi, X2,... are independent and iden 

tically distributed (i.i.d.) as po on R. The corresponding probability measure is 

denoted by Po 
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The supremum and Li-norm are denoted by II Ilcx> an(J II 111, respectively. For 
two density functions f, g:R-> [0, oo), we let h denote the Hellinger distance 

defined by h2(f, g) = f(fx^2 
? 

g1//2)2 dk, where X is the Lebesgue measure on R. 
The ^-covering number N(s, S, d) of a semi-metric space 5 relative to the semi 

metric d is the minimal number of balls of radius s needed to cover 5. Similarly, 
the ?-bracketing number N[.] (s, S, d) is the minimal number of ?-brackets [/, g] = 

{u\ f <u < g} needed to cover 5, the size of a bracket [/, g] being the distance 

d(f, g) between upper and lower brackets (cf., e.g., [14]). The logarithms of the 

covering and bracketing numbers are referred to as entropies without and with 

bracketing. 
We write "<" for inequality up to a constant multiple, where the constant 

is universal or (at least) unimportant for our purposes. An expression xa+ in a 

statement means that the statement holds for xa for any a' > a. Let cf>(x) = 

(27r)-1/2exp(?x2/2), the standard normal density, and let cpa(x) = a~xcp(x/a). 
An asterisk denotes convolution and pf^ 

? F * cpG is a Gaussian mixture with 

mixing distribution F. The distribution which is degenerate at 9 is denoted by 8$. 
The support of a density p is denoted by supp(p). 

1.2. Assumptions. Throughout the paper, we assume that h(po, po * <j>a) = 

0(a2) as a -> 0. If po is twice continuously differentiable with J(Pq/po)2 
x 

podX < oo and f(pfQ/po)4Podk 
< oo, then the condition holds (cf. Lemma 4). 

1.3. Organization. The main results of the paper are on the convergence rate 
of the posterior distribution and these are presented in Section 2. The proofs of 
the main theorems are contained in Sections 9 and 10, and are based on estimates 
of the entropies of normal mixtures obtained in Section 5, approximation lemmas 

given in Section 6 and lower bounds on Dirichlet probabilities obtained in Sec 
tion 7. A general result on posterior convergence rates is obtained in Section 4, 

which is subsequently used in the proof of the main result in Section 2. The en 

tropy estimates also have applications to rates of convergence of sieved MLEs and 

posterior distributions relative to sieved priors, as noted in Section 3. The proofs 
of the theorems in Section 3 are given in Section 11. Sections 4-8 may be of some 

independent interest. 

2. Main results. We consider the sequence of priors Tln for p defined struc 

turally as follows: 

Pf,o(x) 
= 

f <t>a(x 
- 

z)dF(z); 
F ~ 

Da, the Dirichlet process with base measure a = a(R)a, where 0 < 

a(K) < oo and a is a probability measure; 

o/on 
~ 

G, where an is a sequence of positive real numbers converging to zero 
with n~ax <an<n~ai for some 0 < #2 < a\ < 1 and G is a fixed probability 
distribution on (0, oo) satisfying G(s) < e~^s~Y as s -> 0 and 1 - G(s) < e~&sY 
as s -> oo for some y > 1 and ji > 0. 
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F and a are independent. 

If Un(p:d(p, po) > Men\Xx,..., Xn) -> Oin Pq -probability for some M > 0, 
we say that en -> 0 is (an upper bound for) the posterior convergence rate relative 

tod. 

The proof of the following posterior convergence theorem is given in Section 9. 

THEOREM 1. Suppose that po has compact support and that ai > (4 + y)~l. 
If the base measure a has a continuous and positive density on an interval con 

taining supp(po), then the posterior rate of convergence relative to h is 

(2.1) sn =m<ix{(nan)-V2(\ogn),n-V2(a^yWY-l))+,oZ\ogn}. 

If supp(po) is a finite union of intervals and every interval I in the support satisfies 

Po(I) ^ HI)a far some a > 0, then this can be improved to the rate 

(2.2) sn=m^{{nan)-xl\\ogn),n-xl\a-l)^l2^-^+,a2n\. 

Further, when G is compactly supported, the middle terms on the right-hand side 

of (2.1) and (2.2) can be omitted. 

The best rate n~2^5(logn)4^5 in the preceding theorem is obtained in the sec 

ond assertion with y = oo (i.e., G is compactly supported) if on is chosen to be 

ft-1/5(logtt)2//5, nearly equal to the optimal frequentist bandwidth choice n~1^5. 

A common practice is to consider an inverse gamma prior on a2, which leads 

to conditional conjugacy and hence to an efficient Gibbs sampling procedure. Un 

fortunately, our theorem does not apply to this prior, because the inverse gamma 

prior has a polynomially decaying tail near infinity. Indeed, even with faster-than 

exponential decay, the theorem indicates that rates may suffer whenever the sup 

port of the prior is noncompact. Because these rates are only upper bounds, a neg 
ative conclusion cannot be reached based on these. However, it may be mentioned 

that even the issue of consistency is open for the inverse gamma prior unless an 

upper truncation is used (cf. [7]). On the other hand, for a truncated inverse gamma 

prior, a nearly optimal convergence rate is obtained from Theorem 1, while Gibbs 

sampling can be implemented easily with an additional acceptance-rejection step 
to take care of the truncation. 

The preceding theorem will be obtained by applying the general posterior con 

vergence rate theorem in Section 4. Estimates of entropy and prior concentration 

rate obtained in [9] for the super-smooth case will be refined in a way suitable to 

the present situation in Section 5. 

The assumption that po is compactly supported is restrictive, in particular in 

combination with the assumption that h(po, po * </>a) = 0(a2), which forces po 
to tend to zero smoothly at the boundary points of its support. We do not know if 

the assumption of compact support can be completely removed, but we note the 
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following extensions of the preceding theorem, which increase the applicability 

considerably. 
Given a smooth function w: R -? [0,1] with compact support, we can form a 

reduced data set X\,..., Xn by rejecting each X,- independently with probability 
1 ? w(Xt), giving a sample from the density po = pow/ f powdk. The size h is 
distributed binomially with parameters n and f powdk, whence h/n ?> / powdk 
a.s. Conditionally on h, Theorem 2.1 of [8] can be applied to conclude that the 

posterior concentrates on Hellinger balls of radius s^ around po. If we choose 
w to be equal to 1 on a given compact then po and po are proportional on this 

compact and hence the posterior essentially gives the (conditional) density of the 

original observations on this compact. 
This construction may be appropriate for Bayesian estimation of heavy-tailed 

densities, but it does change the posterior distribution. Even though we may ex 

pect that the change on an interval where w is identically one is minimal, it 

appears to be difficult to bound the difference. This difficulty can be avoided 

by applying the preceding with a sequence of truncation functions. For densi 
ties with exponentially decreasing tails, it yields a rate of convergence of the 

posterior relative to the Hellinger (semi)-distance on compact intervals given by 

h2(p, q) = f\(pxl2 
? 

q1/2)2 dk. For simplicity, in this result we assume that G is 

compactly supported in (0, oo). The proof of the following theorem is contained 
in Section 10. 

THEOREM 2. Suppose that po satisfies Po[?a,a]c < e~ca for some posi 
tive numbers c and y, and is twice continuously differentiable with f(Po/po)2 

x 

podk < oo and f(Po/po)4Podk 
< oo. If the base measure a has a continuous 

and positive density af satisfying af(t) > e~dtY for sufficiently large \t\,for some 

positive constant d, then the rate of convergence relative to the semi-distance hk is 
at least 

(2.3) en =max{(/ian)-1/2(log/i)1+y/2,cjn2logn}. 

3. Sieve maximum likelihood and sieve priors. As a byproduct of the upper 
bounds on the entropy of the set of normal mixtures (necessary for the proofs of 
our main results), we can also obtain the rate of convergence of sieved MLEs for 
normal mixtures. We consider sieves of the types 

(3.1) Pn = 
{PF,(T-F[-an,an] 

= l,b\crn <a <b2an], 

(3.2) Pn = 
{pF,a : F[?a, af < A(a) for all a > 0, b\on <cr< b20n\. 

Here, an and an are positive sequences and A : (0, oo) -> [0,1] is decreasing. We 
define the sieved MLE as pn = argmax{I~[f=i p(Xt): p e tPn} 

The rate of convergence of sieved MLEs relative to h can be obtained from 
Theorem 4 of [16] or Theorem 3.4.4 of [14]. There is a trade-off between the 
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complexity of the model !Pn and the distance of Pn to po- Under the assumption 
of Section 1.2, the approximation rate is O(o2). The complexity of the model Pn 
can be measured through its bracketing entropy. The rate of convergence is the 

maximum of the approximation error and the solution en to the equation 

(3.3) f 
" 
J\ogN[.](e,5>n,h)de 

~ 
yfne2 Jo 

Theorem 3. Let an -> 0 and an>e so that logn 
< 

\og(an/an) 
< logn, and 

let pn be the sieved MLE relative to Pn given by (3.1). If po has compact support 
and [?an, an] D supp(po) for all sufficiently large n, then h(pn, po) 

= 
Op(sn)for 

(3.4) sn = max{(nanr1/2an logn, a2}. 

The apparently best rate n~2/5(logn)4/5 is obtained when an is bounded, but 

[?an,an] D supp(/?o) and crn 
~ 

n~1/5(logn)2/5. The optimal order of bandwidth 

for the classical kernel estimator on ~ n~1/5 leads to a slightly larger error rate 

^-2/5 i0gn Admittedly, these are only upper bounds. In particular, the logarithmic 
factor may not be sharp. 

When supp(/?o) is not compact, but po/(po * (t>an) are uniformly bounded, we 

can use the sieves (3.2) to derive the convergence rate. The condition holds, for 

instance, if po is increasing on (?oo, a], bounded below on [a, b] and decreasing 
on [b, oo) for some a < b (cf. Lemma 6 in Section 6). 

Theorem 4. Let an -> 0 so that logn 
< 

log a"1 
< 

logn and let pn be the 

sieved MLE relative to Pn given by (3.2) with A(a) = e~da , d, 8 > 0 constants. 

If Po[?a,a]c < A(a) for every a > 0, then h(pn, po) = 
Op(sn)for 

(3.5) sn=max{(nanrl/2(logn)^W2^4,a2}. 

The proofs of the theorems in this section are given in Section 11. 

The sieves 5>n in (3.1) and (3.2) of the preceding section can also be used to con 

struct a prior for which the posterior converges at the same rate en as obtained in 

Theorems 3 and 4. As in Theorem 3.1 of [8], take a minimal collection of Hellinger 

?n-brackets that cover Pn. Consider the uniform prior Tln on the renormalized up 

per brackets. Then the resulting posterior converges at the rate sn. 

4. A general result on posterior convergence rates. When the prior G on 

a/an is not compactly supported, existing results on posterior convergence rates 

(such as Theorem 2.1 of [8]) do not seem to suffice in deriving the rate. Below we 

obtain a posterior convergence rate theorem where we use a countable decompo 
sition of the space of densities together with conditions on their prior probabilities 
and entropy numbers with respect to h. 
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Let Xi, X2,... be i.i.d. with density p e P. Let Un be a sequence of priors 
on P and let po and Po stand for the true density and the true probability measure, 

respectively. Let d be a metric which induces convex balls and is bounded above 
on P by a multiple of h. 

THEOREM 5. Suppose that Pn C P is such that Wn(P^\X\,..., Xn) -> 0 in 

Pft-probability. Assume that Pn can be partitioned as 
\SjL-oo ^n,j such that, for 

a sequence en -> 0 with ne2-^oo, 
OO 

(4.1) Y, vOVfe, PnJ, dWnn(PnJ)e-n?n 
-> 0, 

7=-oo 

(4.2) nn(p: P0log(po/p) < 
s2n, Polog2(po/p) < 

s2n) 
> <r< 

Then Un(p e P :d(po, p) > &?n\X\,..., Xn) ?> 0 in Pft-probability. 

Theorem 5 contains a standard posterior convergence theorem (cf. Theorem 2.1 
of [8]) as a special case where Pn is not decomposed (i.e., Pn$ 

= Pn and 

<Pnj 
= 0 for j ^ 0), so that logN(sn, Pn, d) needs to be bounded by a small 

multiple of ne2 in order to satisfy (4.1). At the other extreme, if we decompose Pn 
sufficiently finely so that each Pnj has diameter less than en, then the covering 
numbers appearing in (4.1) are all 1 and hence (4.1) reduces to 

oo 

(4.3) ? Jnn(PnJ)e-ne2*^>0. 
j=-oo 

The trade-off between entropy and summability of the square roots of prior prob 
abilities is interesting and requires further investigation; see [15] for a consistency 
result based on the summability condition. 

To prove Theorem 5, we need two auxiliary results. Ghosal, Ghosh and van der 
Vaart [8] used this result with a = fi = 1. 

Lemma 1. For any convex set Q. of probability measures with inf{h(Po, Q) 
Q e Q} > s, any a, /3 > 0 and all n > 1, there exists a test cj)n = <f>n(X\,..., Xn) 
such that 

SUp (aP^n +PQn(\~ 4>n)) < V*-*?2/2. 
Qe? 

PROOF. The proof follows by a minor adaptation of a result in [11], pages 
475-479, as in [10]. 

COROLLARY 1. For any set of probability measures Q, with inf{d(Po, Q) 
' 

Q e (2} > 4e, any a, ji > 0 and alln>\, there exists a test $n such that 

l~6 e~n?2 fa 2 

PSct>n<J-N(e,a,d)--?2, sup0*(l-0?)< /-^ 
. 

V & 1 - e~ne Qea V P 
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Proof. For a given j e N, choose a maximal ^/2-separated set of points 
in Sj? 

= {Q e Q.: je < d(Q, P0) < (j + l)e}. This yields a set S'. such that the 
union of the balls of radius je/2 centered at these points covers Sj. Any such 

ball B is convex by assumption and satisfies h(Q, Po) > d(Q, Po) > je/2 for all 
Q e B. Because any given ball of radius js/4 can contain at most one point of S', 

it follows that 
#S'j 

< N(ej/4, Sj,d) < N(e, <2, d) for j > 4. (If Sj is empty, take 
S!: empty and adapt the following in the obvious way.) 

For every Pi e 
Sfj, 

there exists a test co with properties as in Lemma 1, with <2 

equal to the ball of radius je/2 centered at Pi. Let (pn be the maximum of all tests 

attached in this way to some point Pi e 5'. for some j > 4. Then for all j > 4, 

00 
f7 ,0 fa p~2ne2 

sup j2?(l - 0?) < sup /|?-'"V/8 
< \*-e-2ne\ 

GeU,->; St i>j V P V P 

Proof of Theorem 5. Clearly, we may assume that the prior charges 

only Pn. The event A? that fY^=1(p{Xi)/po(Xi))dnn{p) 
> e~3nen satisfies 

Po(A-n) 
-> 1 by Lemma 8.1 of [8] and assumption (4.2). Now, for arbitrary tests 

<pnj, we have 

PS[nn(PePnJ:d(P,Po)>8en\Xu...,Xn)lAn] 

< P$4>n,j + P0n((l -Kj) f ft I^dUn(p)]e3ne2 

< Pfifaj + sup Pn{\ 
- 

<pnj)nn(PnJ)e3ne2, 
PePnJ:d(P,P0)>Sen 

which can be bounded by a multiple of 

J^N(2en, PnJ,d)e-4n?n + &e^nn{PnJ)e3ne2* 

for the choice of (pnj obtained from Corollary 1 with e = 2en, Q, = {P e 

PnJ'.d(Po,P) 
> Sen} and any aJ9Pj > 0. Put aj 

= N(2en, 5>n,j,d), Pj 
= 

Rn(tPnj) and sum over j to obtain the result in view of (4.1). 

5. Entropy estimates. In this section we estimate the entropy of normal mix 

tures, paying special attention to components with small variances. The main idea 

is to approximate general normal mixtures by finite mixtures with a small number 

of components. This same device will also be used in Section 9 to estimate the 

prior probabilities of Kullback-Leibler type balls and is isolated in the following 
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lemma. The lemma is based on the corresponding one for the super-smooth case 

(cf. Lemma 3.1 of [9]) and a partitioning argument. 

LEMMA 2. Let 0 < e < 1/2 and a, a > 0 be given. For any probability mea 

sure F on [?a, a], there exists a discrete probability measure Ff on [?a, a] with 

fewer than D(aa~x v 1) logs-1 support points, where D is a universal constant, 
such that 

\\PF,o-PF',Aoo<-i \\PF,a 
~ 

PF\o II1 ? ?(log?-1)1/2. a 

PROOF. We can partition the interval [?a, a] into k = \_2ot/a\ disjoint, con 

secutive subintervals I\,..., h of length a and a final interval 4+i of length /fc+i 
smaller than a. We may write F = 

Y%=\ F(h)Fi, where each F; is a probability 
measure concentrated on /,-, and then pF,a = 

^=1 F(h)PFi,G- For ease of nota 

tion, let Z; be a random variable distributed according to Ft, and for at the left 

endpoint of //, let G; be the law of W( = (Z,- 
? 

at)/a. Thus, G/ is a probability 
measure on [0, 1] for / = 1,..., k and on [0, k+\/<y] C [0, 1] for i = /: + 1. 

By Lemma 3.1 of [9], there exist probability measures G- on [0, 1] with N( < 

logs-1 support points such that \\pGt,\ 
? 

Pg'a IIoo ^ ? F?r / = fc + 1, the measure 

G- can be taken to be supported on [0, k+i/cr]. Lemma 3.3 from the same paper 
then shows that ||pg,-,i 

- 
Pg'.,\\\\ ~ ?(log?-1)1/2. Let F[ be the law of at +crW[ 

if W! has law G\ and set F' = ?*+/ F(It)F;. Because 

PFi,a(x) 
= E<M* 

- 
Z/) = 

a-1E0((x -a/)/a 
- 

W/) 
= 

<7~1PG/,i(C* -afi/o), 

and similarly for F/ and G , we have 

\\PFUG 
- 

Pf;,g Hoc = &~l \\PGt,\ 
~ 

Pg\,\ lloo, 

llPf/.a "Phalli 
= 

IIPG/,1 -PG5,llll 

Combined with H/?/^ 
- 

/?F/a|| < 
?f+/ F(Ii)\\pFh(J 

- 
pF^a\\, 

this shows that 

/7/r/ a has the required distances to pf,g- The number of support points of Ff is 
bounded by the number of intervals k + 1 times the maximum number of support 
points of an F/, and hence is bounded by a multiple of (ao~x v 1) loge~x. 

For given numbers a, b\, b2, let 

(5.1) PaMM 
= (/>F,a : F[-a, a] = l,b\<a< b2}. 

LEMMA 3. Let 0 < b\ < b2 and a > 0 am/ de/zrce PaMto by (5.1). Then for 
0 < e <\/2 and d equal to the L \ -norm, 

togW(..*..,.(o<tog(^) 
+ 

(? 
+ 

.)(hgI)(K?i+to,(? 
+ 

,)). 
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For d = || ||oo, the same bound holds with e replaced by eb\ if eb\ < 1/2. For 
d = h,the same bound holds with e replaced by e2. 

Proof. Let a, ft < 1/2, y and 8 be given positive numbers. Fix a minimal 
a-net E over the interval [b\,b2] and let F be the set of discrete probability 
distributions on [?a, a] with at most N < 

D(abfl 
v l)logj6_1 support points, 

for the constant D of Lemma 2. For every a e [bx, bj\, there exists a'eE with 

\o 
? 

af\ < a, whence 

\\PF,a 
~ 

PF,o'\\oo 
< 110a 

" 
0a'II oo < \<* 

~ 
<*'\HP A o')2 < 

Ot/b\, 

\\PF,a 
~ 

Pf,o>\\\ 
< 110a -0d'111 < 

\cr-a'\/(aA(j')<a/bi. 

By Lemma 2, for a sufficiently large D, there exists, for every given probability 
measure F on [-a, a], an element Ff e F (possibly depending on af) such that 

IIPF,a'-PF',a'lloo<^ 

\\PF,a 
- 

Pf>,o>lloo ? a/b\ + /3/Z?i, 

IIPF,a -PF',o>\\\ <Ot/bX +P(l0grl)l/2. 

Thus, ?JP = 
{pF,a :(F,or)ef xEJisan e-net over 3>a,bub2 f?r II 

* 
lloo and || Hi, 

respectively, if the expressions above are made to be less than e. 

We next construct a finite net over 3> by restricting the support points and 

weights of F to suitable grids. For a fixed y-net S over the N-dimensional sim 

plex for the ?i-norm, let 3*' be the set of all pp,a 3> such that the N sup 

port points of F are among the points {0, ?8, ?28,...} 0 [?a, a] with weights 

belonging to S. We may project pr,G ? & into pfG e 3>f by first moving 
the point masses of F to a closest point in the grid {0, ?8, ?28,...} and then 

changing the vector of sizes of the point masses to a closest vector in S. Let 

z\,zi, ...,zfvzf2,...,P\,P2,-'., p[,p'2, 
be such that F = 

Y,Pj$zj 
and F' = 

J2Pj8z'' 
- Then 

\PF,a(x)- PF',a(*)\ 

< 
J^{Pj\4>a(.X 

~ 
Zj) ~(t>a(x- Z'j)\ + \pj 

~ 
P;|0a(* 

~ 
z))}. 

j 

Thus, ||pF,a 
- 

pfvHoo < W;iloo + y 110alloo < 
?/*i + Y/b\ and ||pFfff 

- 

PF',<r\\i ̂  <V^i + / Hence, 3>f is a c/y-net over 3>a^l,b2 f?r c a universal con 

stant and for r] = r]0Q = 
ot/b\ + $/b\ + 8/b\ + y/fci for || ||oo and r] ? r\\ = 

a/bx+P(logrl)l/2 + 8/bx+yfov || ||i. Because h2(f,g) < \\f-g\\x for any 
two densities, 3>f is a Hellinger c2rj2-ntt over 3>a,b\to for *? = *7i 

There are at most ((&2 
- 

bx)/ot) v 1 possible choices of a e E. Each 
z^ 

can 

assume at most 2a/S + l different values, j = 1,..., N. The cardinality of a mini 

mal y-net $ over the TV -dimensional unit simplex is bounded by (5/y)N for y < 1 
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(cf. Lemma A.4 of [9]). Therefore, 

Because TV < Dab\x log/J-1, by construction, it follows that 

V#f> < log(^ 
v 

l) 
+ 
(? 

v 
,) log I 

[lo,(| 
+ 

!) 
+ 

,og(-lT)'. 
This number, with a = S = b\s, fi = ?(log?-1)-1/2 and y = s for given e < 1/2, 
is a bound on the D's-entropy for || || i for a universal constant D', and with 
a = S = b\e, ft = b\e and y = b\s, a bound on the D's-entropy for || 

- 
Hoo is 

obtained upon simplification. (If D' > 1, we replace ? by e/D'.) D 

For positive numbers a,x,b\ < b2, let 

(5.2) Pa,T 
= 

{pF,a : F[-a, a] = 1, b\x < a < b2r), 

where r is small. 

THEOREM 6. Let b\ < &2, t < 1/4 awd a >e be given positive numbers and 

define Pa,T by (5.2). Then, for 0 < ? < 1/2 and d f/ie L\-norm or Hellinger dis 

tance, 

(5.3) 
log^(e,^flfr,d)<^logi)(log^, 

where the constant in "<" depends on b\, Z?2 0fl(y. For rf = || 
- 
||oo? (5.3) holds with 

log ?~~x replaced by log(?r )-1. Further, for any of the three metrics, 

(5.4) 
\ogNb](?,Pa,T,d)<^(log^j 

. 

Proof. Inequality (5.3) can be deduced from Lemma 3 by replacing b\ and 

Z?2 by b\x and b2T and then simplifying the resulting entropy bounds. 
To obtain the bound on the bracketing numbers of Pa,n we first note that 

H(x) = (b^x)-X(t)(x/(2b2T))\{\x\ > 2a} + (biT)-xc/)(0)l{\x\ < 2a] is an enve 
lope for Pa,T- Given an 77-net f\,..., fjy for || ||oo, the brackets [/,-, w,-], where 

/, = (fi-r))v0 and ut = (f + r])AH, cover Pa,T. Thus, u\ 
- 

/,- < (2r)) A H and 
the size of these brackets in L \ can be bounded by 

f(ut 
- lt)dk < \\Ui - U \\ooB + / H(x) dx<r)B + 4>(B/2b2T), J J\x\>B 

for any B > 2a, by the tail bound for the normal distribution. For B = 

(b2 v l)2a(log^-1)1/2, we obtain the upper bound equal to a multiple of 
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rj (log r]~l)l/2 a + rjSa 
< 

r)(\ogr)~x)x/2a. Thus, there exists a constant D (pos 

sibly depending on bx,b2) such that the D77(log 77-1)1/2tf-bracketing number for 

the Li-norm is bounded by the uniform 77-covering number obtained previously. 
Choose rj = Dea~2(loge~l)~~1/2 for an appropriate constant D and simplify to 

obtain (5.4) 

The main difference between the bound given by Theorem 6 and the bound 

when the scale is bounded away from zero (cf. [9]) is the presence of the fac 

tor ax~l. This factor is the main driving force for the slower rate of convergence 
of the posterior in the present situation compared to the super-smooth case. 

The set of mixtures with an arbitrary mixing distribution on R is not totally 
bounded and hence Theorem 6 can only be extended to mixing distributions with 

possibly noncompact support if the mixing distribution is restricted in some other 

way. We shall extend the theorem to mixtures with mixing distributions whose tails 

are bounded by a given function (such as the normal density). 
For a given decreasing function A : (0, 00) -> [0, 1] with inverse A~l and posi 

tive numbers r and bx < b2, we consider the class of densities 

(5.5) 3>Ajt 
= 

{pF,o'-F[-a,af 
< A(a) for alia, b\x <a <b2x}. 

For 4> the standard normal distribution function, let A be the function defined by 

A(a) = A(a) + ff2 
Adk + l- 4>(a). 

THEOREM 7. Let bx < b2 and x < 1/4 be given positive numbers, let 

A: (0, 00) -> [0, 1] be a decreasing function and define 3*a,t as in (5.5). Then, 

for 0 < e < min(l/4, A(e)), we have that 

logN(3e,PA,T, || ||i) < 
?^(^log-J^log^-^J, 

where the constant in "<" depends on bx,b2 only. Furthermore, for a constant c 

depending onbx,b2 only, 

^ A-\ex)(^ A-\ex)\2 
\ogNb](ce, PA,r, || ||i) 

<-^(tog gKr J) 

For the entropy relative to h, the same bounds hold with e replaced by e2. 

PROOF. Because ae = A~l (e) satisfies F[-a , a?]c < e for every F as in the 

definition of 3>a,t, Lemma A.3 of [9] shows that the Li-distance between 3>a,x 
and 3>ae%T is bounded above by 2e. It follows that an ?:-net over 3>ae,T is a 3s-net 

over 3>Ax.\w view of Theorem 6, this implies the bound on the entropy without 

bracketing given in the first inequality of the theorem. 
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To bound the bracketing numbers, we obtain by partial integration, for any x > 

a > 0, 
/ oo roo 

/ 4>a(x-z)dF(z) = (l-F)(a)<l>Ax-a)+ <$>'a(z- x)(\ 
- 

F)(z)dz 
Ja Ja 

< AC ̂ ( , , <K~x) , Mx/2) < A(a)c/)(7(x-a) +-+-. 
G G 

For x < -a < 0, the same bound is valid for /T^ </>a (* 
- 

z)dF(z), but with 

cj>a(x ?a) replaced by cf)G(x + a) and with ? x replaced by x. Also, for a > 0 
and* < a, 

/ OO 

/ c/>a(x 
- 

z)dF(z) <<t>a(x- a)F[a, oo) <cpa(x- a)A(a). 
Ja 

For x > ?a, the same bound is valid for JZ^ 4>a (x 
? 

z) dF(z), but with cpa (x 
? 

a) 

replaced by cf)G (x + a). Hence, for any x and a > 0, 

/ 4>a{x- z)dF(z) < (cpb2T(x -a) + cj)blT(x + a))A(a) 
J\z\>a 

+ I(0(x) + A(x/2))l{\x\>a}. 

Let H denote the appropriate multiple of the right-hand side of this inequality. 
If Fa is the renormalized restriction to [?a, a] of a probability measure F, then 

F[?a,a]pFa,(j 
< Pf,g < 

F[?a,a]pFa,a + H. Consequently, given ^-brackets 

[li, Ui\ that cover Pa,r> there exists for every (F, g), as in the definition of Pa,t, 
a bracket [/,-, Ui] with /,-(l 

? 
A(a)) < pp,o < F[?a, a]ui + H <u; + H. Thus, the 

brackets [Z,-(l 
? 

A(a)), Ui + H] cover Pa,t- The size in L\ of a bracket [/,-, u{\ is 
bounded by \\ui ?//||i + ||//||iA(a) + \\H\\\ < s + A(a)/r. We now choose a such 
that A (a) < z? and apply Theorem 6 to bound the number of brackets [//, w/]. D 

As an example, if the mixing distributions have sub-Gaussian tails, then we 
can apply the preceding theorem with A equal to 1 ? <t>(a) < 4>(a), whence A is 
bounded by a multiple of the same function. Then, both A~x(?) and A~x(?) are 
bounded by a multiple of (logs-1)1/2 and the (bracketing) entropy is bounded by 
a multiple of r-1 (\og(?i)~x )5/2. Provided the tails of the mixing distributions are 

bounded by a function of the form A (a) = e~da , the entropy of the set of mixtures 
increases at most through a power of log(sr)-1. On the other hand, poly normally 
decreasing tails incur an additional factor of ?~k in the entropy bounds of Theo 
rem 7. 

6. Approximation results. If po is a twice differentiable density, then for d 

equal to the L^-distance, it is well known that d(po, po * (/>o) = 0(g2). In the 

following lemma, we establish this for d ? h. 
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Lemma 4. Let po be a twice continuously differentiable probability density. 

Iff(pfQ/po)2podX < oo and j\pf0/po)4po dk < oo, then h(p0, po * 0a) < ^2. 

If po is bounded with f \p$\ dk < oo, then \\po 
? po * 0a II l ̂ &2 

In both cases, the constants in "<" depend on the given integrals only. 

PROOF. By the assumption of Po-integrability of the functions p'0/po and 

Po/Po, we have / \p$ \ d\ < oo for i = 1, 2. Therefore, po and pf0 
are uniformly 

bounded, from which it can be seen that pa(x) = f Po(x 
? 

vy)<l>{y)dy is twice 

partially differentiable relative to a, with derivatives pa{x) and pa(x) given by 

Pa(x) = - I Po(x-ay)yct)(y)dy, 

Pa(x) = - I Po{x-ay)y2(j)(y)dy. 

Using Taylor's theorem with the integral form of the remainder (cf. [2], page 120), 
we have 

1/2/ x 1/2, x MX) 1 2 flf Psajx) 1 P2sG(x)\ 
p\l (x)-p0/ (x) = a-TJY- 

+ -a 
I-_---__j(l-5),fc. 

Because /?oOO 
= ? 

/ PoOO^OO dy = 0 for every x, we obtain 

*2<?>=w(r(M^f?(i-H2 

Now, for any o, by the Cauchy-Schwarz inequality, 

pI(X) = (f fr?y) y2pl'2^ -?y*P(y)dy)2 V 
Po' (x-ay) / 

< / ??.-?y dy x pa(x). J po(x 
- 

ay) 
Furthermore, by Holder's inequality with p = 4 and q = 4/3, we have 

PU*) = ( f Pttx~ay) yp3/4(* -?y*Ky)dy)2 

- 
/( ffi* "_gy) )V?(y)^y 

x 
(jp(x-ay)<t>(y)dy)' 

= 
f(^X-0y))4yU(y)dy,pl(x). J 

\p30/4(x-ay)J 
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The required bound for the proof of the first assertion now follows by substituting 
these inequalities into the expression for the Hellinger distance and interchanging 
the order of integration. 

The proof of the second assertion is similar, but easier. 

The following lemma bounds the distance between a normal mixture with a 

mixing distribution F and that with a discrete approximation to F. This result, 
which extends Lemma 5.1 of [9], will be instrumental in lower-bounding the prior 
probability of Kullback-Leibler-type neighborhoods. 

LEMMA 5. Let R = 
UyLo uj be a Petition ofR and F' = 

YJ}=\ Pj8zj be 
a probability measure with zj e Uj for j = 1,..., N. Then, for any probability 
measure F on R, 

1 1 N 
\\PF,a 

- 
Pf>,oHoc 

< ? 
maxM^) + 

-J2 \F(Uj) 
- 

Pj\, aL \<j<N a ., -J- 
J=\ 

1 N 
\\PF,a 

- 
PF',Ai < - 

,max X(Uj) + J2 \F(Uj) 
- 

Pj\. G \<j<N ^ 
.7 = 1 

Proof. Bound pp,a (x) 
? 

pf',o (x) by 

r N r 
/ ct>a(x-z)dF(z) + YJ / (<Pv(x-z)-<pa(x-Zj))dF(z) JUo 7tl JUj 

N 
+ yE4>Ax-Zj)(F(Uj)-pj). 

7 = 1 

The result now follows because F(U0) = 1 - 
EyLi F(Uj) < 

Ef=i \F(Uj) 
- 

pj\9 
H0cx||oo ̂CT"1, II^Hoo^or^and H^^C- -Z)_^(. -Z0lll ^^-'k-^L 

Bounds on the Kullback-Leibler divergence require some control on quotients 
of the type po/Pf,o- The following lemma, which is implicit in Remark 3 of [7], 
is useful for this purpose. 

LEMMA 6. Let p be a bounded probability density such that p is nondecreas 

ing on (?oo,a], bounded away from 0 on [a,b] and nonincreasing on [b, oo) 
for some a < b. Then, for every r > 0, there exists a constant C > 0 such that 

p*cj)a > Cp for every g < x. 

The next three lemmas are useful to control the Kullback-Leibler divergence 
and similar quantities in terms of the Hellinger distance. The first lemma is a sim 

plification of Theorem 5 of [16]. 
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LEMMA 7. For every b > 0, there exists a constant eb > 0 such that for all 

probability measures P and Q with 0 < h2(p,q) < et>P(p/q)b, with log+;c 
= 

logjc v0, 

P.og?<*W|l 
+ 
^og+^ 

+ 
ilog+p(^), 

Proof. The function r: (0, oo) -> R defined implicitly by log x = 2(v/jc 
? 

1) 
? 

r(x)(y/x 
? 

l)2 possesses the following properties: 

(i) r is nonnegative and decreasing. 
(ii) r(x) 

~ 
logjc-1 as jc | 0, whence there exists e1 > 0 such that r(x) < 

21ogx_1 on [0, ef] (a computer graph indicates that ef = 0.4 will suffice). 

(iii) For every b > 0, there exists el 
> 0 such that xbr(x) is increasing on 

[0, e%]. (For b > 1, we may take e'l 
= 1, but for b close to zero, e^ must be very 

small.) 

Using these properties and h2(p, q) 
= 

?2P(^/q/p 
? 

1), we obtain 

P\og?-=h2(p,q) + P 
r(-)(J--l) 

<h2(p,q) + r(e)h2(p,q) + P 
r(")1ji^?}] 

</i2(p,^) + 21og-/i2(/7,^) + 2^1og-pf^) e e \qj 
for e < e' A e^ A 4. The proof of the first inequality now follows by choosing 
eb = h2(p, q)/P(p/q)b and eb = (e' A e'l A 4)b. 

To prove the second inequality, note that | logx| < 2|v^ ?\\,x>\, and so 

Next, for e < e'L2, in view of the third property of r we have 

< 8h2(p, q) + 2r2(s)h2(p, q) + 
2ebr2(s)P(?) 

. 

With sb = h2(p, q)/P(p/q)b and eb < (s' A e'{,n)b, the proof follows from (ii). 
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The next lemma is the limiting case of the preceding lemma as b f oo. The 
first assertion was proved by Birge and Massart ([1], equation (7.6)). The second 
assertion improves on Lemma 8.3 of [8]. 

LEMMA 8. For every pair of probability densities p and q, 

Plog^<h2(p,q)(l+\og 
?- 

), q V q 00/ 

^(log-) <h2(p,q)(\+\og 
^ 

) 
. 

PROOF. It can be checked that, for b > 1, we can choose 6^ 
= 1 in the pre 

ceding proof. Furthermore, we can choose ?f = 1 if we use the bound r(x) < 

2 + 21og;c rather than the bound r(x) < 2 logjc. This leads to the same types 
of bound as in Lemma 7, which are then seen to be valid for every b > 2 and 

any probability densities p and q with h2(p, q) < 
P(p/q)b, since eb > 1. Here, 

P(p/q)b = Q(p/q)b+x > (Q(p/q))b+x > 1 for b > 1 by Jensen's inequality. 
Thus, the bounds of Lemma 7 hold for every sufficiently large b and every p 
and q with h2(p,q) 

< 1. For b t oo, we have that (P(p/q)b)x/b converges to 
the Loo(F)-norm of p/q, and the bounds tend to the bounds given by the present 
lemma. 

Given the control of the supremum of likelihood ratios, we can also compare 
the Kullback-Leibler divergences of two densities relative to a third density. 

LEMMA 9. For any probability densities p, q and r, 

P P P 1/2 
Plog-<Plog-+2h(q,r) 

- 
r q r oo 

p(\og-\ <Ap(\og-\ +I6h2(p,q) + I6h2(q,r) ̂ + I6h2(p, r). 

Here, p/r is read as 0 if p ? 0 and asooifr = 0< p. 

PROOF. To prove the first relation, write P log(p/r) as the sum of P iog(p/q) 
and P log(q/r). Using log* < 2(v/x 

- 
1) and the Cauchy-Schwarz inequality, we 

obtain 

r \J r 

? II1/2 , 
<2- ^p(^-V^)dk r II oo J 

p\\x'2 <2 - 
h(q,r). ' II OO 
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By the relations log+jc < 2|V* 
- 

1| and log_x = log+(l/x) < 2\^/T[x 
- 

1|, 
we have, for any probability densities p,q,r, 

p(log+^) <4p(Jl-\\ <a\Z\ h2(q,r), \ r) yV r ) || r || oo 

p(log_^) 
<4p( J--A =4h2(p,r). 

Since | log f\ 
< log | + log_ | + log+ ? + log_ ?, the second relation follows 

from the triangle inequality for the L2(P)-norm. 

7. Prior estimates. The following extension of Lemma 6.1 of [8] gives a use 

ful probability bound. 

LEMMA 10. For given N e N, let (px,..., p^) be an arbitrary point in the 

N-dimensional unit simplex and let (Xx,..., Xm) be Dirichlet distributed with 

parameters (ax,..., a^), with aj 
< 1 for every j and 

J2IJ=X aj 
=m> Let a and b 

be positive numbers. Then, for every 0 < e < 1/4 with eb < aotj and eN < 1, and 

constants c and C that depend only ona,b,m, 

(7.1) 
Pr^ 

|X; 
- 

Pj\ < 2e, w^Xj 
> 

^ 

> Ce-ef"?"-\ 

PROOF. As in the proof of Lemma 6.1 of [8], we can assume without loss of 

generality that p^ > N~l, and if \xj 
? 

pj\ 
< e2 for 7 = 1,..., N ? 

l,thenx^/ > e2 

and EyLi I*/ ~Pj\< 2?- Using F(a) = T(l + a)/a < \/a for 0 < a < 1 and the 

fact that aj >eb/a, we obtain 

Pr(\Xj-Pj\<e2,Xj>j,j 
= 

l,...,N) 

r(m) Nf} / min((py+e2),i) ! 
>?m- / x/ dxi ~ 

IlJLi r(?y) /=i 
J k?pj-b2U2/2) 

j 

> T{m){e2/2){N-{\eb/a)N 

>Cexp(-cN logs'1). D 

8. Tail mass of Dirichlet posterior. To obtain a posterior convergence rate en 

for Dirichlet mixtures, we need to show for some sufficiently large a that 

(8.1) EUn(F: F[-2a, 2af > 
s2n\Xu..., Xn) -+ 0. 
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In [9], (8.1) was derived by showing that the prior mass of the set in the display is 

exponentially small. This forces us to increase a with n sufficiently fast, but in the 

present situation, this method would lead to very restrictive tail conditions on the 

Dirichlet base measure. Instead, when the true distribution is compactly supported, 
we shall verify (8.1) for a fixed large a by calculations using explicit properties of 

the Dirichlet prior and posterior. 

LEMMA 11. Let the true distribution ofX\,..., Xn be i.i.d. Po. If the model is 
as described in Section 2 and a has a positive and continuous density on [?a, a], 
then for any ? > 0 and 0 < b < aG~x, there exists K not depending on n such that 

E[pr(F[-2a, 2af > s\X\,..., Xn)l I max \Xt\<a\] [\<i<n J J 

< EPr(a >ba?\Xu..., XH) + 
"f"^1' 

+ Kne^e^'^l 
e(a(R) +n) 

Moreover, if Po is compactly supported and satisfies the assumptions in Sec 
tion 1.2, a has positive and continuous density on an interval containing the sup 

port of Po, bn 
? oo is a sequence with bnGn ?> 0, n?~2e~a ^bn?n _>. o and 

Pr(cr > bnGn) ? o(e n?") for a sequence ?n such that (4.2) holds, then (8.1) 
holds. 

Proof. To prove the lemma, it is useful to describe the Dirichlet prior and the 
observations from the Dirichlet mixtures structurally as follows: 

F ~ 
Da and g/gh 

~ 
G, independently; 

given (F, a), the variables 9\,..., 9n are an i.i.d. sample from F; 

given (F,g,9\, ..., 9n), the variables e\,..., en are i.i.d. Af(0, g2); 
the variables X\,... ,Xn are defined as Xt 

= 
0j + e\. 

Let Gn(s) = G(s/Gn). Given (9\,..., 9n), the observations X\, ...,Xn are in 

dependent of F and hence the conditional distribution of F given (X\,... ,Xn, 
9\,..., 0n) is independent of X\,..., Xn. This allows us to write 

Pr(F[-2a,2a]c > ?\X{,..., Xn) 

= 
E{Pr(F[-2a,2a]c>?\9l,...,9n)\Xl,...,Xn). 

It is well known (cf. [4]) that the conditional law of F given 9\,...,9n is the 
Dirichlet distribution with base measure a + Yl?=\ &0i In particular, 

F[-2a,2af\9x,...,9n 

~ 
beta(a[-2fl, 2af + N[-2a, 2af, a[-2a, 2a] + N[-2a, 2a]), 
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where N(A) = 
Yl?=\ l{0i e A}. We can use the preceding display and Markov's 

inequality on the inner expectation on the right-hand side to see that 

Pt(F[-2a, 2af > e\X\,..., Xn) 

^ a[-2a, 2a]c + ELi Pr(fr [-2*. Wc> a <ban\Xx,..., Xn) 

e(a(R) + n) 
+ Pr(a>ban\Xx,...,Xn). 

Let 0-n = (6x,..., 9n-i), H(6x,...,0n) be the joint distribution of (6\,..., 6n), 

Hn(0n\9-n) be the conditional distribution of 6n given 6-n and H-n(6-n) the mar 

ginal distribution of 6-n. Bayes' formula then gives 

Pv(On e [~2a, 2a]c, a <ban\Xx,..., Xn) 

= fo f ftne[-2aWnUs-le-{Xi-ti)2/^ 

fffnUs-le-(Xi~ti)2/2s2dHn(tn\t-n)dH-^^^^ 

The conditional distribution Hn(-\9-n) of6n given 0-n is 

_\0i, 
with probability l/(a(R) + n - 1), / = 1,..., n - 1, 

~n " 

( ~5, with probability a(R)/(a(R) + n-\). 

Thus, with 8 a lower bound for the density of a on [?a, a] and s < a, 

fe-^-WdHMu,,) > , "f , fXn+S 
e-^2'2*2 da?n) 

J a(R) + n-l Jxn-s 

q(R) _1/2 ~ 
a(R)+w-1 

provided that 5" < a. Thus, the integral in the denominator of the Bayes formula is 

bounded below by 

<8-2> ̂1R) ig"'/2g f [Hfis-le-lx>->WdH-H(t-n)dGH(s). Qf(R) + n ? 1 Jo J .=j 

We now upper-bound the numerator. For \Xn \ < a and tn e [?2a, 2a]c, we have 

that (Xn 
? 

tn)2 > a2, so for any s < ban it follows that 

s-Xe-(Xn-tn)2/2s2 < s-le-a2/4s2e-a2/40a* < 
Ao^74^", 

where Ao = supfs-1^ 
/45 :5 > 0}. This leads to the bound 

(8.3) 
Aoe~a2^2fo 

?" 

J' nrt-<*'-?>2/*2dH-n(t-n)dGn(s). 

As &<!? < a, the ratio of the integral in (8.3) over that in (8.2) is bounded by 1. 

Thus, we may bound the expression in the Bayes formula by Kne~a /Ab ?n, for 
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some constant K. Putting this into the bound for Pr(F[?2a, 2a]c > e\X\,..., Xn), 
we complete the proof of the first assertion. 

For the second assertion, observe that the restriction X,- e [?a, a] is redundant 
for sufficiently large a. Replace ? by ?2, where ?n satisfies (4.2), and b by a se 

quence bn that satisfies the given conditions. It then follows from Fubini's theo 
rem (cf. the proof of Theorem 2.1 of [8]) that U(g > bnan\X\,..., Xn) -> 0 in 

Fq -probability. Since n?2 -> oo, the result follows. 

9. Proof of Theorem 1. We apply Theorem 5, with ?n given by (2.1), and 

Pn 
= 

{pF,a'-F[~a,a]c<?2n}, 

Pnj 
= 

iPF,a : F[-a, af < 
?2n, V Gn <G< V+XGn), j = 0, ?1,..., 

where [?a/2, a/2] contains the support of po. 
Let ?n 

= (nGn) 
~l /2 

log n v g2 log n, which is smaller than ?n. In the second part 
of the proof, it will be seen that (4.2) holds when ?_n replaces ?n. If we choose bn to 

be a sufficiently large multiple of (ft?2)1//}/, then Pr(or > bnGn) < e~^hn < e~cn-n 

for an arbitrarily large constant c and bnGn <Gn~ 
lY 

(log n)2/y v (nGn 
+y 

log n) x^y, 
which goes to 0 as a power of n up to a log factor, since n~ai < Gn < n~ai and 

#2 5: (4 + y)~x. Thus, all conditions of the second part of Lemma 11 hold and 
hence nn(^|Xi,..., Xn) -* 0 in probability. 

By Lemma A.3 of [9], the L\-distance between pf,o and Pf',g for Ff equal to 
F restricted and renormalized to [?a, a] is bounded above by 2F[~a, a]c. There 

fore, for e > ?n, we have, with PnMto as m Lemma 3, 

\ogNO?2,PnjA\>\\x) 

<log^2,^2^^+1^,||.|h) 

for s2 < 1/2 by Lemma 3. Hence 

logN(V3e, 3>nh h) < \ogN(3e2, 9>nj, \\ ||,) 

fn a ( a2-J\2 

< an\ elan) 

(log-y j 
, 2jGn > a. 

It follows that N(?n, Pnj,h) is bounded by a multiple of exp(Cj22~jcr~l \og2n) 
if 2^Gn < a, and is bounded by a multiple of exp(C log2 n) otherwise, for a large 
constant C. By the assumption on the prior of a, we have 

nn(Pnj)<G(2^x)~G(V)<\e 
' J<U' 

[e~^YJ, j>0. 
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Thus, to verify (4.1) for a multiple of en, it suffices to show that for con 
stants C, D, E, 

?exp(Q'22-%-1 log2* 
- 

D2~yj) < eEnen, 
j<o 

? exp(C;22-^a-1 log2* 
- 

D2") < eEn?l 
0<j<\og(a/an) 

J2 exp(C log2 n - D2yj) < eEnen. 
j>\og(a/an) 

For the third sum, this is immediate. In the second sum, we can bound the factors 

j22~J by a constant and the inequality is then immediate. 

The first sum can be transformed into a sum for j = 0,1,... by the change 
of variable j i->- ?j. The factor j2 can be absorbed into 2J at the expense of 

replacing 2 by a slightly bigger number A = 2n, where r\ > 1 can be arbitrar 

ily close to 1. Put S(K) = 
exp(KAJ 

- 
Ay'j), where / 

= 
y/r]. To study the 

growth rate of log S(K) as K - 
oo, observe that KA^ ? Ay ; is maximized 

near jo = (yr 
? 

1)_1 \ogA(K/y'), leading to function value at most a multiple of 

Ky /{y ~l\ that is, j?0//(y--i))+# Since the series decays faster than geometrically, 
the sum in the tail is bounded by a multiple of the maximum term. The first jo terms 

together contribute at best jo times the value of the maximum. Thus, it follows 

that log S(K) = 0(#(W(y-DH log K^ and> clearly, the logarithmic factor can be 

absorbed into the power. Hence, in view of the fact that log e~l 
= O (log n), the re 

quirement (4.1) becomes (a/an)^y^y-l))+(log -^(^Ax-DH 
< n?2 Again, the 

logarithmic factor may be absorbed into the power. Thus, the condition is satisfied 
in view of (2.1). 

Finally, we verify (4.2). Fix numbers bf > b > 0, to be chosen sufficiently large 
at the end of the proof. Because Po possesses compact support, by Lemma 2, there 

exists a discrete distribution Fn = ]?/ii Pj&Zj* supported on Nn < o~x loge~^ 

points in the an-enlargement of the support of Po, such that 

(9.1) \\PFn,*n-pp0,aJi<ebn(\oge;b')l'2<eb, 

for sufficiently large n. This will change by 0(eb) if we move the support points 
of Fn by 2eban, so we can assume that the support points are eban -separated. We 

can then find disjoint intervals Ux,..., U^n with Zj e Uj and X(Uj) 
= eban for 

j 
= I,..., Nn. We can modify this to a partition of an interval that contains the 

support of Po into Mn > Nn intervals Ux,..., Umh , such that each interval Uj has 

length eban < 
k(Uj) 

< 2eban for j 
= 1,..., Mn, and such that Mn < a~l logn. 

Let 
E?=il*Wy) 

" 
Pj\ < 4 and F(Uj) > s2nb for j 

= l,...,Mn, and 

|or 
- 

ban | < eban, for b = (bx + b2)/2. By Lemma 5 [with U0 = (U\<j<Nn uj)C^ 
we have \\pF,an 

- 
PFn,anh 

< e*. Furthermore, \\pFt<T 
- 

pF,anh 
< 
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Il0o- 
- 

<\>an 111 
< \<* 

~ 
crn\/(G A Gn) < ?b. By the triangle inequality and (9.1), we 

have \\pp0,an 
- 

PF,ah 
< 

Bbn and hence h(p0, pF,o) 
< 4/2. Combining the pre 

ceding inequality with Lemma 4, we conclude that h(po, Pf,o) % <*n + ew ~ Gn 
if & is sufficiently large. Now, if x e supp(/?o), then 

Jx-on cr Gn 

because the interval [x 
? 

Gn,x + Gn] contains at least one of the intervals 

Ux,...,UMn. Consequently, Po(po/PF,a) 
< Onle . 

Results of the two preceding paragraphs imply, for sufficiently large b, that 

( Nn _ 

\(F,G):J2\F(Uj)-pj\<?b,F(Uj)>?2nb,j 
= 

l,...,Mn,\G-bGn\<?^ 
{ j=\ J 

c\(F,G):h(po,PF,a)<CXn2,Po(-^-)<^} I \PF,<7 / ?n > 

The densities pp,o with (F,g) as in the last set are contained in B(po, 
c$g2 logn) C B(po, C4?n) for a sufficiently large constant C4, in view of Lemma 7. 

By construction, k(Uj) 
> ?bGn and hence a(Uj) 

> ?bGn for every j = 

1,..., Mn. Furthermore, for sufficiently large b, we have ?bMn < 1. By Lemma 10 

(with pj 
= 0 for Nn < j < Mn and a different constant b, as in the present proof), 

we conclude that the prior mass of the set B(po, c^?n) is bounded below by a mul 

tiple of ?b exp(?cMn logs-1) 
> 

exp(?cfG~x (logn)2), proving the first statement. 
For the proof of the last statement of the theorem, we follow the same steps, but 

we redefine ?n by (2.2). The verification of (4.1) needs no changes, but we adapt 
the verification of (4.2) as follows. Fix b1 > b > 0. Because Fo possesses com 

pact support, by Lemma 2, there exists a discrete distribution Fn = Y,j=\ Pj^zj 
supported on Nn < 

?n~X 1?8 ?n~b P?ints in the ̂-enlargement of the support of Po 
such that (9.1) holds for sufficiently large n. The proof of Lemma 2 shows that 

we can satisfy Fn(Ij) 
= 

Po(Ij) for every interval Ij in a covering of the support 
of Fo by Mn < g~1 intervals of length Gn. We can assume that the support points 
are ?bGn-separated. We can then find disjoint intervals U\,..., Un? with zj e Uj 
and k(Uj) 

? 
?bGn for j = 1,..., Nn, and such that each Uj is contained in some 

interval 4. 

Suppose that F is a probability measure satisfying ]Cf=i \F(Uj) 
? 

pj\ 
< 

G%?b 
and that g is a number with \a 

? 
bGn | < ?bGn for b = (b\ + b2)/2. As before, this 

implies that h(pPQj(Tn, pF,a) 
< 

eb/*'. Moreover, for every x e supp(/?0), pf,g (x) > 

g~xF[x 
- 

Gn,x + Gn] > cr~x min7 F(Ij), because the interval [x 
- 

Gn, x + Gn] 
contains at least one of the intervals I\,..., Imh By construction, Fn(Ij) 

= 
Po(Ij), 

which is bounded below by a multiple of g%, by assumption, for every j. Hence, 

F(Ij)> ? F(Ui)> J2 Pi-<sbn = Fn{lj)-oanzbn>< 
i-.UiClj i:UiClj 
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Consequently, pF,<r(x) 
> 

o^~x if x e supp(p0) and so \\po/pf,g IIoo ̂ ?l~a 
By Lemma 4, we have that h(p0, pp0,an) 

< o-2. Therefore, since po/pp0,an is 
bounded by Lemma 6, we conclude by Lemma 8 that Po(log(po/ pp0jGn))k 

< a4, 
k = 1,2. With the help of Lemma 9, with p = p0, q = pp0,an and r = pf,o, we 

see that P0(log(/?o/PF,a))* 
< 

rf + eb + ehn/2anl-a 
< 

a?4, k = 1, 2, for sufficiently 
large b. Combining the results of the three preceding paragraphs, we see that, for 

sufficiently large b, 

( Nn j 
(F,a): J2 \F(Uj) -pj\< oanebn, \a -ban\< eban 

> 

[ j=\ J 

c{(F,a):Po(log-^) <^,k=l,2^cB(p0,c5a2). 
By construction, X(Uj) 

= eban and hence a(Uj) 
> eban for every j. By 

Lemma 10, we conclude that the prior mass of the set B(po, c$o2) is bounded be 

low by a multiple of ?^exp(?cNn loge"^7) 
= 

exp(?cfa~l(logn)2), proving (2.2). 
The validity of the final remark is clear from the proof, as there are only finitely 

many terms when G is compactly supported. 

10. Proof of Theorem 2. Fix a smooth function w:R -> [0,1] with sup 

port [?2, 2] that is identically 1 on [?1,1] and let wn(x) = w(x/kn) for kn = 

(logn/cf)l/y for some d < c. Define new observations Xx,... ,Xa from the orig 
inal observations Xx,..., Xn by rejecting each X,- independently with probability 
wn(Xt). Because Po[?kn,kn]c = o(n~l) by the tail assumption on Po, the prob 

ability that some X; is rejected is actually o(l) and hence the posterior distribu 

tions based on the new and the original observations are the same with probability 

tending to one. In particular, they have the same posterior rate of convergence. 
The new observations are a random sample from the density pn that is propor 
tional to poWn- Because \fpown dk ? 1| < Po[?kn, kn]c = o(n~l), we have that 

hk(pn, Po) = o(n~l) for every k. Hence, it suffices to show that the posterior based 

on the new observations concentrates at rate en around pn. 
We shall establish this by means of an obvious triangular array version of The 

orem 2.1 of [8] [with the only difference being that we treat Y\n(^) -> 0 in 

Pq-probability directly instead of through their condition (2.3)]. We verify this 

for 3>n = {pF,a:F[2kn,2kn]c 
< 2en) and en = max{(norAZ)-1/2(logn)1+1/^, 

a2logn}. We choose w such that f(w'/w)4wdk < oo and f(wff/w)2wdX < oo. 

Then j(pfn/Pn)APndk 
= 0(1) and f(p'nf/pn)2PndX 

= 0(1), and hence 

h2(pn, Pn *<t>an) 
= 

?(an )> bY Lemma 4. 

The verification of the entropy bound can proceed as before, except that we 

obtain an additional logarithmic factor by the dependence of an on n, as follows: 

log^(3??2, *>?, || II,) < ^(log^f 
< 

-Ulogn)2+1/^ 
< ne2n. 
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For the verification that n?(^|Xi,..., Xn) -? 0, we use Lemma 11, where it 

suffices that 

(lo.i) e-<Z/(*?&)-L- o. 
encrnmm\t\<kna'(t) 

This is certainly the case under the tail condition on a'. 

We adapt the verification of prior concentration rate in Kullback-Leibler neigh 
borhoods as follows. Fix b' > b > 0. Because Pn possesses support [?2kn, 2kn], 

by Lemma 2, there exists a discrete distribution Fn =J2j~\ Pj^zj supported on 

Nn < knG~x loge-/? points in the interval [?2kn 
? 

Gn, 2kn + Gn] such that 

(10.2) \\PFn,on-ppn.oA\<eZ<\ogef)xl2<ebn, 

for sufficiently large n. Because this distance changes by 0(?b) if we move 

the support points of Fn by 2?bGn, we can assume that the support points are 

?bGn -separated. We can then find disjoint intervals U\,..., U^n with Zj e Uj and 

k(Uj) 
= ?bGn for j 

= 1,..., Nn. We can modify this to a partition of the interval 

[?2kn, 2kn] into Mn > Nn intervals U\,..., Umh such that each interval Uj has 

length contained in [?bGn, Gn] and such that Mn <kncr~x log^-^. 
Let F satisfy ?^ \F(Uj) 

~ 
Pj\ < 4 and F(Uj) > ?2b for j = 1,..., Mn, 

and suppose that \a 
? 

bGn\ < ?bGn for b = (b\ + &2)/2. By Lemma 5, we have 

\\PF,an 
~ 

PFn,an II i < ^ and \\pF,a 
- 

PF,an II l < ??. Applying the triangle inequal 
ity repeatedly and combining the preceding two inequalities with (10.2), we find 

that \\ppn,an 
~ 

Pf,g II l < ?bn and so h(pPn,Gn, PF^)sbn12. Combining the preceding 

inequality with Lemma 4, we conclude that h(pn, pF,a) ^ o2 + ?n <g2 if b is 

sufficiently large. 
For every x in the interval [?2kn, 2kn], we have 

PF,a(x)> / (pa(x-z)dF(z)> 
- 

>?, 
Jx?an G Gn 

because the interval [x 
? 

Gn,x + Gn] contains at least one of the intervals 

f/i,..., UMn- Consequently, Pn(Pn/PF,a) 
< 

?nl?lb 
Combining the above results, we see that, for sufficiently large b, 

'(F,G):Y^\F(Uj)-pj\<?bn,F(Uj)>?f,j 
= 

\,...,MnAGn-G\<?bnGn 
[ j = \ J 

c\(F,G):h(pn,pF^)<o2n,Pn(-^)<^\. V \PF,o / &n ' 

The densities pF,a, with (F, a) as in the last set, are contained in B(pn, c$g2 log n) 
for a sufficiently large constant cs in view of Lemma 7. 
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By construction, X(Uj) 
> eban and every Uj is contained in the interval 

[?2kn,2kn]. By the lower bound assumption on a', we see that a(Uj) 
> 

min\t\<kn ot'(t)ebnon 
> n~e for every j = 1,..., Mn and some e > 0. Furthermore, 

we have ebMn < 1 if we choose b sufficiently large. By Lemma 10, we con 

clude that the prior mass of the set B(pn, csen) is bounded below by a multiple of 

exp(?cMnloge~l) 
= 

exp(?e'er"1 (log/i)2+1/y). 

11. Proofs of Theorems 3 and 4. Let Pn be !Pan,an in the notation of Theo 
rem 6. Hence, its bracketing entropy integral is bounded by 

fSn \an(.Un \2 , ̂  fan~ , an 
/ J? log- de< ?enlog-. 

Jo V ?n\ sanJ y an anen 

For en = (an/(nan))xt2\ogn, this is bounded above by a multiple of ^/ne2. Be 
cause po has compact support, 3>n contains ppo,an 

= Po * <t>an, at least if b\ < 

1 < Z?2> as we shall assume for simplicity. By Lemma 6, the quotient po/Pp0,an is 

bounded above uniformly in n. The distance h(po, PP0,an) is of the order 0(a2), 

by assumption. Hence, Theorem 3 follows by an application of Theorem 4 in [16], 
or Theorem 3.4.4 in [14]. 

The sieve Pn given by (3.2) is equal to the set !PA,an considered in Theorem 7. 

For the given function A, the function A in this theorem can be taken to be equal 
to a multiple of 1 ? <$>(ra) if S < 1/2 for some 0 < r < 1, and equal to A(ra) 
for some r < 1 if 8 > 1/2. Therefore, A~l(e) < 

(log?-1)(lv2<^/2 and, in view of 

Theorem 7, the bracketing integral of Pn is bounded by 

f /^?^(,?g^-!>)2,? 
< 

/I*(log_L)'+" >\ J0 V crn \ el?n / V ?n V ^^n/ 

which is 0(?Jne2n) for en = (nan)-^2(logn)l+ilv28^4. The remainder of the 

proof can be completed as before. 
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