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MISSPECIFICATION IN INFINITE-DIMENSIONAL 
BAYESIAN STATISTICS 

By B. J. K. Kleijn and A. W. van der Vaart 

Vrije Universiteit Amsterdam 

We consider the asymptotic behavior of posterior distributions if the 

model is misspecified. Given a prior distribution and a random sample from 

a distribution Pq, which may not be in the support of the prior, we show 

that the posterior concentrates its mass near the points in the support of the 

prior that minimize the Kullback-Leibler divergence with respect to Pq. An 

entropy condition and a prior-mass condition determine the rate of conver 

gence. The method is applied to several examples, with special interest for 

infinite-dimensional models. These include Gaussian mixtures, nonparamet 
ric regression and parametric models. 

1. Introduction. Of all criteria for statistical estimation, asymptotic con 

sistency is among the least disputed. Consistency requires that the estimation 

procedure come arbitrarily close to the true, underlying distribution, if enough 
observations are used. It is of a frequentist nature, because it presumes a notion of 

an underlying, true distribution for the observations. If applied to posterior distrib 

utions, it is also considered a useful property by many Bayesians, as it could warn 

one away from prior distributions with undesirable, or unexpected, consequences. 
Priors which lead to undesirable posteriors have been documented, in particular, 
for non- or semiparametric models (e.g., [4, 5]), in which case it is also difficult to 

motivate a particular prior on purely intuitive, subjective grounds. 
In the present paper we consider the situation where the posterior distribution 

cannot possibly be asymptotically consistent, because the model, or the prior, is 

misspecified. From a frequentist point of view, the relevance of studying misspec 
ification is clear, because the assumption that the model contains the true, under 

lying distribution may lack realistic motivation in many practical situations. From 
an objective Bayesian point of view, the question is of interest, because, in prin 

ciple, the Bayesian paradigm allows unrestricted choice of a prior, and, hence, we 

must allow for the possibility that the fixed distribution of the observations does 
not belong to the support of the prior. In this paper we show that in such a case 

the posterior will concentrate near a point in the support of the prior that is closest 

to the true sampling distribution as measured through the Kullback-Leibler diver 

gence, and we give a characterization for the rate of concentration near this point. 
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Throughout the paper we assume that X\, X2,... are i.i.d. observations, each 

distributed according to a probability measure Po- Given a model & and a prior IT, 

supported on g?, the posterior mass of a measurable subset B c g? is given by 

(1.1) Un(B\Xx,...,Xn) = 
j f\p(Xi)dYl(P)/ j f\p(Xi)dYl(P). 

i = \ i = \ 

Here it is assumed that the model is dominated by a a-finite measure p, and the 

density of a typical element P e g? relative to the dominating measure is writ 

ten p and assumed appropriately measurable. If we assume that the model is well 

specified, that is, Po ^, then posterior consistency means that the posterior dis 

tributions concentrate an arbitrarily large fraction of their total mass in arbitrarily 
small neighborhoods of Po, if the number of observations used to determine the 

posterior is large enough. To formalize this, we let d be a metric on ?P and say 
that the Bayesian procedure for the specified prior is consistent, if, for every s > 0, 

Tln({P :d(P, Po) > e}\X\,..., Xn) -> 0, in Po-probability. More specific infor 

mation concerning the asymptotic behavior of an estimator is given by its rate of 

convergence. Let sn > 0 be a sequence that decreases to zero and suppose that, for 

any constants Mn 
? 

00, 

(1.2) n?(P e &>:d(P, Po) > Mnen\Xu .. , Xn) 
-> 0, 

in Po-probability. The sequence en corresponds to a decreasing sequence of neigh 
borhoods of Po, the d-radius of which goes to zero with n, while still capturing 

most of the posterior mass. If (1.2) is satisfied, then we say that the rate of conver 

gence is at least sn. 
If Po is at a positive distance from the model gP and the prior concentrates all 

its mass on g?, then the posterior is inconsistent as it will concentrate all its mass 

on g? as well. However, in this paper we show that the posterior will still settle 

down near a given measure P* e g?, and we shall characterize the sequences en 
such that the preceding display is valid with d(P\ P*) taking the place of d(P, Po). 

One would expect the posterior to concentrate its mass near minimum Kullback 

Leibler points, since asymptotically the likelihood YYi=\ P(X() *s maximal near 

points of minimal Kullback-Leibler divergence. The integrand in the numerator 

of (1.1) is the likelihood, so subsets of the model in which the (log-)likelihood is 

large account for a large fraction of the total posterior mass. Hence, it is no great 

surprise that the appropriate point of convergence P* is a minimum Kullback 

Leibler point in g&, but the general issue of rates (and which metric d to use) turns 

out to be more complicated than expected. We follow the work by Ghosal, Ghosh 

and van der Vaart [8] for the well-specified situation, but need to adapt, change or 

extend many steps. 
After deriving general results, we consider several examples in some detail, in 

cluding Bayesian fitting of Gaussian mixtures using Dirichlet priors on the mixing 

distribution, the regression problem and parametric models. Our results on the re 

gression problem allow one, for instance, to conclude that a Bayesian approach in 
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the nonparametric problem that uses a prior on the regression function, but em 

ploys a normal distribution for the errors, will lead to consistent estimation of 

the regression function, even if the regression errors are non-Gaussian. This result, 
which is the Bayesian counterpart of the well-known fact that least squares estima 

tors (the maximum likelihood estimators if the errors are Gaussian) perform well 

even if the errors are non-Gaussian, is important to validate the Bayesian approach 
to regression, but appears to have received little attention in the literature. 

1.1. Notation and organization. Let L\(&,&/) denote the set of all finite 

signed measures on (<$?", &/) and let conv(J2) be the convex hull of a set of mea 

sures J2: the set of all finite linear combinations J2i ^/ Qi f?r Qi ? & and ^/ ? 0 

with ]T, Xi = \. For a measurable function /, let Qf denote the integral f fdQ. 
The paper is organized as follows. Section 2 contains the main results of the 

paper, in increasing generality. Sections 3, 4 and 5 concern the three classes of 

examples that we consider: mixtures, the regression model and parametric models. 

Sections 6 and 7 contain the proofs of the main results, where the necessary re 

sults on tests are developed in Section 6 and are of independent interest. The final 

section is a technical appendix. 

2. Main results. Let Xi, X2,... be an i.i.d. sample from a distribution Po on 

a measurable space i$g, &/). Given a collection gP of probability distributions on 

i3?, &/) and a prior probability measure rion^, the posterior measure is defined 
as in (1.1) (where 0/0 

= 0 by definition). Here it is assumed that the "model" g? 

is dominated by a a-finite measure p and that 1 h^ /?(i) is a density of P e g? 

relative to p such that the map ix, p) \-+ pix) is measurable relative to the product 
of srf and an appropriate a-field on g?, so that the right-hand side of (1.1) is a 

measurable function of iX\,..., Xn) and a probability measure as a function of B 

for every X\,..., Xn such that the denominator is positive. The "true" distribu 

tion Po may or may not belong to the model gP. For simplicity of notation, we 

assume that Po possesses a density po relative to p as well. 

Informally we think of the model g? as the "support" of the prior n, but we 

shall not make this precise in a topological sense. At this point we only assume 

that the prior concentrates on ?? in the sense that n(^) = 1 (but we note later 
that this too can be relaxed). Further requirements are made in the statements of 
the main results. Our main theorems implicitly assume the existence of a point 
P* e g? minimizing the Kullback-Leibler divergence of Po to the model &. In 

particular, the minimal Kullback-Leibler divergence is assumed to be finite, that is, 
P* satisfies 

(2.1) _P0log^<oo. 
Po 

By the convention that logO 
= -00, the above implies that Po <?C P* and, hence, 

we assume without loss of generality that the density /?* is strictly positive at the 
observations. 



840 B. J. K. KLEIJN AND A. W VAN DER VAART 

Our theorems give sufficient conditions for the posterior distribution to concen 

trate in neighborhoods of P* at a rate that is determined by the amount of prior 
mass "close to" the minimal Kullback-Leibler point P* and the "entropy" of the 

model. To specify the terms between quotation marks, we make the following de 

finitions. 

We define the entropy and the neighborhoods in which the posterior is to con 

centrate its mass relative to a semi-metric d on &. The general results are for 

mulated relative to an arbitrary semi-metric and next the conditions will be sim 

plified for more specific choices. Whether or not these simplifications can be 

made depends on the model g?, convexity being an important special case (see 
Lemma 2.2). Unlike in the case of well-specified priors, considered, for exam 

ple, in [8], the Hellinger distance is not always appropriate in the misspecified 
situation. The general entropy bound is formulated in terms of a covering num 

ber for testing under misspecification, defined for s > 0 as follows: we define 

Nt(s, g?, d; Po, P*) as the minimal number Af of convex sets B\,..., B^ of prob 

ability measures on (??", g/) needed to cover the set {P e g?: e < d(P, P*) < 2e] 
such that, for every /, 

/ p \a e2 
(2.2) inf sup -logPo -^ 

>-. 

If there is no finite covering of this type, we define the covering number to be 

infinite. We refer to the logarithms log Nt(s, g*, d\ Po, P*) as entropy numbers for 

testing under misspecification. These numbers differ from ordinary metric entropy 
numbers in that the covering sets B[ are required to satisfy the preceding display 
rather than to be balls of radius e. We insist that the sets 5/ be convex and that (2.2) 
hold for every P e Bj. This implies that (2.2) may involve measures P that do not 

belong to the model g* if this is not convex itself. 

For s > 0, we define a specific kind of Kullback-Leibler neighborhood of P* 

by 

(2.3) ^(^,P*;Po) = 
{pG^:-P0log4<^2^o(log4) <*2} 

THEOREM 2.1. For a given model g*, prior Yl on g? and some P* e g*, as 

sume that ?Polog(p*/po) < oo and Po(p/p*) < oo for all Peg0. Suppose that 

there exist a sequence of strictly positive numbers sn with sn ?> 0 and ne^^oo 

and a constant L > 0, such that, for all n, 

(2.4) n(5(^,P*;P0))>^L^2, 

(2.5) Nt(s, &,d\ Po, P*) < en?n for all s> sn. 

Then for every sufficiently large constant M,as n -* oo, 

(2.6) n?(P e ^:d(P, P*) > Msn\Xu ..., Xn) 
- 0 in Li(P0"). 
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The proof of this theorem is given in Section 7. The theorem does not explicitly 

require that P* be a point of minimal Kullback-Leibler divergence, but this is 

implied by the conditions (see Lemma 6.4 below). The theorem is extended to the 

case of nonunique minimal Kullback-Leibler points in Section 2.4. 

The two main conditions of Theorem 2.1 are a prior mass condition (2.4) and 

an entropy condition (2.5), which can be compared to Schwartz' conditions for 

posterior consistency (see [13]), or the two main conditions for the well-specified 
situation in [8]. Below we discuss the background of these conditions in turn. 

The prior mass condition (2.4) reduces to the corresponding condition for the 

correctly specified case in [8] if P* = Po. Because ?Po log(p*/po) < oo, we may 
rewrite the first inequality in the definition (2.3) of the set Bis, P*; Po) as 

P P* i 
-Polog? <-P0log 

? 
+ s2. 

Po Po 

Therefore, the set Bis, P*; Po) contains only P e & that are within s2 of the min 

imal Kullback-Leibler divergence with respect to Po over the model. The lower 

bound (2.4) on the prior mass of Bis, P*; Po) requires that the prior measure as 

sign a certain minimal share of its total mass to Kullback-Leibler neighborhoods 
of P*. As argued in [8], a rough understanding of the exact form of (2.4) for the 

"optimal" rate sn is that an optimal prior spreads its mass "uniformly" over g*. 

In the proof of Theorem 2.1, the prior mass condition serves to lower-bound the 

denominator in the expression for the posterior. 
The background of the entropy condition (2.5) is more involved, but can be 

compared to a corresponding condition in the well-specified situation given in 

Theorem 2.1 of [8]. The purpose of the entropy condition is to measure the com 

plexity of the model, a larger entropy leading to a slower rate of convergence. 
The entropy used in [8] is either the ordinary metric entropy log Nis, g?, d), or 

the local entropy log Nis/2, {P e g?\s < diP, P0) < 2s}, d). For d the Hellinger 
distance, the minimal sn satisfying log Nisn, g?, d) = 

ns2n is roughly the fastest 
rate of convergence for estimating a density in the model g? relative to d ob 

tainable by any method of estimation (cf. [2]). We are not aware of a concept of 

"optimal rate of convergence" if the model is misspecified, but a rough interpre 
tation of (2.5) given (2.4) would be that in the misspecified situation the posterior 
concentrates near the closest Kullback-Leibler point at the optimal rate pertaining 
to the model gP. 

Misspecification requires that the complexity of the model be measured in 
a different, somewhat complicated way. In examples, depending on the semi 

metric d, the covering numbers Nt(e, g?, d\ Pq, P*) can be related to ordinary 
metric covering numbers Nis, g*,d). For instance, we show below (see Lem 
mas 2.1-2.3) that, if the model & is convex, then the numbers Nt(e, g?, d; Pq, P*) 
are bounded by the covering numbers Nis, g?,d) if the distance diP\, P2) equals 
the Hellinger distance between the measures Qi defined by dQi = 

ip$/p*)dPi, 
that is, a weighted Hellinger distance between Pi and P2. 
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In the well-specified situation we have P* = Po, and the entropy numbers for 

testing can be bounded above by ordinary entropy numbers for the Hellinger dis 

tance. Thus, Theorem 2.1 becomes a refinement of the main theorem of [8]. To see 

this, we first note that, since ? 
log jc > 1 ? x for x > 0, 

-logPoj? J 
> I- 

J 
VpJpodp = -h2(p,p0). 

It follows that the left-hand side of (2.2) with a ? 
1/2 and po = 

p* is bounded 

below by infpG^ h2(p, po). Because Hellinger balls are convex, they are eligible 
candidates for the sets B[ required in the definition of the covering numbers for 

testing. If we cover the set [P g?:2e < h(P, Po) < 4e] by a minimal set of 

Hellinger balls of radius e/2, then these balls automatically satisfy (2.2), by the 

triangle inequality. It follows that 

Nt(e, g?, h\ Po, Po) < N(e/2, {P e &: 2s < h(P, P0) < 4^}, h). 

The right-hand side is exactly a local covering number of the type used by [8]. 
Because the entropy numbers for testing allow general convex sets rather than 

balls of a given diameter, they appear to be genuinely smaller in general than local 

covering numbers. (Notably, the convex sets need not satisfy a size restriction.) 

However, we do not know of any examples of gains in the setting we are interested 

in, so that in the well-specified case there appears to be no use for the extended 

covering numbers as defined by (2.2). In the general, misspecified situation they 
are essential, even for standard parametric models, such as the one-dimensional 

normal location model. 

At a more technical level, the entropy condition of [8] ensures the existence of 

certain tests of the measures P versus the true measure Po. In the misspecified 
case it is necessary to compare the measures P to the minimal Kullback-Leibler 

point P*, rather than to Po. It turns out that the appropriate comparison is not a test 

of the measures P versus the measure P* in the ordinary sense of testing, but to 

test the measures Q(P) defined by dQ(P) 
= 

(po/p*)dP versus the measure Po 

[see (7.4)]. With J2 the set of measures Q(P) where P ranges over g?, this leads 

to consideration of minimax testing risks of the type 

inf sup(Po>+(2"(l-0)), 

where the infimum is taken over all measurable functions 0 taking values in [0, 1]. 

A difference with the usual results on minimax testing risks is that the measures Q 

may not be probability measures (and may in fact be infinite in general). 

Extending arguments of Le Cam and Birge, we show in Section 6 that, for a 

convex set B, the minimax testing risk in the preceding display is bounded above 

by 

(2.7) inf sup pa(Po,Q)n, 
0<a<lge=g 
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where the function a h> pa(Po, Q) is the Hellinger transform pa(P, Q) 
= 

f paql~a dp. For Q 
? 

QiP), the Hellinger transform reduces to the map 

a^Px-a{QiP),Po) 
= Poip/p*)\ 

also encountered in (2.2). If the inequality in (2.2) is satisfied, then Poip/p*)a 
< 

e~? /4 and, hence, the set of measures QiP) with P ranging over B( can be tested 

with error probabilities bounded by e~n? /4'. For s bounded away from zero, or 

converging slowly to zero, these probabilities are exponentially small, ensuring 
that the posterior does not concentrate on the "unlikely alternatives" B{. 

The testing bound (2.7) is valid for convex alternatives J2, but the alternatives of 

interest {Pe^:d(P,P*)> Ms} are complements of balls and, hence, typically 
not convex. A test function for nonconvex alternatives can be constructed using a 

covering of gP by convex sets. The entropy condition (2.5) controls the size of this 

cover and, hence, the rate of convergence in misspecified situations is determined 

by the covering numbers Ntis, gP, d; Pq, P*). Because the validity of the theorem 

only relies on the existence of suitable tests, the entropy condition (2.5) could be 

replaced by a testing condition. To be precise, condition (2.5) can be replaced by 2 
the condition that the conclusion of Theorem 6.3 is satisfied with Dis) 

? enSn. 

2.1. Distances and testing entropy. Because the entropies for testing are 

somewhat abstract, it is useful to relate them to ordinary entropy numbers. For our 

examples, the bound given by the following lemma is useful. We assume that, for 

some fixed constants c, C > 0 and for every m e N, k \,..., km > 0 with J2i ^i 
? 1 

and every P, P\,..., Pm e & with d(P, Pi) < cdiP, P*) for all i, 

(2.8) Tkid2iPi, P*) 
- 

Cj^k^iPi, P) < sup -logPof^^y. i i 0<a<\ V P* / 

LEMMA 2.1. If (2.8) holds, then there exists a constant A > 0 depending only 
on c and C such that, for all s > 0, Nt(s, g*,d; Pq, P*) < NiAs, {P e g?\s < 

diP, P*) < 2s}, d). [Any constant A < (1/8) A (l/4>/C) A (?c) works.] 

Proof. For a given constant A > 0, we can cover the set g?e := {P e g?:s < 

diP, P*) < 2s} with N = 
N(As, g??,d) balls of radius As. If the centers of these 

balls are not contained in g?E, then we can replace these N balls by Af balls of 

radius 2As with centers in g?e whose union also covers the set g?e. It suffices 
to show that (2.2) is valid for B/ equal to the convex hull of a typical ball B in 

this cover. Choose 2A < c. If P e g?e is the center of B and Pi e B for every /, 
then diPi, P*) > diP, P*) 

- 2As by the triangle inequality and, hence, by as 

sumption (2.8), the left-hand side of (2.2) with B( = conv(B) is bounded below 

by J2i kiiis 
- 

2As)2 
- 

Ci2As)2). This is bounded below by s2/4 for sufficiently 
small A. 
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The logarithms log N (As, {P e g*:s < d(P, P*) < 2s},d) of the covering 
numbers in the preceding lemma are called "local entropy numbers" and also the 

Le Cam dimension of the model & relative to the semi-metric d. They are bounded 

above by the simpler ordinary entropy numbers log N(As, g*, d). The preceding 
lemma shows that the entropy condition (2.5) can be replaced by the ordinary en 

tropy condition log N(sn, g*, d) < ns2 whenever the semi-metric d satisfies (2.8). 
If we evaluate (2.8) with m = 1 and P\ = P, then we obtain, for every P e g*, 

(2.9) d2(P,P*)< sup -logPof^V 

(Up to a factor 16, this inequality is also implied by finiteness of the covering 
numbers for testing.) This simpler condition gives an indication about the metrics 

d that may be used in combination with ordinary entropy. In Lemma 2.2 we show 

that if d and the model g? are convex, then the simpler condition (2.9) is equivalent 
to (2.8). 

Because ? 
log* 

> 1 ? x for every x > 0, we can further simplify by bounding 
minus the logarithm in the right-hand side by 1 ? 

Po(p/p*)a. This yields the 

bound 

d2(P,P*)< sup |"l-P0(4) I o<(*<iL Vp*/ J 

In the well-specified situation we have Po = P* and the right-hand side for 

a = 
1/2 becomes I? f ofp+Jpodp, which is 1/2 times the Hellinger distance be 

tween P and Po. In misspecified situations this method of lower bounding can be 

useless, as 1 ? 
Po(p/p*)a may be negative for a = 

1/2. On the other hand, a small 

value of a may be appropriate, as it can be shown that as a | 0 the expression 
1 ? 

Po(p/p*)a is proportional to the difference of Kullback-Leibler divergences 

Polog(p*/p), which is positive by the definition of P*. If this approximation 
can be made uniform in p, then a semi-metric d which is bounded above by the 

Kullback-Leibler divergence can be used in the main theorem. We discuss this 

further in Section 6 and use this in the examples of Sections 4 and 5. 

The case of convex models & is of interest, in particular, for non- or semipara 
metric models, and permits some simplification. For a convex model, the point of 

minimal Kullback-Leibler divergence (if it exists) is automatically unique (up to 

redefinition on a null-set of Po). Moreover, the expectations Po(p/p*) are auto 

matically finite, as required in Theorem 2.1, and condition (2.8) is satisfied for a 

weighted Hellinger metric. We show this in Lemma 2.3, after first showing that va 

lidity of the simpler lower bound (2.9) on the convex hull of g* (if the semi-metric 

d is defined on this convex hull) implies the bound (2.8). 

LEMMA 2.2. Ifd is defined on the convex hull of g?, the maps P i-? d2(P, P') 
are convex on conv(g^) for every P' e g* and (2.9) is valid for every P in the 

convex hull of g&, then (2.8) is satisfied for ^d 
instead of d. 
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LEMMA 2.3. If g? is convex and P* e g? is a point at minimal Kullback 

Leibler divergence with respect to Pq, then Poip/p*) 
< 1 for every Peg0 

and (2.8) is satisfied with 

d2{P\ ,Pi) = 
\ j(SP~\ 

~ 
yfpif?d^ 

Proof of Lemma 2.2. For the proof of Lemma 2.2, we first apply the trian 

gle inequality repeatedly to find 

J2^id2(Pi, P*) <2j2^id2(Pi, P) + 2d2(P, P*) 
i i 

<2j2^id2iPi,P)+4d2(p,J2^iPi)+^ 

<6j^kid2iPi, P) + 
4d2\YkiPi, P*\ 

by the convexity of d2. It follows that rf2(?,ktPi, P*) > 
(l/4)?; A^2(P;, P*) 

3/2Ei hd2(Pi, P). If (2.9) holds for P = E/ hPi, then we obtain (2.8) with d2 
replaced by d2/4 and C = 6. 

Proof of Lemma 2.3. For Peg0, define a family of convex combinations 

[Px :ke [0, 1]} c & by Px = kP + (1 
- 

k)P*. For all values of k e [0,1], 

(2.10) 0 < fik) := -P0log ̂  
= 

-Polog^l 
+ 

a(4 
" 

l)), 
since P* e ̂  is at minimal Kullback-Leibler divergence with respect to Po in g* 

by assumption. For every fixed y > 0, the function k \-> log(l + A.y)/A. is nonnega 
tive and increases monotonically to y as k | 0. The function is bounded in absolute 
value by 2 for j [?1, 0] and k < 

^. Therefore, by the monotone and dominated 

convergence theorems applied to the positive and negative parts of the integrand in 
the right-hand side of (2.10), 

/'((H-) = 
l-*,(?). 

Combining the fact that /(0) 
= 0 with (2.10), we see that /'(OH-) > 0 and, hence, 

we find PQip/p*) 
< 1. The first assertion of Lemma 2.3 now follows. 

For the proof that (2.9) is satisfied, we first note that - 
logx 

> 1 ? 
x, so that it 

suffices to show that 1 - Po(p/p*)1/2 
> 

d2(P, P*). Now 

f(J^-^)2-*dp 
= l + Po4 

- 2P0 
J4 

< 2 - 2P0 ? J p* p* y p* y p 

by the first part of the proof. 
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2.2. Extensions. In this section we give some generalizations of Theorem 2.1. 

Theorem 2.2 enables us to prove that optimal rates are achieved in parametric 
models. Theorem 2.3 extends Theorem 2.1 to situations in which the model, the 

prior and the point P* are dependent on n. Third, we consider the case in which 

the priors Yln assign a mass slightly less than 1 to the models g?n. 
Theorem 2.1 does not give the optimal rate of convergence l/^/n for finite 

dimensional models g?, both because the choice sn = 
l/y/n is excluded (by the 

condition ns2 -> oo) and because the prior mass condition is too restrictive. The 

following theorem remedies this, but is more complicated. The adapted prior mass 

condition takes the following form: for all natural numbers n and j, 

n n) 
Yl(Pe&>:jsn<d(P,P*)<2jsn) < 2j2/8 

Yl(B(sn,P*,P0)) 

THEOREM 2.2. For a given model gP, prior XI on g? and some P* e g?, 
assume that -Polog(p*/po) < oo and Po(p/p*) < oo for all P g#. If 

sn are strictly positive numbers with sn -> 0 and liminfn^ 
> 0, such that 

(2.11) and (2.5) are satisfied, then, for every sequence Mn ?> oo, as n ?> oo, 

(2.12) n?(P e &:d(P, P*) > Mnsn\Xl,..., Xn) 
-? 0 in Lx(P0). 

There appears to be no compelling reason to choose the model g? and the 

prior n the same for every n. The validity of the preceding theorems does not 

depend on this. We formalize this fact in the following theorem. For each n, we let 

g?n be a set of probability measures on (3?, srf) given by densities pn relative to 

a a -finite measure pn on this space. Given a prior measure Yln on an appropriate 

a-field, we define the posterior by (1.1) with P* and n replaced by P?* and n?. 

THEOREM 2.3. The preceding theorems remain valid if gP, Yl, P* and d 

depend on n, but satisfy the given conditions for each n (for a single constant L). 

As a final extension, we note that the assertion PfiYln(P 
e g?n :dn(P, P*) > 

Mnsn\X\,..., Xn) -> 0 of the preceding theorems remains valid even if the pri 
ors Yln do not put all their mass on the "models" g?n (but the models g?n do satisfy 
the entropy condition). Of course, in such cases the posterior puts mass outside the 

model and it is desirable to complement the above assertion with the assertion that 

n?(c^w|Xi,..., Xn) -> 1 in Li(Po). The latter is certainly true if the priors put 

only very small fractions of their mass outside the models g?n. More precisely, the 

latter assertion is true if 

<2'13) n ,?, 
* 

p? L (p^)ndYln(P)<o(e-2^). Yln(B(sn, P*, Po)) J^n\ p*n) 

This observation is not relevant for the examples in the present paper. However, it 

may prove relevant to alleviate the entropy conditions in the preceding theorems 



BAYESIAN MISSPECIFICATION 847 

in certain situations. These conditions limit the complexity of the models and it 

seems reasonable to allow a trade-off between complexity and prior mass. Condi 

tion (2.13) allows a crude form of such a trade-off: a small part g?cn of the model 

may be more complex, provided that it receives a negligible amount of prior mass. 

2.3. Consistency. The preceding theorems yield a rate of convergence sn -> 0, 

expressed as a function of prior mass and model entropy. In certain situations the 

prior mass and entropy may be hard to quantify. In contrast, for inferring consis 

tency of the posterior, such quantification is unnecessary. This could be proved 

directly, as [13] achieved in the well-specified situation, but it can also be inferred 

from the preceding rate theorems. [A direct proof might actually give the same 

theorem with a slightly bigger set Bis, P*; Po).] We consider this for the situation 

of Theorem 2.1 only. 

COROLLARY 2.1. For a given model g?, prior Y\ on g? and some P* ^, 
assume that ? 

Polog(/?*/Po) < oo and Po(/?/p*) < oo for all P e g?. Suppose 

that, for every s > 0, 

Tl(B(s, P*; Po)) > 0, 
(2.14) 

supNt(ri, &,d\ Pq, P*) < oo. 
T]>? 

Then for every s > 0, as n ?> oo, 

(2.15) nn(Pe&:d(P,P*)>e\Xu...,Xn)->0 inLxiP?). 

Proof. Define functions / and g by f(e) = UiBis, P*; Po)) and g(e) = 

suPrj>s Ntirj, g?, d; Pq, P*). We shall show that there exists a sequence sn -? 0 
_ 2 2 

such that fisn) >e n?" and gisn) < en?" for all sufficiently large n. This implies 
that the conditions of Theorem 2.1 are satisfied for this choice of sn and, hence, 
the posterior converges with rate at least sn. 

To show the existence of sn, define functions hn by 

*.(.)=?-,(g(?)+7L). 
This is well defined and finite by the assumptions and hnis) -> 0 as n -> oo, 
for every fixed s > 0. Therefore, there exists sn I 0 with hnisn) -> 0 [e.g., fix 

n\ < ni < - - - such that hnil/k) 
< 

\/k for all n > n^\ next define sn = 
\/k for 

rik <n < nic+{]. In particular, there exists an Af such that hnisn) < 1 for n > N. 
_ 2 2 

This implies that fisn)>e 
ne" and g(en) < enE* for every n > N. 
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2.4. Multiple points of minimal Kullback-Leibler divergence. In this section 

we extend Theorem 2.1 to the situation where there exists a set g?* of minimal 

Kullback-Leibler points. 

Multiple minimal points can arise in two very different ways. First consider the 

situation where the true distribution Po and the elements of the model g* pos 
sess different supports. Because the observations are sampled from Po, they fall 

with probability one in the set where po > 0 and, hence, the exact nature of the 

elements p of the model g* on the set {po 
= 

0} is irrelevant. Clearly, multiple 
minima arise if the model contains multiple extensions of P* to the set on which 

po = 0. In this case the observations do not provide the means to distinguish be 

tween these extensions and, consequently, no such distinction can be made by the 

posterior either. Theorems 2.1 and 2.2 may apply under this type of nonunique 
ness, as long as we fix one of the minimal points, and the assertion of the theorem 

will be true for any of the minimal points as soon as it is true for one of the minimal 

points. This follows because, under the conditions of the theorem, d(P*, P2*) 
= 0 

whenever P* and P2* agree on the set po > 0, in view of (2.9). 
Genuine multiple points of minimal Kullback-Leibler divergence may occur 

as well. For instance, one might fit a model consisting of normal distributions 

with means in (?oo, 
? 

1] U [1, oo) and variance one, in a situation where the true 

distribution is normal with mean 0. The normal distributions with means ? 1 and 1 

both have the minimal Kullback-Leibler divergence. This situation is somewhat 

artificial and we are not aware of more interesting examples in the nonparametric 
or semiparametric case that interests us most in the present paper. Nevertheless, 

because it appears that the situation might arise, we give a brief discussion of an 

extension of Theorem 2.1. 

Rather than to a single measure P* e g*, the extension refers to a finite sub 

set g** C g* of points at minimal Kullback-Leibler divergence. We give condi 

tions under which the posterior distribution concentrates asymptotically near this 

set of points. We redefine our "covering numbers for testing under misspecifica 
tion" Nt(s, g?, d; Po, g**) as the minimal number N of convex sets B\,..., Bn 

of probability measures on (3?, srf) needed to cover the set {P e gP: s < d(P, 

g?*) < 2s} such that 

(2.16) sup inf sup -logP0(4) ^ T' 

This roughly says that, for every Peg0, there exists some minimal point to which 

we can apply arguments as before. 

THEOREM 2.4. For a given model g*, prior Yl on g* and some subset 

g?* C g?, assume that - 
Polog(p* / po) < oo and Po(p/p*) < oo for all P e ?? 

and P* e g?*. Suppose that there exist a sequence of strictly positive numbers sn 
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with sn -> 0 and ns2 ?> oo and a constant L > 0, s?c/z fto, /or all n and all 

s>sn, 

(2.17) inf n(Bisn,P*;PQ))>e-Ln??, 

(2.18) Ntis, g?, d; Pq, &>*) < en??. 

Then for every sufficiently large constant M > 0, as n -? oo, 

(2.19) Yln(P e g? :diP, &*) > Msn\Xx,. ..J?)-^0 i/i Li(/ff). 

3. Mixtures. Let /i denote the Lebesgue measure on IR. For each z e R, let 

jc h* /?(jc|z) be a fixed /x-probability density on a measurable space (?3K\ &/) that 

depends measurably on ix, z), and for a distribution F on E define the /x-density 

PfM= / p(jc|z)JF(z). 

Let P/7 be the corresponding probability measure. In this section we consider mix 

ture models ^ ? 
{Pp'.F e^}, where J^ is the set of all probability distributions 

on a given compact interval [?M, M]. We consider consistency for general mix 

tures and derive a rate of convergence in the special case that the family p(-\z) is 

the normal location family, that is, with (j) the standard normal density, 

(3.1) PFix) = 
f<t)ix-z)dFiz). 

The observations are an i.i.d. sample X\, ...,Xn drawn from a distribution Po on 

(?vBT, &/) with p-density pq which is not necessarily of the mixture form. As a 

prior for F, we use a Dirichlet process distribution (see [6, 7]) on J?\ 

3.1. General mixtures. We say that the model is Po-identifiable if, for all pairs 
Fx,F2e&, 

F\^F2 => P0(pF] ^ PF2) > 0. 

Imposing this condition on the model excludes the first way in which nonunique 
ness of P* may occur (as discussed in Section 2.4). 

LEMMA 3.1. Assume that ~ 
PQlogip f / Po) < oo for some F e J?\ If the map 

z ?-> p(x\z) is continuous for all x, then there exists an F* e JP that minimizes 
F h-> ? 

PQlogip f/pq) over & - If the model is PQ-identifiable, then this F* is 

unique. 

PROOF. If Fn is a sequence in & with Fn -? F for the weak topology on &, 
then pFn ix) -? pp(x) for every x, since the kernel is continuous in z (and, hence, 
also bounded as a result of the compactness of [?M, M]) and by use of the 
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portmanteau lemma. Consequently, pFn -> pF in L\(p) by Scheffe's lemma. It 

follows that the map F t-> pF from & into L i (p) is continuous for the weak topol 

ogy on &. The set & is compact for this topology, by Prohorov's theorem. The 

Kullback-Leibler divergence p \-+ ? 
Polog(p/po) is lower semi-continuous as a 

map from L\(p) to R (see Lemma 8.2). Therefore, the map F h> ? 
Po log(pF/po) 

is lower semi-continuous on the compactum & and, hence, attains its infimum 

on J^. 

The map p i-> ? 
Polog(p/po) is also convex. By the strict convexity of the 

function x h> ? 
logx, we have, for any X e (0, 1), 

-Polog 
- < -AP0log-(1 

- 
A.)P0log?, 

V po / po Po 

unless Po(p\ 
= 

pi) 
= 1. This shows that the point of minimum of F m* 

Polog(pF/po) is unique if & is Po-identifiable. 

Thus, a minimal Kullback-Leibler point PF* exists and is unique under mild 

conditions on the kernel p. Because the model is convex, Lemma 2.3 next shows 

that (2.9) is satisfied for the weighted Hellinger distance, whose square is equal to 

(3.2) d2(PFl,PF2) 
= 

l f(^p^-^pJ-2)2I^-dp. IJ pp* 

If po/Pf* Loo(/x), then this expression is bounded by the squared Hellinger 

distance H between the measures PF[ and PFl. 
Because & is compact for the weak topology and the map F \-+ pp from & 

to L\(p) is continuous (cf. the proof of Lemma 3.1), the model g? = 
{Pf : F e ̂ } 

is compact relative to the total variation distance. Because the Hellinger and total 

variation distances define the same uniform structure, the model is also compact 

relative to the Hellinger distance and, hence, it is totally bounded, that is, the cov 

ering numbers N(s, g?,H) are finite for all s. Combined with the result of the 

preceding paragraph and Lemmas 2.2 and 2.3, this yields the result that the en 

tropy condition of Corollary 2.1 is satisfied for d as in (3.2) if po/Pf* ? ^oo(i^) 

and we obtain the following theorem. 

THEOREM 3.1. If po/PF* LOQ(p) and Yl(B(s, PF*\ Po)) > 0 for every 

s>0, then Yln(F:d(PF, PF*) > s\X\,...,Xn) -? 0 in L\(P$) for d given 

by (3.2). 

3.2. Gaussian mixtures. Next we specialize to the situation where p(x\z) 
= 

(j>(x 
? 

z) is a Gaussian convolution kernel and derive the rate of convergence. The 

Gaussian convolution model is well known to be Po-identifiable if Po is Lebesgue 

absolutely continuous (see, e.g., [12]). Let d be defined as in (3.2). We assume that 

Po is such that ? 
Po log(pF/po) is finite for some F, so that there exists a minimal 

Kullback-Leibler point F*, by Lemma 3.1. 
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LEMMA 3.2. If for some constant C\ > 0, dippx, Pf2) ? C\HiPF\, Pf2), 
then the entropy condition 

\ogNisn, g?,d) <nsl 

is satisfied for sn a large enough multiple oflognj' y/n. 

Proof. Because the square of the Hellinger distance is bounded above by the 

Li-norm, the assumption implies that d2iPp^ Pf2) 
< 

C\\\Ppx 
? 

Pf2111- Hence, 

for all s > 0, we have NiC\s, g?, d) < Nis2, g?, ||-||i). As a result of Lemma 3.3 

in [9], there exists a constant C2 > 0 such that 

(3.3) |/Y, -PF2\\{ <C2\\PFx 
-PFJ^maxjl,M,^log+? J^^ j, 

from which it follows that /V(C^log(l/?)'/2, &, ||-||i) < N(e,&>, j|-|loo) for 

small enough s. With the help of Lemma 3.2 in [9], we see that there exists a 

constant C3 > 0 such that, for all 0 < s < e~', 

logW(e,?M|-||oo)<C3(logi) 
. 

Combining all of the above, we note that, for small enough s > 0, 

/ / 1\1/4 \ 

logW(c,C2?l/2(tog-J 
, 
&,d) 

<\ogN{e, &,\\-\\oo) 

<C3(logi)2. 
So if we can find a sequence sn such that, for all n > 1, there exists an s > 0 such 

that 

/ j x 1/4 / 1\2 

C1C2^1/2^log-j 
<sn and 

C3flog-J 
<ns2n, 

then we have demonstrated that 

logA^(^,^,J)<log^^CiC26:,/2('log-N) 
,g?,d\ 

<C3Hog-J 
<ns2n. 

One easily shows that this is the case for sn = 
max{CiC2, C^ilogn/^/n) 

(in which case we choose, for fixed n, s = 
l/n), if n is taken large enough. 

We are now in position to apply Theorem 2.1. We consider, for given M > 0, 

the location mixtures (3.1) with the standard normal density 0 as the kernel. 
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We choose the prior n equal to a Dirichlet prior on & specified by a finite 

base measure a with compact support and positive, continuous Lebesgue density 
on [-M,M]. 

THEOREM 3.2. Let Po be a distribution on R dominated by Lebesgue mea 

sure p. Assume that po/Pf* ? ?00 0>0- Then the posterior distribution concen 

trates its mass around PF* asymptotically at the rate logn/y/n relative to the 

distance d on g? given by (3.2). 

PROOF. The set of mixture densities pF with F e & is bounded above and 

below by the upper and lower envelope functions 

U(x) = 
(f>(x + M)t{x<-M] +(/>(* 

- 
M)t{x>M] +(t>(0)t{-M<x<M}, 

L(x) = 4>{x 
- 

M)t[x<o) +(/>(x + M)t{x>0]. 
So for any F e &, 

\PF*J L 

0(0) 

+ Po(e-2MXt{x<-M} +e2MXt{x>M}) 
< 00, 

because po is essentially bounded by a multiple of pF* and PF* has sub 

Gaussian tails. In view of Lemmas 2.2 and 2.3, the covering number for testing 

Nt(s, g*,d; Po, P*) in (2.5) is bounded above by the ordinary metric covering 
number N(As, g*, d), for some constant A. Then Lemma 3.2 demonstrates that 

the entropy condition (2.5) is satisfied for sn a large multiple of logn/^/n. 
It suffices to verify the prior mass condition (2.4). Let s be given such that 

0 < s < e~l. By Lemma 3.2 in [9], there exists a discrete distribution function 

F! e D[?M, M] supported on at most N < C2 log(l/e) points {z\, zi,..., zn] C 

[?M, M] such that \\pF* 
? 

Pf'Woo 
< C\s, where C\, C2 > 0 are constants that 

depend on M only. We write F' = 
J2f=\ Pj^zj- 

Without loss of generality, we 

may assume that the set {zj :j 
= 1,..., N} is 2^-separated. Namely, if this is not 

the case, we may choose a maximal 2^-separated subset of {zj : j 
= 1,..., N} and 

shift the weights pj to the nearest point in the subset. A discrete F" obtained in this 

fashion satisfies \\pF> 
? 

p/Hloo 
< 

2?||0/||oo. So by virtue of the triangle inequal 

ity and the fact that the derivative of the standard normal kernel (p is bounded, 
a given F' may be replaced by a 2?>separated F" if the constant C\ is changed 

accordingly. 

By Lemma 3.3 in [9], there exists a constant D\ such that the Li-norm of the 

difference satisfies 

/ lxl/2 

\\PF*-PF'\\\<D\s\\og-J 
, 
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for small enough s. Using Lemma 3.6 in [9], we note, moreover, that there exists 

a constant D2 such that, for any F e&, 

\\Pf 
- 

Pf>\\\ < 
D2(s 

+ J2 \Pizj 
~ e, zj+s] 

- 
Pj\\. 

So there exists a constant D > 0 such that, if F satisfies 
ZI7L1 \F\Zj 

~ 
?> Zj +?] 

? 

Pj\ 
< s, then 

( W/2 
\\PF-PF*h<De\log-) 

. 

Let QiP) be the measure defined by dQiP) 
? 

ipQ/pF*)dP. The assumption that 

Po/Pf* is essentially bounded implies that there exists a constant K > 0 such that 

\\QiPFl) 
- 

QiPF2)111 < K\\PFl 
- 

PF2111 for all Fx,F2e &. Since g(PF.) = Pq, 
it follows that there exists a constant D' > 0 such that, for small enough s > 0, 

r yv 1 

\Fe^:J2\FlZj-s,Zj+s]-Pj\<s\ 

C 
jpe^:||(2(PF)-/>olli<(^)2^log^ J. 

We have that dQiPF)/dP0 = /?f/pf* and Po(pf/Pf*) < PoiU/L) < 00. The 

Hellinger distance is bounded by the square root of the L x -distance. Therefore, 

applying Lemma 8.1 with r\ 
? 

r)is) 
= 

D^1/2(log(l/?))1//4, we see that the set of 

measures Pp with F in the set on the right-hand side of the last display is contained 

in the set 

\pp.Fe &, -Po\og?< C2(^), Poflog?) 
< 

$2is)\ I Pf* V Pf^/ J 

where f is) = 
D"r)is)ilogil/r)is))) 

< 
D"D'sl/2ilogil/s))5/4, for an appropriate 

constant D", and small enough s. It follows that 

{N 

Fe^:J^\F[zj-s,Zj-{-s]~pj\<SK 

Following [8] (Lemma 6.1) or Lemma A.2 in [9], we see that the prior measure at 

the right-hand side of the previous display is lower bounded by 

ciexp(-C2^1og(l/?))>exp(-L(log(l/^))2)>exp(-L/(log(l/C(?)))2), 
where c\ > 1, c2 > 0 are constants and L = C2C2 > 0. So if we can find a se 

quence sn such that, for each sufficiently large n, there exists an ? > 0 such that 

en>S(e\ ns2n> 
(log-?) 

, 
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then Yl(B(sn, PF*; P0)) > Yl(B($(s), PF*; P0)) > 
exp(-L'nsl) and, hence, 

(2.4) is satisfied. One easily shows that, for sn = 
logn/^/n and ?(s) 

= 
l/^/n, 

the two requirements are fulfilled for sufficiently large n. 

4. Regression. Let Po be the distribution of a random vector (X, Y) satis 

fying Y ? 
fo(X) + eo for independent random variables X and eo taking val 

ues in a measurable space (3?,srf) and in IR, respectively, and a measurable 

function fo: 3E -> E. The variables X and eo have given marginal distributions, 
which may be unknown, but are fixed throughout the following. The purpose is 

to estimate the regression function fo based on a random sample of variables 

(X\, Y\),..., (Xn, Yn) with the same distribution as (X, Y). 
A Bayesian approach to this problem might start from the specification of a 

prior distribution on a given class & of measurable functions /: JT -> R. If the 

distributions of X and eo are known, this is sufficient to determine a posterior. If 

these distributions are not known, then one might proceed to introduce priors for 

these unknowns as well. The approach we take here is to fix the distribution of eo 
to a normal or Laplace distribution, while aware of the fact that its true distribution 

may be different. We investigate the consequences of the resulting model misspec 
ification. We shall show that misspecification of the error distribution does not 

have serious consequences for estimation of the regression function. In this sense 

a nonparametric Bayesian approach possesses the same robustness to misspecifi 
cation as minimum contrast estimation using least squares or minimum absolute 

deviation. We shall also see that the use of the Laplace distribution requires no 

conditions on the tail of the distribution of the errors, whereas the normal distrib 

ution appears to give good results only if these tails are not too big. Thus, the tail 

robustness of minimum absolute deviation versus the nonrobustness of the method 

of least squares also extends to Bayesian regression. 
We build the posterior based on a regression model Y ? 

f(X) + e for X and e 

independent, as is the assumption on the true distribution of (X, Y). If we assume 

that the distribution Px of X has a known form, then this distribution cancels out 

of the expression for the posterior on /. If, instead, we put independent priors on / 
and Px, respectively, then the prior on Px would disappear upon marginalization 
of the posterior of (/, Px) relative to /. Thus, for investigating the posterior for /, 
we may assume without loss of generality that the marginal distribution of X is 

known. It can be absorbed into the dominating measure p for the model. 

For / e gP, let Pf be the distribution of the random variable (X, Y) satisfying 
Y = 

f(X) + e for X and e independent variables, X having the same distribution 

as before and e possessing a given density p, possibly different from the density of 

the true error eo. We shall consider the cases that p is normal and Laplace. Given 

a prior n on J?\ the posterior distribution for / is given by 

/Bn?=iPW-/(x?))<*n(/) ^ 
fYYUp(Yi-f(Xi))dn(f) 
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We shall show that this distribution concentrates near fo + Eeo in the case that p 
is a normal density and near fo + median(eo) if P is Laplace, if these translates 

of the true regression function fo are contained in the model g?. If the prior is 

misspecified also in the sense that fo + p?g? (where p is the expectation or 

median of eo), then, under some conditions, this remains true with fo replaced 

by a "projection" /* of fo on &. In agreement with the notation in the rest of 

the paper, we shall denote the true distribution of an observation (X, Y) by Po 

(stressing that, in general, Po is different from Pf with / 
= 0). The model & as 

in the statement of the main results is the set of all distributions Pf on 3tg x R 

with / e &. 

4.1. Normal regression. Suppose that the density p is equal to the standard 

normal density p(z) 
= 

(27r)-1/2exp(?\z2). Then, with p = Eeo, 

log -^-(X, Y) = 
-\(f 

- 
f0)2(X) + eo(f 

- 
fo)(X), 

Pfo 2 
(4.1) 

j { 
-Polog ?L = 

-P0(f 
- 

fo 
- 

p)2 
- 

-p2. 
Pfo 2 2 

It follows that the Kullback-Leibler divergence / i-> ? 
Polog(pf/po) is mini 

mized for / 
= 

/* e g? minimizing the map / i-> Po(f 
? 

fo 
? 

l^)2 
In particular, if fo + p e gfi, then the minimizer is fo + p and P/0+/x is the point 

in the model that is closest to Po in the Kullback-Leibler sense. If also p = 0, then, 
even though the posterior on Pf will concentrate asymptotically near P/0, which 

is typically not equal to Po, the induced posterior on / will concentrate near the 

true regression function fo. This favorable property of Bayesian estimation is anal 

ogous to that of least squares estimators, also for nonnormal error distributions. 

If /o + p is not contained in the model, then the posterior for / will in general 
not be consistent. We assume that there exists a unique /* e J?~ that minimizes 

/ h-> Po(/ 
? 

fo 
? 

p)2, as is the case, for instance, if & is a closed, convex subset 

of L2(Po). Under some conditions we shall show that the posterior concentrates 

asymptotically near /*. If p = 0, then /* is the projection of fo into & and the 

posterior still behaves in a desirable manner. For simplicity of notation, we assume 

that Eo<?o = 0. 

The following lemma shows that (2.8) is satisfied for a multiple of the 

L2(Po)-distance on &. 

LEMMA 4.1. Let ^ be a class of uniformly bounded functions f : 3? ?> R 

such that either fo & or & is convex and closed in Z.2(Po). Assume that fo 
is uniformly bounded, that Eo^o = 0 and that Eo^M'^0' < oo for every M > 0. 

Then there exist positive constants C\,Ci, C3 such that, for all m e N, /, f\,..., 
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fme^ and kx,...,km>0 with J2i A./ = 1, 

Polog^<-^P0(/-r)2, Pf* 2 

(4.2) 
P0^log^ 

<ClP0(/-r)2, 

sup -logPof^i^)" 
> 

C2J^ki(PQifi 
- 
n2 

- C3Po(/ - f)2). 
0<a<l V Pf* / i 

Proof. We have 

(43) iog ?L(X, Y) = 
-I[(/0 

- 
f)2 

- 
ifo 

- 
D2]iX) 

- 
e0(f* 

- 
f)(X). 

Pf* 2 

The second term on the right-hand side has mean zero by assumption. The first 

term on the right-hand side has expectation 
? 

|Po(/* 
? 

f)2 if fo 
? 

/*, as is 

the case if /o & - Furthermore, if & is convex, the minimizing property of /* 

implies that Poifo 
? 

/*)(/* 
? 

/) > 0 for every f e & and then the expectation 
of the first term on the right-hand side is bounded above by 

? 
\Poif* 

~ 
f)2 

Therefore, in both cases (4.2) holds. 

From (4.3) we also have, with M a uniform upper bound on & and fQ, 
9 

Poflog -??-) 
< P0[(f* 

- 
/)2(2/o 

- 
/ 

- 
/*)2] + 2P0e2P0(f* 

~ 
f)2, 

V Pf*/ 

Poflog-^-) (-BL) <P0[(/* 
- 

/)2(2/o- / - 
P)2 + 2e2if* 

~ 
f)2] 

\ Pf*/ \Pf*/ 

x e2a(M2+M\e0\) 
^ 

Both right-hand sides can be further bounded by a constant times Po(/ 
? 

/*)2, 

where the constant depends on M and the distribution of eQ only. 

In view of Lemma 4.3 (below) with p = 
pf* and #; = 

/?/., we see that there ex 

ists a constant C > 0 depending on M only such that, for all A,; > 0 with J^t A.j = 1, 

(4.4) ll - Po(^^)" -?Polog^-| <2a2c^Ai.Po(/;. 
_ 

r)2 
I V Pf* ) T,i*-iP/i\ i 

By Lemma 4.3 with a = 1 and p 
? 

Pf and similar arguments, we also have that, 

for any / e &, 

\l-Po(^^)-Polog-^-\<2Cj:xiPo(fi-f)2. I V Pf ) Y,ihPf,\ i 

For A, = 1 this becomes 

ll 
- 

Po(^-) 
- 

Polog^-I 
< 2CPo(fi 

- 
f)2. 

I \PfJ Pf,\ 
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Taking differences, we obtain that 

Polog-^-?>Polog^ <4C?A,Po(//-/)2. EihPfi i Pfi i 

By the fact that log(ab) 
= 

log a + logb for every a, b > 0, this inequality remains 

true if / on the left is replaced by /*. Combine the resulting inequality with (4.4) 
to find that 

\ pp / 

i Pfi 

-2a2Cj2^iPo(f* 
~ 

fi)2-4C^iPo(fi 
~ 

f)2 
i i 

> 
^ 

_ 
2a2c) 5>,ft(/* 

~ 
fi)2-4C^iPo(fi 

- 
f)2, 

where we have used (4.2). For sufficiently small a > 0 and suitable con 

stants C2, C3, the right-hand side is bounded below by the right-hand side of the 

lemma. Finally the left-hand side of the lemma can be bounded by the supremum 
over a 6 (0, 1) of the left-hand side of the last display, since ? 

log x > 1 ? x for 

every x > 0. 

In view of the preceding lemma, the estimation of the quantities involved in the 

main theorems can be based on the L2(Po) distance. 

The "neighborhoods" B(s, Pf*; Po) involved in the prior mass conditions (2.4) 
and (2.11) can be interpreted in the form 

B(s, Pf.; Po) = {feg?: P0(f 
- 

fo)2 < P0(/* 
- 

fo)2 + e2, P0(f 
- 

f)2 < s2}. 

If P0(f 
- 

/*)(/* 
- 

/o) = 0 for every / e & (as is the case if /* = f0 or if /* lies 
in the interior of &\ then this reduces to an L2(Po)-ball around /* by Pythagoras' 
theorem. 

In view of the preceding lemma and Lemma 2.1, the entropy for testing in (2.5) 
can be replaced by the local entropy of g? for the Z>2(Po)-metric. The rate of 

convergence of the posterior distribution guaranteed by Theorem 2.1 is then also 
relative to the L2(Po)-distance. These observations yield the following theorem. 

THEOREM 4.1. Assume the assertions of Lemma 4.1 and, in addition, that 

Po(f 
? 

/*)(/* 
? 

fo) = Ofor every f e g?. If sn is a sequence of strictly positive 
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numbers with sn ?> 0 and ns? 
? oc such that, for a constant L > 0 and all n, 

(4.5) n(/ e^:PQif 
- 

pf < 
s2n) 

> e~Ln?n, 

(4.6) N(sn,^,\\-\\Po,2)<en?n, 

then nnife^: P0(/ 
- 

/*)2 
> 

Ms2n\Xx,..., Xn) -> 0 in LxiP$),for every suf 

ficiently large constant M. 

There are many special cases of interest of this theorem and the more general 
results that can be obtained from Theorems 2.1 and 2.2 using the preceding reason 

ing. Some of these are considered in the context of the well-specified regression 
model [14]. The necessary estimates on the prior mass and the entropy are not dif 

ferent for problems other than the regression model. Entropy estimates can also be 

found in work on rates of convergence of minimum contrast estimators. For these 

reasons we exclude a discussion of concrete examples. 
The following pair of lemmas was used in the proof of the preceding results. 

LEMMA 4.2. There exists a universal constant C such that, for any probability 
measure Pq and any finite measures P and Q and any 0 < a < 1, 

l-Po(-) 
-aPolog^ <a2CP0 

(log^j ((^j 
t[q>p] + 

t{qSp^j 
. 

PROOF. The function R defined by P(x) = iex 
- 1 - x)/ix2ex) for x > 0 and 

Rix) = iex 
? 1 ? 

x)/x2 for x < 0 is uniformly bounded on R by a constant C. We 

can write 

Po(-) =l+aP0log 
\P/ P 

+ 
P0P(tflog^(alog^) (^j 

Mq>p}+Mq<p] 

The lemma follows. 

LEMMA 4.3. There exists a universal constant C such that, for any probabil 

ity measure Pq and all finite measures P, Qx,..., Qm and constants 0 < a < 1, 

ki >0withJ2i^i 
= 1, 

i1_fo(SM)"_a/,olog^l<2aJci:A,/.?(iog*)2[(*)2+l"i I V p ) iZiMqA i V pJ l\pJ J 

PROOF. In view of Lemma 4.2 with q 
= 

?, hqi, it suffices to bound 

?IA 8?p?) ll?p?) 1^k"i<>p+t^x"ii-p) 
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by the right-hand side of the lemma. We can replace a in the display by 2 and 

make the expression larger. Next we bound the two terms corresponding to the 

decomposition by indicators separately. 

By the convexity of the map x h> x log x, 

If Y.i ^iQi > P> then the left-hand side is positive and the inequality is preserved 
when we square on both sides. Convexity of the map x h-> x2 allows us to bound 

the square of the right-hand side as in the lemma. 

By the concavity of the logarithm, 

- 
log-< 

- 
> Xi log ?. 

P i P 

On the set J^i ^iGi < P the left-hand side is positive and we can again take squares 
on both sides and preserve the inequality. 

4.2. Laplace regression. Suppose that the error-density p is equal to the 

Laplace density p(x) = 
\ exp(?\x\). Then 

log ̂-(X, Y) = 
-(\e0 + /o(X) 

- 
/(X)| 

- 
kol), 

Pfo 

_Jp0log^ 
= 

p0<D(/-/0), 
Pfo 

for $(v) = 
Eo(|eo 

? 
v\ 

? 
\eo\). The function <J> is minimized over v e R at the 

median of eo. It follows that if fo + m, for m the median of eo, is contained in &, 

then the Kullback-Leibler divergence 
? 

Polog(pf/po) is minimized over / e g? 

at / 
= 

fo + m. If & is a compact, convex subset of L i (Po), then in any case there 

exists /* ^" that minimizes the Kullback-Leibler divergence, but it appears dif 

ficult to determine this concretely in general. For simplicity of notation, we shall 

assume that m = 0. 

If the distribution of eo is smooth, then the function O will be smooth too. 

Because it is minimal at v = m = 0, it is reasonable to expect that, for v in a 

neighborhood of m = 0 and some positive constant Co, 

(4.7) d>(v) = Eofleo 
" 

H 
- 

kol) > CoM2. 

Because O is convex, it is also reasonable to expect that its second derivative, if it 

exists, is strictly positive. 

LEMMA 4.4. Let g? be a class of uniformly bounded functions f: 3C ?> R 

and let fo be uniformly bounded. Assume that either foegp and (4.7) holds, 
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or that ^ is convex and compact in Li(Po) and that 4> is twice continu 

ously differentiable with strictly positive second derivative. Then there exist pos 
itive constants Cq,Cx,C2, C3 such that, for all m e N, /, fx,..., fm e & and 

kx,...,km>? with J2i ki = 1, 

Po\og-^<-C0P0if-f*)2, 
Pf* 

(4.8) p0(iogEll\ <cxP0if-f*)2, \ Pf J 

sup 
-logP0(EiXiPfi)a 

> 
C2J2^i(Po(fi 

- 
n2 

- 
C3Poif 

- 
fi)2). 0<c*<l V Pf* / 1 

Proof. Suppose first that fo ? &', so that /* 
= 

fo. As 4> is monotone on 

(0, 00) and (?00,0), inequality (4.7) is automatically also satisfied for v in a given 

compactum (with Co depending on the compactum). Choosing the compactum 

large enough such that (/ 
? 

/*)(X) is contained in it with probability one, we 

conclude that (4.8) holds (with f0 
= 

/*). 
If /* is not contained in & but & is convex, we obtain a similar inequality 

with /* replacing fQ, as follows. Because /* minimizes / h> Po<&if 
? 

fo) over 

& and ft 
= (1 

- 
0/* + tf e & for t e [0,1], the right derivative of the map 

t h> PQ<$>ift 
- 

fo) is nonnegative at t = 0. This yields P0&(f* 
- 

fo)if 
- 

/*) 
> 0. 

By a Taylor expansion, 

Polog ^? = 
P0(0>(/ 

- 
f0) 

- 
<&(/* 

- 
f0)) 

Pf 

= P0O'(/* 
- 

fo)if 
- 

/*) + X-Po<s>"if-fo)if 
- 

/*)2, 

for some / between / and /*. The first term on the right-hand side is nonnega 
tive and the function <J>" is bounded away from zero on compacta by assumption. 

Thus, the right-hand side is bounded below by a constant times Poif 
? 

f*)2 and 

again (4.8) follows. 

Because logipf/p/*) is bounded in absolute value by \f 
? 

f*\, we also have, 
with M a uniform upper bound on & and fo, 

2 

Po(log^) <Po(f*-f)2, \ Pf*) 

\ pp) \pf*J 

As in the proof of Lemma 4.1, we can combine these inequalities, (4.8) and 

Lemma 4.3 to obtain the result. 
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As in the case of regression using the normal density for the error-distribution, 

the preceding lemma reduces the entropy calculations for the application of Theo 

rem 2.1 to estimates of the L2(Po)-entropy of the class of regression functions &. 

The resulting rate of convergence is the same as in the case where a normal distri 

bution is used for the error. A difference with the normal case is that presently no 

tail conditions of the type Eo^0' < oo are necessary. Instead the lemma assumes 

a certain smoothness of the true distribution of the error eo. 

5. Parametric models. The behavior of posterior distributions for finite 

dimensional, misspecified models was considered in [1] and more recently by 
Bunke and Milhaud [3] (see also the references in the latter). In this section we 

show that the basic result that the posterior concentrates near a minimal Kullback 

Leibler point at the rate y/n follows from our general theorems under some natural 

conditions. We first consider models indexed by a parameter in a general metric 

space and relate the rate of convergence to the metric entropy of the parameter set. 

Next we specialize to Euclidean parameter sets. 

Let [po : 0 e 0} be a collection of probability densities indexed by a parameter 0 

in a metric space (&,d). Let Po be the true distribution of the data and assume that 

there exists a #* e 0, such that, for all 0, 0\, 02 e 0 and some constant C > 0, 

(5.1) Po log 
? < 

-Cd2(0,0*), 
Po* 

(5.2) pJJK_x\ <d2(eue2), 
\ V po2 ) 

2 
(5.3) Po(log^) <d2(0u02). 

The first inequality implies that #* is a point of minimal Kullback-Leibler di 

vergence 9 m* ? 
Polog(pe/po) between Po and the model. The second and third 

conditions are (integrated) Lipschitz conditions on the dependence of po on 9. 

The following lemma shows that in the application of Theorems 2.1 and 2.2 these 

conditions allow one to replace the entropy for testing by the local entropy of 0 

relative to (a multiple of) the natural metric d. 

In examples it may be worthwhile to relax the conditions somewhat. In partic 
ular, the conditions (5.2)-(5.3) can be "localized." Rather than assuming that they 
are valid for every 0\,02 e 0, the same results can be obtained if they are valid 

for every pair (9\, O2) with d(9\, O2) sufficiently small and every pair (9\, O2) with 

arbitrary 6\ and 92 = 9*. For 92 = 9* and Po = P$* (i.e., the well-specified situa 

tion), condition (5.2) is a bound on the Hellinger distance between Pq* and P#,. 

LEMMA 5.1. Under the preceding conditions, there exist positive con 

stants C\, C2 such that, for all m eN,9,9\,... ,9m e 0 and X\,..., Xm > 0 with 
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YJ^d2(0i,9^-CXTkid2i9,9i)<C2 sup -logPQfE/X/^T. / / 0?x<l V PO* / 

PROOF. In view of Lemma 5.3 (below) with p = pe*, (5.2) and (5.3), there 

exists a constant C such that 

(5.4) 1 - 
Po(^^Y-aPo(log-^-) 

< 
2a2Cj:kid2i6i,e% \ Pe* ) \ Hi^iPOi/ t 

By Lemma 5.3 with a = 1, p = 
po, (5.2) and (5.3), 

l-Po(^^)-/>o(log-^-) <2C?M2(^). V Pe J V Ei^iPOiJ i 
We can evaluate this with k( = 1 (for each / in turn) and next subtract the convex 

combination of the resulting inequalities from the preceding display to obtain 

Poflog 
Pe 

)-J2kiP0(log^-) <4Cj^kid2i9i,9). 

By the additivity of the logarithm, this remains valid if we replace 6 on the left 

hand side by 0*. Combining the resulting inequality with (5.1) and (5.4), we obtain 

l-Po( iP0i) >aYkid2iei,6*)iC-2a)-4CYkid2i9i,9). \ Po* / i i 

The lemma follows upon choosing a > 0 sufficiently small and using 
? 

logx 
> 1 ? x. 

If the prior on the model {pe : 9 e 0} is induced by a prior on the parameter 
set 0, then the prior mass condition (2.11) translates into a lower bound for the 

prior mass of the set 

Bis,9*',Po) = 
\9ee:-Polog-^<s2,P0(log-^) <s2\. 

I po* V po*/ J 

In addition to (5.1), it is reasonable to assume a lower bound of the form 

(5.5) P0log-^>-Cd2i9,9*), 
Po* 

at least for small values of di9,9*). This together with (5.3) implies that 

Bis, 9*; Po) contains a ball of the form [9:di9, 9*) < Cxs] for small enough s. 

Thus, in the verification of (2.4) or (2.11) we may replace Bis, P*; Po) by a ball 

of radius s around 0*. These observations lead to the following theorem. 
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THEOREM 5.1. Let (5.1 )-(5.5) hold. If for sufficiently small A and C, 

sup logN(As, {0e@:s< d(0, 0*) < 2s}, d) 
< 

ns2n, 
S>?n 

Yl(0:jsn <d(0,0*)<2jsn) < ne2j2/% 

Yl(0:d(0,0*)<Csn) 
~e 

then Yl (0 : d(0, 0*) > Mnsn\X\,..., Xn) -> 0 in L i (P$) for any Mn -> oo. 

5.1. Finite-dimensional models. Let 0 be an open subset of m-dimensional 

Euclidean space equipped with the Euclidean distance d and let {po : 0 e 0} be a 

model satisfying (5.1)?(5.5). 
Then the local covering numbers as in the preceding theorem satisfy, for some 

constant B, 

/ B\m 
N(As, {0e@:s< d(0, 0*) < 2s}, d) < ( - 

) 

(see, e.g., [8], Section 5). In view of Lemma 2.2, condition (2.5) is satisfied for sn 
a large multiple of l/^/n. If the prior n on 0 possesses a density that is bounded 

away from zero and infinity, then 

Yl(0:d(0,0*)<js) 
<c 

,m 

Yl(B(s,0*;Po)) 
~ V ' 

for some constant C2. It follows that (2.11) is satisfied for the same sn. Hence, the 

posterior concentrates at rate 1 /*Jn near the point 0*. 

The preceding situation arises if the minimal point 0* is interior to the parameter 
set 0. An example is fitting an exponential family, such as the Gaussian model, 
to observations that are not sampled from an element of the family. If the minimal 

point 0* is not interior to 0, then we cannot expect (5.1) to hold for the natural 

distance and different rates of convergence may arise. We include a simple example 
of the latter type, which is somewhat surprising. 

Example. Suppose that Po is the standard normal distribution and the model 

consists of all N(0, 1)-distributions with 0 > 1. The minimal Kullback-Leibler 

point is 0* = 1. If the prior possesses a density on [1, 00) that is bounded away 
from 0 and infinity near 1, then the posterior concentrates near 0* at the rate l/n. 

One easily shows that 

-Polog^ 
= 

^(0-0*)(0+0*), Po* 2 
(5.6) 

-logPot^Y =l-a(0-0*){0+0*-a(0-0*)). \po*' 2 

This shows that (2.9) is satisfied for a multiple of the metric d(pox,po2) 
= 

y/\0\ -021 on 0 = [1, 00). Its strengthening (2.8) can be verified by the same 
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methods as before, or, alternatively, the existence of suitable tests can be estab 

lished directly based on the special nature of the normal location family. [A suit 

able test for an interval (0\, 02) can be obtained from a suitable test for its left end 

point.] The entropy and prior mass can be estimated as in regular parametric mod 

els and conditions (2.5)?(2.11) can be shown to be satisfied for sn a large multiple 
of l/y/n. This yields the rate \/y/n relative to the metric Vl#i 

? 
#21 and, hence, 

the rate l/n in the natural metric. 

Theorem 2.2 only gives an upper bound on the rate of convergence. In the 

present situation this appears to be sharp. For instance, for a uniform prior on [1, 2], 
the posterior mass of the interval [c, 2] can be seen to be, with Zn = 

y/nXn, 

<S>(2jil-Zn)-<S>(c^-Zn) ^ y/E-Zn 
c(-i/2)(<?-i)n+Zn(c-l)JZ 

Q(2jn-Zn)-&(y/n-Zn) 

~ 

cJTi-Zn 

where we use Mills' ratio to see that <?>(yn) 
? 

?(xn) ? 
(l/xn)<f>(xn) if xn, yn -> 

c e (0, 1) such that xn/yn -> 0. This is bounded away from zero for c = cn = 

1 + C/n and fixed C. 

LEMMA 5.2. There exists a universal constant C such that for any probability 
measure Po and any finite measures P and Q and any 0 < a < 1, 

|l 
- 

Fo(-) -<xPolog-|<a2CP0 
( 

/--l) 
lte>p> + 

(log-) Mq<P]l 

LEMMA 5.3. There exists a universal constant C such that, for any probability 
measure Po and any finite measures P, Q\,..., Qm and any X\,..., Xm > 0 with 

J2i h = 1 and 0 < a < 1, the following inequality holds: 

l-^o 
- 

-otPolog?-? I \ P J ?/*i#l 

<2a^EA,/>o[(y|-l) +(log|)2]. 
PROOFS. The function R defined by R(x) 

= (ex 
- 1 - x)/a2(ex/2a 

- 
I)2 

for x > 0 and R(x) = 
(ex 

? 1 ? 
x)/x2 for x < 0 is uniformly bounded on R by 

a constant C, independent of a e (0,1]. [This may be proved by noting that the 

functions (ex 
? 

l)/a(eax 
? 

1) and (ex 
? 1 ? 

x)/(ex^2 
? 

I)2 are bounded, where 

this follows for the first by developing the exponentials in their power series.] For 

the proof of the first lemma, we can proceed as in the proof of Lemma 4.2. For the 

proof of the second lemma, we proceed as in the proof of Lemma 4.3, this time 

also making use of the convexity of the map x h> \y/x 
? 

112 on [0, oo). 
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6. Existence of tests. The proofs of Theorems 2.1 and 2.2 rely on tests of Po 
versus the positive, finite measures QiP) obtained from points P that are at pos 
itive distance from the set of points with minimal Kullback-Leibler divergence. 

Because we need to test Po against finite measures (i.e., not necessarily probabil 

ity measures), known results on tests using the Hellinger distance, such as in [10] 
or [8], do not apply. It turns out that in this situation the Hellinger distance may 
not be appropriate and instead we use the full Hellinger transform. The aim of this 

section is to prove the existence of suitable tests and give upper bounds on their 

power. We first formulate the results in a general notation and then specialize to 

the application in misspecified models. 

6.1. General setup. Let P be a probability measure on a measurable space 

iX, srf) (playing the role of Po) and let ? be a class of finite measures on i3?, srf) 

[playing the role of the measures Q with dQ 
= 

(po/p*) dP\ We wish to bound 

the minimax risk for testing P versus J2, defined by 

tt(P, B) = inf sup (P0 + Qil 
- 

(/))), 

where the infimum is taken over all measurable functions (p: 3? -> [0, 1]. Let 

conv(i?) denote the convex hull of the set B. 

LEMMA 6.1. If there exists a a-finite measure that dominates all Qe B, then 

TtiP, B) = sup (Pip <q) + Qip > 
q)). 

geconv(^) 

Moreover, there exists a test 0 that attains the infimum in the definition of TtiP, B). 

PROOF. If p' is a measure dominating B, then a a-finite measure p exists 

that dominates both ?? and P (e.g., p 
? 

pi + P). Let p and q be //-densities of 
P and Q, for every Q e B. The set of test-functions (j) can be identified with 
the positive unit ball O of L^iX, srf, p), which is dual to Lxi3?', srf, p), since 

p is a-finite. If equipped with the weak-* topology, the positive unit ball <J> is 
Hausdorff and compact by the Banach-Alaoglu theorem (see, e.g., [11], Theo 
rem 2.6.18, and note that the positive functions form a closed and convex subset 
of the unit ball). The convex hull conv(i?) (or rather the corresponding set of 

//-densities) is a convex subset of L\ i3?, srf, //). The map 

L^iSC,s^,p) x Lxi$r,?f,p)-+R, 

(0,g)H>0P + (l-0)G 

is concave in Q and convex in 0. [Note that in the current context we write 0P 
instead of P0, in accordance with the fact that we consider 0 as a bounded lin 
ear functional on Lxi&, srf, p).] Moreover, the map is weak-*-continuous in (f> 
for every fixed Q [note that every weak-*-converging net (f)a ̂ -X cf) by definition 
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satisfies cpaQ -> (j)Q for all Q eL\(36', srf, p)]. The conditions for application of 

the minimax theorem (see, e.g., [15], page 239) are satisfied and we conclude 

inf sup (0P + (1-0)G)= sup inf(0P + (l-(/))Q). ^^ Qeconv(?) Qeconv(g) <t>e? 

The expression on the left-hand side is the minimax testing risk ix(P,g2g). The 

infimum on the right-hand side is attained at the point (p 
= 

t{p < q}, which leads 

to the first assertion of the lemma upon substitution. 

The second assertion of the lemma follows because the function 0 h? sup{0P + 

(1 
? 

(p)Q:Q e conv(J2)} is a supremum of weak-*-continuous functions and, 

hence, attains its minimum on the compactum <?>. 

It is possible to express the right-hand side of the preceding lemma in the 

L\ -distance between P and Q, but this is not useful for the following. Instead, 
we use a bound in terms of the Hellinger transform pa(P, Q) defined by, for 

0<cx < 1, 

Pa(P,Q) = 
f 

Paql-adp. 

By Holder's inequality, this quantity is finite for all finite measures P and Q. The 

definition is independent of the choice of dominating measure p. 
For any pair (P, Q) and every a e (0, 1), we can bound 

P(p <q) + Q(p>q)= pdp+ I qdp 
Jp<q Jp>q 

(6.1) <[ paq{-adix+ f paqX-adix 
Jp<q Jp>q 

= Pa(P,Q) 

Hence, the right-hand side of the preceding lemma is bounded by supg pa(P, Q) 
for all a e (0, 1). The advantage of this bound is the fact that it factorizes if 

P and Q are product measures. For ease of notation, define 

pa(g*, <&) = 
sup{pa(P, Q):P e conv(^), Q e conv(^)}. 

LEMMA 6.2. For any 0 < a < 1 and classes g?\, g^2, &\, ^2 of finite mea 

sures, 

Pa(g?l X &>2, ?X X Bi) < Pa(&l,?l)pa(&2, ?22), 

where g?\ x g?2 denotes the class of product measures {P\ x P2'P\ ^i, 

P2 ^2}. 

Proof. Let P e con\(g?\ x g?2) and Q e conv(i?i x ?2) be given. Since 

both are (finite) convex combinations, a -finite measures p\ and P2 can always be 
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found such that both P and Q have px x p2 densities which both can be written 

in the form of a finite convex combination as 

pix,y) = 
^kipuix)p2iiy), ki>0, J^A./= 1, 

qix,y) = 
^Kjq\jix)q2jiy), k} > 0, ̂ Vy-= 1, 

./ j 

for px x p2-almost-all pairs ix, y) e X x JT. Here pi/ and qXj are //j-densities 
for measures belonging to &\ and Bx, respectively (and, analogously, p% and q2j 
are /^-densities for measures in g?2 and J22). This implies that we can write 

f 
paq{-adipx xp2) 

i|i\ E/^/Pi/C*) / V LjKjqijix) / J 

(where, as usual, the integrand of the inner integral is taken equal to zero whenever 

the /xj-density equals zero). The inner integral is bounded by p(Xi&)2, J22) for 

every fixed x e X. After substituting this upper bound, the remaining integral is 

bounded by pai^x,B]). 

Combining (6.1) with Lemmas 6.2 and 6.1, we obtain the following theorem. 

THEOREM 6.1. If P is a probability measure on (X', srf) and B is a domi 

nated set of finite measures on i3?', srf), then, for every n > 1, there exists a test 

4>n : 3?n -> [0, 1] such that, for all 0 < a < 1, 

sup (P>? + Qnil 
- 

(f>n)) 
< PaiP, J2)n. 

The bound given by the theorem is useful only if pa (P, ?}) < 1. For probability 
measures P and Q, we have 

PMliP, G) = 1 - | f{VP 
- 

Jqfdp 

and, hence, we might use the bound with a = 
1/2 if the Hellinger distance of 

conv(J2) to P is positive. For a general finite measure Q, the quantity pX/2iP, Q) 

may be bigger than 1 and, depending on Q, the Hellinger transform paiP, Q) may 
even lie above 1 for every a. The following lemma shows that this is controlled by 
the (generalized) Kullback-Leibler divergence 

? P logiq/p). 
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LEMMA 6.3. For a probability measure P and a finite measure Q, the func 
tion a h> Pa(Q, P) is convex on [0, 1] with pa(Q, P) ?> P(q > 0) as a | 0, 

Pa(Q, P) -> Q(P > 0) as a f 1 and 

dPa(Q,P)\ D1 (q\ 
dot |a=o \pJ 

(which may be equal to ? 
oo). 

PROOF. The function a h-> eay is convex on (0, 1) for all y e [?oo, oo), 

implying the convexity of a \-+ pa(Q, P) = 
P(q/p)a on (0, 1). The function 

a y-> ya 
= ealogy is continuous on [0, 1] for any y > 0, is decreasing for y < 1, 

increasing for y > 1 and constant for y = 1. By monotone convergence, as a | 0, 

q(^) l{0<?}te(-) 
Mo<P<q} = Q(0<p<q). 

By the dominated convergence theorem, with dominating function (p/q)a x 

Mp>q) 
< 

(p/q)l/2^{p>q) for a < 
1/2, we have, as a -> 0, 

e(-) !{*>*>-?g(-) 
1{^} = g(p>^). 

Combining the two preceding displays above, we see that pi-a(Q, P) = 

Q(p/q)a 
- 

Q(p > 0) as a | 0. 

By the convexity of the function a \-+ eay, the map or i-?- /^(y) 
= (ea:y 

? 
\)/ot 

decreases, as a \, 0, to (d/da)|a=o/a(.y) 
= y, for every y. For y < 0, we have 

fa(y) 
< 0, while, for y > 0, by Taylor's formula, 

fa(y)< sup ̂<y^<-^(a+?)>;. 
0<a/<a ^ 

Hence, we conclude that fa(y) < 0 v 
6^le^a+?^yty>o. Consequently, the quotient 

a-i(eaiog(q/p) 
_ 

^ decreases to log(q/p) as a | 0 and is bounded above by 0 v 

s~l(q/p)2??q>p for small a > 0, which is P-integrable for 2s < 1. We conclude 

that 

^(p?(G. 
P) ~ Po(Q, P)) = 

lp((-) 
~ 

l)h>o 
i 

Plog(^yq>o, 
as a I 0, by the monotone convergence theorem. 

Two typical graphs of the Hellinger transform a \-+ pa (Q, P) are shown in Fig 
ure 1 [corresponding to fitting a unit variance normal location model in a situation 

where the observations are sampled from a N(0, 2)-distribution]. For P a proba 

bility measure with P < Q, the Hellinger transform is equal to 1 at a = 0, but will 

eventually increase to a level that is above 1 near a = 1 if Q(p > 0) > 1. Unless 
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FlG. 1. The Hellinger transforms a \-> pa(Q, P), far P = 
N(0,2) and Q, respectively, the 

measure defined by dQ = (dN(3/2, l)/dN(0, \))dP (left) and dQ = (dN(3/2, l)/dN(\, \))dP 

(right). Intercepts with the vertical axis at the right and left of the graphs equal P(q > 0) and 

Q(p > 0), respectively. The slope at 0 equals (minus) the Kullback-Leibler divergence P \og(p/q). 

the slope P logip/q) is negative, it will never decrease below the level 1. For prob 

ability measures P and Q, this slope equals minus the Kullback-Leibler distance 

and, hence, is strictly negative unless P = 
Q. In that case, the graph is strictly be 

low 1 on (0, 1) and pX/2iP, Q) is a convenient choice to work with. For a general 
finite measure Q, the Hellinger transform paiQ, P) is guaranteed to assume val 

ues strictly less than 1 near a = 0, provided that the Kullback-Leibler divergence 
P logip/q) is negative, which is not automatically the case. For testing a compos 
ite alternative i?, we shall need that this is the case uniformly in Q e conv(i?). 

For a convex alternative i?, Theorem 6.1 guarantees the existence of tests based 
2 

on n observations with error probabilities bounded by e~n? if 

2 i 1 
s < sup sup log-. 

0<a<lQe? PaiQ,P) 

In some of the examples we can achieve inequalities of this type by bounding the 

right-hand side below by a (uniform) Taylor expansion of a \-^ ? 
log pa (P, Q) in 

a near a ? 0. Such arguments are not mere technical generalizations: they can be 

necessary already to prove posterior consistency relative to misspecified standard 

parametric models. 

If Piq 
= 0) > 0, then the Hellinger transform is strictly less than 1 at a = 0 and, 

hence, good tests exist, even though it may be true that pi/2(P, Q) > 1. The exis 
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tence of good tests is obvious in this case, since we can reject Q if the observations 

land in the set q = 0. 

In the above we have assumed that ? is dominated. If this is not the case, then 

the results go through, provided that we use Le Cam's generalized tests [10], that 

is, we define 

tt(P, ?) = inf sup (4>P + (1 
- 

0)g), 

where the infimum is taken over the set of all continuous, positive linear maps 

0: Lx i3?, &/) h> R such that </>P < 1 for all probability measures P. This collec 

tion of functionals includes the linear maps that arise from integration of measur 

able functions 0: 3? i-> [0, 1], but may be larger. Such tests would be good enough 
for our purposes, but the generality appears to have little additional value for our 

application to misspecified models. 

The next step is to extend the upper bound to alternatives ?H that are possibly 
not convex. We are particularly interested in alternatives that are complements of 

balls around P in some metric. Let L\i3?', g/) be the set of finite measures on 

(#\ */) and let r : 
L\i3?, */) x L+(^, si) h-> R be such that r (P, .):.Sh>R 

is a nonnegative function (written in a notation so as to suggest a distance from P 

to Q). For QeB, set 

(6.2) r2(P,?)= sup log 
0<cx<l PaiP, Q) 

For s > 0, define NT(e, J2) to be the minimal number of convex subsets of {Q e 

L\i%\s/):f(P, Q) > s/2} needed to cover {QeB'.s < r(P, Q) < 2s} and 
assume that J2 is such that this number is finite for all s > 0. (The requirement 
that these convex subsets have f-distance s/2 to P is essential.) Then the following 
theorem applies. 

THEOREM 6.2. Let P be a probability measure and J2 be a dominated set of 

finite measures oni3?, &/). Then for all s > 0 and all n > 1, there exists a test (j)n 

such that, for all J e N, 
oo 

j=1 

(6.3) 
sup Qn(l-4>n)<e'nj2?/4. 

{Q:r(P,Q)>Je} 

PROOF. Fix n > 1 and s > 0 and define ?>j 
= {Q e ?:je < r(P, Q) < 

(j + 1)?}. By assumption, there exists for every j 
> 1 a finite cover of J27 by 

Nj 
= 

NT(js, ?!) convex sets Cyj,..., C/.w,- 
of finite measures, with the further 

property that 

(6.4) inf 
f(P,Q)>J-^-, l<i<Nj. 
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According to Theorem 6.1, for all n > 1 and for each set Cjj, there exists a 

test 4>njj such that, for all a e (0, 1), we have 

Pn(t>n,j,i<Pa(PXjj)\ 

SUp Q"(l-<l>nJj)<Pa(P,Cjj)n 
QeCjj 

By (6.4), we have 

sup inf pa(P,Q)= sup e-f2(P>Q) <e~j2e2/4. 

QeCj,i0<a<l QeCjj 

For fixed P and Q, the function a \-^ pa(P, Q) is convex and can be extended 

continuously to a convex function on [0, 1]. The function Q \-+ p?(P, Q) with do 

main L\(3?, srf) is concave. By the minimax theorem (see, e.g., [15], page 239), 
the left-hand side of the preceding display equals 

inf sup pa(P,Q)= inf pa(P,Cjj). 0<a<l 
Q^c 

0<a<l 

It follows that 

Pnc/>njJv sup Qn(\-4>njj)<e-nj2e2/4. 
Q*cu 

Now define a new test function (j)n by 

(j)n =sup max 0n,/\i. 
j>\ \<i<Nj 

Then, for every J > 1, 

oo Nj oo 

pn*n < 
E E pn^u< E ^v^'V/4> 

7 = 1' = 1 7 = 1 

sup Gn(l -0?) < sup max sup Qn(\ -fajj) 
< 

sup^"^V/4 
- 

^^yV/4, 
? ^ j>ji<Nj QeCjj 

' 
7>i 

where ̂  = {e:T(P,G)>7e} = 
Uy>y^y. 

6.2. Application to misspecification. When applying the above in the proof for 

consistency in misspecified models, the problem is to test the true distribution Po 

against measures Q 
= 

Q(P) taking the form d Q 
= 

(po/p*)dP for P e g?. In this 

case, the Hellinger transform takes the form pa(Q, Po) 
? 

Po(p/p*)a and its right 
derivative at a = 0 is equal to Polog(/?//?*). This is negative for every P e g? if 

and only if P* is the point in & at minimal Kullback-Leibler divergence to Po. 
This observation illustrates that the measure P* in Theorem 2.1 is necessarily a 

point of minimal Kullback-Leibler divergence, even if this is not explicitly as 

sumed. We formalize this in the following lemma. 
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LEMMA 6.4. If P* and P are such that Polog(/?o/P*) < oo and Poip/ 

p*) < oo and the right-hand side of (2.9) is positive, then Pologipo/p*) < 

Po logipo/p). Consequently, the covering numbers for testing Nt is, ??, d; Po, P*) 
in Theorem 2.1 can be finite only if P* is a point of minimal Kullback-Leibler di 

vergence relative to Po. 

PROOF. The assumptions imply that Po(p* > 0) = 1. If P0(p 
= 0) > 0, then 

Polog(/?o/p) 
= oo and there is nothing to prove. Thus, we may assume that p is 

also strictly positive under Po. Then, in view of Lemma 6.3, the function g defined 

by g(a) = Po(p/pT = PaiQ, Po) is continuous on [0, 1] with g(0) = P0(p > 

0) = 1 and the right-hand side of (2.9) can be positive only if gia) < 1 for some 

a e [0, 1]. By convexity of g and the fact that g(0) 
= 1, this can happen only if the 

right derivative of g at zero is nonpositive. In view of Lemma 6.3, this derivative 

iss'(0+) = P0log(/?/p*). 
Finiteness of the covering numbers for testing for some s > 0 implies that 

the right-hand side of (2.9) is positive every P e ?? with J(P, P*) > 0, as 

every such P must be contained in one of the sets P; in the definition of 

Ntis, ??, d; Po, P*) for some s > 0, in which case the right-hand side of (2.9) 
is bounded below by s2/4. 

If Poip/p*) 
< 1 for every P e &, then the measure Q defined by dQ 

? 

(po/p*)dP is a subprobability measure and, hence, by convexity, the Hellinger 
transform a \-> paiPo, Q) is never above the level 1 and is strictly less than 1 at 

a = 
1/2 unless Po = 

Q. In such a case there appears to be no loss in generality 
to work with the choice a = 

1/2 only, leading to the distance d as in Lemma 2.3. 

This lemma shows that this situation arises if 2? is convex. 

The following theorem translates Theorem 6.2 into the form needed for the 

proof of our main results. Recall the definition of the covering numbers for testing 

Ntis, &,d',P0,P*) in i2.2). 

THEOREM 6.3. Suppose P* e ?? and Poip/p*) < oo for all P e ??. Assume 

that there exists a nonincreasing function D such that, for some sn > 0 and every 
s> sn, 

(6.5) Ntis,&>,d;PQ,P*)<Dis). 

Then for every s > sn there exists a test 4>n idepending on s > 0) such that, for 

every J e N, 

e-ne2/4 

^^Dis)^-^^, 
(6.6) 

sup QiP)ni\-d>n)<e-nj2el\ 
{Pe&>:d(P,P*)>Je} 
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Proof. Define J2 as the set of all finite measures Q(P) as P ranges 
over g* (where po/p* = 0 if po = 0) and define x(Q\, Q2) = d(P\, P2). 
Then Q(P*) 

= P0 and, hence, d(P, P*) 
= 

x(Q(P), P0). Identify P of Theo 

rem 6.2 with the present measure Po. By the definitions (2.2) and (6.2), we 

have NT(s, <2) < Nt(s, g?,d; Po, P*) < D(s) for every s > sn. Therefore, the 

test function guaranteed to exist by Theorem 6.2 satisfies 

00 00 

PS4>n 
< 

E D(js)e-^2fA < D(s) ? e-n^2l\ 
7=1 7=1 

because D is nonincreasing. This can be bounded further (as in the assertion) since, 

for all 0 < x < 1, J2n>\ xH <x/(l? *) The second line in the assertion is simply 
the second line in (6.3). 

7. Proofs of the main theorems. The following lemma is analogous to 

Lemma 8.1 in [8] and can be proved in the same manner. 

LEMMA 7.1. For given s > 0 and P* e g? such that Polog(po/p*) < 00, 

define B(s, P*; Po) by (2.3). Then for every C > 0 and probability measure Yl 

on g*, 

pon(fU jtmdTKP) 
< Tl(B(e, />*; 

/>o))o-2(,+C)) 

< 
-^. 

Proof of Theorem 2.2. In view of (2.5), the conditions of Theorem 6.3 
2 

are satisfied, with the function D(s) = en6n (i.e., constant in s > sn). Let <f>n be the 

test as in the assertion of this theorem for s = Msn and M a large constant, to be 

determined later in the proof. 
For C > 0, also to be determined later in the proof, let Qn be the event 

C7-1) 
/ fl -^(Xt)dYl(P) 

> ̂ (1+C)^2n(P(^, P*; P0)). 

Then P%(3?n \ Qn) < 
l/(C2ns2n), by Lemma 7.1. 

Set Yln(s) = nn(P &>:d(P,P*) > s\Xu...,Xn). For every n > 1 and 

J e N, we can decompose 

P%Yln(JMsn) 
= 

P$(fln(JMen)4>n) + P0"(n?(/M??)(l 
- 

0n)l^) 
(7.2) 

+ P^{Yln(JMsn)(l-(t>n)t^n). 

We estimate the three terms on the right-hand side separately. Because Yln(s) < 1, 
the middle term is bounded by l/(C2ns2). This converges to zero as ns2 -> 00 for 
fixed C and/or can be made arbitrarily small by choosing a large constant C if ns2 
is bounded away from zero. 
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By the first inequality in (6.6), the first term on the right-hand side of (7.2) is 

bounded by 

(l-M2/4)ns2 

P^hniJMen)4>n) 
< 

Pfa 
< 

[_e_nMle:iA. 
For sufficiently large M, the expression on the right-hand side is bounded above 

by 2e~n?"M /8 for sufficiently large n and, hence, can be made arbitrarily small by 
choice of M, or converges to 0 for fixed M if ne2 ?> oo. 

Estimation of the third term on the right-hand side of (7.2) is more involved. 

Because Po(p* > 0) = 1, we can write 

PS(nn(JMen)(l-4>n)lQn) 
(?'3) 

-pan-* [fd(p,pn>JMenni=i(p/p*)(Xi)dnjP)^ o( ^4 UUUip/p^x^diiiP) J' 
where we have written the arguments Xt for clarity. By the definition of Qn, the 

integral in the denominator is bounded below by e~^+c^nenTl(B( n, P*; Po)). 

Inserting this bound, writing QiP) for the measure defined by dQiP) 
= 

ipo/P*)dP, and using Fubini's theorem, we can bound the right-hand side of 

the preceding display by 

e{\+C)nel 
, 

(7'4) 777^7-^-^ / Q(P)na-4>n)dTl(P). 
UiBiSn, P*; Po)) Jd(P,P*)>JMen 

Setting <?nj 
= 

{P e 0?: Msnj < diP, P*) < 
Men(j + 1)}, we can decompose 

[P :diP, P*) > JMsn} 
= 

Uj>j &nj- The tests (pn have been chosen to satisfy 

the inequality <2(P)n(l 
- 

4>n) < e^1 1^!* uniformly in P e &>nJ. [Cf. the sec 

ond inequality in (6.6).] It follows that the preceding display is bounded by 

{\+C)nel 

-!-Y\ e-nJ2M2^4Ui^n j) 
YliBisn, P*; Po)) 

f^j 
njJ 

< V e(l+C)ne*+nelM2j2/Z-nj2M2e*/4^ 

by (2.11). For fixed C and sufficiently large M, this converges to zero if ns2 is 

bounded away from zero and J = Jn -> oo. 

Proof of Theorem 2.1. Because n is a probability measure, the numera 

tor in (2.11) is bounded above by 1. Therefore, the prior mass condition (2.11) is 

implied (for large j) by the prior mass condition (2.4). We conclude that the asser 

tion of Theorem 2.1, but with M = Mn 
? 

oo, follows from Theorem 2.2. That in 

fact it suffices that M is sufficiently large follows by inspection of the preceding 

proof. 
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Proof of Theorem 2.4. The proof of this theorem follows the same steps 
as the preceding proofs. A difference is that we cannot appeal to the prepara 

tory lemmas and theorems to split the proof in separate steps. The shells gPnj 
= 

{P e P\Mjsn < d(P, gP*) < M(j + l)sn} must be covered by sets BnJj 
as in the definition (2.16), and for each such set we use the appropriate element 

P* ,, e g?* to define a test <j>n ,; and to rewrite the left-hand side of (7.3). We 
n,j,i 'J' 

omit the details. 

8. Technical lemmas. Lemma 8.1 is used to upper bound the Kullback 

Leibler divergence and the expectation of the squared logarithm by a function of 

the Li-norm. A similar lemma was presented in [16], where both p and q were 

assumed to be densities of probability distributions. We generalize this result to 

the case where q is a finite measure and we are forced to use the L \ instead of the 

Hellinger distance. 

LEMMA 8.1. For every b > 0, there exists a constant s\> > 0 such that, 

for every probability measure P and finite measure Q with 0 < h2(p,q) < 

sbP(p/q)b, 

PROOF. The function r: (0, oo) -> R defined implicitly by log Jt = 
2(*J~x 

? 

1) 
? 

r(x)(*J~x 
? 

l)2 possesses the following properties: 

r is nonnegative and decreasing. 

r(x) 
~ 

log(l/x) asx \, 0, whence there exists s' > 0 such that r(x) < 21og(l/x) 
on [0, e']. (A computer graph indicates that sr = 0.4 will do.) 
For every b > 0, there exists s'^ 

> 0 such that xbr(x) is increasing on [0, s^]. 
(For b > 1, we may take s'^ 

? 
1, but for b close to zero, s^ must be very small.) 

In view of the definition of r and the first property, we can write 

Plog^ = 
-2p(/i-lUpr(i)(^-l)2 Q \V P I \P/\S P I 

J--A 

< h2(p, q) + \\p-q\\\+ r(s)h2(p, q) + M~\\ 
~ < el, 



876 B. J. K. KLEIJN AND A. W. VAN DER VAART 

for any 0 < s < 4, where we use the fact that \yfqfp 
? 

11 < 1 if q/p 
< 4. Next we 

choose s < 
si and use the third property to bound the last term on the right-hand 

side by P(p/q)bsbr(s). Combining the resulting bound with the second property, 
we then obtain, for s < s1 A 

s^ 
A 4, 

Plog^</z2(p,^) + ||p-^||1+21og-/z2(p,^) + 
2^1og-pf^ 

. 
q s s \qj 

For sb = 
h2(p,q)/P(p/q)b, the second and third terms on the right-hand side 

take the same form. If h2(p, q) < s\)P(p/q)b for a sufficiently small sb, then this 

choice is eligible and the first inequality of the lemma follows. Specifically, we can 

choose Sb < (s' A 
s'l 

A 4)b. 
To prove the second inequality, we first note that, since | logx| 

< 
2\y/x 

? 
1| for 

x>l, 

2 / I? \ 

P(k)g^ ij?>lJ<4P( /i-lj 
=4h2(p,q). 

Next, with r as in the first part of the proof, 

< Sh2(p, q) + 2r2(s)h2(p, q) + 
2sbr2(s)P^j 

, 

for s < 
sfl>2, in view of the third property of r. (The power of 4 in the first line 

of the array can be lowered to 2 or 0, as \y/q/p 
? 

11 < 1.) We can use the second 

property of r to bound r(s) and next choose sb = 
h2(p, q)/P(p/q)b to finish the 

proof. Specifically, we can choose sb < (sf a 
s^>2)b' 

^ 

LEMMA 8.2. If p,pn,Poo aw probability densities in L\(p) such that 

Pn -> Poo as n -> oo, then liminf^oo P log(p/p?) 
> P log(p/poo). 

Proof. If Xn = 
pn/p and X 

? 
Poo/p, then Xn -> X in P-probability 

and in mean. We can write Plog(pn/p) as the sum of P(logX?)lxn>i and 

P(logX?)lxn<i. Because 0 < 
(logx)l^>i 

< x, the sequence (logXw)lxn>i is 

dominated in absolute value by the sequence |Xn|, and, hence, is uniformly in 

tegrable. By a suitable version of the dominated convergence theorem, we have 

P(logX?)lLxn>i 
-> P(logX00)lx00>i. Because the variables (logZn)lXn<i are 

nonnegative, we can apply Fatou's lemma to see that limsupP(logXw)lxn<i 
< 

P(logXoo)lXoo<i. 
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