
MATHEMATICS OF COMPUTATION
Volume 77, Number 262, April 2008, Pages 1105–1134
S 0025-5718(07)02027-3
Article electronically published on November 5, 2007

Li(p)-SERVICE? AN ALGORITHM FOR COMPUTING
p-ADIC POLYLOGARITHMS

AMNON BESSER AND ROB DE JEU

Abstract. We describe an algorithm for computing Coleman’s p-adic poly-
logarithms up to a given precision.

1. Introduction

It is well known that, for a number field k with ring of integers Ok, there is a
relation between the regulator of the group of units of Ok, O∗

k, and the residue of
ζk(s) at s = 1. In terms of K-theory, O∗

k
∼= K1(Ok), and Borel in [6] showed that

this relation generalizes, for n = 2, 3, . . . , to a similar relation between a suitably
defined regulator of the higher K-group K2n−1(Ok) and the value of ζk(s) at s = n.

However, it is far more difficult to find explicit non-trivial elements in those
higher K-groups than in O∗

k. But K2n−1(Ok) ∼= K2n−1(k) for n ≥ 2 and Za-
gier in [17] gave a conjectural description of the latter groups tensored with Q.
His construction always gives a Q-subspace (see, e.g., [9]), and gives the whole of
K3(k) ⊗Z Q and K5(k) ⊗Z Q for all number fields k, as well as of K2n−1(k) ⊗Z Q

for all n ≥ 2 if k is cyclotomic (see loc. cit. where this is deduced from results by
Suslin, Goncharov and Zagier respectively).

The regulator for O∗
k is defined as the determinant of a matrix with its entries

the logarithm of the absolute value of certain elements of O∗
k embedded into C. In

Zagier’s conjecture the Borel regulator for K2n−1(k) ∼= K2n−1(Ok) is obtained as
the determinant of a matrix with its entries suitable Q-linear combinations of the
values at certain elements of k embedded into C of the n-th (real) polylogarithm.

This n-th real polylogarithm is obtained from the complex polylogarithm Lin(z),
which is defined by the power series

(1.1) Lin(z) =
∞∑

k=1

zk

kn
(n ≥ 1)

on the open unit disc in C. It can be continued analytically to a multi-valued func-
tion on C \ {0, 1}. The real-valued modification is easily computed from this. For
the numerical verification of the conjectures in the context of Zagier’s conjecture,
it is important to have an efficient implementation of the complex polylogarithm,
as in, for example, PARI-GP.

Received by the editor June 19, 2006 and, in revised form, December 18, 2006.
2000 Mathematics Subject Classification. Primary 11Y16, 11G55; Secondary 11S80.
Key words and phrases. Computational number theory, Coleman integration, p-adic

polylogarithm.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15460072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1106 AMNON BESSER AND ROB DE JEU

There is a conjectural p-adic analogue of Borel’s theorem which fits into the
general context of relations between regulators of K-groups and special values of
L-functions as conjectured by Beilinson (see [1] or [13]). Its predictions are rather
similar, but somewhat more involved, using the syntomic regulator [2] rather than
the Beilinson regulator. In the case of totally real number fields it follows from [5]
that the p-adic regulator on the part of the K-groups given by Zagier’s conjecture1

is given by a determinant as before, but with the complex polylogarithm replaced
with the p-adic polylogarithm.

The p-adic polylogarithm is an analogue of its complex cousin. It was defined
by Coleman [7] using the technique now referred to as Coleman integration. On
the open unit disc in Cp, the so called field of p-adic complex numbers, it is again
defined by the power series (1.1). To extend it to a function defined on Cp \ {1}
Coleman uses a technique he called “analytic continuation along Frobenius”, which
is rather involved. As a consequence, it is not so easy to compute the functions
defined in this way. To our knowledge there has been only one attempt to compute
Coleman integrals in the literature [8], with very limited precision.

Recently we embarked on a project of testing numerically the p-adic analogue of
Borel’s theorem (see [4]). This requires the computation of p-adic L-functions and
p-adic polylogarithms up to a given precision. The present work is concerned with
an algorithm for the latter. In the process of describing the set-up for the algorithm
we obtain bounds for |Lin(ζ)| for a root of unity ζ of order not a power of p that
may be of independent interest (see the end of Section 4).

Acknowledgments. The second author would like to thank the Newton Insti-
tute for a productive stay during the autumn of 2002, during which this paper
germinated and a first version of an implementation of the algorithm was written.
He would also like to thank the University of Alberta and the Tata Institute of
Fundamental Research for very productive visits, and the EC network Arithmetic
Algebraic Geometry for travel support. He is grateful to Nils Bruin for sharing his
magic in order to overcome some aspects of programming in MAGMA and to Karim
Belabas for his comments on the last section of the paper and the implementation
of the algorithm. Finally, both authors would like to thank the referee for making
various suggestions for improving the paper.

2. The p-adic polylogarithm

A precise definition of Coleman integration is beyond the scope of the present
paper. Fortunately, in the case of p-adic polylogarithms there is a certain simplifi-
cation that is sufficient for the computations that we give here.

Let p be a prime. Recall that the field of p-adic complex numbers, Cp, is the
completion of the algebraic closure of the field of p-adic numbers Qp. We let | · |
be the absolute value on Cp, normalized such that |p| = p−1. It corresponds to
the valuation vp normalized by vp(p) = 1. The residue field of Cp is the algebraic
closure of the field with p elements, Fp.

We consider the projective line X = P1(Cp). A standard open disc in X with
centre a in Cp and radius r is the subset D(a, r) = {z ∈ X | |z−a| < r}. A standard
annulus with centre a in Cp is a subset of the form A(a, s, r) = {z ∈ X | s <

1There is a technical condition, satisfied for almost all primes, that we ignore here for the sake
of exposition. See the introduction of [5], in particular Theorem 1.10.

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1107

|z − a| < r}. Rigid analytic functions on D(a, r) are power series
∑∞

i=0 bi(z − a)i

that converge on D(a, r), and rigid analytic functions on A(a, s, r) are Laurent
series

∑∞
i=−∞ bi(z − a)i that converge on A(a, s, r). For a = ∞ we take D(∞, r) =

{z ∈ Cp | |z| > 1/r}∪{∞}, and rigid analytic functions on it are power series in 1/z
that converge on D(∞, r). Similarly, A(∞, s, r) = {z ∈ Cp | 1/s > |z| > 1/r}, and
rigid analytic functions on it are Laurent series in 1/z that converge on A(∞, s, r).

Definition 2.1. A branch of the p-adic logarithm is a group homomorphism

log : C∗
p → Cp

given by the usual power series log(1 + z) = z − z2/2 + z3/3 − · · · when |z| < 1.

Remark 2.2. A branch of the p-adic logarithm is determined by specifying log(p)
in Cp, as follows. If vp(z) = 0, then z reduces to an element of F

∗
p and therefore zn

reduces to 1 for some positive n. Then log(zn) is independent of the branch as it is
determined by the power series given above, and log(z) = log(zn)/n, independent of
n. In general, if bvp(z) = a for integers a and b with b positive, then vp(zb/pa) = 0
and log(z) = a log(p)/b + log(zb/pa)/b, independent of the choice of a and b.

We now once and for all fix a branch of the p-adic logarithm. All constructions
that follow do depend on this choice in principle. (For the precise dependence of
the functions Lin(z) that we are about to describe on the choice of the branch of
the logarithm, we refer to Remark 7.4 or [5, Proposition 2.6].)

We define log-type functions on A(a, s, r) to be polynomials
∑

fi · (log(z − a))i

with respect to log(z − a) if a �= ∞ and polynomials
∑

fi · (log z)i with respect to
log z if a = ∞, with the fi rigid analytic functions on A(a, s, r). We let Olog(U)
denote the space of rigid analytic functions on U if U = D(a, r), and the space of
log-type functions on U if U = A(a, s, r). We differentiate functions formally, with
the rule that the derivative of log(z − a) is 1/(z − a). It is a basic fact, and rather
easy to prove, that differentiation gives a surjective map from Olog(U) to itself,
with kernel consisting of the constants.

Consider now the system of differential equations

(2.3)
dLi1(z) =

dz

1 − z
,

dLin+1(z) = Lin(z)
dz

z
(n ≥ 1)

or, equivalently,

(2.4)
Li0(z) =

z

1 − z
,

dLin+1(z) = Lin(z)
dz

z
(n ≥ 0) .

The complex polylogarithms are defined by the same system. It has singularities
at 0, 1 and ∞. It follows from the properties of the rings Olog(U) discussed before
that on each disc or annulus U not containing 0, 1 or ∞, (2.3) or (2.4) can be solved
with Lin(z) in Olog(U). In fact, such solutions on U are unique up to adding

cn−1 +
cn−2

1!
log z + · · · + c0

(n − 1)!
logn−1 z

with cj in Cp corresponding to the constant of integration in (2.4) for n = j.

1108 AMNON BESSER AND ROB DE JEU

In particular, all such solutions are rigid analytic for all but three “residue discs”
Ua, consisting of those points in P1(Cp) reducing to the same point as a. The three
residue discs for which this does not hold a priori are U0, U1 and U∞. On U0 it is
well known (and immediate) that the series in (1.1) for z in Cp with |z| < 1 and
n ≥ 0 satisfy the systems (2.3) and (2.4), and we shall in fact assume that the
Lin(z) on U0 are given by those series. But on Ua with a = 1 or ∞ the Lin(z) only
belong to Olog(U) for U = Ua \ {a}.

Clearly, what has been said so far does not suffice to determine Lin(z) uniquely.
The real magic of Coleman’s theory is that there is a canonical way of choosing
solutions to differential equations such as in (2.3) (in general, unipotent differential
equations) using a principle known as Frobenius equivariance. As we mentioned
before, a general discussion of Coleman’s theory is beyond the scope of the present
work, but we explain what it means in the present context.

For this we also need the functions

(2.5) Li(p)
n (z) = Lin(z) − 1

pn
Lin(zp) ,

a priori defined for z in Cp with zp �= 1. They satisfy conditions similar to (2.4),
namely

(2.6)
Li(p)

0 (z) =
z

1 − z
− zp

1 − zp
,

dLi(p)
n+1(z) = Li(p)

n (z)
dz

z
(n ≥ 0) .

Theorem 2.7 (Coleman). For any branch of the p-adic logarithm there exists a
unique sequence of functions

Lin : P1(Cp) \ {1,∞} → Cp (n ≥ 0)

with the properties:
(1) the restrictions of the Lin to every residue disc U = Ua other than U1 and

U∞, and to the annuli U = U1 \ {1} and U = U∞ \ {∞}, belong to Olog(U)
and satisfy (2.4);

(2) the restrictions of the Lin to U0 are given by the series (1.1);
(3) for each n ≥ 0 the function Li(p)

n (z) with Li(p)
n (∞) = 0 extends to a function

on P1(Cp) \ {z in Cp with zp = 1} that on the set

(2.8) P1(Cp) \ {z in Cp with |z − 1| ≤ p−1/(p−1)}
is given by a convergent power series in 1/(1 − z).

Moreover, Li(p)
n (z) on the set in (2.8) is independent of the branch of the logarithm.

Proof. We use [7]. The Lin(z) are defined there in section VI (page 195) ex-
actly to satisfy (2.4) (the definition of Li0(z) in loc. cit. is incorrect) as well as
limz→0 Lin(z) = 0. The fact that the polylogarithms belong to Olog(U) for all
residue discs but U0 is part of the properties of Coleman integration. Using induc-
tion on n it follows directly from the definition that Lin(z) on U0 is given by (1.1),
hence lies in Olog(U0). The power series expansion of Li(p)

n (z) in (3) is Proposi-
tion 6.2 of loc. cit.

As for uniqueness, we first notice that the power series expansion of Li(p)
n (z) with

respect to 1/(1−z) on the set in (2.8) is uniquely determined by (2.6) and its value
at ∞ (cf. Proposition 4.3 below). In particular, Li(p)

n (z) on this set is independent

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1109

of the branch of the logarithm. Assuming that, on each residue disc U , Lin−1(z) in
Olog(U) has already been determined, the differential equation in (2.4) determines
Lin(z) up to a constant. Therefore Lin(z) is determined up to adding a function
C(z) that is constant on each U . Since the set in (2.8) intersects every U we have
that C(z)−C(zp)/pn = 0. Because z and zpf

lie in the same residue disc for some
f > 0 this implies that C is the zero function. �

Remark 2.9. (1) The characterisation of Lin(z) in Coleman’s theory is different,
and requires the full force of this theory to explain.

(2) The part of P1(Cp) that has to be removed in part (3) of Theorem 2.7 is the
disc around 1 that contains all the singularities of the differential equation satisfied
by Li(p)

n (z) except for 0 and ∞, i.e., the p-th roots of unity. The convergence of
the power series in 1/(1 − z) on the indicated domain implies a growth condition
on its coefficients. We will in fact deduce, by explicit computation, a more precise
growth condition on these coefficients (see Proposition 6.1).

(3) In Remark 7.4 below we shall show that Lin(z) on Ua depends on the branch
of the logarithm only when a = 1,∞, and make explicit this dependence (cf. [5,
Proposition 2.6]).

We will need some further results about Lin(z).

Proposition 2.10. (1) For m ≥ 1 and z in Cp with zm �= 1,

Lin(zm) = mn−1
∑

ζm=1

Lin(ζz) ;

(2) Lin(z) + (−1)nLin(z−1) = − 1
n! logn(z).

Proof. Those are (the correct version of) Proposition 6.1 and Proposition 6.4(i)
of [7]. �

3. Method of computation on U0 and U∞

On U0 we can use the standard expansion in (1.1),

(3.1) Lin(t) =
∞∑

k=1

tk

kn
,

which we shall denote by Fn,0(t).

Remark 3.2. As an immediate consequence of the power series expansion of Lin(z)
on U0 and the definition of Li(p)

n (z) in (2.5) we see that on U0

(3.3) Li(p)
n (z) =

∑
k≥1

′ zk

kn
,

where the prime indicates that we only sum over those k for which p � | k. We can
collect terms zk/kn in Lin(z) =

∑
k≥1

zk

kn for which vp(k) = m and find that

(3.4) Lin(z) =
∑
m≥0

Li(p)
n (zpm

)
pmn

as well.

1110 AMNON BESSER AND ROB DE JEU

For the disc U∞ we use that

Lin(z) + (−1)nLin(1/z) = − 1
n!

logn(z)

as in part (2) of Proposition 2.10. This reduces the calculation of Lin(z) to that of
Lin(1/z), with 1/z in U0, and that of log(z).

4. Method of computation in the generic case

In this section we explain how to compute Lin(z) on all residue discs except U0,
U1 and U∞. The residue discs U0 and U∞ were discussed in the previous section,
and U1 will be dealt with in Section 5.

We begin with a well known observation.

Proposition 4.1. Every residue disc other than U0 and U∞ is Uζ for a unique
root of unity ζ of order dividing pf − 1 for some f > 0, known as the Teichmüller
representative of this residue disc.

Proof. For the residue disc Ub the reduction b̄ satisfies b̄pf−1 = 1 for some f > 0
because Ub �= U0 or U∞. Since Cp is complete we can apply Hensel’s lemma to lift
b̄ to a unique solution of xpf−1 = 1 in Ub, which is ζ. �

The key observation for the computation of Lin(z) is the following.

Proposition 4.2. Suppose that ζ �= 1 is a (pf − 1)-th root of unity. Then

Lin(ζ) =
(
pnf − 1

)−1
(
pnfLi(p)

n (ζ) + pn(f−1)Li(p)
n (ζp) + · · · + pnLi(p)

n (ζpf−1
)
)

.

Proof. This formula is derived in [3] as part of the proof of Corollary 2.2 there. For
completeness, we recall the easy proof. For any z in Cp with zpk �= 1 we have

k−1∑
r=0

p−rnLi(p)
n (zpr

) =
k−1∑
r=0

p−rn(Lin(zpr

) − p−nLin(zpr+1
)) = Lin(z) − p−nkLin(zpk

)

since the second sum is telescopic. Setting z = ζ and k = f we have ζpf

= ζ; hence

f−1∑
r=0

p−rnLi(p)
n (ζpr

) = (1 − p−nf)Lin(ζ) = p−nf (pnf − 1)Lin(ζ),

so

Lin(ζ) = (pnf − 1)−1

f−1∑
r=0

pn(f−r)Li(p)
n (ζpr

),

as required. �

Proposition 4.2 implies that if we are able to compute Li(p)
n (z), then we can find

Lin(z) at least for z = ζ. For this calculation we use a power series expansion of
Li(p)

n (z) around ∞ as in the next result (but see also Remark 8.5). Then Proposi-
tion 4.4 below will show how to use the value of Lin(ζ) in order to compute Lin(z)
for z in Uζ .

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1111

Proposition 4.3. We have Li(p)
n (z) = gn(1/(1 − z)) for a power series gn(v) in

Q[[v]], convergent for v in Cp with |v| < p1/(p−1). It is determined inductively by

g0(v) = v − 1 − (v − 1)p

vp − (v − 1)p
,

g′n+1(v) = − gn(v)
v − v2

= −gn(v)
v

(1 + v + v2 + · · ·) (n ≥ 0) ,

and

gn(0) = 0 (n ≥ 1) .

Proof. By Theorem 2.7 we can write Li(p)
n (z) = gn(1/(1 − z)) with gn(v) a power

series that converges when |v| < p1/(p−1). To determine the relations satisfied by
the gn(v) we first write u = 1−z and let fn(u) = Li(p)

n (1−u) for n ≥ 0. Using (2.5)
the equations in (2.6) become

f0(u) =
1 − u

u
− (1 − u)p

1 − (1 − u)p
and f ′

n+1(u) = −fn(u)
1 − u

.

Next we set v = 1/u and let gn(v) = fn(1/v) to find

g0(v) = v−1− (v − 1)p

vp − (v − 1)p
and g′n+1(v) = − gn(v)

v − v2
= −gn(v)

v
(1+v+v2+· · ·)

as required. We then have gn(0) = Li(p)
n (∞) = 0 for all n ≥ 0 by Theorem 2.7(3).

Clearly, these relations determine gn(v) inductively by integration. Because the
denominator vp−(v−1)p of g0(v) is a unit in Z[[v]] we see that g0(v) is in Z[[v]] and
hence that gn(v) is in Q[[v]] for n ≥ 1. Finally, we observe that v = 1/(1 − z). �

Proposition 4.4. Let ζ �= 1 be a (pf − 1)-th root of unity. For z in Uζ we have
that Lin(z) = Fn,ζ(z − ζ) for a power series Fn,ζ(t) with coefficients in Qp(ζ). It
converges for |t| < 1 and can be found inductively by the formulae

F0,ζ(t) =
ζ + t

(1 − ζ) − t
= (1 − ζ)−1

(
ζ +

t

1 − ζ
+

t2

(1 − ζ)2
+ · · ·

)
(4.5)

and, for n ≥ 0,

F ′
n+1,ζ(t) =

Fn,ζ(t)
ζ + t

= ζ−1Fn,ζ(t)(1 − ζ−1t + ζ−2t2 − · · ·)(4.6)

as well as

Fn+1,ζ(0) = Lin+1(ζ) .(4.7)

Proof. The fact that Lin(z) is rigid analytic on Uζ and therefore has a power series
expansion as above was stated in Theorem 2.7(1). The first two formulae are
immediate consequences of (2.4). Integration then determines Fn+1,ζ(t) for n ≥
0, except for its constant term, which is given by the last equation. Since by
Proposition 4.3 Li(p)

n (ζ) is in Qp(ζ) the same holds for Lin(ζ) by Proposition 4.2.
The claim about the coefficients is then clear from the inductive formulae. �

For use in some of the estimates in the following sections we also prove a few
results about the absolute values of Li(p)

n (z) and Lin(z) (cf. [3]). Note that if |z| < 1,
then |Li(p)

n (z)| = |z| by (3.3).

1112 AMNON BESSER AND ROB DE JEU

Proposition 4.8. If z in Cp satisfies |z − 1| = 1, then |Li(p)
n (z)| ≤ 1.

Proof. This is a slight generalization of [3, Proposition 2.1], with the same proof.
We use a formula found by Coleman [7, Lemma 7.2],

Li(p)
n (z) =

∫
Z∗

p

x−ndµz(x) ,

where µz is the measure on Zp such that µz(a + pkZp) = za

1−zpk for a = 1, . . . , pk.
Since for the specified values of z this measure takes values with absolute value at
most 1, the same holds for Li(p)

n (z). �
Corollary 4.9 ([3, Corollary 2.2]). If ζ �= 1 is a root of unity of order prime to p,
then Lin(ζ) is in pnZp[ζ].

Proof. We have that Li(p)
n (ζ) is in Qp(ζ) by Proposition 4.3, and by Proposition 4.8

we have |Li(p)
n (ζ)| ≤ 1 so that Li(p)

n (ζ) is in Zp[ζ]. The result is now immediate from
Proposition 4.2. �
Corollary 4.10. If ζ is a root of unity of order pkm with m > 1 not divisible by
p, then |Lin(ζ)| ≤ p(k−1)n.

Proof. For k = 0 this is part of Corollary 4.9. For k > 0 it then follows by induction
since Lin(ζ) = p−nLin(ζp) + Li(p)

n (ζ) and |Li(p)
n (ζ)| ≤ 1 by Proposition 4.8. �

5. Method of computation on U1

To compute Lin(z) for z �= 1 in U1 we use the following result.

Proposition 5.1 ([7, Proposition 7.1]). For n ≥ 2 the function

(5.2) En(z) = Lin(z) − 1
n − 1

log(z)Lin−1(z)

extends to a rigid analytic function on U1.

It is then clear that En(z) is defined for z �= 0. Moreover, Proposition 2.10(1)
together with the identities log(zm) = m log(z) and log(ζz) = log(z) for a root of
unity ζ implies that we have a distribution relation

(5.3) En(zm) = mn−1
∑

ζm=1

En(ζz)

for m ≥ 1 and z in C∗
p. In particular

(5.4) En(z2) = 2n−1(En(z) + En(−z)) .

Proposition 5.5. On U1 the functions En(z) are independent of the branch of the
logarithm.

Proof. It is easy to check that for n ≥ 3 we have (n− 1)E′
n(z) = (n− 2)En−1(z)/z.

Since En(z) is rigid analytic on U1 as stated above, the statement follows by induc-
tion provided that En(1) is independent of the branch. Taking m = p − 1 in (5.3)
we see that En(1) is determined by the En(ζ) where ζp−1 = 1 and ζ �= 1. But
En(ζ) = Lin(ζ) for such ζ by (5.2), and from Proposition 4.2 and Theorem 2.7 we
find that those values are independent of the branch of the logarithm. �

The Em(z) for z in U1 are much easier to deal with than the Lim(z), and we
express Lin(z) in terms of the Em(z) and logarithms.

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1113

Proposition 5.6. We have, for z �= 1 in U1 and n ≥ 2,

Lin(z) =
1

(n − 1)!
logn−1(z)Li1(z) +

n∑
j=2

(j − 1)!
(n − 1)!

logn−j(z)Ej(z) .

Proof. For n ≥ 2 we get from (5.2) that

(n − 1)! En(z) = (n − 1)! Lin(z) − (n − 2)! log(z)Lin−1(z) .

Setting E1(z) = Li1(z) we have an equality of generating power series in T ,∑
n≥1

(n − 1)! En(z)Tn = (1 − log(z)T)
(∑

n≥1

(n − 1)! Lin(z)Tn
)

,

so that∑
n≥1

(n − 1)! Lin(z)Tn =
(∑

n≥1

(n − 1)! En(z)Tn
)
(1 + log(z)T + log2(z)T 2 + · · ·),

and the result follows easily. �

Remark 5.7. Because log(z) and En(z) are rigid analytic on U1 the second summand
of Lin(z) in Proposition 5.6 is rigid analytic there. But Li1(z) = − log(1− z) is not
rigid analytic around 1, hence neither are the first summand and Lin(z) itself.

However, for n ≥ 2 we can extend Lin(z) to the whole of Cp by putting Lin(1) =
En(1) (which is independent of the branch of the logarithm by Proposition 5.5).
If F ⊂ Cp is any field that is finitely ramified over Qp, then log(z) is bounded on
F ∗ by the formulae in Remark 2.2 (see Remark 8.1), so by Proposition 5.6 this
extended Lin(z) is continuous on F . It follows from this continuity that part (1) of
Proposition 2.10 holds for all z in Cp (cf. [7, Corollary 7.1a]) and part (2) for all
z �= 0 in Cp.

We deal with the two summands in the expression for Lin(z) in Proposition 5.6
separately. Computing the logarithms is standard, and we develop the other func-
tion as a power series around 1 using iterated integration as described in the next
proposition. The constant of integration is expressed in terms of Lin(−1), which
we can compute using Propositions 4.2 and 4.3 if p �= 2. But if p = 2, then −1 is
outside of the set in Proposition 2.7(3) and we give a different formula that we can
calculate as we go along.

Proposition 5.8. For n ≥ 1 set Gn(t) = logn(1 + t)/n!, and for n ≥ 2 let

Hn(t) =
n∑

j=2

(j − 1)!
(n − 1)!

logn−j(1 + t)Ej(1 + t) .

Then Gn(t) and Hn(t) for |t| < 1 are given by power series in Qp[[t]], with Hn(t)
satisfying

H ′
2(t) = 1 − t/2 + t2/3 − · · · ,(5.9)

H ′
n(t) =

Hn−1(t)
1 + t

+
Gn−1(t)

t
(n ≥ 3)(5.10)

as well as

Hn(0) = 2n−1Lin(−1)/(1 − 2n−1) .

1114 AMNON BESSER AND ROB DE JEU

If p = 2, then also

Hn(0) =
2n−1

1 − 2n
(Hn(−2) − Hn(0)) .(5.11)

Proof. That the Gn(t) for |t| < 1 are given by power series in Q[[t]] ⊂ Qp[[t]] is
well-known. By Proposition 5.1 we know that the Em(t + 1) for m = 2, . . . , n are
given by power series in Cp[[t]] that converge for |t| < 1 so that the same holds for
Hn(t). We shall now first prove the inductive formulae and then conclude that the
power series are actually in Qp[[t]].

From (2.3) we have that E′
2(z) = − log(z)/(1 − z) so that H ′

2(t) = E′
2(t + 1) =

log(1 + t)/t which gives the first formula. For m ≥ 3 we have (m − 1)E′
m(z) =

(m − 2)Em−1(z)/z so that H ′
n(t) for n ≥ 3 is given by

n−1∑
j=3

(j − 1)!
(n − 1)!

[
(n − j)

logn−j−1(1 + t)
1 + t

Ej(1 + t) +
j − 2
j − 1

logn−j(1 + t)
Ej−1(1 + t)

1 + t

]

+
logn−1(1 + t)

(n − 1)! t
+ (n − 2)

logn−3(1 + t)
(n − 1)! (1 + t)

E2(1 + t) +
n − 2
n − 1

En−1(1 + t)

and collecting powers of log(1 + t) this becomes

n−1∑
j=2

(j − 1)!
(n − 1)!

[(n − j) + (j − 1)]
logn−j−1(1 + t)

1 + t
Ej(1 + t) +

logn−1(1 + t)
(n − 1)! t

,

proving the second formula.
As for the constant terms, we see from (5.4) that En(1) = 2n−1(En(1)+En(−1)).

Therefore Hn(0) = En(1) = 2n−1En(−1)/(1− 2n−1), and En(−1) = Lin(−1) since
log(−1) = 0. If p = 2, then −1 is in U1 so that the definition of Hn(t) gives
Hn(−2) = En(−1) = Lin(−1) and this leads immediately to the alternative formula
for Hn(0).

Finally, we prove that the coefficients of the Hn(t) are in Qp. For p �= 2 it follows
from Proposition 4.3 that Li(p)

n (−1) is in Qp for n ≥ 0. Then Proposition 4.2 (with
f = 1) shows that Lin(−1) is in Qp, so the same holds for Hn(0) by what we proved
in the previous paragraph. Therefore, since H ′

2(t) is in Qp[[t]] by (5.9), H2(t) is in
Qp[[t]]. For n > 2 we conclude by induction on n using (5.10) since Gn−1(t)/t is
in Qp[[t]] for such n. If p = 2, then we prove by induction on n that H ′

n(t) is in
Q2[[t]] and Hn(0) is in Q2. For n = 2 it is clear from (5.9) that we can find H̃2(t)
in Q2[[t]] with H̃ ′

2(t) = H ′
2(t) and H̃2(0) = 0, so H2(t) = H2(0) + H̃2(t). Then

H2(0) is in Q2 by (5.11) since H2(−2) − H2(0) = H̃2(−2) is in Q2. Hence H2(t) is
in Q2[[t]]. For n > 2 the proof proceeds similarly, writing Hn(t) = Hn(0) + H̃n(t)
with, inductively, H̃n(t) in Q2[[t]] by (5.10). �

Remark 5.12. (1) It follows from the definition of Em(z) and Proposition 2.10(2)
that En(z) + (−1)nEn(1/z) = logn(z)/(n! (n − 1)). Therefore En(1), En(−1),
Lin(1), Lin(−1) and Hn(0) are all 0 when n ≥ 2 is even.

(2) For p �= 2 Proposition 4.2 with ζ = −1 simplifies to Lin(−1) = pn

pn−1Li(p)
n (−1)

so that Hn(0) = 2n−1pn

(1−2n−1)(pn−1)Li(p)
n (−1).

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1115

6. Estimates

In this section we provide estimates for the valuations of the coefficients in the
power series gn(v) of Proposition 4.3, Fn,ζ(t) of Proposition 4.4 and Hn(t) of Propo-
sition 5.8. We shall use these in Section 7 to know how many terms of those power
series we have to calculate in order to compute Lin(z) up to a specified precision
for a given z �= 1 in Cp.

Many expressions in Sections 6 through 8 contain the real logarithm with base
p, denoted logp, which should not be confused with the chosen branch of the p-adic
logarithm, denoted log. In order to avoid another possible confusion we denote the
real logarithm by ln.

For the coefficients of gn(v) we have the following result.

Proposition 6.1. For n ≥ 1 let

c(n, p) =
p

p − 1
− n − 1

ln(p)
+ (n − 1) logp

(
n(p − 1)

ln(p)

)
+ logp

(
2p(p − 1)n

ln(p)

)
.

If
gn(v) = an,1v + an,2v

2 + · · · ,

then

vp(an,k) ≥ max
(

0,
k

p − 1
− logp(k) − c(n, p)

)
.

Proof. We first show that vp(an,k) ≥ 0. For this we recall that for a power se-
ries f(z) =

∑
i biz

i converging on the closed unit disc, we have that max |bi| =
max|z|=1 |f(z)|, where z must be considered in the algebraic closure of the field of
coefficients (see [10, Example 3.3.2]), which will be Qp in our case. It thus suffices
to show that gn(z) = Li(p)

n (1−z−1) takes on integral values when |z| = 1. But then
|(1 − z−1) − 1| = 1 so that we can apply Proposition 4.8.

Next we estimate vp(a0,k). Recall from Proposition 4.3 that

g0(v) = v − 1 − (v − 1)p

vp − (v − 1)p
= v − 1 + (v − 1)p

∞∑
i=0

(pf(v))i ,

where vp − (v − 1)p = 1 − pf(v) for some polynomial f(v) in Z[v] of degree p − 1.
Then any term contributing to vk in g0(v) for k > 1 will come from a product
containing (pf(v))i with i ≥ �(k − p)/(p − 1), where �x is the smallest integer
greater than or equal to x. Therefore, also for k = 1,

(6.2) vp(a0,k) ≥
⌈

k − p

p − 1

⌉
.

We now prove the estimate for n ≥ 1. By Proposition 4.3 we have

g′n+1(v) = −gn(v)
v

(1 + v + v2 + · · ·)

= −an,1 − (an,1 + an,2)v − (an,1 + an,2 + an,3)v2 − · · ·

and consequently kan+1,k = −(an,1 + · · · + an,k) for k ≥ 1. Substituting v = 1,
which is in the range of convergence for gn, we find

∞∑
i=1

an,i = gn(1) = Li(p)
n (0) = 0 .

1116 AMNON BESSER AND ROB DE JEU

It follows that kan+1,k = an,k+1 + an,k+2 + · · · . Therefore

vp(an+1,k) ≥ min
j≥k+1

{vp(an,j) − vp(k)} .

Iterating this and using (6.2) we obtain

vp(an,k) ≥ min
k=j0<j1<j2<···<jn

{⌈
jn − p

p − 1

⌉
−

n−1∑
i=0

vp(ji)

}

≥ min
k=j0<j1<j2<···<jn

{
jn − p

p − 1
−

n−1∑
i=0

vp(ji)

}
.

We shall bound the last expression from below. We do this by first considering
possible values of jn. Suppose that k + pl ≤ jn < k + pl+1 for some integer l ≥ 0.
We then have the lower bound

(6.3)
jn − p

p − 1
≥ k + pl − p

p − 1
.

We now bound
∑n−1

i=0 vp(ji) from above when k ≤ j0 < · · · < jn−1 < k + pl+1 − 1.
Clearly, among the pl+1 consecutive integers k, . . . , k + pl+1 − 1 there is only one
integer divisible by pl+1, and its valuation is bounded by logp(k + pl+1). The
remaining integers in this range are not divisible by pl+1, and their valuations are
bounded by l. Thus, we have

(6.4)
n−1∑
i=0

vp(ji) ≤ (n − 1)l + logp(k + pl+1) .

Combining the estimates (6.3) and (6.4) and taking the minimum over all possible
l’s we finally arrive at the estimate

vp(an,k) ≥ min
0≤l∈Z

{
k + pl − p

p − 1
− (n − 1)l − logp(k + pl+1)

}
≥ min

0≤l∈R

{
k + pl − p

p − 1
− (n − 1)l − logp(k + pl+1)

}
.

(6.5)

Computing this last minimum is a standard problem. We have

d
dl

(
k + pl − p

p − 1
− (n − 1)l − logp(k + pl+1)

)
=

ln(p) · pl

p − 1
− (n − 1) − pl+1

k + pl+1
.

This derivative is clearly positive for large l and is negative for l = 0 when n ≥ 2.
Consequently, for n ≥ 2 it must vanish at the value of l where the right-hand side
of (6.5) attains its minimal value, so that we get

ln(p) · pl

p − 1
= n − 1 +

pl+1

k + pl+1
.

Since the last summand is always between 0 and 1 we obtain the inequalities

n >
ln(p) · pl

p − 1
> n − 1 ,

which implies that l < logp(n(p− 1)/ ln(p)), pl/(p− 1) > (n− 1)/ ln(p) and pl+1 <
p(p − 1)n/ ln(p).

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1117

We observe that those inequalities also hold if n = 1 and l = 0 so that they
hold where the right-hand side of (6.5) attains its minimum. Using them, as well
as ln(x + y) ≤ ln(x) + ln(2y) for x, y ≥ 1, we find that vp(an,k) is at least equal to

k − p

p − 1
+

n − 1
ln(p)

− (n − 1) logp

(
n(p − 1)

ln(p)

)
− logp(k) − logp

(
2p(p − 1)n

ln(p)

)
=

k

p − 1
− logp(k) − c(n, p)

as required. �
Remark 6.6. Proposition 6.1 implies that gn(v) converges for |v| < p1/(p−1), as
stated in Theorem 2.7(3) and Proposition 4.3. The bound seems to have the right
behaviour, and only the constant c(n, p) may possibly be improved.

We now move on to estimates concerning the Fn,ζ(t)’s that were introduced
in Proposition 4.4. It is clear from (3.1) that the coefficient of tk in Fn,0(t) has
valuation at least −n logp(k) for all k ≥ 1. For the corresponding statement for the
Fn,ζ(t)’s (with ζ �= 1 a root of unity of order relatively prime to p) we have to work
a little more.

Proposition 6.7. Let ζ �= 1 be a (pf − 1)-th root of unity and write

Fn,ζ(t) = an,0 + an,1t + an,2t
2 + · · ·

in Qp(ζ)[[t]]. Then an,0 is in pnZp[ζ], and for k ≥ 1 we have vp(an,k) ≥ −n logp(k).

Proof. By Corollary 4.9 an,0 = Lin(ζ) lies in pnZp[ζ]. We proceed to prove the
other statement by induction on n. For n = 0 we have that Li0(z) = z

1−z and so
F0,ζ(t) = ζ+t

(1−ζ)−t . Because ζ does not reduce to 1 by assumption (1 − ζ) − t is a
unit in Zp[ζ][[t]], so F0,ζ(t) is in Zp[ζ][[t]]. For n ≥ 1 we see from (4.6) that

(6.8) kan+1,k = −
k−1∑
j=0

(−ζ)j−kan,j .

Hence k an+1,k is a sum of elements with valuations vp(an,j), 0 ≤ j ≤ k− 1, and so
for k ≥ 1, vp(an+1,k) ≥ minj=0,...,k−1{vp(an,j)}− vp(k) ≥ −n logp(k)− logp(k). �
Remark 6.9. The proof of Proposition 6.7 actually shows that we have the slightly
better estimate vp(ak) ≥ − logp

(
k!

max(0,k−n)!

)
for all k ≥ 0.

Finally, we consider the series Hn(t) for n ≥ 2 that were introduced in Proposi-
tion 5.8. For this we need a lemma concerning the Gn(t) = logn(1+t)/n! introduced
in the same proposition.

Lemma 6.10. For n ≥ 1 write

Gn(t) = an,1t + an,2t
2 + an,3t

3 + · · · .

Then vp(an,k) ≥ −n logp(k) for all k ≥ 1.

Proof. We proceed by induction on n, the case n = 1 being clear. For n ≥ 2 we
have G′

n(t) = Gn−1(t)/(1 + t) so that, for k ≥ 1,

kan,k = ((−1)k−2an−1,1 + (−1)k−3an−1,2 + · · · + an−1,k−1) ,

and the statement follows easily (cf. the proof of Proposition 6.7). �

1118 AMNON BESSER AND ROB DE JEU

Proposition 6.11. For n ≥ 2 write

Hn(t) = bn,0 + bn,1t + bn,2t
2 + · · ·

in Qp[[t]]. Then vp(bn,0) ≥ n − vp(n − 1) − εp, where εp = 2 for p = 2 and εp = 1
otherwise. Moreover, vp(bn,k) ≥ −n logp(k) for all k ≥ 1.

Proof. We begin with the statement for k = 0. It follows easily from (5.3) and
Corollary 4.9 that

vp(Hn(0)) = vp(En(1)) ≥ n − min
p�m>1

{vp(mn−1 − 1)}.

Now mn−1−1 will be divisible by ps for all m relatively prime to p precisely when the
exponent of (Z/ps)∗ divides n− 1. Therefore any such s satisfies s ≤ vp(n− 1)+ εp

so that vp(Hn(0)) ≥ n − vp(n − 1) − εp.
We now observe that H2(t) = −

∑
k≥1(−t)k/k2 by Proposition 5.8 and Re-

mark 5.12(1) so that the other statement holds if n = 2. If n ≥ 3, then (5.10)
gives

kbn,k = ((−1)k−1bn−1,0 + (−1)k−2bn−1,1 + · · · + bn−1,k−1) + an−1,k

with an−1,k as in Lemma 6.10, hence vp(an−1,k) ≥ −(n − 1) logp(k). Again the
statement follows by induction on n because (n − 1) − vp(n − 2) − εp ≥ 0 ≥
− logp(k). �

7. The algorithm

In this section we use the material from the previous sections in order to give
an algorithm for computing Lin(z) for n ≥ 2 and z �= 1 up to a given precision and
analyze its efficiency.

First of all we formalize the notion of “up to a given precision”.

Definition 7.1. (1) For any number α in Cp we say that we know α up to precision
N if we have β in Cp such that vp(α − β) > N .

(2) We say that we know α �= 0 in Cp up to relative precision N if we have β in
Cp such that vp(β/α − 1) > N .

Remark 7.2. (1) Note that those notions are absolute; even if α is in a finite
extension of Qp they do not take the ramification of this extension into account.

(2) For α and β as in the first part of the definition we shall refer to β as an
approximation of α up to precision N .

(3) If we know α �= 0 up to precision N , then we know α up to relative precision
N − vp(α), and conversely.

(4) If z �= 0 is known up to relative precision N ≥ 0, then so is 1/z. In particular,
if we know z �= 0 up to precision N > vp(z), then we know z and 1/z up to relative
precision N − vp(z), and 1/z up to precision N − 2vp(z).

We assume that we want to compute Lin(z) up to precision N > 0 for z �= 1 in
a complete subfield F of Cp. If z in F does not lie in U0, U1 or U∞, then it lies in
Uζ for some Teichmüller representative ζ �= 1. Since F is complete one sees as in
the proof of Proposition 4.1 that ζ lies in F .

We shall also assume that we know z up to precision N ′ > vp(z) so that we
can at least decide in which residue disc z lies and, in fact, we know vp(z). In
Algorithm 7.10 we will also give a value of N ′ that suffices for the computation of
Lin(z) up to precison N .

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1119

Remark 7.3. For the algorithm it is not necessary to assume that F is a finite
extension of Qp, but with that assumption it is possible to give universal estimates
(see Remark 8.1) and to quantify its efficiency (see Theorem 8.2). If we want to
know Lin(z) up to precision N for arbitrary z in Cp, then from the algorithm we
can determine N ′ such that for an approximation z̃ of z up to precision N ′, Lin(z̃)
is an approximation of Lin(z) up to precision N . By taking this z̃ in Qp we reduce
to calculations in Qp(z̃), a finite extension of Qp and a complete field.

Remark 7.4. We shall now show that Lin(z) is in F because F is complete, and
clarify how Lin(z) depends on the branch of the logarithm (see Definition 2.1 and
Remark 2.2). (The latter was also made explicit in [5, Proposition 2.6] by a different
method.)

It is clear from (3.1) that Fn,0(t) lies in Q[[t]], so that Lin(z) for z in U0 lies in
F and is independent of the branch of the logarithm.

For z �= ∞ in U∞ it follows from Proposition 2.10(2) that Lin(z) is in F provided
we use a branch of the logarithm for which log(p) is in F . The dependence on this
branch is also clear from this.

If z in Uζ , where ζ �= 1 is a (pf − 1)-th root of unity for some f > 0, then by
Proposition 4.4 the coefficients of Fn,ζ(t) are in Qp(ζ) ⊆ F so that Lin(z) lies in F .
Since the statements of Propositions 4.2, 4.3 and 4.4 do not depend on the branch
of the logarithm, neither does Lin(z) for such z.

For z �= 1 in U1 it is clear that Li1(z) = − log(1 − z) is in F if log(p) is, and
the dependence on the branch of the logarithm is clear as well. For n ≥ 2, we use
Propositions 5.6 and 5.8 to write Lin(z) = Hn(z−1)− logn−1(z) log(1−z)/(n−1)!.
From its definition and Proposition 5.5 we have that Hn(z − 1) is independent of
the branch of the logarithm. Moreover, from Proposition 5.8 we see that it is in
F . So Lin(z) is in F if log(p) is, and the dependence of Lin(z) on the branch of
the logarithm is also explicit since only log(1− z) depends on it. Finally, for z = 1
and n ≥ 2 we defined Lin(1) in Remark 5.7 as En(1) = Hn(0), which is in Qp by
Proposition 5.8 and is independent of the branch of the logarithm by Remark 5.7.

Before giving the algorithm, we describe two special cases that have to be dealt
with separately, namely z = 0 and z = 1.

Remark 7.5. Note that we can know z in Cp up to precision N ′ > vp(z) only when
z �= 0, which we shall assume in Algorithm 7.10 below. However, clearly Lin(0) = 0,
and if we know that |z| < p−N ′ ≤ 1, then |Lin(z)| < maxm≥0{pmn−N ′pm} by (3.4)
because |Li(p)

n (z)| = |z| when |z| < 1. If n ≤ N ′ ln(p), then this maximum is
attained for m = 0 and equals p−N ′

, but if n > N ′ ln(p), then it may be much
bigger.

For z = 1 the problem is of a different nature. Although we defined Lin(1) for
n ≥ 2 in Remark 5.7, in order to be able to bound Lin(z) − Lin(1) if z = 1 up to
its precision, we assume that F has finite ramification index over Qp.

Remark 7.6. (1) For n ≥ 2 we have Lin(1) = 2n−1Lin(−1)/(1 − 2n−1) (see Re-
mark 5.7 and Proposition 2.10(1)), which we can compute up to any desired preci-
sion using Algorithm 7.10 below. Of course, if n is even, then this value is zero by
Remark 5.12(1).

1120 AMNON BESSER AND ROB DE JEU

(2) If |z − 1| < p−N ′ ≤ 1, z is in a subfield of Cp of finite ramification index e,
and n ≥ 2, then Lin(z) = Lin(1) up to precision

min{n logp(N
′/n), (n−1) logp(N

′)−vp((n−1)!)−vp(e)+min{vp(log(p)),− logp(e)}}.

If N ′ ln(p) ≥ n, then this holds up to precision

min{N ′, (n − 1)N ′ − vp((n − 1)!) − vp(e) + min{vp(log(p)),− logp(e)}} .

Namely, combining Propositions 5.6 and 5.8 we have, for z �= 1 in U1,

(7.7) Lin(z) = Hn(z − 1) − logn−1(z) log(1 − z)
(n − 1)!

,

and in Remark 5.7 we put Lin(1) = En(1) = Hn(0) . Thus we are really interested
in a lower bound for the p-adic valuation of

(7.8) Hn(t) − Hn(0) − logn−1(1 + t) log(−t)
(n − 1)!

when for t = z − 1 we have vp(t) > N ′ ≥ 0. By Proposition 6.11 we have

vp(Hn(t) − Hn(0)) > min
k≥1

{kN ′ − n logp(k)} ,

and, similarly, vp(log(1 + t)) > mink≥1{kN ′ − logp(k)}. By our assumption on the
ramification, evp(t) is a positive integer a and

log(−t) = log(t) = e−1(a log(p) + log(t′))

with t′ = te/pa having absolute value 1. Since log(η) = 0 for any root of unity η
we may assume t′ is in U1, hence satisfies vp(t′ − 1) ≥ 1/e. Then an estimate for
log(t′) similar to that for log(1 + t) gives

vp(log(t)) ≥ min{vp(log(p)), min
k≥1

{ke−1 − logp(k)}} − vp(e) .

(For a slightly different estimate for this see Remark 8.1.) Our statements then
follow from (7.8) by using the following lemma for the minima in our estimates.

Lemma 7.9. For p prime and C, c > 0, mink≥1{Ck − c logp(k)} > c logp(C/c). If
C ln(p) ≥ c, then this minimum equals C.

Proof. Differentiating Ck−c logp(k) with respect to k we see that this function has
a unique minimum on the positive reals at k0 = c/(C ln(p)), and that if k0 ≤ 1, then
our original minimum is at k = 1, hence equals C. If k0 > 1, then the minimum
on the positive reals equals c

ln(p) (1 − ln(c) + ln(C) + ln(ln(p))) > c logp(C/c) since
ln(ln(p)) > −1 for all primes p. �

We now give the algorithm for computing Lin(z) up to precision N for z �= 0, 1,
while also giving a sufficient precision for z for this. The various steps, in which we
consider (approximations of) truncations of Fn,ζ(t), gn(v) and Hn(t) by ignoring
terms of degree at least tsl, gsl and hsl respectively, will be justified afterwards. We
assume that the fixed branch of the logarithm, log(z), is readily computable.

Algorithm 7.10. In order to compute Lin(z) for z �= 0, 1 in F and n ≥ 2 up to
precision N > 0 we first determine in which residue disc z lies and then do the
following.

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1121

(1) If z is in U0, then we find M ≥ 0 such that pmvp(z)−mn > N for all m > M .
For each m = 0, . . . , M we find tslm ≥ 1 such that kpmvp(z)−mn > N for k ≥ tslm.
Working in F up to precision N + nM we then calculate

M∑
m=0

p−mn
tslm−1∑

k=1

′ bkz̃kpm

,

where the prime indicates that we sum only over k that are not divisible by p, z̃ is
an approximation of z up to precision N +nM and bk is an approximation of 1/kn

up to the same precision.
(2) If z is in U∞, then we calculate (−1)n−1Lin(1/z)− logn(z)/n!. Here Lin(1/z)

is computed using (1), and it can be calculated up to precision N if we know z up to
precision max{N +nM +2vp(z), vp(z)} where M is such that −pmvp(z)−mn > N
for all m > M . We can calculate logn(z)/n! up to precision N by first finding V
with | log(z)| ≤ p−V and knowing z up to precision N ′ > vp(z) satisfying

max{V, N + vp(n!) − (n − 1)V } ≤ min
m≥0

{(N ′ − vp(z))pm − m} .

(3) If z lies in Uζ with ζ �= 1 in F a root of unity of order dividing pf − 1, then
we proceed in several steps.

(a) We find tsl ≥ 2 such that kvp(z − ζ) − n logp(k) > N for all k ≥ tsl.
(b) We find gsl ≥ 2 with the property that

k

p − 1
− logp(k) > N − m + c(m, p) + (n − m) logp(tsl − 1)

for m = 1, . . . , n and all k ≥ gsl, where c(m, p) is as in Proposition 6.1.
(c) We calculate the classes of gm(v) in Qp[[v]]/(vgsl) for m = 1, . . . , n induc-

tively using Proposition 4.3, starting with the coefficients of g0(v) up to
precision N + n logp(tsl − 1) + n

⌊
logp(gsl − 1)

⌋
.

(d) In Qp(ζ) we find an approximation ζ̃ of ζ with vp(ζ̃−ζ) > N+n logp(tsl−1).
Working in Qp(ζ) up to precision N +n logp(tsl− 1) we compute Li(p)

m (ζpj

)
for j = 0, . . . , f − 1 and m = 1, . . . , n up to precision N − m + (n −
m) logp(tsl− 1) by evaluating the terms of degree smaller than gsl in gm(v)
on 1/(1 − ζ̃pj

).
(e) Still working in Qp(ζ) up to precision N +n logp(tsl−1) we calculate Lim(ζ)

up to precision N + (n − m) logp(tsl − 1) for m = 1, . . . , n by using Propo-
sition 4.2, with the Li(p)

m (ζpj

) (j = 0, . . . , f − 1) replaced with the approxi-
mations obtained in (d).

(f) Working in Qp(ζ)[[t]]/(ttsl) with coefficients up to precision N+n logp(tsl−1)
we use (4.5), (4.6) and (4.7), but with ζ replaced by ζ̃ and the Lim(ζ) re-
placed by the approximations obtained in (e), in order to compute approx-
imations to the terms of degree less than tsl in Fn,ζ(t).

(g) We then evaluate the terms of degree less than tsl in the result on z̃ − ζ̃
where z̃ is an approximation of z of precision N + n logp(tsl − 1), and we
work in F up to precision N + n logp(tsl − 1).

(4) If z �= 1 lies in U1, then we calculate Lin(z) up to precision N by calculating
both terms in (7.7) up to precision N , in several steps.

1122 AMNON BESSER AND ROB DE JEU

(a) We find hsl ≥ 2 such that kvp(z−1) > N +n logp(k) for all k ≥ hsl; if p = 2,
then we increase hsl if necessary to ensure that k > N − 1 + n logp(hsl− 1)
for all k ≥ hsl.

(b) If p = 2, then we compute the terms of degree less than hsl in

Hm(t) = bm,0 + bm,1t + bm,2t
2 + · · ·

for m = 2, . . . , n using (5.9) and (5.10), working in Q2[[t]]/(thsl) up to pre-
cision N + n log2(hsl − 1) for the coefficients. At each stage we determine
an approximation b̃m,0 of Hm(0) = bm,0, either as 0 if m is even, or as
2m−1(1 − 2m)−1

∑hsl−1
k=1 b̃m,k(−2)k if m is odd, where b̃m,k is the approxi-

mation of bm,k.
If p �= 2, then for m = 2, . . . , n we put Hm(0) = 0 when m is even, and

compute

Hm(0) = 2m−1pmgm(1/2)/((1 − 2m−1)(pm − 1))

up to precision N +(n−m) logp(hsl−1) when m is odd. For this we proceed
as in (3)(b)–(d), using gsl ≥ 2 such that

k

p − 1
− logp(k) > N −m + c(m, p) + vp(1− 2m−1) + (n−m) logp(hsl− 1)

for k ≥ gsl and m = 2, . . . , n, where c(m, p) is as in Proposition 6.1, and we
work up to precision

max
m=2,...,n

{N −m+ vp(1− 2m−1)+ (n−m) logp(hsl− 1)+m�logp(gsl− 1)�}

in Qp for the coefficients of the gm(v)’s (m = 0, . . . , n). We then com-
pute the terms of degree less than hsl in Hn(t) by integration using (5.9)
and (5.10), but with the Hm(0) replaced by the approximations just ob-
tained and working up to precision N + n logp(hsl− 1) in Qp for the coeffi-
cients.

(c) We find V and V1 with V ≤ vp(log(z)) and V1 ≤ vp(log(1 − z)) and put
Ñ = max{N + vp((n − 1)!), V1 + (n − 1)V }.

(d) We compute logn−1(z) up to precision Ñ −V1 as well as − log(1− z) up to
precision Ñ−(n−1)V and divide their product by (n−1)!. The calculation
of logn−1(z) up to the required precision can be done if we know z up to
precision N ′ > 0 satisfying

max{V, Ñ − V1 − (n − 2)V } ≤ min
m≥0

{N ′pm − m} .

The calculation of − log(1 − z) can be done up to the required precision if
we know z up to precision N ′′ > vp(1 − z) satisfying

Ñ − (n − 1)V ≤ min
m≥0

{(N ′′ − vp(1 − z))pm − m} .

(e) Working in F up to precision N +n logp(hsl−1) we evaluate the approxima-
tions of the terms of degree less than hsl in Hn(t) as obtained in (b) on z̃−1
where z̃ is an approximation of z of precision N + n logp(hsl − 1). We add
the result to the product obtained in (d), finding Lin(z) up to precision N .

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1123

Remark 7.11. The conditions on tslm, tsl, gsl and hsl in (1), (3)(a), (3)(b), (4)(a)
and (4)(b) of the algorithm are of the form c1k− c2 ln(k) > c3 for all k ≥ tslm, etc.,
with positive c1 and c2. Since the left-hand side is increasing for k > c2/c1 it is
very easy to find the minimum values for tslm, etc.

We now justify the various steps in Algorithm 7.10. For (1) we use the next
proposition.

Proposition 7.12. Let N > 0 and let z �= 0 be in U0. If M ≥ 0 is such that
pmvp(z) − mn > N for all m > M , z̃ is an approximation of z up to precision
N + nM , and for m = 0, . . . , M we choose tslm > 0 such that kpmvp(z)−mn > N
for k ≥ tslm, then

M∑
m=0

p−mn
tslm−1∑

k=1

′ z̃kpm

kn
,

where the prime indicates that we sum only over k that are not divisible by p, is an
approximation of Lin(z) up to precision N . Moreover, we can replace each 1/kn by
an approximation up to precision N + nM .

Proof. It is clear from (3.3) that |Li(p)
n (z)| = |z| when |z| < 1. Therefore, from (3.4)

we see that in order to compute Lin(z) up to precision N we only have to compute∑M
m=0 p−mnLi(p)

n (zpm

) if pmvp(z) − mn > N for all m > M . So we reduce to
the calculation of p−mnLi(p)

n (zpm

) up to precision N for m = 0, . . . , M . In the
corresponding power series p−mn

∑′∞
k=1 zkpm

/kn we can ignore terms with valuation
bigger than N , i.e., where kpmvp(z) − mn > N .

Finally, for each term p−mnzkpm

/kn that we compute we can replace z with an
approximation z̃ satisfying vp(z− z̃) > N +mn and 1/kn with an approximation bk

satisfying vp(1/kn − bk) > N + mn, and obtain that term up to precision N . This
follows from the identity zkpm

/kn − bkz̃kpm

= (zkpm − z̃kpm

)/kn + (1/kn − bk)z̃kpm

since vp(kn) = 0, and vp(z) > 0 implies that vp(zkpm − z̃kpm

) ≥ vp(z − z̃) and
vp(z̃kpm

) > 0. �

In (2) we use the fact that Lin(z) = (−1)n−1Lin(1/z) − logn(z)/n! by Proposi-
tion 2.10(2). For the term Lin(1/z) we use (1), and the corresponding precision of
z also follows from this part together with Remark 7.2(4) because we are assum-
ing that we know z up to positive relative precision. The term − logn(z)/n! can
be readily calculated using standard methods, so we only give estimates for the
precision of z that enables us to calculate it up to precision N .

Lemma 7.13. If y in Cp satisfies |y| ≤ p−V and is known up to precision N ′ ≥ V ,
then yn for n ≥ 1 is known up to precision N ′ + (n − 1)V .

Proof. By assumption we know y + ε for some ε in Cp with |ε| < p−N ′
. Then

|(y + ε)n − yn| = |ε| · |yn−1 + εyn−2 + · · ·+ εn−2y + εn−1| < p−N ′
p−(n−1)V because

N ′ ≥ V . �

As for the logarithm we have the following result.

Lemma 7.14. If we know z in C∗
p up to precision N ′ > vp(z), then we can calculate

log(z) up to precision minm≥0{(N ′−vp(z))pm−m}. If 1 ≤ (N ′−vp(z)) ln(p), then
we can calculate log(z) up to precision N ′ − vp(z).

1124 AMNON BESSER AND ROB DE JEU

Proof. Since we know z up to precision N ′ we know z̃ = z + ε with |ε| < p−N ′
.

Then log(z̃)− log(z) = log(1+ ε/z) = −Li1(−ε/z). Since vp(ε/z) > N ′− vp(z) > 0
the estimates in Remark 7.5 apply. �

The last inequality in part (2) of the algorithm is then justified by the next
proposition. Note that Lemma 7.14 in practice allows us to bound | log(z)|, as is
required here. (But see also Remark 8.1.)

Proposition 7.15. If, for z in C∗
p, | log(z)| ≤ p−V and we know z up to precision

N ′ > vp(z) satisfying

max{V, N + vp(n!) − (n − 1)V } ≤ min
m≥0

{(N ′ − vp(z))pm − m} ,

then we can compute logn(z)/n! up to precision N .

Proof. It suffices to calculate logn(z) up to precision N +vp(n!). By Lemma 7.13 we
can do this if we know log(z) up to precision N ′′ = max{V, N + vp(n!)− (n−1)V }.
In order to compute log(z) up to precision N ′′, it suffices by Lemma 7.14 to know
z up to precision N ′ > vp(z) satisfying minm≥0{(N ′ − vp(z))pm − m} ≥ N ′′. �

For step (3) of the algorithm we need some more results.

Proposition 7.16. Let gn(v) be as in Proposition 4.3, and let c(n, k) be as in
Proposition 6.1. To compute gn(α) up to precision N ′ > 0 when vp(α) = 0 it
suffices to know α up to precision N ′ and to evaluate the sum of the terms in
gn(v) of degree less than gsl′ on the approximation of α, where gsl′ is such that

k
p−1−logp(k)−c(n, p) > N ′ for all k ≥ gsl′. In fact, it suffices to use approximations
up to precision N ′ for the coefficients of the terms of degree less than gsl′.

Similarly, in order to know Li(p)
n (ζ) up to precision N ′ > 0 for a root of unity

ζ �= 1 of order not divisible by p, it suffices to know ζ and the coefficients of the
terms of gn(v) of degree less than gsl′ up to precision N ′, where gsl′ is as before.

Proof. The first statement follows from the estimates for the valuations of the
coefficients of gn(v) as given in Proposition 6.1. It implies the second because
vp(1/(1 − ζ)) = 0, Li(p)

n (ζ) = gn(1/(1 − ζ)), and 1/(1 − ζ) is known to the same
precision as ζ by Remark 7.2(4). �
Remark 7.17. Computing the coefficients of gn(v) as rational numbers is very in-
efficient so, instead, we use coefficients in Qp with finite precision. If gn(v) =
an,1v + an,2v

2 + · · · , then kan+1,k = −(an,1 + an,2 + · · ·+ an,k) by Proposition 4.3.
Hence, if we know an,k for 1 ≤ k ≤ gsl′− 1 up to precision Ñ , then we know an+1,k

for 1 ≤ k ≤ gsl′ − 1 up to precision Ñ −
⌊
logp(gsl′ − 1)

⌋
. In particular, using the

method of Proposition 4.3 we can compute an,k for k = 1, . . . , gsl′−1 up to precision
N ′ if we know a0,k for k = 1, . . . , gsl′ − 1 up to precision N ′ + n

⌊
logp(gsl′ − 1)

⌋
.

For the power series Fn,ζ(t) instead of gn(v), where ζ �= 1 is a (pf − 1)-th root
of unity, the corresponding statements in the next proposition are more involved.

Proposition 7.18. Assume that z lies in the residue disc Uζ for ζ �= 1 a (pf −1)-th
root of unity and let

Fn,ζ(t) = an,0 + an,1t + an,2t
2 + · · ·

be the Taylor expansion of Lin(z) around ζ as in Proposition 4.4. Let tsl′ > 0 be
such that vp(an,k(z − ζ)k) > N for all k ≥ tsl′ and assume that the Lim(ζ) for

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1125

m = 1, . . . , n are known up to precision N + (n − m) logp(tsl
′ − 1). If ζ and z

are known up to precision N + n logp(tsl
′ − 1), then we can compute Lin(z) up to

precision N by:
(1) finding the terms of degree less than tsl′ in F0,ζ(t) as in (4.5) with ζ replaced

with its approximation;
(2) for m = 1, . . . , n computing the terms of degree less than tsl′ in Fm,ζ(t)

up to precision N + (n−m) logp(tsl
′ − 1) via repeated integration of (4.6),

using the approximate values for ζ and Fm,ζ(0) = Lim(ζ);
(3) evaluating the terms of degree less than tsl′ in the approximation of Fn,ζ(t)

on the difference of the approximations of z and ζ.

Proof. Note that tsl′ as in the statement of the proposition exists by Proposition 6.7
or Remark 6.9. We can therefore compute Lin(z) up to precision N by computing
an,0 +an,1(z−ζ)+ · · ·+an,tsl′−1(z−ζ)tsl

′−1. Using an approximation ζ̃ of ζ in (4.5)
we have an approximation

F̃m,ζ(t) = ãm,0 + ãm,1t + · · ·

of Fm,ζ(t) for m = 0. We use F̃m,ζ(t) instead of Fm,ζ(t) and ζ̃ instead of ζ in (4.6)
in order to inductively obtain an approximation

F̃m+1,ζ(t) = ãm+1,0 + ãm+1,1t + · · ·

of Fm+1,ζ(t). Here kãm+1,k = −
∑k−1

j=0 (−ζ̃)j−kãm,j for k = 1, 2, . . . , tsl′ − 1, as
in (6.8). Inductively we may assume that vp(ãm,j−am,j) > N +(n−m) logp(tsl

′−1)
for j = 0, . . . , tsl′ − 1 since this holds for m = 0 by our assumption on vp(ζ̃ − ζ),
Remark 7.2(4) and (4.5). Then for k = 1, . . . , tsl′ − 1 we have, as in the proof of
Proposition 6.7,

k(am+1,k − ãm+1,k) =
k−1∑
j=0

(
(−ζ̃)j−kãm,j − (−ζ)j−kam,j

)

=
k−1∑
j=0

(−1)j−k
[
ζ̃j−k(ãm,j − am,j) + (ζ̃j−k − ζj−k)am,j

]
.

Since vp(ζ̃j−k) ≥ 0 and vp(ζ̃j−k − ζj−k) > N + n logp(tsl
′ − 1) by our assumptions,

by Proposition 6.7 it follows as in the proof of that proposition that

vp(ãm+1,k − am+1,k) > N + (n − (m + 1)) logp(tsl
′ − 1)

for k = 1, . . . , tsl′−1. Finally, vp(ãm+1,0−am+1,0) > N +(n−(m+1)) logp(tsl
′−1)

since we assume that we have such an approximation ãm+1,0 for am+1,0 = Lim+1(ζ).
Now we consider the terms an,j(z − ζ)j for j = 0, . . . , tsl′ − 1. For j = 0 we

have vp(an,0 − ãn,0) > N by assumption. For j > 0 this term is approximated by
ãn,j(z̃ − ζ̃)j with z̃ an approximation of z up to precision N + n logp(tsl

′ − 1) and

an,j(z − ζ)j − ãn,j(z̃ − ζ̃)j = (an,j − ãn,j)(z − ζ)j + ãn,j((z − ζ)j − (z̃ − ζ̃)j) .

We have just seen that vp(an,j − ãn,j) > N , and since vp(z − ζ) > 0 by assumption
the first term in the right-hand side has valuation bigger than N . The second term
has valuation at least vp(ãn,j) + vp((z − ζ)− (z̃ − ζ̃)). Proposition 6.7 implies that
vp(ãn,j) ≥ min{vp(an,j − ãn,j), vp(an,j)} ≥ −n logp(tsl

′− 1), so the valuation of the
second term is bigger than N by our assumptions on vp(z − z̃) and vp(ζ − ζ̃). �

1126 AMNON BESSER AND ROB DE JEU

We can now justify Algorithm 7.10(3). Remark 7.17 implies that (c) computes
the coefficients of the terms of degree less than gsl in gm(v) (m = 1, . . . , n) up to
precision N + n logp(tsl − 1) + (n − m)�logp(gsl − 1)�. In (d), for m = 1, . . . , n let
N ′

m = N−m+(n−m) logp(tsl−1). If N ′
m > 0, then the indicated method calculates

Li(p)
m (ζpj

) = gm(1/(1 − ζpj

)) up to precision N ′
m by Proposition 7.16: vp(ζ̃ − ζ) >

N ′
m so according to Remark 7.2(4) we have vp(1/(1 − ζ̃pj

) − 1/(1 − ζpj

)) > N ′
m;

k/(p−1)−logp(k)−c(m, k) > N ′
m for all k ≥ gsl by (b); and the relevant coefficients

in gm(v) are known up to precision N ′
m from (c). If N ′

m ≤ 0, then we observe that
the valuation of the difference between what we calculate in (d) and gm(1/(1−ζpj

))
is bigger than N ′

m by Proposition 6.1 since vp(1/(1 − ζ̃pj

) − 1/(1 − ζpj

)) > 0 and
k/(p − 1) − logp(k) − c(m, p) > N ′

m for k ≥ gsl by (b). (Note that we always
know the coefficients of gm(v) that we compute up to precision N ′

m.) Now (e) is
immediate from (d), taking into account the valuations of the coefficients of the
various contributions to Lim(ζpj

) when applying Proposition 4.2. Finally, (f) and
(g) then follow from Proposition 7.18 together with its proof by our choice of tsl
in (a) since vp(an,k) ≥ −n logp(k) by Proposition 6.7.

We conclude this section by justifying Algorithm 7.10(4), dealing first with the
term − logn−1(z) log(1 − z)/(n − 1)! in (7.7), i.e., steps (c) and (d).

If for some α and β in Cp we have Vα ≤ vp(α) and Vβ ≤ vp(β), then for the
calculation of αβ up to precision N it suffices to compute α up to precision N −Vβ

and β up to precision N − Vα, at least if N − Vα − Vβ ≥ 0. By increasing N if
necessary we may always assume the latter. For z �= 1 in U1 we let α = logn−1(z),
β = − log(1 − z) and replace N with N + vp((n − 1)!). Using Lemma 7.14 we find
V and V1 with V ≤ vp(log(z)) and V1 ≤ vp(log(1 − z)). Then we let

Ñ = max{N + vp((n − 1)!), V1 + (n − 1)V }
and compute logn−1(z) up to precision Ñ−V1 as well as − log(1−z) up to precision
Ñ−(n−1)V . We can do this by applying Proposition 7.15 and Lemma 7.14, taking
into account that vp(z) = 0. This together with the estimates above gives (4)(c)–(d)
of Algorithm 7.10.

For the computation of Hn(z−1) up to precision N , which corresponds to the re-
maining steps of (4), we use the following result and, if p = 2, also Proposition 7.20.

Proposition 7.19. Assume z is in the residue disc U1 and, for n ≥ 2, let

Hn(t) = bn,0 + bn,1t + bn,2t
2 + · · ·

be as in Propositions 5.8 and 6.11. Let hsl′ > 0 be such that vp(bn,k(z − 1)k) > N
for all k ≥ hsl′ and assume that Hm(0) for m = 2, . . . , n is known up to precision
N+(n−m) logp(hsl′−1). If z with |z|<1 is known up to precision N+n logp(hsl′−1),
then we can compute Hn(z − 1) up to precision N by:

(1) finding the terms of degree less than hsl′ of G2(t) and H2(t) with coefficients
up to precision N + (n − 2) logp(hsl′ − 1);

(2) for m = 3, . . . , n computing the terms of degree less than hsl′ in Gm(t) and
Hm(t) up to precision N + (n−m) logp(hsl′ − 1) via repeated integration of
G′

n(t) = Gn−1(t)/(1+ t) and (5.10), using Gm(0) = 0 and the approximate
values for Hm(0);

(3) evaluating the terms of degree less than hsl′ in the approximation of Hn(t)
on the difference of the approximation of z and 1.

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1127

Proof. Parts (1) and (2) are proved as in the proof of Proposition 7.18 by induction
on m starting with m = 2, but for Gm(t) and Hm(t) simultaneously and with the
simplification that we do not have to approximate 1. The estimate for (3) also goes
as in that proof, the estimates for the coefficients of Hn(t) in Proposition 6.11 being
the same as for those of Fn,ζ(t) in Proposition 6.7. �

In order to apply this proposition we need to determine Hm(0) up to precision
N +(n−m) logp(hsl′−1) for m = 2, . . . , n, and, according to Remark 5.12(1), only
for m odd.

When p �= 2 we have Hm(0) = 2m−1pmLi(p)
m (−1)/((1 − 2m−1)(pm − 1)) by Re-

mark 5.12(2), so we only have to calculate Li(p)
m (−1) up to precision

N + (n − m) logp(hsl′ − 1) + vp(1 − 2m−1) − m

for m odd with 2 ≤ m ≤ n. In Algorithm 7.10(4)(b) we have done this along the
lines of (3)(b)–(d) of the algorithm. The justification for this is similar to the one
given after Proposition 7.18, putting

N ′
m = N − m + vp(1 − 2m−1) + (n − m) logp(hsl − 1),

but with the simplification that ζ = −1 is now known exactly, and using Proposi-
tion 6.11 instead of Proposition 6.7. Step (4)(e) is then immediate from the last
part of Proposition 7.19.

When p = 2 we use (5.11) in order to compute Hm(0), and for this we formulate
a supplement to Proposition 7.19. Note that we can always attain the condition on
hsl′ below by increasing it if necessary, as stated in (4)(a) of the algorithm.

Proposition 7.20. Let p = 2 and assume that hsl′ in Proposition 7.19 also satisfies

k + vp(bm,k) > N − (m − 1) + (n − m) logp(hsl′ − 1)

for all k ≥ hsl′ and all m = 2, . . . , n. Then in the inductive procedure of Proposi-
tion 7.19 we can calculate Hm(0) for m = 2, . . . , n up to the required precision as
2m−1(1 − 2m)−1

∑hsl′−1
k=1 b̃m,k where b̃m,k is the approximation of bm,k.

Proof. We know from (5.11) that Hm(0) = 2m−1(Hm(−2)−Hm(0))/(1−2m). The
extra condition on hsl′ means that for m = 2, . . . , n we can compute Hm(−2) −
Hm(0) up to precision N − (m− 1) + (n−m) logp(hsl′ − 1) using the non-constant
terms of degree less than hsl′ in Hm(t). Inductively

vp(b̃m,k − bm,k) > N + (n − m) logp(hsl′ − 1)

for k = 1, . . . , hsl′ − 1, so that

Hm(−2) − Hm(0) −
hsl′−1∑
k=1

b̃m,k(−2)k

has valuation at least N − (m − 1) + (n − m) logp(hsl′ − 1). So the formula in the
proposition approximates Hm(0) up to precision N + (n − m) logp(hsl′ − 1). �

Now Algorithm 7.10(4)(a), (b) and (e) for p = 2 follow from Propositions 7.19
and 7.20 combined with Proposition 6.11.

This finishes the justification of Algorithm 7.10.

1128 AMNON BESSER AND ROB DE JEU

8. Concluding remarks

In this section we describe how to make the estimates in it uniform for all ele-
ments in a fixed finite extension of Qp, analyze the corresponding asymptotic time
and make a remark about an alternative approach for computing the constant term
of the Fn,ζ(t).

Remark 8.1. In case one wants to compute Lin(z) for several z in a field F with
finite ramification index e over Qp it is probably more efficient to compute the
(approximations of the truncated) power series in Algorithm 7.10 as they are needed
using universal estimates and to remember them.

Namely, if z lies in the residue disc Ua with a �= ∞, then vp(z − a) ≥ 1/e. For
log(z) with z in F ∗ we observe that vp(log(z)) ≥ min{vp(log(p)), vp(log(y))}−vp(e)
for some y in U1 because we can take b = e in Remark 2.2 and log(η) = 0 for any root
of unity η. Then y = 1+x with vp(x) ≥ 1/e and, for m ≥ 0, ypm

= (1+x)pm

= 1+x′

with
vp(x′) ≥ min{m + 1/e, (m − 1) + p/e, . . . , 1 + pm−1/e, pm/e}

as one easily sees by induction on m. If we choose m ≥ 0 such that this minimum
is at least 1/(p − 1), i.e., such that pm ≥ e/(p − 1), then vp(pm log(1 + x)) =
vp(log(1 + x′)) ≥ vp(x′) ≥ 1/(p − 1) by [16, Lemma 5.5]. Therefore vp(log(z)) ≥
min{vp(log(p)), 1/(p− 1) − m} − vp(e) for all z in F ∗.

Using those bounds one can obtain, in each of the four cases in the algorithm,
universal estimates for the lengths of the power series involved, etc., or the precision
required for z. However, for the computation of log(z) or its powers up to a given
precision in (2) the estimates involve the relative precision of z. The same applies
to 1 − z when we calculate log(1 − z) in (4)(d).

We conclude by analyzing the time needed by the algorithm. For simplicity we
only deal with the main case, that is of elements z satisfying |z| = |z−1| = 1, treated
in part (3) of the algorithm. We recall the O∼ notation (see for example [15]), where
being O∼(x) means being O(x lnc(x)) for some constant c.

Theorem 8.2. Suppose that z satisfies |z| = |z − 1| = 1 and belongs to a fixed
finite extension F of Qp with ramification index e and residue extension degree f .
Then Algorithm 7.10 computes Lin(z) up to precision N with

O∼(N2f(fnp+ne ln(p)+e2 ln(p)))

additions and multiplications and O∼(p) divisions, provided that 2n logp(N) < N ,
2n logp(2e) < N and 2p logp(N) < N .

Proof. We assume that F is given explicitly as a purely ramified extension of degree
e of an unramified extension F unr of Qp of degree f . We begin by describing basic
operations in Qp, F unr, F and polynomial rings above these fields, as applied in our
algorithm. One first of all observes that we can always work in the rings of integers
of these fields: in step (c) the coefficients are always in Zp by Proposition 6.1, while
in steps (f) and (g) the coefficients are in F unr but have bounded denominators by
Proposition 6.7, and it is possible to multiply first by a fixed power of p to eliminate
these denominators and divide out this power in the end. Working with Zp up to a
fixed precision k means working in Z/pk. Arithmetic operations modulo powers of
2 are easily done on a computer by ignoring most significant bits, so let us suppose

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1129

that p �= 2. Then we can avoid doing divisions in these computations by using
Montgomery arithmetic [12].

Recall that in Montgomery arithmetic one represents a number x in Z/pk by its
so called Montgomery representative xM := Rx (mod pk), where R is a power of 2t,
with t the length of a computer word in bits, such that R > pk. Operations in Z/pk

are replaced by equivalent operations on representatives, the main benefit being
that multiplication can be done without using division with remainder, costing a
fixed multiple of the cost of integer multiplication instead, and with no additional
cost for the other operations.

If x is known to be divisible by p, then so is xM and (x/p)M = xM/p. Fur-
thermore, in this case we can compute xM/p as xM · p−1 (mod R), where p−1 is
a precomputed inverse modulo R. Thus, no divisions are required. In general,
dividing by pju, where u is invertible, requires the computation of the inverse of u
modulo p, for which a gcd algorithm is used, and then a Newton iteration method
to lift this to an inverse of u modulo pk. We may precompute the inverses of all
elements modulo p, and even the most naive algorithm for this will only require
O∼(p) divisions. We may in fact notice that the only divisions that are actually
carried out during the algorithm are by integers in the range from 2 to max(tsl, gsl).
Thus, it is reasonable to simply precompute once the inverses of all of these inte-
gers. After this has been done operations in Zp to precision k cost a fixed multiple
of the same operation in Z with integers which are of size at most pk, and its com-
plexity is O∼(k ln(p)) additions and multiplications for multiplication if fast integer
multiplication [15, Theorem 8.24] is used. Addition is clearly faster.

We must also take into account the cost of the conversion from and to Mont-
gomery representatives. The former is smaller than a single multiplication and
has to be done only at the very end. The latter involves a division by pk. Since
z is initially represented as a polynomial of degree ef with Z/pk coefficients, we
will have to convert to Montgomery form all of these coefficients. We further have
to convert 1. Other elements that may appear in the algorithm are derived from
these. We need certain roots of unity in the algorithm, but for their computation
we use z as a starting point for Newton iterations. We also need certain integers
when computing the coefficients of the power series we are working with. These
are easily seen to be consecutive integers (for example denominators one obtains
when integrating power series), so we will get them by successively adding 1’s in
the Montgomery representation. To eliminate divisions in the conversion we may
observe that division with remainder by pk may be replaced by multiplication by
a precomputed R′/pk, where R′, again a power of 2t, should be bigger than all the
possible Rx (say R′ = R2), followed by division by R′ (shifting by a number of
computer words). The amount of multiplications required here is negligible com-
pared with the overall complexity (we neglect the complexity of the computation
of R′/pk, which has to be done only once for each p and fixed precision). The con-
clusion is that conversion to and from Montgomery representatives does not add to
the overall complexity.

Next we describe arithmetic in OFunr and OF , the valuation rings of F unr and F .
These rings can be realized as extensions of the form Zp[x]/(g), with g an appropri-
ate polynomial. By using polynomial Montgomery arithmetic (this is described for

1130 AMNON BESSER AND ROB DE JEU

polynomials over fields in [11] but can trivially be adapted to other rings as well)
we are again reduced to additions and multiplications of degree at most deg(g). We
can use FFT multiplication to do this with O∼(deg g) additions and multiplications
in Zp [15, Theorem 8.23].

This completes the estimate of the complexity of the basic operations. Let us
summarize this as follows. We have to do three types of multiplications, whose
complexity estimates for precision x are as follows:

• multiplications in Qp, which take O∼(x ln(p)),
• multiplications in F unr, which take O∼(xf ln(p)),
• multiplications in F , which take O∼(xfe ln(p))

where all numbers count additions and multiplications. Now let us consider each
of the steps in Algorithm 7.10(3).

(a) By its definition and Remark 8.1 we have tsl = O(Ne). Here we are using
our assumptions on the size differences between N , n and e. Indeed, we
have to guarantee that k/e − n logp(k) > N for all k > tsl. We shall
show that we can take tsl = 2Ne. Since the function k/e − n logp(k) is
increasing from 2Ne onward provided 2N ln(p) ≥ n, which is guaranteed
by our conditions, we only need to make sure that n logp(2Ne) < N . But
this is true by the first two of our conditions, which can be rewritten as
N − n logp(N) > N/2 > n logp(2e).

(b) Here we have gsl = O(pN), again using our conditions.
(c) Now we have to compute the expansion of the gm(v)’s to gsl places. There

are n steps, each consisting of a polynomial multiplication of length O(pN)
with the coefficients up to precision N . Note that this computation is done
in Qp. It is done in time O∼(n · pN · N ln(p)) = O∼(npN2).

(d1) We find ζ̃ in F unr by using Newton’s method to solve xpf−1 = 1. As the
required precision is O(N), under our assumptions the algorithm will be
about ln(N) steps, each consisting of about ln(pf) = f ln(p) multiplications
which are carried out again to precision N in F unr. The total complexity
is O∼(ln(N) · f ln(p) · Nf ln(p)) = O∼(Nf2 ln2(p)).

(d2) Each of the gm(v) has to be evaluated at f elements derived from powers
of the ζ̃. This is done in F unr. As the precision is O(N) and the polyno-
mials are of length O(pN), the complexity is O∼(n · f · Np · Nf ln(p)) =
O∼(np(Nf)2).

(e) For the calculation of Lim(ζ) for all m ≤ n we evaluate the expression in
Proposition 4.2 of length f , which involves an addition and multiplication
in F unr, and powers of p. The total time for this is O∼(n · f · Nf ln(p)) =
O∼(nf2N ln(p)) since there are no denominators involved and, taking tsl =
2Ne as before, the required precision is O(N) by our assumptions.

(f) The computation of Fn,ζ(t) involves n times multiplication of polynomials
of degree O(Ne) with coefficients in F unr, hence takes time

O∼(n · Ne · Nf ln(p)) = O∼(nfeN2 ln(p)).

Note that we used the fact that we can work with polynomials with coeffi-
cients in OFunr by multiplying by pN by Proposition 6.7 and our assump-
tions, dividing out this power of p and the end. The resulting precision
needed in OFunr is at most 3N under our assumptions.

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1131

(g) This step consists of evaluating a polynomial of degree O(Ne) at an element
of OF , so it takes time O∼(Ne ·Nfe ln(p)) = O∼(f(Ne)2 ln(p)). Again we
used the fact that the relevant coefficients of pNFn,ζ(t) lie in OFunr ⊆ OF .

Looking at the time complexities of all the steps we see that those of (d2), (f)
and (g) dominate, and their sum gives our time estimate. �

Remark 8.3. (1) The estimates in Theorem 8.2 are based on computing the value
at z from scratch. As mentioned in Remark 8.1, if we want to compute Lin(z)
for several z in the same residue disc Uζ , then it is more efficient to compute the
approximation of the truncation of Fn,ζ(t) and remember it, since then only (g)
will have to be performed again.

(2) The time estimates in Theorem 8.2 are worst case estimates. If z is closer to
the root of unity ζ the complexities of (f) and (g) are reduced, since one needs fewer
terms in the power series expansion around ζ to achieve the required precision.

Example 8.4. Tables 1 through 4 give the cpu times (in seconds) taken by the
calculation of Lin(z) up to precision N using Algorithm 7.10, for various F , N , n,
p and z. In all cases we used F = Qp(ζ, π) with ζ �= 1 a primitive (pf − 1)-th root
of unity and π a root of the Eisenstein polynomial q(x). So F unr = Qp(ζ) is the
unramified extension of Qp of degree f , F = F unr(π) is totally ramified of degree
e = deg(q(x)) over F unr and vp(π) = 1/e.

We used the branch of the logarithm for which log(p) = 0 (see Remark 2.2),
which, as mentioned in Remark 7.4, only makes a difference in (2) and (4), corre-
sponding to Tables 2 and 4 respectively. The algorithm was implemented in version
2.12-19 of MAGMA [14] (but using a correct implementation of the logarithm in-
stead of the flawed built-in version) with universal estimates as in Remark 8.1,
and the calculations were performed on an Intel Pentium 4 CPU (2.66GHz) with
500MB of RAM. The programs that were used for creating Tables 1 through 4 are
available on http://www.few.vu.nl/~jeu.

Tables 1 through 4 correspond precisely to (1) through (4) in Algorithm 7.10
so that Theorem 8.2 corresponds to Table 3. In this table we have split out the
times according to what has to be done only once for each N , n and p (Time 1,
for the computation of gn(v) in (3)(a)–(c)), what has to be done once for each
residue disc Uζ (Time 2, for the computation of Fn,ζ(t) in (3)(d)–(f)), and the
evaluation of Fn,ζ(t) at z − ζ (Time 3, for (3)(g)), which has to be carried out
for all z in Uζ unless they are close together. Similarly the times in Table 4 have
been split out according to the time needed for the computation of Hn(t) and some
universal constants (Time 1, corresponding to (4)(a)–(c)) and the computation of
− logn−1(z) log(1 − z)/(n − 1)! and evaluation of Hn(t) at t = z − 1 (Time 2,
corresponding to (4)(d)–(e)).

We mention that all calculations were done from scratch for each part, whereas
one could easily combine the computation of gn(v) in (3)(c) with that in (4)(b) if
p �= 2 by increasing gsl and/or the precision in Qp as necessary. Since, in practice,
for larger values of N , most of the time in (3) and (4) is taken up by this step, this
would be a substantial saving.

1132 AMNON BESSER AND ROB DE JEU

Table 1. Timings for Lin(π(ζ − 1)).

q(x) n p e f N Time
x8 − 2 4 2 8 2 10 0.020
x8 − 2 4 2 8 2 100 0.190
x4 − 3x + 3 10 3 4 3 10 0.030
x4 − 3x + 3 10 3 4 3 100 0.250
x3 − 11x + 11 5 11 3 3 10 0.010
x3 − 11x + 11 5 11 3 3 100 0.150
x3 − 37x + 37 5 37 3 2 10 0.010
x3 − 37x + 37 5 37 3 2 100 0.160
x2 + 101 3 101 2 2 10 0.000
x2 + 101 3 101 2 2 100 0.080

Table 2. Timings for Lin((ζ − 1)/π).

q(x) n p e f N Time
x8 − 2 4 2 8 2 10 0.100
x8 − 2 4 2 8 2 100 0.500
x4 − 3x + 3 10 3 4 3 10 0.210
x4 − 3x + 3 10 3 4 3 100 1.540
x3 − 11x + 11 5 11 3 3 10 0.040
x3 − 11x + 11 5 11 3 3 100 0.750
x3 − 37x + 37 5 37 3 2 10 0.030
x3 − 37x + 37 5 37 3 2 100 0.690
x2 + 101 3 101 2 2 10 0.010
x2 + 101 3 101 2 2 100 0.180

Table 3. Timings for Lin(ζ + (ζ − 1)π).

q(x) n p e f N Time 1 Time 2 Time 3
x8 − 2 4 2 8 2 10 0.020 0.060 0.040
x8 − 2 4 2 8 2 100 0.100 0.200 0.130
x4 − 3x + 3 10 3 4 3 10 0.380 0.330 0.070
x4 − 3x + 3 10 3 4 3 100 1.630 1.150 0.250
x3 − 11x + 11 5 11 3 3 10 0.380 0.570 0.010
x3 − 11x + 11 5 11 3 3 100 6.980 1.600 0.080
x3 − 37x + 37 5 37 3 2 10 2.440 0.630 0.000
x3 − 37x + 37 5 37 3 2 100 65.850 2.370 0.060
x2 + 101 3 101 2 2 10 7.390 11.110 0.000
x2 + 101 3 101 2 2 100 368.070 14.480 0.030

Li(p)-SERVICE? AN ALGORITHM FOR p-ADIC POLYLOGARITHMS 1133

Table 4. Timings for Lin(1 + (ζ − 1)π).

q(x) n p e f N Time 1 Time 2
x8 − 2 4 2 8 2 10 0.500 0.080
x8 − 2 4 2 8 2 100 4.620 0.300
x4 − 3x + 3 10 3 4 3 10 0.650 0.160
x4 − 3x + 3 10 3 4 3 100 3.470 0.590
x3 − 11x + 11 5 11 3 3 10 0.330 0.040
x3 − 11x + 11 5 11 3 3 100 7.270 0.270
x3 − 37x + 37 5 37 3 2 10 1.980 0.030
x3 − 37x + 37 5 37 3 2 100 71.260 0.230
x2 + 101 3 101 2 2 10 5.750 0.020
x2 + 101 3 101 2 2 100 363.550 0.080

Remark 8.5. In (5.11) (where p = 2) we calculate the constant term of Hn(t)
without ever using gn(v). We can do this also for Fn,ζ(t) if p is any prime and ζ is
any root of unity of order dividing pf − 1, at the cost of possibly having to adjoin
the pf -th roots of unity to the field. Namely, by Proposition 2.10(1) we have that

Lin(ζpf

) = pf(n−1)
∑

ηpf =1

Lin(ηζ),

and since ζpf

= ζ this determines the constant of integration in (4.6) just as in the
proof of (5.11) because all ηζ lie in Uζ . However, since this involves pf evaluations
as in Algorithm 7.10(3)(g) in a field of degree pf −pf−1 over Qp(ζ), this, in general,
would be less efficient than our approach, which requires only f evaluations in
Qp(ζ) of gn(v). Moreover, this power series is independent of ζ and f so that, once
computed for given p and N , it can be used for any residue disc Uζ with ζ �= 1 a
root of unity of order relatively prime to p.

References

[1] A. A. Beilinson. Higher regulators and values of L-functions. J. Sov. Math., 30:2036–2070,
1985. MR760999 (86h:11103)

[2] A. Besser. Syntomic regulators and p-adic integration I: rigid syntomic regulators. Israel
Journal of Math., 120:291–334, 2000. MR1809626 (2002c:14035)

[3] A. Besser. Finite and p-adic polylogarithms. Compositio Math., 130(2):215–223, 2002.
MR1883819 (2002m:11058)

[4] A. Besser, P. Buckingham, R. de Jeu, and X.-F. Roblot. On the p-adic Beilinson conjecture
for number fields. To appear in the special volume of the Pure and Applied Mathematics
Quarterly in honour of the eightieth birthday of Jean-Pierre Serre.

[5] A. Besser and R. de Jeu. The syntomic regulator for the K-theory of fields. Annales Scien-

tifiques de l’École Normale Supérieure, 36(6):867–924, 2003. MR2032529 (2005f:11133)
[6] A. Borel. Cohomologie de SLn et valeurs de fonctions zêta aux points entiers. Ann. Scuola

Norm. Sup. Pisa Cl. Sci. (4), 4(4):613–636, 1977. Errata in vol. 7, p. 373 (1980). MR0506168
(58:22016)

[7] R. Coleman. Dilogarithms, regulators, and p-adic L-functions. Invent. Math., 69:171–208,
1982. MR674400 (84a:12021)

[8] R. Coleman and J. Teitelbaum. Numerical solution of the p-adic hypergeometric equation.
In p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991),
pages 53–62. Amer. Math. Soc., Providence, RI, 1994. MR1279601 (95d:11079)

[9] R. de Jeu. Zagier’s conjecture and wedge complexes in algebraic K-theory. Compositio Math-
ematica, 96:197–247, 1995. MR1326712 (96h:19005)

http://www.ams.org/mathscinet-getitem?mr=760999
http://www.ams.org/mathscinet-getitem?mr=760999
http://www.ams.org/mathscinet-getitem?mr=1809626
http://www.ams.org/mathscinet-getitem?mr=1809626
http://www.ams.org/mathscinet-getitem?mr=1883819
http://www.ams.org/mathscinet-getitem?mr=1883819
http://www.ams.org/mathscinet-getitem?mr=2032529
http://www.ams.org/mathscinet-getitem?mr=2032529
http://www.ams.org/mathscinet-getitem?mr=0506168
http://www.ams.org/mathscinet-getitem?mr=0506168
http://www.ams.org/mathscinet-getitem?mr=674400
http://www.ams.org/mathscinet-getitem?mr=674400
http://www.ams.org/mathscinet-getitem?mr=1279601
http://www.ams.org/mathscinet-getitem?mr=1279601
http://www.ams.org/mathscinet-getitem?mr=1326712
http://www.ams.org/mathscinet-getitem?mr=1326712

1134 AMNON BESSER AND ROB DE JEU

[10] J. Fresnel and M. van der Put. Rigid analytic geometry and its applications, volume 218
of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 2004. MR2014891
(2004i:14023)

[11] C. Koç and T. Acar. Montgomery multiplication in GF(2k). Des. Codes Cryptogr., 14(1):57–
69, 1998. MR1608220 (99k:11189)

[12] P. Montgomery. Modular multiplication without trial division. Math. Comp., 44(170):519–
521, 1985. MR777282 (86e:11121)

[13] P. Schneider. Introduction to the Beilinson Conjectures. In Beilinson’s Conjectures on Spe-
cial Values of L-Functions, pages 1–35. Academic Press, Boston, MA, 1988. MR944989
(89g:11053)

[14] The Magma group, Sydney. Magma. Available from http://magma.maths.usyd.edu.au/.
[15] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,

New York, 1999. MR1689167 (2000j:68205)
[16] L. C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, second edition, 1997. MR1421575 (97h:11130)
[17] D. Zagier. Polylogarithms, Dedekind Zeta Functions and the Algebraic K-theory of Fields.

In Arithmetic algebraic geometry (Texel, 1989), pages 391–430. Birkhäuser Boston, Boston,
MA, 1991. MR1085270 (92f:11161)

Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Be’er-

Sheva 84105, Israel

Department of Mathematical Sciences, University of Durham, Science Laboratories,

South Road, Durham DH1 3LE, United Kingdom

Current address: Faculteit Exacte Wetenschappen, Afdeling Wiskunde, Vrije Universiteit,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

http://www.ams.org/mathscinet-getitem?mr=2014891
http://www.ams.org/mathscinet-getitem?mr=2014891
http://www.ams.org/mathscinet-getitem?mr=1608220
http://www.ams.org/mathscinet-getitem?mr=1608220
http://www.ams.org/mathscinet-getitem?mr=777282
http://www.ams.org/mathscinet-getitem?mr=777282
http://www.ams.org/mathscinet-getitem?mr=944989
http://www.ams.org/mathscinet-getitem?mr=944989
http://www.ams.org/mathscinet-getitem?mr=1689167
http://www.ams.org/mathscinet-getitem?mr=1689167
http://www.ams.org/mathscinet-getitem?mr=1421575
http://www.ams.org/mathscinet-getitem?mr=1421575
http://www.ams.org/mathscinet-getitem?mr=1085270
http://www.ams.org/mathscinet-getitem?mr=1085270

	1. Introduction
	Acknowledgments

	2. The p-adic polylogarithm
	3. Method of computation on U0 and U
	4. Method of computation in the generic case
	5. Method of computation on U1
	6. Estimates
	7. The algorithm
	8. Concluding remarks
	References

