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Dynamics of a filtered-feedback laser:
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The behavior of a semiconductor laser subject to filtered optical feedback is studied in dependence on the
width of the filter. Of special interest are pure frequency oscillations where the laser intensity is practically
constant. We show that frequency oscillations are stable in a large region of intermediate values of the filter
width, where the dispersion of the filter is able to compensate for the well-known phase-amplitude coupling
of the semiconductor laser. Our stability diagram covers the entire range from a very narrow filter, when the
system behaves like a laser with monochromatic optical injection, to a very broad filter, when the laser ef-
fectively receives conventional (i.e., unfiltered) optical feedback. © 2007 Optical Society of America
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We consider a semiconductor laser with filtered opti-
cal feedback (FOF), where a part of the laser light is
spectrally filtered and reinjected into the laser after
the round-trip time � of the feedback loop. In an ex-
perimental setup spectral filtering can be realized,
for example, by a Fabry–Perot interferometer where
optical isolators prevent unwanted reflections; see
Fig. 1. The filter itself is characterized by the detun-
ing � between the laser frequency and the filter cen-
ter frequency, and by the filter width �. These two
parameters offer additional control over the feedback
light, which may be used to influence the dynamics of
the laser; see also, for example, [1–4] for other optical
feedback schemes.

The dynamics of the FOF laser has been consid-
ered in a number of experimental and theoretical
studies; see, for example, [5–8]. Their focus has been
on the influence of the detuning, the feedback
strength, and the external round-trip time. By con-
trast, studies of the influence of the filter width �
have focused so far on the two limiting cases of an ex-
tremely narrow filter and of an extremely broad fil-
ter. Namely, the narrow-filter limit reduces to a laser
with optically injected light at the filter frequency,
while in the broad-filter limit spectral filtering is lost
so that the system reduces to a laser with conven-
tional optical feedback [9–11]; in both limits spectral
filtering can be neglected. However, in a real system
where the feedback light is subject to spectral filter-
ing, intermediate filter widths are of interest.

In this paper we study how the behavior of the
FOF laser is influenced by the filter width � over sev-
eral orders of magnitude, ranging from zero up to
4 GHz. This is motivated by recent experimental
measurements in [12], where the vital influence of �
in an intermediate range was revealed by changing
the distance between the two mirrors of the Fabry–
Perot interferometer. Of special interest are fre-
quency oscillations (FOs) of the system, which are
characterized by an absence of oscillations of the
power of the laser. In this respect FOs are very dif-

ferent from the well-known relaxation oscillations
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(ROs) that are a typical feature of semiconductor la-
sers. In fact, in light of the strong amplitude–phase
coupling of semiconductor lasers, the existence of
FOs in the FOF laser—first reported in [6]—has been
somewhat surprising. Their existence has been ex-
plained by the influence of the filter dispersion,
which effectively compensates for the dynamics in
the laser intensity [8]. It is therefore natural to ask
in which range of the filter width � stable FOs can be
found.

Specifically, we identify stability regions of differ-
ent types of dynamics by means of a bifurcation
analysis of an established rate equation model [8]. It
describes the evolution of the complex-valued enve-
lope E�t� of the laser field, the real-valued laser in-
version N�t�, and the complex-valued envelope F�t� of
the feedback field. The model can be written in di-
mensionless form as

Ė = �1 + i��N�t�E�t� + �F�t�, �1�

TṄ = P − N�t� − �1 + 2N�t���E�t��2, �2�

Ḟ = �E�t − ��e−iCp + �i� − ��F�t�. �3�

The feedback field is modeled by Eq. (3), where the
profile of the Fabry–Perot filter is approximated by a
single Lorentzian with width (half-width at half-
maximum) � and detuning �. The filtered field F en-
ters the laser field E after the delay time � with feed-

Fig. 1. Sketch of the FOF laser system with a semiconduc-
tor laser, Fabry–Perot filter, beam splitter (BS), optical iso-

lators (ISO), and mirrors (M).
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back strength �, where the feedback phase Cp
describes the exact phase relationship between the
two fields. Standard semiconductor laser parameters
are the linewidth enhancement factor �, the (res-
caled) carrier lifetime T, and the pump rate P. Note
that time t is measured in units of the photon decay
time of the laser, which is 10 ps for a typical semicon-
ductor laser. In the normalization of Eqs. (1)–(3) we
choose the realistic values �=5.0, T=100, P=2.55, �
=743, �=0.0127, and �=−0.042. In physical terms,
this corresponds to a laser that is pumped 1.6 times
above threshold and receives filtered light of a detun-
ing of −0.67 GHz (i.e., the filter center is on the blue
side with respect to the solitary laser frequency) after
a delay time of 7.43 ns (equivalent to a feedback loop
of about 2.2 m length).

To analyze Eqs. (1)–(3) we use numerical continu-
ation techniques [13,14] that allow one to find and
follow solutions in parameters and to determine their
stability properties; see also [15]. In this way, we are
able to provide a comprehensive overview of the sta-
bility and the dynamics of the system when the filter
width � is allowed to vary over its entire range. In
this study it is advantageous to allow the feedback
phase Cp to vary, because it has been identified as an
important parameter for the FOF laser [8] and is cru-
cial in the limiting case of �→0 [10].

Figure 2 shows a typical example of FOs (thick
curve), together with the external filtered modes
(EFMs, thin curve), in projection onto the �� ,IL�
plane and the �� ,IF� plane for �=0.34 GHz and Cp
=0. The advantage of the projection onto the �� ,IF�

Fig. 2. (Color online) Periodic orbit (thick curve) of stable
FOs for �=0.34 GHz and Cp=0 in projection onto the �� ,IL�
plane (a) and onto the �� ,IF� plane (b); notice the different
scales along the vertical axes. Stable (squares) and un-
stable (circles) EFMs lie on a closed (thin) curve (as a func-
tion of Cp); the vertical line indicates the center frequency

of the filter.
plane in Fig. 2(b) is that it shows the role of the filter
for pure FOs. The EFMs are the basic solutions of
Eqs. (1)–(3), and they correspond to cw emission of
the form

�E�t�;N�t�;F�t�� = ��ILei�st;Ns;�IFei�st+i��

with constant intensities IL and IF of the laser and
the feedback field, respectively, and constant inver-
sion Ns, frequency �s, and phase shift �. The EFMs
form a single closed curve, called an EFM component,
as the feedback phase Cp is changed. For the chosen
values of the parameters there are 19 EFMs, marked
by squares (when stable) and circles (when unstable).
Figure 2(a) shows the usual representation of the
EFM component in the �� ,IL� plane, which is often
referred to as the fixed point ellipse; compare with
[5]. In Fig. 2(b), on the other hand, the shape of the
EFM component reflects the dispersion characteris-
tics of the filter. That is, the feedback intensity is
highest for EFMs close to the filter center, and it de-
creases for EFMs toward the flanks of the filter. It
can be seen clearly that the periodic FO orbit indeed
occurs at and involves the flank of the filter. This
means that any change of the laser frequency � re-
sults in a change of the feedback intensity IF, while
the laser intensity IL remains practically constant.
This property of FOs indicates that they can be main-
tained only at an intermediate range of filter widths
and must disappear when the filter width becomes
too broad or too narrow.

We now take a more global view and show in Fig. 3
stability regions of EFM, FOs, and ROs of the FOF
laser in the �� ,Cp� plane over a large range of � and
over several periods of the 2	-periodic parameter Cp.
This representation is more convenient than plotting
the information in only a single 2	 interval of Cp; see
[8] for a discussion of the multistability resulting
from the 2	 periodicity.

The stability region of the EFMs is labeled as such
in Fig. 3; at least one EFM always exists. Additional
EFMs are born in pairs in saddle-node bifurcations
(S) as the filter width � or the feedback phase Cp is
changed; one of them is stable in the EFM region.

In particular, when Cp is changed for �
0.1, two
seemingly unconnected stable EFM regions are ob-
served that are separated by the white area to the
left of the saddle-node curve S in Fig. 3. The EFM re-
gion centered around Cp=−5	 corresponds to EFMs
near the solitary laser frequency, and the one cen-
tered around Cp=4	 corresponds to EFMs near the
center frequency of the filter. However, for � above
about 0.1 these two regions are connected and form a
single stable EFM region.

We now concentrate on bifurcating oscillations that
arise when EFMs become unstable at (supercritical)
Hopf bifurcations (H). Figure 3 shows a region of
stable FOs for values of � below 0.5 GHz and a dis-
joint region of stable ROs for ��1 GHz. Both stabil-
ity regions are bounded by curves of further bifurca-
tions; we find torus bifurcations (T), period-doubling
bifurcations (PD), and saddle node of limit cycle bi-

furcations (SL). Note that these bifurcations may
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give rise to more complicated dynamics, which are
beyond the scope of this Letter.

As can be seen from Fig. 3(a), ROs can be found for
rather higher values of the filter width �. They are
due to a weakly damped internal instability of semi-
conductor lasers that may undamp under the influ-
ence of any external perturbation, such as suffi-
ciently strong feedback. Note that ROs can be found
near the frequency of the filter irrespective of the
value of the detuning; compare this also with [8]. The
undamping of the ROs is common for lasers with any
type of optical feedback and does not require filter-
ing. This is why ROs occur for a rather large filter
width, where the filter has only little effect on the
feedback light across the frequency range of the laser.

Frequency oscillations, on the other hand, occur in
a stability region, enlarged in Fig. 3(b), for interme-

Fig. 3. (Color online) Stability regions of EFMs, ROs, and
FOs in the �� ,Cp� plane (a) and an enlarged view near the
FO region (b). Boundary curves are given by saddle-node
bifurcations (S), Hopf bifurcations (H), saddle-node bifurca-
tions of limit cycles (SL), torus bifurcations (T), and period-
doubling bifurcation (PD); the short curve near Cp indi-
cates a more complicated transition from stable FOs.
diate values of the filter width �. When entering the
stability region by decreasing �, FOs are born from
the stable EFM in a supercritical Hopf bifurcation
(H) or in pairs in a saddle node of limit cycle bifurca-
tions (SL). In the stability region of FOs the filter in-
deed has an appropriate flank, which agrees with our
earlier observation; see Fig. 2(b). When the filter be-
comes too narrow, the dispersion can no longer com-
pensate the phase-amplitude coupling of the laser
and the FOs lose their stability. This may occur in
period-doubling (PD) or torus (T) bifurcations. More-
over, we find a complicated bifurcation scenario in-
volving homoclinic connections when leaving the
EFM stability area near Cp�2	.

In conclusion, we provided a comprehensive pic-
ture of how the dynamics of a semiconductor laser
with filtered optical feedback depends on the filter
width. This revealed that frequency oscillations,
which require dispersion at the filter flank, occur sta-
bly in a region of intermediate filter width. Relax-
ation oscillations, on the other hand, occur for much
wider filters. This distinction between the two types
of oscillations may prove useful for possible applica-
tions of laser systems with filtering elements.
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