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Abstract. Given the importance of Amazon rainforest in the
global carbon and hydrological cycles, there is a need to pa-
rameterize and validate ecosystem gas exchange and vege-
tation models for this region in order to adequately simulate
present and future carbon and water balances. In this study,
a sun and shade canopy gas exchange model is calibrated and
evaluated at five rainforest sites using eddy correlation mea-
surements of carbon and energy fluxes.

Results from the model-data evaluation suggest that with
adequate parameterisation, photosynthesis models taking
into account the separation of diffuse and direct irradiance
and the dynamics of sunlit and shaded leaves can accurately
represent photosynthesis in these forests. Also, stomatal
conductance formulations that only take into account atmo-
spheric demand fail to correctly simulate moisture and CO2
fluxes in forests with a pronounced dry season, particularly
during afternoon conditions. Nevertheless, it is also the case
that large uncertainties are associated not only with the eddy
correlation data, but also with the estimates of ecosystem res-
piration required for model validation. To accurately simu-
late Gross Primary Productivity (GPP) and energy partition-
ing the most critical parameters and model processes are the
quantum yield of photosynthetic uptake, the maximum car-
boxylation capacity of Rubisco, and simulation of stomatal
conductance.
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Using this model-data synergy, we developed scaling
functions to provide estimates of canopy photosynthetic pa-
rameters for a range of diverse forests across the Amazon
region, utilising the best fitted parameter for maximum car-
boxylation capacity of Rubisco, and foliar nutrients (N and
P) for all sites.

1 Introduction

The Amazon forest is the largest example of tropical rain for-
est in the world and it is estimated to be among the most
productive ecosystems in the world (Grace et al., 2001). It
has received considerable attention due to its potential ca-
pacity to act as a source or sink of atmospheric carbon diox-
ide (Grace et al., 1995a; Lloyd and Farquhar, 1996, 2008;
Phillips et al., 1998; Prentice and Lloyd, 1998; Tian et al.,
1998; Chambers and Silver, 2004; Lewis et al., 2004). Re-
sults from global carbon cycle models have suggested a po-
tential significant effect of Amazonian forests on estimates
of the global carbon budget (Prentice and Lloyd, 1998; Tian
et al., 1998; Cox et al., 2000). Indeed, the study of Cox et
al. (2000), predicts large-scale forest dieback across Amazo-
nia in the 21st century, with associated emissions contribut-
ing to an amplification of human-induced climate change.
Such results need to be refined using calibrated models that
are better constrained by data from the Amazon region.
These should lead to improved present and future carbon bal-
ances predictions for Amazonia. This is of vital importance
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for the accuracy of global climate-carbon cycle models and
their projections of future atmospheric carbon dioxide con-
centration and climate.

Although land surface schemes within Global Circulation
Models (GCMs) currently represent vegetation in terms of
a small set of plant functional types (PFTs) (Sitch et al.,
2003), progress is now being made in this respect, associ-
ated with a greater appreciation of the physiological diver-
sity of the many different species and the wide diversity of
soil types in the region (Fyllas et al., 2009). Thus although
the entire Amazon rainforest is taken as one physiologically
uniform entity, it is now appropriate for models of Amazon
forest gas exchange to incorporate variations in plant physi-
ological characteristics and soil properties.

The increased availability of eddy correlation flux data has
been very useful for calibrating and evaluating model abil-
ity to simulate measurements and ecosystem responses to
different environmental variables. Nevertheless it is impor-
tant to note some limitations of the method, such as a fail-
ure to close the energy balance (Massman and Lee, 2002;
Wilson et al., 2002; Baldocchi, 2003; Finnigan et al., 2003)
and that the method only estimates the net ecosystem car-
bon exchange. This comprises two large and opposing fluxes
associated with processes that often occur simultaneously:
viz. photosynthesis by leaves, and whole-ecosystem respira-
tion, i.e. the combination of plant and heterotrophic respi-
ration. Separating the net flux into its components is non-
trivial, and is usually achieved by relating respiration to the
net ecosystem exchange measured during night-time. There
are two drawbacks in estimating ecosystem respiration us-
ing this method: first, daytime ecosystem respiration differs
from night-time due to temperature differences, especially
at the canopy level. Second, and most importantly, there is
a frequent failure of the system to measure night-time res-
piration fluxes at low wind speed conditions (Aubinet et al.,
2002; Massman and Lee, 2002; Pattey et al., 2002; Saleska
et al., 2003).

Carbon isotope measurements of plant tissues (δ13C) place
a constraint on models of isotopic discrimination during pho-
tosynthesis (Aranibar et al., 2006). These measurements for
C3 plants give an indication of the average intercellular CO2
concentration (Ci) during photosynthetic periods (Farquhar
et al., 1982). This metric has been used in modelling studies
to constrain the stomatal conductance parameters (Aranibar
et al., 2006).

Under the assumption of nitrogen (N) limitation, leaf pho-
tosynthesis is usually modelled based on the measured lin-
earity between photosynthetic capacity and N content per
unit leaf area (Hirose and Werger, 1987; Evans, 1993). Leaf
photosynthesis is scaled up to canopy level based on the hy-
pothesis that N partitioning within canopies varies with irra-
diance in such a way as to maximize whole-canopy photo-
synthesis (Evans, 1993). This optimal approach to N parti-
tioning is frequently used in the modelling community. How-
ever, for tropical ecosystems leaf phosphorous (P) rather than

leaf N may be the key nutrient limiting productivity of low-
land rainforests, where soils are highly weathered, phospho-
rous availability is low and nitrogen is relatively abundant
(Vitousek and Sanford, 1986). Aside from the importance
of many sugar-phosphates in photosynthesis and respiration,
phosphorous plays an essential role in energy metabolism be-
cause of its presence in important molecules that store energy
which are essential to the Calvin cycle. Therefore, deficien-
cies in phosphorus can limit the rates of RuBP regeneration
(RuBP is the CO2 acceptor molecule in the Calvin cycle)
and consequently carbon assimilation (Campbell and Sage,
2006). It is likely the low P concentrations in tropical forest
leaves may constrain photosynthetic rate, at least for some
tropical forests (Lloyd et al., 2001). Lloyd et al. (2009) have
also shown that the “optimal” gradient of N and P within
plant canopies is actually less steep than has often been con-
sidered the case, especially when overall nutrient concentra-
tions are low.

The motivation behind this study is thus to refine ecosys-
tem gas exchange models in order to better represent the
gross carbon uptake of forests in the Amazon Basin, utilis-
ing available eddy correlation data and other field observa-
tions, for model calibration and evaluation. Then, we can
derive upscaling relationships of canopy photosynthesis ap-
propriate for basin-wide simulations. We first assess model
performance of simulated carbon uptake and energy partition
at five rainforest sites in the Amazon basin using eddy cor-
relation flux data and identify the main limitations of such
a model-data evaluation exercise. We take the sun/shade
model for photosynthesis (de Pury and Farquhar, 1997) cou-
pled to a stomatal conductance model (Cowan and Farquhar,
1977), previously calibrated at one rainforest site, as de-
scribed in Mercado et al. (2006). This coupled model is ap-
plied at 5 eddy correlation sites across Amazonia. It is cali-
brated and then evaluated using fluxes of carbon and energy
derived from eddy correlation data, and measurements of fo-
liar carbon isotope fractionation (Lloyd et al., 2009; Fyllas et
al., 2009). Then, we derive a canopy scaling function to scale
GPP to the basin level. Here we relate canopy maximum car-
boxylation capacity of Rubisco activity (Vmax) at each site
to foliar N. Additionally, given the possibility of phosphorus
deficiency in tropical leaves being an important constraint
on photosynthesis (Lloyd et al., 2001), relationships between
Vmax and foliar phosphorus are also explored.

2 Methods

2.1 Data

2.1.1 Tower sites

Eddy correlation measurements made above five primary
rainforest sites in the Brazilian Amazon (averaged over
hourly time steps) with associated meteorological variables,
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Table 1. Information about eddy correlation data used from five sites in the Brazilian Amazon.

Man C14 Man K34 Jaru Tapajos Caxiuana

Period used 10/1995–07/1996 10/1999–05/2000 All 1999 All 2002 1999
10/2000–12/2000

Storage Flux modelled measured 1999 measured measured Measured few small
2000 modelled gaps modelled

Energy balance 94% 70% 70% 87% including heat 70%
closure storage from ground

and vegetation
Correction applied Low frequency no corrections no corrections Night time u* Low frequency
to data used contributions applied to data set used applied to data set used contributions

at the time simulations at the time simulations
were performed were performed

Table 2. General characteristics of five rainforest sites in the Brazilian Amazon.

Man C14 Man K34 Jaru Tapajos km 67 Caxiuana

Geographical coordinates 2◦35′21.08′′ S
60◦06′53.63′′ W

2◦36′32.67′′ S
60◦12’33.48′′ W

10◦4.706′ S
61◦56.03′ W

03◦03’ S 54◦56′ W 01.42◦ S 51.32◦ W

Location Cuieiras Reserve
Previously known
as ZF2 Manaus,
Amazonas

10 km away from the
C14 site Manaus,
Amazonas

Reserva Jaru
100 km north of
Ji-Parana, Rondonia

Tapajos National forest
70 km south of
Santarem, Para

1 km north of field station
floresta
Nacional de Caxiuana, Para

Tower height (m) 41.5 52 62 65 51.5
Mean elevation (m) 100–150 100±50 150–200 90 15
Landscape Undulating:

Plateau and valleys
Undulating:
Plateau and valleys

Gently sloping
plain

Flat plateau Flat plateau

Forest type Terra firme Terra firme Terra firme Terra firme Terra firme
Canopy height (m) 30–35 30–35 35 up to 45 40 emergent up to 55 ∼35
LAI (m 2 m−2) 5.6 4.4 4 6.7 5.4
Type of soil Geric carric Ferrasol

(Alumic Hyperdystric,
Clayic)a

Geric Ferrasol
(Alumirc Hyperdystric,
Clayic)a

Red-yellow acrisol1b Oxisol Geric Ferrasol
(Alumic, Hyperdystric,
Clayic, Xanthick)a

Geric, Acric, Ferrasol
(Alumic Hyperdystric,
Clayic)a

Mean temperature (◦C) 26.7 26.7 25–27 max [24–32] &
min [20–25]

27

Mean precipitation
(mm year−1)

1900–2300 1900–2300 1900 1920 2300

Dry season length
(months with rainfall
<100 mm)

Jun–Sep Jun–Sep May/Jun–Sep Jun–Dec Jun–Aug

Mean aboveground
biomass (Tonne ha−1)

300–350c 300–350c 220d 349.1c 371.7c

Reference to site and
eddy correlation data

Malhi et al. (1998);
Malhi et al. (2002)

Araújo et al. (2002);
Chambers et al. (2004)

von Randow
et al. (2004)

Hutyra et al. (2008);
Saleska et al. (2003),
From a neighbouring site
(km 83): Goulden et al.
(2004); Miller et al.
(2004); Da Rocha et al.
(2004)

Carswell et al. (2002);
Iwata et al. (2005)

a Quesada et al. (2009);b von Randow et al. (2004);c Baker et al. (2004);d Meir et al. (2001)

were used to calibrate and evaluate the model used in this
study. A summary of data used and site characteristics is
given in Tables 1 and 2, respectively, and site locations are
shown in Fig. 1. Information on instruments used for mea-
surements and methods for flux calculations at each site can
be found in the original references for these measurements as
given in Table 2.

2.1.2 Meteorology

The meteorological data used for model input comes from
automatic weather stations located at the top of the tow-
ers. Global solar radiation, wind speed and air temperature
were available at all towers. To determine atmospheric wa-
ter vapour content, methodologies differed between sites –
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Fig. 1. Locations of rainforest sites with eddy correlation systems
used in this study.

values are derived from wet bulb temperatures at Manaus
C14 and Caxiuana, from dew point temperatures at Tapajos
and from relative humidity measurements at Jaru and Man
K34.

2.1.3 Carbon fluxes

Fluxes of carbon dioxide correspond to net ecosystem ex-
change rates (NE). In order to determine the net canopy
assimilation rate (i.e. total photosynthesis minus daytime
canopy leaf respirationRC), GP or gross canopy assimila-
tion rate (i.e. total photosynthesis, which includes daytime
leaf respiration) (GP∗), it is necessary to consider the non-
leaf ecosystem respiration rateRE∗ or the total ecosystem
respiration rateRE , respectively, and carbon dioxide accu-
mulated inside the canopy:

GP = −NE + RE∗ (1)

GP ∗ = GP + RC = −NE + RE (2)

NE = F
C

+

ht∫
0

∂Ca

∂t
dz (3)

where Fc is the flux of CO2 measured by eddy correla-
tion (µmol m2 s−1) and the integrand, often referred to as
“the change in canopy storage flux” (µmol m2 s−1), repre-
sents the rate of change in the CO2 concentration (Ca) within
the canopy between the forest floor and the eddy correlation
measurement height,ht . Canopy CO2 storage flux (ST ) is
estimated from measurements of within canopy CO2 concen-
trations and it is usually measured along with eddy correla-
tion flux data.

Of the five sites, the canopy storage flux was determined
from measurements at Manaus K34, Tapajos, Jaru and Cax-
iuana. Data from Manaus C14 only includes storage mea-

surements for the period October–November 1995. Lacking
measurements at Manaus C14 for the remaining period of
study and at Jaru, simulated storage fluxes (provided by col-
laborators) were used.

To calculate photosynthesis from measured eddy correla-
tion NE , it was necessary to use eitherGP or GP ∗ depending
upon the ecosystem respiration available at each individual
site. At sites where it was possible to estimate the sepa-
rate contributions to ecosystem respiration, i.e. from stems
and branches, soil and coarse litter (Man K34, Jaru and Man
C14), the net assimilation rate,GP , was used. This term
accounts for the balance of the parallel processes of photo-
synthesis and leaf respiration. At Man K34, Jaru and Man
C14 the “observed”GP was calculated as:

GP = −NE + RE∗ = −NE + RS + RW + RCS (4)

RE NL is the sum of all respiratory contributions from
soil (autotrophic and heterotrophic on a ground area basis),
coarse litter, stems and branches.RW represents the respi-
ration contribution from stems and branches,RS from soil
(which includes root and fine litter decomposition at the soil
surface) andRCS accounts for coarse litter respiration. At
sites where ecosystem respiration was given as a single flux
(Caxiuana and Tapajos), Gross photosynthesis,GP ∗ , is used.
At Tapajos and Caxiuana, total ecosystem respiration was
available andGP ∗ was calculated as:

GP ∗ = −NE + RE (5)

whereRE is defined asRE∗ plus respiratory contributions
from daytime leaf canopy respiration.

To derive GP or GP ∗ at the five tower sites, different
methodologies for estimating ecosystem respiration had to be
used, these again dependent upon the techniques employed
by the original investigators.

Ecosystem respiration for both Manaus sites, and Jaru,
was calculated using measurements from its single compo-
nents (Eq. 4) and for Tapajos and Caxiuana, ecosystem res-
piration was derived from night time measurements ofNE .
A summary of how ecosystem respiration was calculated for
each site is included in Table 3.

2.1.4 Foliar carbon isotopes, N and P content and leaf
area index

Measurements of foliar carbon isotopic composition as de-
scribed in Lloyd et al. (2009) and Fyllas et al. (2009) were
used to test model predictions ofCi with the exception of
the Jaru site where we take data from the study of Ometto et
al. (2006).

Foliar N, P (on a dry weight (DW) basis ) and leaf mass per
unit area for leaves taken from the top of the canopy are as in
Fyllas et al. (2009) with nitrogen and phosphorus data from
Jaru kindly provided by Martinelli and Nardoto (unpublished
data).
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Table 3. Calculation of ecosystem respiration for the different sites. All respiration terms are in µmol m−2 s−1 (ground area basis). The
range ofRE represents seasonal variation.

Site Method of calculation Source RE

Man C14 Sum of individual components ofRE

RS at soilT min–max [2.1–4.10] Chambers et al. (2004) min–max
RCS (at 25◦C) 0.5 Chambers et al. (2000) [7.2–9.2]
Rw (at 25◦C) 1.1 Chambers et al. (2004)
RC,25 3.5 modelled

Man K34 Sum of individual components ofRE

RS at soilT min–max [2.1–4.10] Chambers et al. (2004) min–max
RCS (at 25◦C) 0.5 Chambers et al. (2000) [6.2–8.2]
Rw (at 25◦C) 1.1 Chambers et al. (2004)
RC,25 2.5 modelled

Jaru Sum of individual components ofRE avg 9.3
RS (at soilT ) 5.22 Meir et al. (1996)
RCS (at 25◦C) 0.5 Chambers et al. (2000)
Rw (at 25◦C) 0.75 Meir and Grace (2002)
RC,25 2.66 modelled

Tapajos Inferred from night time fluxes by filtering out
data below particularu∗ thresholds. Hourly
values are calculated as the average of valid
nighttime NE within a centered 5-day wide
window, assuming at least 24 valid hours of
nighttimeNE were available.

Restrepo-Coupe (2009)
Hutyra et al. (2008)

min–max
[9–10.6]

Caxiuana Inferred from night time fluxes by filtering
out data below particularu∗ thresholds, and
applying the Michaelis Menten equation with
a fixed Q10 of 2 to soil temperature data to
estimate daytime respiration rates

Iwata et al. (2005)
modelled

avg 8.6

RE (at 25◦C) 8.6
RC,25 2.7

Leaf area index (LAI) in m2 of leaves per m2 of ground
was derived from hemispherical photographs using the
method of Keeling and Philips (2007) taken at 4 of the 5 sites
during the end of the rainy season (Patiño, unpublished data).
LAI at the remaining site, Jaru was taken from the study of
Meir et al. (2000).

2.2 Model description

2.2.1 Sun and shade model

The canopy gas exchange sun and shade model used in this
study (de Pury and Farquhar, 1997) simulates canopy pho-
tosynthesis and energy balance by dividing the canopy into
a sunlit and shaded component. This division of sunlit and
shaded foliage changes with both the portion of the incom-
ing irradiance that is diffuse, as well as the solar elevation
angle, and therefore canopy photosynthetic capacity of the
sunlit and shaded portions is dynamic. Sunlit leaves are
modelled to receive direct and diffuse radiation while shaded

leaves receive only diffuse radiation. Details about the model
and equations for canopy photosynthesis are included in Ap-
pendix A.

2.2.2 Radiation absorption and energy balance

Using formulations developed by Goudriaan (1977) as pre-
sented in Wang and Leuning (1998) and de Pury and Far-
quhar (1997), absorption of Photosynthetically Active Radi-
ation (PAR) and near infrared radiation (NIR) was estimated
for the sun/shade model. The net energy available to the sun-
lit and shaded leaf was calculated as the sum of net absorbed
PAR, net absorbed NIR and net absorbed long wave by each
leaf.

Since leaf temperature is needed to calculate long wave
radiation, net isothermal radiation is calculated for the sun
and shaded leaves, which are partitioned between the la-
tent and sensible heat fluxes following the isothermal form
of the Penman-Monteith equation (Jones, 1992), assuming
ground evaporation and soil heat flux to be negligible. This
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Table 4. Leaf P and Leaf N in area and dry weight and SLA (Fyllas
et al., 2009).

Site Leaf P Leaf P Leaf N Leaf N SLA
(mg g−1) (g m−2) (mg g−1) (g m−2) (cm2 g−1)

Manaus C14 0.69 0.07 19.93 1.98 102.87
Manaus K34 0.64 0.06 23.10 2.36 96.82
Jaru 0.89a 0.084 27.37a 2.6 105.2b

Caxiuana 0.60 0.05 19.83 1.75 111.17
Tapajos 0.76 0.07 23.48 2.16 103.06

a Martinelli and Nardoto (unpublished data)
b Meir et al. (2001)

assumption is based on the observation that typically only
1% of the radiation received at the top of the canopy reaches
the forest floor (Shuttleworth, 1989). For example, soil heat
fluxes represent only 2% of the daytime net radiation at Tapa-
jos (da Rocha et al., 2004). Since energy stored in biomass
and in the canopy air and chemical energy used for CO2 ex-
change are small in quantity, these terms were also neglected.

2.2.3 Leaf biochemistry and stomatal conductance

The leaf level photosynthesis model used here includes the
biochemistry of C3 photosynthesis from Farquhar and von
Caemmerer (1982) (Eqs.A3 to A6) and stomatal conduc-
tance is calculated with the equation from Cowan and Far-
quhar (1977), called the “Lambda” model (Eq.A7). Descrip-
tion of both models is included in Appendix A.

2.2.4 Isotopic composition of leavesδ13C

Isotopic composition of leavesδ13C (‰) was calculated for
the canopy following Farquhar et al. (1982) as:

δ13C=δatm−a−(b−a)Ci/Ca (6)

wherea corresponds to the maximum fractionation due to
diffusion of CO2 in air (4.4‰) andb is the maximum frac-
tionation in the carboxylation reaction (30‰) (Farquhar et
al., 1982). δatm is δ13C of the air, taken as−8.0(‰), the
late twentieth century mean atmospheric background value
(Ehleringer et al., 1987). The ratioCi/Ca corresponds to
simulated daytime hourly values from the whole canopy. The
simulated average integral of photosynthetic discrimination
during the different seasons analyzed (δ 13C) is calculated
with Eq. (6) using the photosynthetic flux weighted average
(Ci/Ca):

δ13C=−12.4−25.6

n∑
i=1

GP i ∗ (Ci/Ca)∑n
i=1 GP i

(7)

Equation 6 does not include re-fixation of soil and plant
respired CO2. However, measured values ofδ13C are from
top of the canopy leaves and as shown by Lloyd et al. (1996),
recycling at this level in the canopy is minimal (<5%).

2.3 Model parameterisation

Canopy level maximum carboxylation activity of Rubisco
(Vmax) was estimated using Eqs. (A1) and (A2). This as-
sumes an exponential decrease inVmax with height (or more
precisely with cumulative leaf area) as was observed for the
profile of Vmax derived from gas exchange measurements at
the Manaus C14 site (Carswell et al., 2000) and parame-
terised in Mercado et al. (2006) for the sun and shade model
for the Manaus C14 site. From the Mercado et al. (2006) pa-
rameterisation,Vmax for the top and bottom 50% of canopy
leaves averages 65% and 35% of theVmax of the uppermost
leaves, respectively. Having defined this distribution ofVmax
with cumulative leaf area, total canopyVmax was then cal-
culated at each site as the integral of leaf levelVmax over
cumulative leaf area index, as described in Eq. (A1). Lloyd
et al. (2009) discuss gradients in nutrients within Amazon
forests in general and conclude that for trees growing on such
relatively infertile soils, such shallow within canopy gradi-
ents should, indeed, exist.

Canopy level respiration (expressed on a ground area ba-
sis) was simulated for all sites using the parameterisation for
the sun and shade model from Mercado et al. (2006) as de-
rived from Carswell et al. (2000), and was assumed to de-
crease exponentially with cumulative leaf area index. Respi-
ration at the top of the canopy was taken as a constant frac-
tion of Vmax from top leaves (i.e. 0.022×Vmax) for all sites
(de Pury and Farquhar, 1997). Total canopy respirationRC

was subsequently calculated using the same nitrogen allo-
cation coefficient (kn) obtained for the exponential regres-
sion of Vmax against cumulative leaf area index (Eq.A2),
with a temperature dependence of canopy respiration given
by Lloyd and Taylor (1994).

The model was calibrated using a simplex procedure to
minimize the error sum of squares of the modelled photo-
synthesis minus the sum of net ecosystem exchange as mea-
sured by eddy correlation plus the estimated ecosystem res-
piration (Table 3) from a selected subset of data from each
site (Nelder and Mead, 1965). Criteria of selection followed
the same conditions as in Lloyd et al. (1995) and in Grace
et al. (1995b). To avoid the CO2 flush or so-called morning
peak, data before 09:00 was not used for model parameteri-
sation. Storage flux values larger than 10 µmol m−2 s−1 and
smaller than−10 µmol m−2 s−1 were also neglected as were
data points collected during and after rainfall. Measurements
where radiation fluctuated as a result of a moving cloud (i.e.
abrupt changes in solar radiation from hour to hour) were
also filtered together with aerodynamic conductances lower
than 0.1 µmol m−2 s−1.

The following parameters (from Eqs. A3, A5 and A6)
were estimated from the fitting procedure: top of the canopy
Vmax, the ratioJmax/Vmax and the canopy level quantum
yield (8). We decided to fit quantum yield to the observa-
tions because a comparison from the light response curves
of NE derived from eddy correlation measurements for the
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various sites (Fig. B1), indicates variations in slope of the
linear part of the curves at the different sites. The remaining
parameters for the sun/shade model, viz. the curvature factor
of the light response curve,θ (Eq. A5), and the temperature
sensitivity parameters of the electron transport rate (Eq.A8
SJ andHJ ) and Rubisco (Eq.A7) and leaf respiration tem-
perature sensitivities (Eq.A10) were taken from Mercado
et al. (2006) (i.e.θ andHJ were taken as parameterised in
the study of Carswell et al. (2000) at the leaf level andSJ

was taken as fitted for the sun/shade model in Mercado et al.,
2006). The model was calibrated using eddy correlation data
from end of the dry season for all sites. The parameterization
for Manaus C14 was taken from Mercado et al. (2006).

Leaf reflectance and transmittance were assumed identical
at all sites. Values were taken from the study of Poorter et
al. (1995) where measurements were made along a vertical
gradient in canopies in a tropical rainforest in Costa Rica.

As in Katul et al. (2000) and Aranibar et al. (2006), we use
foliar carbon isotopes measurements from the different sites
to help constrain the parameterisation of lambda (λ) model
of stomatal conductance (Eq.A11). Initial values ofλ were
calculated using the Farquhar and Lloyd (1994) version of
the model that allowsλ to be estimated fromCi/Ca , the de-
rived from theδ13C measurements and the long-term vapour
pressure deficit (̄D):

λ ≈
1.6D̄(Ca − T ∗)

C2
c

[
1 −

C̄i

Ca

]2
(8)

Subsequently, following Aranibar et al. (2006), values ofλ

that produced similar simulated discrimination as foliar iso-
tope ratios measured at the different sites were chosen.

2.4 Model evaluation

Simulated net carbon uptake and energy partition were eval-
uated using eddy correlation data for all sites. Because eddy
correlation measurements above forest ecosystems often fail
energy balance closure tests (Massman and Lee, 2002; Wil-
son et al., 2002; Baldocchi, 2003; Finnigan et al., 2003), it is
more practical to test model performance of energy partition
using the evaporative fraction (defined as the ratio between
the latent heat flux and the sum of the latent and sensible
heat fluxes). There is considerable variability in the hourly
calculated evaporative fraction, therefore model performance
is evaluated using the mean diurnal cycles of measured and
simulated evaporative fraction. In addition, simulatedδ13C
values are compared to measurements of foliar isotopic frac-
tionation as described above. Having an accurate simulated
δ13C helps to substantiate the results for simulated photosyn-
thetic uptake and at the same timeδ13C fixes the range within
which λ in Eq. (A11) can vary. By increasing or decreas-
ing λ, the partition of energy into sensible and latent heat
fluxes is changed and the model can easily fit the measured
energy balance, but at the same time the lambda parameter

affects the photosynthetic rate throughCi/Ca and thus the
simulatedδ13C. Therefore a realistically simulatedδ13C is
a valuable diagnostic for testing the validity ofλ, applied in
a fully linked carbon/water/energy exchange model as used
here.

Simulations of carbon uptake are compared with the ob-
servations using RMSE and regression coefficient (R2) and
slope of the linear regression line of observed and simulated
data pairs. Model performance is also evaluated by compar-
ing simulated light response of photosynthesis, diurnal cycle
of evaporative fraction and canopyδ13C with observations.

3 Results

3.1 Data-model calibration

Best fitting values for top of the canopyVmax, ratio of
Jmax/Vmax and canopy level quantum yield, and non fitted
parameters used for all simulations are presented in Table 5.

3.2 Model performance: carbon uptake and energy
partition

Statistics of model performance for carbon uptake are in-
cluded in Table 6 for all sites and seasons studied. The mean
light response and diurnal cycles of hourly observations and
simulations ofGP (for both Manaus sites and Jaru) andGP ∗

for Caxiuana and Tapajos are presented in Figs. 2 and 3,
respectively. Mean diurnal cycle of observed and simulated
evaporative fraction is shown in Fig. 4 and comparison of ob-
served and simulatedδ13C is shown in Table 7. Results for
each study site are discussed separately.

3.2.1 Manaus C14

The sun/shade model simulates reasonably well the three sea-
sons tested within the error bars of the observations at this
site (see Table 6 for statistics). However,GP estimated from
eddy correlation measurements during the end of dry season
of 1995 and the dry season of 1996 is overestimated by the
model by 8% and 10%, respectively. Such overestimation
seems to occur mainly during the morning during both sea-
sons (Fig. 3). In 1995 this occurs during high radiation values
(PAR higher than 1000 µmol m−2 s−1) and in 1996 at all ra-
diation levels (Fig. 2, top row). This is associated with the
storage fluxes used for calculation ofNE (Eq. 3). For this
site, the storage fluxes used were model output. Compari-
son of simulated storage fluxes against observations (for the
available period) show a tendency to under predict the mea-
surements in the morning, implying low estimates of mea-
suredNE , respectively (Fig. B2). This may be one reason
for the model to show a tendency to overestimate morning
net carbon uptake fluxes.

Simulated energy partition (Fig. 4) shows good agree-
ment with observations at all studied seasons for this site.
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Fig. 2. Light response of observed (black) and simulated (grey) values ofGP during the seasons tested.
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Fig. 3. Diurnal cycle of observed (black) and simulated (grey)GP .
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Fig. 4. Mean diurnal cycle of observed (black) and simulated (grey) evaporative fraction.

Biogeosciences, 6, 1247–1272, 2009 www.biogeosciences.net/6/1247/2009/



L. M. Mercado et al.: Modelling Amazon forest canopy photosynthesis 1257

Table 5. Parameters for sun/shade simulations at each site.

Man C14 Man K34 Jaru Tapajos Caxiuana

Vmax top canopy (µmol m2 s−1) 52.3 40. 51.89 47.49 32.11
Jmax/Vmax 1.9 1.9 1.82 2.96 1.9
Quantum yield,8 0.4 0.35 0.4 0.16 0.5
Theta,θ∗ curvature factor 0.7 0.7 0.7 0.7 0.7
SJ (J mol−1 K−1) 693.124 693.124 693.124 693.124 693.124
HJ (J mol−1) 220 000 220 000 220 000 220 000 220 000
Lambda,λ (mol mol−1) 1200 2000 2000 5000 1800
LAI (m2 m−2) 5.63 4.4 4.0 6.5 5.43
CanopyVmax (µmol m2 s−1) 185.1 127.8 118.5 100.2 109.7

Table 6. Statistics of model-data comparison forG∗
P

during the sea-
sons tested. The regression model is modelled flux= a × measured
(or estimated from eddy correlation) flux.

Site Season a R2 RMSE∗

Manaus C14 End of dry 1995 1.08 0.94 5.29
Manaus C14 Wet 1996 0.96 0.94 5.20
Manaus C14 Dry 1996 1.1 0.95 5.29

Manaus K34 End of dry 1999 1.03 0.96 4.36
Manaus K34 End of dry 2000 1.08 0.96 4.47
Manaus K34 Rain 2000 0.97 0.95 4.36

Jaru Rain 2000 (all data) 0.96 0.96 4.00
Jaru Dry 2000 (all data) 1.13 0.96 4.35
Jaru End of dry 2000 (all data) 1.04 0.95 5.00

Caxiuana Rain 1999 (all data) 0.96 0.96 4.58
Caxiuana Dry 1999 (all data) 0.96 0.97 4.24
Caxiuana End of dry 1999 (all data) 0.95 0.97 4.24

Tapajos Rain 2002 (all data) 0.90 0.92 5.29
Tapajos Dry 2002 (all data) 0.95 0.93 5.29

However, under the current parameterisation simulatedδ13C
over predicts the observedδ13C (i.e. simulated values are less
negative than observations) (Table 7), meaning that the mod-
elledCi/Ca is lower than what is suggested by the observa-
tions. Measured values ofδ13C could only be explained by
the model using a higherλ than 1200 mol mol−1. However,
with a higherλ, the model predicts a higher evaporation rate,
consequently increasing the simulated evaporative fraction,
which leads to an over prediction of observed energy parti-
tion (not shown).

3.2.2 Man K34

In terms of carbon uptake, there is good agreement between
observations and simulations (see Table 6 for statistics), with
only an 8% model overestimation during the end of the
dry season in 2000. From the comparison of observed and
simulated mean diurnal cycle of net photosynthetic uptake

Table 7. Observed (at Jaru from Ometto et al., 2006 and from Fyllas
et al., 2009 for the remaining sites) and simulatedδ13C.

Site δ13C (‰)

Manaus C14 Measured 32.05±2.0
Simulated withλ=1200 mol mol−1

End of dry season 1995 −26.95
Rainy season 1996 −25.49
Dry season 1996 −24.56

Manaus K34 Measured −31.6±1.6
Simulated withλ=2000 mol mol−1

End of dry season 1999 −29.03
End of dry season 2000 −29.15
Rainy season 2000 −30.99

Jaru Measured −32.3±2.0
Simulated withλ=2000 mol mol−1

Rainy season 2000 −30.47
Dry season 2000 −28.92
End of dry season 2000 −29.7

Caxiuana Measured −32.5±1.7
Simulated withλ=1800 mol mol−1

Rainy season 1999 −29.84
Dry season 1999 −29.01
End of dry season 1999 −29.32

Tapajos Measured −31.8±1.3
Simulated withλ=5000 mol mol−1

Rain 2002 −28.95
Dry 2002 −30.18

(Fig. 3), we do, however, find a bias in the model to simu-
late higherGP during afternoons compared with estimates
from eddy correlation, which coincides with higher radiation
values in the light response curve (Fig. 2). Closer inspection
reveals that this is linked to high vapour pressure deficit (DC)
and air temperatures usually after 11:00 local time. This
problem could be linked to the stomatal conductance model
used not being sufficiently sensitive to such conditions. The
sensitivity of the model was tested using differentλ, values
(results not shown). Nevertheless, the bias towards highDC

and high temperatures persisted.
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According to Lloyd et al. (2009) and Fyllas et al. (2009),
δ13C at the top of the canopy varies within a range of (−30
and −34‰) with a mean value of−32.05±2.0 (‰) from
leaves collected at all heights, implying the sun and shade
simulations are probably satisfactory in terms of modelled
carbon exchange during all seasons (Table 7).

Energy partition was reasonably well simulated in the dry
and end of dry season with the exception of the rainy sea-
son of 2000 where the model under-estimated the measured
evaporative fraction (Fig. 4). Note that during the season
when the best model data fit was obtained for carbon uptake
(i.e. rainy season 2000), with closest simulatedδ13C to ob-
servations, the worst fit for energy partition was obtained.

A sensitivity test showed that the model fit to observed
evaporative fraction during the rainy season of 2000 can
be improved by artificially increasing theλ parameter
from 2000 to 3000 mol mol−1. However, increasingλ to
3000 mol mol−1 changes the partition between latent and
sensible heat (increasing evaporation rates), improving the
model comparison to evaporative fraction but at the cost of
a decrease in the simulatedδ13C (more negative) which leads
to model underestimation ofδ13C with respect to the mea-
surements (results not shown).

3.2.3 Jaru

Simulated carbon uptake was best during the rainy and end
of the dry seasons. However, the model overestimated ob-
served carbon uptake by 13% during the dry season (Figs. 2–
4). As for Manaus K34, the model has a bias towards over-
estimating net carbon uptake after midday, which is linked to
high DC and high air temperature conditions. Nevertheless,
the model obtains a good comparison to leaf carbon isotope
measurements (Table 7). In terms of energy partition, the
model agrees with the observations during the dry and end of
dry seasons but underestimates evaporation rates during the
rainy season. Again, as for Manaus K34, the best model fit
to observations for photosynthesis is obtained at the cost of
the worst model fit to observations of energy partition.

As the model was calibrated on data from the end of the
dry season at all sites, a tendency to overestimate net car-
bon uptake fluxes during the dry season was not totally un-
expected and could be explained as follows by a variety
of phenomena, perhaps acting in concert: (1) decreases in
canopy conductance due to higherDC during the dry season,
(2) decreases in canopy conductance due to low soil water
availability and (3) underestimation of the prescribed soil
respiration used to calculateGP from eddy correlation and
(4) reductions of canopy LAI due to leaf fall. Hereafter, each
possibility is explored.

(1) Decreases in canopy conductance due to highDC

during the dry season
Measured values ofDC during the dry season at this site in
year 2000 were higher than during the rainy and end of dry
season. The model over prediction of carbon uptake during

this time could be linked to an insufficient stomatal closure at
highDC . Aiming to improve the model fit to carbon uptake,
λ, was therefore artificially decreased from 2000 mol mol−1

to 1000 mol mol−1 and a very good fit to carbon uptake ob-
servations was then obtained. However, this resulted in a re-
duced simulated evaporative fraction, with values lower than
observed (not shown). Under this parameterisation, simu-
lated δ13C (−24.65) is much less negative than observed
(−32.3±2.0).

(2) Decreases in canopy conductance due to low soil
water availability
According to von Randow et al. (2004), during 2000 no ap-
parent direct effects of soil moisture deficit on canopy gas-
exchange were detectable. Therefore, it seems unlikely that
modelled fluxes overestimation during 2000 are a conse-
quence of lower canopy conductances due to soil moisture
deficits. In another modelling approach, Lloyd et al. (1995)
used eddy correlation flux data for the same site during dry
and wet seasons of 1992 and 1993 and also found no in-
dication of soil moisture deficits on canopy carbon uptake
once theDC effects had been taken into account. Indeed,
von Randow et al. (2004) measured the soil moisture pro-
file down to 3.4 m for the period February 1999–September
2002 and found indications of ongoing water extraction from
depth, especially during the dry season, this being attributed
to continued root water uptake to satisfy transpirational de-
mands, although some lateral drainage was not excluded.

(3) Low values of prescribed soil respiration rate used to
calculateGP from eddy correlation
Ecosystem respiration at this site was estimated using soil
respiration that was assumed diurnally and seasonally invari-
ant, as there is little indication of seasonal differences in ef-
flux rates from rainforest soil at Jaru and near constant soil
temperatures as already discussed by Meir et al. (1996) and
Lloyd et al. (1995). However, it has been shown that for other
sites (Davidson et al., 2000; Sotta et al., 2004) soil water may
play an important role in regulating the CO2 efflux from the
soil especially in dry periods during and soon after precipi-
tation events. Davidson et al. (2000) reports optimum condi-
tions for soil respiration at intermediate water contents with
decreases in respiration at water contents both above and be-
low that value. Therefore, soil respiration could have been
higher than assumed during the dry season. However, Meir
et al. (2008) conclude that short term moisture limitation can
lead to significant reductions of total soil respiration and rec-
ognize the lack of a mechanistically and spatially accurately
description of the response of soil respiration to variations in
soil moisture across the Amazon basin.

(4) Possible reductions of canopy LAI due to leaf fall
A large increase in litterfall at the onset of the dry season has
been well documented for the Manaus region (Klinge, 1968;
Luizao and Schubart, 1987). If this increase in litterfall gives
rise to a decrease in LAI, forest photosynthetic carbon up-
take during the dry season would naturally be expected to
decrease. To test this possibility, model runs were performed
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for the dry season assuming a 10% and 20% decrease in total
LAI, respectively (Nepstad et al., 2002; Asner et al., 2004).
But even in these cases, simulatedGP overestimates the ob-
servations (results not shown).

3.2.4 Caxiuana

For this site a good model fit to observed mean diurnal cycle
and light response of net carbon uptake for all seasons was
obtained (Figs. 2–4). Simulatedδ13C values are in within the
higher range of the reported values from this site (Table 7).
For this site, noDC bias to carbon uptake was obtained, al-
though there were fewer data points available here than for
other sites (Man K34 and Jaru). However, in terms of energy
partition, the model overestimates afternoon measurements
during all seasons, which could be linked to an insensitive
stomatal conductance model to higher afternoonDC and air
temperatures.

3.2.5 Tapajos

The sun/shade model provided a good fit to the mean ob-
served diurnal cycle and light response of gross carbon up-
take for this site, (Figs. 2–4) but with a 10% underestima-
tion in observed net carbon uptake during the rainy season.
Notice the linear response of simulated photosynthesis at all
light levels. This is driven by the obtained parameterisation
for this site using the optimization procedure, (i.e. a high
Jmax/Vmax ratio of 2.92, a very low quantum yield of 0.16
and highλ, compared to that obtained at the other sites).
A combination of a very highJmax/Vmax ratio and low quan-
tum yield of photosynthesis promotes light limitation of pho-
tosynthesis in the model at most radiation values. Again, the
model has a bias towards over predicting observations at the
highest values ofDC and air temperature. Simulatedδ13C is
on the higher end the observed range at this site (Table 7).
Additionally, under this parameterisation the model under
predicts observed evaporative fraction in the early morning
and late afternoon conditions.

4 Scaling up to basin level

An attempt to produce a canopy scale function to scale up
simulations to basin level is also presented. Such scaling up
is made based on the model calibration and evaluation for the
five tower sites. The scaling function can be used to param-
eterise the model at other sites, using the linear regression
obtained from relating the bestVmax obtained from param-
eterisations at each of the 5 sites to its correspondent foliar
N. Further, given that (1) tropical forest might be phosphorus
instead of nitrogen limited and (2) that phosphorus (P) plays
a regulatory role in the partition of the products of photosyn-
thesis directly affecting the activity of the Calvin cycle and
therefore affecting the activity of Rubisco carboxylation, re-
lationships betweenVmax and foliar P, and the ratio of foliar
N to foliar P are also explored.

Phosphate limitation to photosynthesis may be linked to
a failure in the capacity of starch and sucrose synthesis to
match the capacity of the production of triose phosphates in
the Calvin cycle, usually when bothCi and light are high.
The result is an inadequate rate of release of inorganic phos-
phate in the chloroplast to recycle the P sequestered in the
production of triose phosphates. In this case inorganic phos-
phorus can limit photosynthesis (Harley and Sharkey,1991).
This has been included in the biochemistry of C3 photosyn-
thesis (Collatz et al., 1991). Implementation of the TPU lim-
itation to photosynthesis in the Collatz et al. (1991) model
suggests that the capacity of export or utilization of the prod-
ucts of photosynthesis is approximately equal to the maxi-
mum photosynthetic uptake at saturating irradiance, defining
the TPU limitation as

Js = Vmax/2 (9)

whereJs is the export capacity or utilization of the photo-
synthetic products (most likely sucrose synthesis). Addition-
ally, several studies have shown P deficiency to reduce pho-
tosynthesis (Terry and Ulrich, 1973; Sharkey, 1985; Brooks,
1986; Jacob and Lawlor, 1992; Campbell and Sage, 2006).
However, the mechanisms by which P deficiency affects pho-
tosynthesis are not well understood (Campbell and Sage,
2006). Other possible mechanisms by which P deficiency
affects photosynthesis are via reductions in Rubisco activity
(Brooks, 1986; Brooks et al., 1988), reductions in the rate of
RuBP regeneration, reduction of quantum yield due to pho-
toinhibition caused by reduced efficiency of RuBP regener-
ation at low irradiances, and reductions in the Calvin cycle
activity due to reductions in key regulatory enzymes of the
cycle (Brooks, 1986; Campbell and Sage, 2006). From the
above limited understanding on the mechanisms by which
leaf phosphorus affects photosynthesis, we decided to relate
Vmax obtained in this study to leaf P for the 5 study sites.

Two methods were used to scale up to the basin level, one
based on leaf N and the other on leaf P. Linear relationships
between mean leaf N (and leaf P) content per dry weight and
per leaf area, using data outlined in Fyllas et al. (2009) were
used, and best fittedVmax at each site were used. However,
because8 (Eq. A6) affects to some extent the efficiency of
Vmax, to relateVmax to leaf N and leaf P under the same con-
ditions, Vmax andJmax/Vmax were fitted again with a fixed
quantum yield of 0.4, with results shown in Table 8.

Using this parameterisation for the sun/shade model, sim-
ilar results are obtained at all sites compared to what was
obtained except at Tapajos. At Tapajos, the model overesti-
mated gross photosynthesis by 15% and 20% during the dry
and wet season, respectively, with a better comparison to ob-
served evaporative fraction than obtained earlier (Fig. B3).
The reason for this overestimation is linked to a much higher
quantum yield (0.4 vs. 0.16) and a much lowerJmax/Vmax
ratio (1.88 vs. 2.96) than obtained in the site-specific simula-
tions.
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Table 8. FittedVmax, Jmax/Vmax with (8=0.4) at each site.

Site Vmax top originalVmax Jmax/Vmax Jmax/Vmax 8 8

fitted again (µmol m−2 s−1) fitted again original fixed original
(µmol m−2 s−1)

Manaus C14 52.3 1.92 0.4
Manaus K34 37.8 40 1.9 1.9 0.4 0.35
Jaru 51.89 51.89 1.82 1.82 0.4 0.4
Caxiuana 39.44 32.11 1.83 1.9 0.4 0.5
Tapajos 40 47.49 1.88 1.96 0.4 0.16

Table 9. Statistics of regressions ofVmax (with 8=0.4) in area and DW basis against foliar N and foliar P, witha andb as intercept and
slope of the linear relationship obtained.

a b R2 p-value

Vmax (µmol g−1 s−1) vs. P (mg g−1) 0.18 0.38 0.3 0.45
Vmax (µmol m−2 s−1) vs. P (g m−2) 17.9 386.9 0.41 0.4

Vmax (µmol g−1 s−1) vs. N (mg g−1) 0.36 0.004 0.03 0.35
Vmax (µmol m−2 s−1) vs. N (g m−2) 30.8 6.2 0.08 0.32

Vmax (µmol g−1 s−1) vs. N (mg g−1)/P (mg g−1) 1.2 −0.02 0.65 0.033
Vmax (µmol m−2 s−1) vs. N (g m−2)/P (g m−2) 95.1 −1.59 0.49 0.052

For all sitesVmax in dry weight (DW) and on an area basis
from Table 8 were then related to upper canopy average foliar
N and P (DW and area basis) as in Fyllas et al. (2009) as
shown in Fig. 5 (see data used in Table 4), with statistics from
the correspondent linear relationships shown in Table 9.

Vmax on an area basis was converted to (DW) using as-
sociated measurements of leaf mass per unit area (Fyllas et
al., 2009). The highest correlations was then for leaf P with
Vmax on area basis. In contrast to the relationships ofVmax
with leaf N which have very low regression coefficients and
almost a flat slope indicating no change ofVmax with leaf
N. Additionally, relationships ofVmax in area and DW basis
against leaf P and against the ratio of leaf N to leaf P are
shown in Fig. 5 (bottom row) with associated statistics given
in Table 9. TheVmax vs. Leaf P (DW and area basis) and
Vmax vs. leaf N/leaf P predict increasingVmax and both are
statistically significant.

4.1 Model parameterization

Figure 6 shows a comparison of top of the canopyVmax ob-
tained in this study (with quantum yield fixed to 0.4) against
available measurements (3 sites) and againstVmax calculated
from linear regressions ofVmax against leaf N obtained from
measurements at individual sites (available at 3 sites). The
Vmax values obtained (circles on Fig. 6) are on the upper end
of the range, closest to the measured values at the 3 avail-

able sites (crosses in Fig. 6). The large difference between
Vmax obtained in this study and those predicted from linear
relationships ofVmax and leaf N from other sites, are likely
due to the relationships reflecting specific conditions of the
individual sites. In any case,Vmax predicted from the regres-
sion based on the Carswell et al. (2000) data is the lowest
in Fig. 6. This is because leaf N from this data set are the
highest from all data sets considered here. Moreover, leaf N
reported from Carswell et al. (2000) for Man C14 are also
higher than those measured at the same site by Ometto et
al. (2006) and reported by Fyllas et al. (2009).

The quantum efficiency for CO2 fixation “quantum yield”,
used in Eq. (A6) to estimate the irradiance absorbed by pho-
tosystem II, was one of the parameters initially fitted at each
site. Farquhar et al. (1980) defined a theoretical upper limit
to quantum yield (whenf =0 in Eq. A6) in the absence of
oxygenation set by NADPH or by ATP requirement of 0.5
and 0.4, respectively. EquationA6 an be rewritten usingα,
which intrinsically includesf and8, this providing an alter-
native definition of the intrinsic quantum efficiency for CO2
uptake. The form of Eq. (10) is the most commonly used in
modelling studies andα is the parameter value usually re-
ported.

I2 = I0 × (1 − r − t)α (10)

Even though the theoretical upper limit for8 is 0.4–0.5 (i.e.
α of 0.125–0.11), measured values ofα range considerably;

Biogeosciences, 6, 1247–1272, 2009 www.biogeosciences.net/6/1247/2009/



L. M. Mercado et al.: Modelling Amazon forest canopy photosynthesis 1261

Table 10.Comparison ofα as reported in various studies and obtained in this study. Unit conversion is done assuming that to produce 1 mol
of CO2, 4 electrons are needed.

Study Use α [mol CO2 mol−1PAR] α [mol electrons mol−1 photons] θ

Ehleringer and Bjorkman (1977) measured 0.073 0.29
Ehleringer and Pearcy (1983) measured 0.052 0.22
Long et al. (1993) measured 0.093 0.372
Farquhar et al. (1980) theoretical 0.125 0.5

upper limit ofα 0.11 0.44
Thornley (2002) used for model 0.05 0.2

parameterisation
Wand and Leuning (1998) used for model 0.096 0.385a

parameterisation
Harley et al. (1992) used for model 0.06 0.24

parameterisation
Collatz et al. (1991) used for model 0.08 0.32 0.95

parameterisation
Leuning (1990) fitted to leaf gas [0.032–0.066]a 0.128–0.264 0.95

exchange measurements
Leuning (1995) used for model 0.05a 0.2a 0.95
Leuning et al. (1995) parameterisation 0.9
Medlyn et al. (2002) used for model 0.093 0.372 0.9

parameterisation 0.074b 0.29
de Pury and Farquhar (1997) used for model 0.106 0.425 0.7

parameterisation
This study used for model
Man C14 (8=0.40) parameterisation 0.085 0.34 0.7
Man K34 (8=0.35) 0.074 0.3 0.7
Jaru (8=0.35) 0.074 0.3 0.7
Tapajos (8=0.30) 0.063 0.25 0.7
Caxiuana (8=0.50) 0.106 0.425 0.7

a Value including absorbed photon irradiance
b Including leaf absorptance of 0.8

Fig. 5. Linear regressions obtained from best fittedVmax in DW
and in area basis (with8=0.4) against foliar N and foliar P in DW
at five rainforest sites.

for example 0.073 (8=0.29) (Ehleringer and Björkman,
1977), 0.052 (8=0.22) (Ehleringer and Pearcy, 1983) and
0.093 (8=0.372) (Long et al., 1993). A list of reported
α values used or determined in modelling studies is listed
in Table 10. This shows that values obtained in this study
are indeed within the published range of variation, withα

for Caxiuana close to the theoretical upper limit for quan-
tum yield. According to Leuning (1990), when fittingα and
curvature parameterθ (Eq. A5) to gas exchange measure-
ments, the obtained variation inα has little physiological
meaning due to the interaction betweenα andθ that occurs
during the non-linear curve fitting procedure. The curvature
parameterθ has no mechanistic basis (Collatz et al., 1990),
although it can be viewed as an indicator of the extent to
which co-limitation (of light and Rubisco limitations) of pho-
tosynthesis is present withθ approaching 1 meaning that co-
limitation is minimized. But a certain level of co-limitation
is always present (Woodrow and Berry, 1988). Values of
θ in some of the modelling studies (listed in Table 10), in-
clude variations between 0.7 and 0.95. Moreover, a recent
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Fig. 6. Top leaf Vmax. Obtained from numerical fitting in this
study are circles, measured at Manaus C14, Tapajos and Caxiuana,
crosses, calculated from linear regression between measuredVmax
and leaf N at 3 at different canopy levels at 3 of the studied sites:
Manaus C14 (Carswell et al., 2000), Caxiuana (Vale et al., 2000)
and Tapajos (Domingues et al., 2005) (asterisks, triangles and rhom-
buses sign, respectively). See linear regressions used for calcula-
tions ofVmax in Table B1.

modelling study using data for Jaru and Manaus C14 opti-
mized parameters of theC3 photosynthesis model and ob-
tained an8 of 0.15 and 0.2 andθ of 0.8 and 0.9, respectively
(Simon et al., 2005). Domingues et al. (2005) measured leaf
photosynthesis at the same Tapajos forest site as used in this
study. They adopted a fixed8 of 0.19 following Ehleringer
and Bj̈orkman (1977) fitting light response measurements of
photosynthesis to a non-rectangular hyperbolic model. The
curvature factors derived from such a fitting exercise ranged
between 0.45 and 0.9 for most of the cases.

Variation in the parameterised value of8 for the different
sites of this study could thus simply be a result of a mathe-
matical interaction between8 andθ (here fixed to 0.7). On
the other hand, as it was shown in Fig. B1, there do seem to
be real differences in the slope of the light response of mea-
suredNE among sites which could have some physiological
meaning. For example, differences in efficiency of photosyn-
thetic uptake due to nutrient or other stresses which, from the
analysis here not appear to be related to soil water deficits.
Detailed measurements would be required to examine vari-
ation of 8 across sites. In summary, our fitting procedure
produced parameter values within the ranges derived from
theory, observation and values adopted by other modelling
studies.

4.2 Data

Moreover, model parameters obtained from this fitting ex-
ercise and the model evaluation presented in this study are
subject to the fidelity of the data used for model parame-
terisation and evaluation. The main limitations to this data-
model parameterisation and evaluation are associated with
difficulties in estimating ecosystem respiration and the lack
of energy balance closure. Due to spatial and seasonal vari-

ability in soil respiration (Chambers et al., 2004; Silva de
Souza, 2004), and with varying meteorological conditions
(mainly precipitation regimes) during the measurement and
model comparison periods, it is more than likely that there
were differences between the measured respiration and those
which we used at 3 of the studied sites. Another source of
uncertainty in the ecosystem respiration is associated with
the leaf respiration term. There is increasing evidence to
show that leaf respiration rates are lower when plants are
photosynthetically active (Brooks and Farquhar, 1985; Hoef-
nagel et al., 1998; Atkin et al., 1998, 2000), especially at
high leaf temperatures. Unfortunately, biochemical models
of gas exchange do not yet include these effects and nei-
ther did the leaf level parameters used in this study for com-
parisons against our obtained parameters. A recent study
(Wohlfahrt et al., 2005) assessing daytime ecosystem respi-
ration in a mountain meadow found that a failure to include
light inhibition of canopy respiration resulted in an overesti-
mation of daily estimates of ecosystem respiration and hence
gross primary productivity from eddy correlation measure-
ments. Their results suggest a reduction in estimated GPP
from eddy correlation measurements on the order of 11–
13% and 13–17% for a low and high estimate of the simu-
lated maximum leaf-level reduction of dark respiration, re-
spectively. Another study using eddy correlation data from
various sites within Europe (Janssens et al., 2001) reports
up to a 15% reduction in estimated total ecosystem respira-
tion when considering daytime inhibition of leaf respiration.
An alternative method to refine estimates of ecosystem res-
piration using eddy correlation measurements (Van Gorsel et
al., 2007, 2008) is yet to be tested for the Amazon rainforest
sites. The method uses the maximum of the sum of the tur-
bulent flux and storage flux of CO2 in the early evening, and
has been shown to be in close agreement with measurements
from soil and plant respiration chambers at a moderately
complex tophography. Such maximum, which is unaffected
by advection (Van Gorsel et al., 2008) due to stable stratifica-
tion conditions after sunset, is used to construct relationships
between night time ecosystem exchange measurements, soil
temperature and humidity which then can be used to predict
ecosystem respiration at all times of day.

Furthermore, there are considerable uncertainties in eddy
covariance measurements, especially above rain forest veg-
etation. For instance, there is a large sensitivity (10–25%
annually) to the treatment of low frequencies and non-
horizontal flow and delay corrections and data spikes (Kruijt
et al., 2004). The total uncertainly in daytime measure-
ments estimated for the Manaus K34 and Jaru site are±12
and 32%, respectively (Kruijt et al., 2004). In addition to
these uncertainties inNE , the estimates of total ecosystem
respiration and use of modelled storage flux imposes an ad-
ditional uncertainty to the comparison presented. Further,
non-closure of the energy balance in the eddy covariance
data (Aubinet et al., 2002; Massman and Lee, 2002) forced
us to consider only energy partition in terms of evaporative
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fraction. Due to the high hour-to-hour variability in the mea-
surements we also decided to test the model against mean
diurnal cycles only.

In order to close the energy balance, fluxes of carbon and
energy have been subject to different modes of data process-
ing and post processing correction at each site (Malhi et al.,
2002; Finnigan et al., 2003; Gash and Dolman, 2003; van
der Molen et al., 2004). With respect to linear detrending,
and accounting for low frequency contributions and “angle
of attack dependent calibrations”, in 2 out of 5 cases the en-
ergy balance improved with the magnitude of the CO2 fluxes
increasing as well (Malhi et al., 2002; von Randow et al.,
2004). In general, non-closure of the energy balance at four
of the five sites implies a missing CO2 which may have con-
tributed to the model/data mismatch. However, the extent to
which this has occurred is unknown. After recalibration of
fluxes for angle of attack and low frequency contributions,
the energy and carbon fluxes increased (compared to data
without this calibration) (Gash and Dolman, 2003; van der
Molen et al., 2004). However, the level of improvement in
percentage closure of energy fluxes differs from those im-
provements for carbon fluxes. Furthermore, A. Araújo (per-
sonal communication, 2004) obtained an increase of 8% on
average for sensible, latent and CO2 fluxes after recalculat-
ing the fluxes including the angle of attack correction for the
Man K34 site.

Higher rates of litterfall towards the end of the wet sea-
son/onset of dry season are well documented for some sites
in the Amazon region (Klinge, 1968; Luizao and Schubart,
1987; Nepstad et al., 2002; Goulden et al., 2004). How-
ever the expected concurrent decrease in LAI has still not
been measured. The phenology behind this phenomenon still
needs better understanding. Besides satellite derived LAI, in
situ measurements of seasonality in LAI are very scarce for
the Amazon region. Nevertheless, according to Doughty and
Goulden (2008a), in situ LAI seasonality is actually oppo-
site to that derived from satellite measurements. Lacking in
situ measurements for most sites, LAI seasonality was not
included in any of the sites unless there were available LAI
data (used only at the Caxiuana site). Seasonality in LAI
may play a major role in driving seasonality of gross uptake
at Caxiuana and Tapajos (Carswell et al. 2002; Goulden et
al., 2004). A recent study using field work observations at
one of the rainforest Tapajos sites (Doughty and Goulden,
2008a) reports that measured seasonality of GPP at this site
could only be explained when taking into account, seasonal
changes in (i) LAI, (ii) leaf age and (iii) leaf photosynthesis.
Another study, measuring leaf level photosynthesis at a well
drained and droughted forest at Caxiuana, during various
dry and wet periods, concluded that the observed seasonal-
ity in maximum rates of photosynthesis at both well drained
and droughted forest was not accompanied by any significant
change in the photosynthetic parametersVmax, RD, Jmax, in
most species, suggesting that the inhibition observed in CO2
carbon uptake in the dry season was mostly dictated by stom-

atal closure (Vale et al., 2003). More experiments of this type
are needed at different sites across the Amazon basin to un-
derstand the main factors controlling seasonality in carbon
and water exchange at the different sites.

4.3 Model evaluation

Model bias towards overestimation of measured carbon up-
take at highDC and temperature was usually linked to mid-
day and afternoon values, the exceptions being Man C14 and
Caxiuana. This indicates a model insensitivity to stomatal
closure under these conditions. However, the observed de-
crease in CO2 uptake at highDC and air temperatures may
not be caused by plant water stress per se because at least for
the period studied, the original investigators have indicated
that there were no indications of soil water stress at Tapa-
jos (da Rocha et al., 2004; Goulden et al., 2004; Saleska et
al., 2003) and at Jaru (von Randow et al., 2004). Manaus
K34 was studied here only during the wet and end of dry
periods. Furthermore, Mercado (2007) compared the perfor-
mance of the model used here (also coupled to the sun and
shade model) against two versions of the Ball and Berry (Ball
et al., 1987) stomatal conductance model. The first version
is the modified scheme by Leuning (1990) with dependence
on relative humidity, and second version included a depen-
dence onDC as modified by Leuning (Leuning, 1995). Both
stomatal conductance models were coupled to the sun and
shade model. Using the “Ball and Berry” or the “Lambda”
model made no major difference to the simulated carbon up-
take or to the quality of the residuals with either photosynthe-
sis model. Lloyd et al. (1995) obtained similar results when
comparing the same two stomatal conductance models cou-
pled to a big leaf model at the Jaru site. This was not unex-
pected because theoretically both models embody the same
principles. They incorporate the well known correlations be-
tween photosynthesis and stomatal conductance and describe
Gs using similar variables (i.e.DC or relative humidity at the
leaf surface, CO2 uptake, and CO2 concentration at the leaf
surface). Finally, Tuzet et al. (2003) suggest that model in-
sensitivity to afternoon conditions (highDC and air tempera-
tures) may result from inadequate/or in this case no coupling
of stomatal conductance to the dynamics of water transport
from soil to the roots and leaves. This may suggest the need
for a stomatal conductance formulation that includes stom-
atal regulation taking into account both the external environ-
ment (demand) but also the dynamics of water movement
from the soil/root to the leaf (supply) (Tyree, 2003; Buck-
ley, 2005; Fisher et al., 2007). From soil moisture measure-
ments at a neighboring site to that studied here at Tapajos, da
Rocha et al. (2004) found night time water recharge and day
time water withdrawal from roots down to 60 cm up to the
top 5 cm during dry and wet periods, with soil at 2 m depth
remaining moist all year round implying full access to soil
water throughout the dry season.
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Another explanation for the model mismatch at high tem-
perature andDC conditions could be linked to decrease in
forest photosynthesis due to high temperatures. Doughty
and Goulden (2008b) measured leaf level canopy temper-
atures in parallel with canopy and leaf level photosynthe-
sis and evaporation. From their observations, these authors
suggest that the forest (neighbor to the Tapajos km 67 stud-
ied here) appears to be close to a high temperature thresh-
old above which photosynthesis declines. However, Lloyd
and Farquhar (2008) using observations, model parameteri-
zations of leaf level photosynthesis with known temperature
sensitivities, and climate model output conclude that there
is no evidence for tropical forest being close to a tempera-
ture threshold or to the upper temperature limit for optimum
photosynthesis. Their model suggests decreases in photo-
synthesis above 30◦C, which the authors explain as a stom-
atal conductance response to highDC . The simulations pre-
sented in this study used a value of 39◦C as the maximum
optimum temperature dependency of electron transport rate,
obtained fitting eddy correlation measurements to the sun and
shade model at the Manaus C14 site (Mercado et al., 2006).
Lloyd et al. (1995) obtained a value of 43◦C when fitting
a big leaf model to eddy correlation measurements at the Jaru
site. More measurements of leaf level temperature response
at different rainforest sites is needed to check if tempera-
ture threshold measured at Tapajos (Doughty and Goulden,
2008b) prevails elsewhere. Finally, another possible expla-
nation for the decline in photosynthesis and stomatal closure
at highDC and temperature conditions might be related to
a reduction in the activation state of Rubisco due to the high
temperature being above its thermal optimum (Sage and Ku-
bien, 2007). If this was the case, the capacity of deactivated
Rubisco would be needed to be incorporated into the photo-
synthesis models.

The underestimation of simulated latent heat fluxes dur-
ing the rainy season at 3 of 5 sites could mean the model
needs larger simulated stomatal conductances to account for
the observations. For instance, the best simulated energy par-
titioning was obtained when the fit for carbon uptake was on
the upper range (Table 5). This was the case for end of dry
and dry seasons at Manaus C14, end of dry season at Manaus
K34 and the dry season in Jaru. On the other hand, when the
fit for carbon uptake was on the lower range there was usu-
ally a model tendency to underestimate the mean observed
diurnal cycle of evaporative fraction. This was the case dur-
ing all seasons at Caxiuana, Tapajos and rainy seasons at
Manaus C14 and K34 and rainy season at Jaru. Furthermore,
at Tapajos, after refitting with a fixed quantum yield of 0.4,
the fit for carbon uptake was overestimated observations by
20 and 15% during the rainy and wet seasons, respectively,
whilst obtaining a better fit to evaporative fraction (Fig. B3).

Furthermore, a larger simulated stomatal conductance
could be obtained either by increasing theλ parameter from
the stomatal conductance model or by increasing the simu-
lated assimilation rate. Sensitivity analysis showed that by

increasingλ, the Ci/Ca ratio increased and therefore the
simulatedδ13C decreased (becoming more negative). In gen-
eral, this led to model underestimation ofδ13C. The second
option would be to increase simulatedGP which automati-
cally would lead to model overestimation with respect to the
observations. However, associated with a failure to close the
energy balance is a probably also a non-measured CO2 flux
signal (Aranibar et al., 2006), implying a higherGP than cur-
rently measured. A consequence of a higher simulatedGP

is a concurrent increase in simulated latent heat fluxes which
would improve the model comparison to evaporative fraction
measurements.

Generally, besides theDC bias towards overestimation
(found at 3 of 5 sites), the sun and shade model performed
well in simulating the carbon uptake at all tower sites, a find-
ing supported by theδ13C evaluation, with a model tendency
to underestimate energy partition at some sites during the
rainy season. Morales et al. (2005) evaluated 4 process-based
models against eddy correlation flux data at 15 European
sites and found no single model performed well for both car-
bon and water fluxes. According to Morales et al. (2005),
two models performed better at simulating carbon fluxes, the
remaining two models in simulating water fluxes. Another
modelling study using the land surface scheme of the Hadley
Centre GCM carried out an evaluation with the same data set
as used here for the Man K34 site, and obtained better results
for carbon uptake than for energy partition (Mercado et al.,
2007).

4.4 Scaling up to basin level

Unfortunately there were only five data points to derive rela-
tionships betweenVmax and leaf N and leaf P, and the slope
and high correlation coefficient for the correlations between
Vmax and leaf P (in area and DW basis) is due to a one data
point which has the highest leaf P in the data set, correspond-
ing to the Jaru site. However, the linear relationships ofVmax
against leaf P (in area basis) from this study are comparable
to those from leaf level measurements from tropical forest in
West Africa with more fertile soil types (Domingues, unpub-
lished data) (Fig. 7).

These results suggest the possibility that foliar P or the
ratio of Foliar N to P may emerge as good predictors for the
photosynthetic capacity for Amazonian forests. This needs to
be verified by field observations and unfortunately, the eddy
correlation systems have yet to be installed at sites where leaf
phosphorus concentrations are higher than at the five Brazil-
ian sites used here, all of which were on relatively infertile
soils. This is important, because Fyllas et al. (2009) substan-
tially higher average foliar P for sites in western Amazonia
such as in South Peru and Ecuador, than the current Brazilian
sites used in this study.
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Fig. 7. Linear relationships obtained in this study (in circles) and
obtained from tropical forest in Africa (in squares, Domingues, un-
published data).

5 Summary

Using a sun and shade model, the carbon uptake at 5 rainfor-
est sites in the Brazilian Amazon was relatively well simu-
lated. This result is supported by the ability of the model to
reproduce values ofδ13C discrimination, although this was
obtained with a poor partition of energy at some sites, mainly
for wet season measurements. Additionally, the sun and
shade model coupled to a model for stomatal conductance
based on that of Cowan and Farquhar (1977) was unable
to accurately capture carbon and energy fluxes at highDC ,
over predicting measurements. There is still a need to under-
stand the physiology of the stomatal closure under the after-
noon conditions in these forests before it can be modelled.
Nevertheless, a stomatal conductance description including
hydraulic supply and demand might improve the model re-
sponse under such conditions (Buckley, 2005).

Major constraints to model-data evaluation exercises such
as attempted here are, however, imposed by the uncertainty
in estimates of ecosystem respiration, mainly due to the sea-
sonality of soil respiration, but also CO2 storage fluxes and
uncertainties associated with measurements from the eddy
correlationNE and non-closure of the energy balance.

Finally we note that this modelling exercise can be used
to extrapolate simulations to the basin level. We have devel-
oped empirical relations between best fits ofVmax and foliar
N and P concentrations that can be tested to scale up to the
basin level. Furthermore, the relationship between ofVmax
and P suggests the possibility of foliar P, or maybe N/P ra-
tio a better predictor for canopy photosynthetic capacity than
only foliar N in these forests. And given that most sites in
western amazon have higher average foliar P (Fyllas et al.,
2009), this might imply a gradient of GPP across Amazo-
nia with higher GPP where leaf P is highest. Implications of
these relationships will be explored further in an accompany-
ing paper (Mercado et al., 2009) investigating the sensitivity
of GPP toVmax parameterised using leaf P and leaf N at 35
sites across the Amazon Basin.

Results from this study highlight the need for field studies
to further investigate the relationship between photosynthesis
and leaf phosphorus in Amazonian forests.

Appendix A

Equations for canopy photosynthesis using the sun
and shade model from de Pury and Farquhar (1997)

Following de Pury and Farquhar (1997), canopy level pho-
tosynthetic capacity is calculated as the integral of leaf pho-
tosynthetic capacity over the entire canopy, as parameterised
with leaf level data for the Manaus Cl4 site in Mercado et
al. (2006):

Vmax canopy=

LAI∫
0

Vmax leafdl (A1)

Vmax canopy= Vmax top
[
1 − exp(−kn)

]
/kn (A2)

whereVmax leaf is the maximum carboxylation activity of
Rubisco at the leaf level in area basis,Vmax canopy is the
canopy level value forVmax, Vmax top, is theVmax value for
top leaves. The cumulative leaf area index from the top of
the canopy down to any level in the canopy isl, LAI is the
total canopy leaf area index andkn is a nitrogen orVmax allo-
cation coefficient, defining the vertical decrease ofVmax leaf
with cumulative leaf area within the canopy.

Photosynthetic capacity of the sunlit and shaded fractions
of the canopy is calculated by integrating the leaf photosyn-
thetic capacity and the sunlit and shaded leaf area fractions,
respectively. Photosynthesis of the sunlit and shaded frac-
tions is then calculated separately using the leaf level bio-
chemistry model of Farquhar and Caemmerer (1982), as two
big leaves, with the absorbed irradiance and photosynthetic
capacity, light saturated rate of electron transport and leaf
dark respiration of each fraction used instead of the equiv-
alent leaf level variables. Finally canopy photosynthesis is
calculated by adding the individual contributions from the
sunlit and shaded photosynthesis.

A1 Leaf biochemistry

The CO2 assimilation rate (A) in units (µmol m2 s−1) is con-
trolled by the rate of carboxylation when Rubisco activity
is limiting (Av) at low intercellular partial pressure of CO2
and/or at high irradiances, and by the rate of electron transfer
when Ribulose bisphospate (RuBP) regeneration is limiting
(AJ ) at high intercellular partial pressure of CO2 and/or at
low irradiances. The rate of CO2 assimilation is modelled
as the minimum ofAv andAJ . The Rubisco-limited rate,
Av, and electron transport-limited rate,AJ , both in units
(µmol m2 s−1) are defined as:

AV = Vmax

(
Cc − 0∗

KC (1 + pO2/K0) + Cc

)
− RC (A3)

AJ =
J

4

(
Cc − 0∗

Cc + 20∗

)
− RC (A4)

whereVmax in (µmol m2 s−1) is the maximum rate of Ru-
bisco activity,K0 andKc in (Pa) are the Michaelis-Menton
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constants for carboxylation and oxygenation by Rubisco.Cc

in (Pa) is the partial pressure of CO2 in the chloroplast,0∗ in
(Pa) is the CO2 compensation point in the absence of mito-
chondrial respiration andRC in (µmol m2 s−1) on a ground
area basis, is the leaf dark respiration in the light. The
Rubisco Michaelis constants for CO2 and O2 are described
to follow an Arrhenius type temperature dependency as in
Lloyd et al. (1995).

The potential rate of electron transport,J in
(µmol m2 s−1), is modelled as a non-rectangular hyper-
bolic function of the absorbed quantum flux withI2 in
(µmol quanta m2 s−1) the absorbed irradiance that reaches
photosystem II,Jmax in (µmol m2 s−1), as saturating value
andθ as the curvature factor:

θ J 2
− (I2 + Jmax)J + I2Jmax = 0 (A5)

I2 = I0(1 − r − t)(1 − f )8 (A6)

r andt are the canopy reflectance and transmittance for PAR,
respectively andf is the fraction of light lost as absorption
by other than chloroplast lamellae, wich increases with leaf
thickness (Farquhar et al., 1980).I0 is the PAR reaching
the leaf or canopy surface in (µmol quanta m2 s−1). 8 is the
efficiency of CO2 fixation, so called quantum yield, defined
as the initial slope of the relationship between assimilation
rateA and irradiance. It describes the efficiency with which
light is converted into fixed carbon.

The temperature sensitivities for Rubisco activity and elec-
tron transport are given by Farquhar and von Caemmerer
(1982) as presented by Lloyd et al. (1995):

Vmax = Vmax,25 exp

(
Ev

298.2R

(
1 −

292.2

TC

))
(A7)

Jmax = Jmax,25

exp
[

(TC/298.2−1)EJ

RTC

][
1 + exp

(
298.2SJ −HJ

298.2R

)]
1 + exp

(
SJ TC−HJ

RTC

) (A8)

whereTC is absolute temperature (K) of the leaf or canopy,
R is the universal gas constant (8.314 J mol−1 K−1), Vmax,25
andJmax,25 are Rubisco activity and electron transport ca-
pacity at 25◦C in (µmol quanta m2 s−1). Ev and EJ in
(J mol−1) are activation energies.HJ in (J mol−1) andSJ

in (J mol−1 K−1) control maximum and minimum optimum
temperature dependencies of the electron transport rate. The
temperature optimum (Topt) of Jmax is known to acclimate in
different environments, and can be estimated from Farquhar
et al. (1980):

Topt =
HJ

(S + R ln (HJ /EJ − 1))
(A9)

The temperature dependency of leaf respiration is taken as
presented by Lloyd et al. (1995):

RD = RD,25 exp

(
308.45

(
1

71.02
−

1

TC − 227.13

))
(A10)

Fig. B1. Light response ofNE measured by eddy correlation aver-
aged over 200 µmol quanta m−2 s−1 bins at the different tower sites.
Data used correspond to the period July–December.1 Tapajos,∗
Man K34,♦ Jaru,� Caxiuana,+ Man C14.

whereRD is the rate of canopy dark respiration atTC and
RD,25 is the rate of canopy dark respiration at 25◦C, both are
given in (µmol m2 s−1).

A2 Stomatal conductance

Stomatal conductance is calculated with the equation from
Cowan and Farquhar (1977), called the “Lambda” model:

GS = A

√
1.6λP

(Ca − 0∗)Dc
(A11)

whereA is the CO2 assimilation rate in (mol m−2 s−1), DC

vapour pressure deficit in mol fraction,P atmospheric pres-
sure andCa ambient partial pressure of CO2, and0∗ is the
CO2 compensation partial pressure in the absence of dark
respiration, all expressed in (mol mol−1). The lambda pa-
rameter (λ) in (mol H2O mol−1CO2) is a Lagrangian mul-
tiplier representing the marginal water cost of plant carbon
gain.

Appendix B

See the table and figures.
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Table B1. Calculated top of the canopyVmax in (µmol m−2 s−1) using linear regressions ofVmax against foliar N from different sources and
reported values ofVmax from top canopy leaves.

Jaru Caxiuana Tapajos Man K34 Man C14

Leaf N (g m−2) 2.6a 1.75a 2.16a 2.36a 1.98a

Vmaxcalculated with
Carswell et al. (2000) regression
Vmax=12.99 N−3.84

29.97 18.8 24.1 26.8 21.9

Vmax calculated with
Vale et al. (2003) regression
Vmax=23 N−17.2

42.7 22.9 32.4 37.0 28.5

Vmax calculated with
Domingues et al. (2005) regression
Vmax=23 N−7.02

52.8 33.1 42.6 47.2 38.6

Vmax=f (N,P)
Developed from other tropical forest
(Domingues, unpublished)

45.9 30.17 39.72 35.92 38.03

Vmax measured and reported for
single sites at top of the canopy

42.61b [28–75]d 42.8c

Vmax fitted in this study.8=0.4) 51.9 39.4 40.0 37.8 52.3

a Fyllas et al. (2009)
b Mean vaule at 30 m reported by Vale et al. (2003)
c Carswell et al. (2000) at 24 m
d Reported by Domingues et al. (2005) for top canopy leaves

(a)

(b)

Figure B2. a) Observed and b) simulated storage flux at Man C14 during the period 1 
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Fig. B2. (a) Observed and(b) simulated storage flux at Man C14
during the period October–November 1995.(c) Standardised resid-
uals of observed and simulated storage flux at Man C14.

Fig. B3. Mean diurnal cycle of observed (black) and sim-
ulated (grey) evaporative fraction at Tapajos usingVmax=40
µmol m−2 s−1 and8=0.4.
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