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ADAPTIVE BAYESIAN ESTIMATION USING A GAUSSIAN
RANDOM FIELD WITH INVERSE GAMMA BANDWIDTH

BY A. W. VAN DER VAART AND J. H. VAN ZANTEN1

Vrije Universiteit Amsterdam

We consider nonparametric Bayesian estimation inference using a
rescaled smooth Gaussian field as a prior for a multidimensional function.
The rescaling is achieved using a Gamma variable and the procedure can be
viewed as choosing an inverse Gamma bandwidth. The procedure is studied
from a frequentist perspective in three statistical settings involving replicated
observations (density estimation, regression and classification). We prove that
the resulting posterior distribution shrinks to the distribution that generates
the data at a speed which is minimax-optimal up to a logarithmic factor,
whatever the regularity level of the data-generating distribution. Thus the
hierachical Bayesian procedure, with a fixed prior, is shown to be fully adap-
tive.

1. Introduction. The quality of nonparametric estimators of densities or re-
gression functions is well known to depend on the regularity of the true density
or regression function. Given n independent observations on a function of d argu-
ments that is only known to be α-smooth, the precision of estimation is of the order
n−α/(2α+d). Initially this was shown using estimators that depend explicitly on the
regularity level α, but later it was shown that the optimal rate can be achieved for
all levels of regularity simultaneously. Estimators that are rate optimal for every
regularity level are called adaptive. Cross validation, thresholding, penalization
and blocking are typical methods to construct such estimators (see, e.g., [1, 2, 6,
10–13, 19, 33–35, 37] and [42]).

Adaptive methods often employ a scale of estimators indexed by a bandwidth
parameter and adapt by making a data-dependent choice of the bandwidth. Within
a Bayesian context it is natural to put a prior on such a bandwidth parameter and let
the bandwidth be chosen through the posterior distribution. In this paper we dis-
cuss a particularly attractive Bayesian scheme, and show that this yields estimators
that are adaptive up to a logarithmic factor.

Our scheme employs a fixed prior distribution, constructed by rescaling a
smooth Gaussian random field. There is some (but not much) freedom in the choice
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of Gaussian field and scaling factor. One possible choice is the squared exponen-
tial process combined with an inverse Gamma bandwidth. The squared exponen-
tial process is the centered Gaussian process W = {Wt : t ∈ R

d} with covariance
function, for ‖ · ‖ the Euclidean norm on R

d ,

EWsWt = exp(−‖t − s‖2).(1.1)

The Gaussian field W is well known to have a version with infinitely smooth sam-
ple paths t �→ Wt . To make it suitable as a prior for α-smooth functions we rescale
the sample paths by an independent random variable A distributed as the dth root
of a Gamma variable. As a prior distribution for a function on the domain [0,1]d
we consider the law of the process

{WAt : t ∈ [0,1]d}.
The inverse 1/A of the variable A can be viewed as a bandwidth parameter. For
large A the prior sample path t �→ WAt is obtained by shrinking the long sample
path t �→ Wt indexed by t ∈ [0,A]d to the unit cube [0,1]d . Thus it employs “more
randomness” and becomes suitable as a prior model for less regular functions if A

is large.
The effect of scaling the prior was already noted in [47], who showed (for d = 1)

that a deterministic scaling by the “usual” bandwidth 1/A = n−1/(2α+1) produces
priors that are suitable models for α-regular functions. The main contribution of
the present paper is to show that a single inverse Gamma bandwidth gives a scaling
that is suitable for every regularity level α simultaneously. Furthermore, we extend
the earlier results to multivariate functions, and show that the procedure also adapts
to a scale of infinitely smooth functions, of the type considered in [4, 20, 22, 23]
and [32]. The proofs of several lemmas have common elements with [47], but the
main result is proved from first principles.

Of course, a (rescaled) Gaussian random field is not a suitable model for a den-
sity or a binary regression function. Following other authors we transform it for
these applications by exponentiation and renormalization, or by application of a
link function. These transformations and the statistical consequences for these set-
tings are given in Section 2, together with the application to the regression model.
In Section 3 we state a more abstract result on rescaled Gaussian random fields,
which gives the common structure to the three statistical applications. This abstract
result also applies to other statistical settings, not discussed in this paper, and con-
cerns Gaussian random fields more general than the squared exponential process,
and bandwidths more general than the inverse Gamma. Proofs are deferred to Sec-
tions 4 and 5.

We consider only compactly supported functions as parameters, even though
the priors in principle are functions on the full Euclidean space. Consistency of
a posterior on the full space can be expected only if the tails of the functions are
restricted. If they are not, then one would still expect that the posterior restricted
to compact subsets contracts at some rate. At the moment there seem to exist no
results that would yield such a rate (or even consistency).
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1.1. Notation. Let C[0,1]d and Cα[0,1]d be the space of all continuous
functions and the Hölder space of α-smooth functions f : [0,1]d → R, respec-
tively, equipped with the uniform norm ‖ · ‖∞ (cf. [45], Section 2.7.1). Let
Aγ,r (Rd) be the space of functions f : Rd → R with Fourier transform f̂ (λ) =
(2π)−d

∫
ei(λ,t)f (t) dt satisfying

∫
eγ ‖λ‖r |f̂ |2(λ) dλ < ∞. These functions are in-

finitely often differentiable and “increasingly smooth” as γ or r increase; they ex-
tend to functions that are analytic on a strip in C

d containing R
d if r = 1 and to

entire functions if r > 1 (see, e.g., [3], Theorem 8.3.5).

2. Main results. In this section we present the main results for three differ-
ent statistical settings: i.i.d. density estimation, fixed design regression and clas-
sification. The proofs of these results are consequences of a theorem on rescaled
Gaussian processes in Section 3, general posterior convergence rate results from
[16] and [17] and results mapping the three settings to these general results given
in [46]. The process W and variable Ad in this section are taken to be the squared
exponential Gaussian field and an independent random variable with a Gamma dis-
tribution. For W and A satisfying the more general conditions given in Section 3,
the same results are true, except for the fact that the powers of the logarithmic
factors may be different.

2.1. Density estimation. After exponentiation and renormalization a randomly
rescaled Gaussian process can be used as a prior model for probability densities.
Priors of this type were, among others, considered by [29, 30] and [31]. Posterior
consistency was recently obtained in the paper [43].

To describe our adaptation result, consider a sample X1, . . . ,Xn from a contin-
uous, positive density f0 on the unit cube [0,1]d ⊂ R

d . As a prior distribution �

on f0 we use the distribution of

t �→ eWAt∫
[0,1]d eWAs ds

.(2.1)

Let �(f ∈ ·|X1, . . . ,Xn) denote the posterior distribution: the conditional distrib-
ution of f on the Borel sets in C[0,1]d in the Bayesian setup, where the density f

is first drawn from the prior (2.1) and given f the variables are an i.i.d. sample
from f . We say that the posterior contracts at rate εn if, for every sufficiently large
constant M , as n → ∞,

�
(
f :h(f,f0) ≥ Mεn|X1, . . . ,Xn

) Pf0−→ 0.

Here h is the Hellinger distance and the convergence is understood to be in prob-
ability under the (frequentist) assumption that X1, . . . ,Xn are a random sample
from f0.

THEOREM 2.1. Let w0 = logf0.
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• If w0 ∈ Cα[0,1]d for some α > 0, then the posterior contracts at rate
n−α/(2α+d)(logn)(4α+d)/(4α+2d).

• If w0 is the restriction of a function in Aγ,r (Rd), then the posterior contracts at
rate n−1/2(logn)d+1 if r ≥ 2 and n−1/2(logn)d+1+d/(2r) if r < 2.

The minimax rate of estimation of a density f0 that is bounded away from zero
and known to belong to the space Cα[0,1]d of α-Hölder continuous functions is
n−α/(2α+d). The first assertion of the theorem shows that the posterior contracts at
the minimax rate times a logarithmic factor. It is rate-adaptive in the sense that this
is true for any α > 0, even though the prior does not depend on α. We conjecture
that a logaritmic factor in the rate for the present prior is necessary, although the
power (4α + d)/(4α + 2d) may not be optimal. As shown in Section 3 this power
can be improved by using a slightly different prior for A. Other Bayesian schemes
(see, e.g., [18, 21] and [28]) give adaptation without logarithmic factors, but are
more complicated.

The second assertion shows that the rate improves to 1/
√

n times a logarithmic
factor if logf0 is the restriction of a function in Aγ,r (Rd). The rate is better if r in-
creases, but does not improve beyond r = 2, the exponent of the spectral density of
the squared exponential process. For a Gaussian prior with a compactly supported
spectral density, the rate would strictly improve as r increases, reaching the rate
n−1/2(logn)d+1 as r ↑ ∞. Other estimation schemes (see [4, 20, 22, 23] and [32])
can reach the better rate n−1/2(logn)(d+1)/2.

2.2. Fixed design regression. Suppose we observe independent variables
Y1, . . . , Yn satisfying the regression relation Yi = w0(ti) + εi , for independent
N(0, σ 2

0 )-distributed error variables εi and known elements t1, . . . , tn of the unit
cube [0,1]d . The aim is to estimate the regression function w0. In this case a
rescaled Gaussian process can be used directly as a prior for w0; cf. [24, 49]
and [40]. Posterior consistency for priors of this type was recently established
in [9].

We use law of the random field (WAt : t ∈ [0,1]d) as a prior for w0. If the stan-
dard deviation σ0 of the errors is unknown, we endow it with a prior distribution
as well, which we assume to be supported on a given interval [a, b] ⊂ (0,∞) that
contains σ0, with a Lebesgue density that is bounded away from zero.

We denote the posterior distribution by �(·|Y1, . . . , Yn). Let ‖w‖n = (n−1 ×∑n
i=1w

2(ti))
1/2 be the L2-norm corresponding to the empirical distribution of the

design points. We say that the posterior contracts at rate εn if, for every sufficiently
large M ,

�
(
(w,σ ) :‖w − w0‖n + |σ − σ0| ≥ Mεn|Y1, . . . , Yn

) P(w0,σ0)−→ 0.

THEOREM 2.2. The assertions of Theorem 2.1 are true in the setting of re-
gression for w0 = f0.
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2.3. Classification. In the setting of classification, or binary regression, the
use of rescaled Gaussian process priors was considered for instance in [7] and [40].
Consistency results were obtained in [14] and more recently in [8].

Consider i.i.d. observations (X1, Y1), . . . , (Xn,Yn), where Xi takes values in
the unit cube [0,1]d and Yi takes values in the set {0,1}. The statistical problem is
to estimate the binary regression function r0(t) = P(Y1 = 1|X1 = t).

As a prior � on r0 we use the law of the process (	(WAt) : t ∈ [0,1]d), where
	 : R → (0,1) is the logistic or the normal distribution function.

Let �(·|(X1, Y1), . . . , (Xn,Yn)) denote the posterior and let ‖ · ‖L2(G) be the
L2-norm relative to the marginal distribution G of X1. We say that the posterior
contracts at rate εn if, for every sufficiently large M ,

�
(
r :‖r − r0‖L2(G) ≥ Mεn|(X1, Y1), . . . , (Xn,Yn)

) Pr0−→ 0.

THEOREM 2.3. Let w0 = 	−1(r0). Then the assertions of Theorem 2.1 are
true.

3. Rescaled Gaussian fields. Let W = (Wt : t ∈ R
d) be a centered, homoge-

neous Gaussian random field with covariance function of the form, for a given
continuous function φ : Rd → R,

EWsWt = φ(s − t).(3.1)

By Bochner’s theorem there exists a finite Borel measure μ on R
d , the spectral

measure of W , such that

φ(t) =
∫

e−i(λ,t)μ(dλ).(3.2)

We shall consider processes whose spectral measure μ has subexponential tails:
for some δ > 0, ∫

eδ‖λ‖μ(dλ) < ∞.(3.3)

The squared exponential process, whose covariance function is given in (1.1), falls
in this class. Its spectral measure has density relative to the Lebesgue measure
given by λ �→ exp(−‖λ‖2/4)/(2dπd/2).

For a positive random variable A defined on the same probability space as W

and stochastically independent of W let WA = (WAt : t ∈ [0,1]d) be the restriction
to [0,1]d of the rescaled process t �→ WAt . We consider it as a Borel measurable
map in the space C[0,1]d , equipped with the uniform norm ‖ · ‖∞. The following
theorem bounds the small-ball probability and the complexity of the support of the
field WA. These are the essential ingredients for proving the statistical results in
Section 2, and can also be used to analyse other Bayesian schemes.
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We assume that the distribution of A possesses a Lebesgue density g satisfy-
ing, for positive constants C1,D1,C2,D2, nonnegative constants p,q , and every
sufficiently large a > 0,

C1a
p exp(−D1a

d logq a) ≤ g(a) ≤ C2a
p exp(−D2a

d logq a).(3.4)

This is satisfied (with q = 0) if Ad possesses a Gamma distribution.
For given sequences εn and ε̄n and a given function w0 : [0,1]d → R, consider

the following statement: there exist Borel measurable subsets Bn of C[0,1]d and
a constant K such that, for every sufficiently large n,

P(‖WA − w0‖∞ ≤ εn) ≥ e−nε2
n,(3.5)

P(WA /∈ Bn) ≤ e−4nε2
n,(3.6)

logN(ε̄n,Bn,‖ · ‖∞) ≤ nε̄2
n.(3.7)

THEOREM 3.1. Let W be a centered homogeneous Gaussian field with spec-
tral measure μ that satisfies (3.3) for some δ > 0 and that possesses a Lebesgue
density f such that a �→ f (aλ) is decreasing on (0,∞) for every λ ∈ R

d :

• If w0 ∈ Cα[0,1]d for some α > 0, then there exist Borel measurable subsets Bn

of C[0,1]d such that (3.5), (3.6) and (3.7) hold, for every sufficiently large n,
and εn = n−α/(2α+d)(logn)κ1 for and ε̄n = Kεn(logn)κ2 , for κ1 = ((1 + d) ∨
q)/(2 + d/α) and κ2 = (1 + d − q)/2 and a sufficiently large constant K .

• If w0 is the restriction of a function in Aγ,r (Rd) to [0,1]d and the spec-
tral density satisfies |f (λ)| ≥ C3 exp(−D3‖λ‖ν) for some positive constants
C3, D3 and ν, then there exist Borel measurable subsets Bn of C[0,1]d
such that (3.5), (3.6) and (3.7) hold, for every sufficiently large n, and εn =
Kn−1/2(logn)(d+1)/2 for r ≥ ν, εn = Kn−1/2(logn)(d+1)/2+d/(2r) for r < ν,
and ε̄n = εn(logn)(d+1)/2, for a sufficiently large constant K .

In the paper [46] it is shown that (3.5)–(3.7) map one-to-one to the general con-
ditions on rates of contraction of posterior distributions used in [17] and [16], for
each of the three settings considered in Section 2. Thus a rate of contraction εn ∨ ε̄n

is attained for each of these three settings. Theorems 2.1–2.3 follow, with the para-
meter q equal to 0. (The use of two rates εn and ε̄n requires a slight generalization
of the main result in [17], formulated as Theorem 2.1 in [15]; also see the dis-
cussion following the statement of the main result in [16].) The choice q = d + 1
yields a slightly better rate (a lower power on the logarithmic factor), but we high-
lighted the choice q = 0 in Section 2, as this corresponds to a Gamma prior.

4. Auxiliary results. In this section we prepare a number of auxiliary lemmas
needed in the proof of Theorem 3.1. In the proof of (3.5) we condition on the
variable A, so that we can first consider the probability in (3.5) for A a fixed
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constant, and then combine the obtained bound with bounds on the tails of the
distribution of A. The proofs of (3.6) and (3.7) involve similar steps.

For fixed A the process WA is a Gaussian random field with values in C[0,1]d ,
and a key concept is the associated reproducing kernel Hilbert space (RKHS). This
can be viewed as a subset of the space C[0,1]d , which gives the “geometry” of the
distribution of WA, just as finite-dimensional Gaussian vectors are described by
ellipsoids. According to general Gaussian process theory, obtaining good bounds
for the probabilities in (3.5) and (3.6) for fixed A is closely linked to studying
the metric entropy of the unit ball of the RKHS and the approximation of the
function w0 by elements of the RKHS. See [48] for a review.

In Lemma 4.1 we start by characterizing the RKHS of the process W , from
which the RKHS of the rescaled process WA will be obtained in Lemma 4.2. The
RKHS of a Gaussian field (Wt : t ∈ T ), with parameter set equal to a set T ⊂ R

d ,
is by definition the set of functions h :T → R that can be represented as h(t) =
EWtL for L contained in the closure of the linear span of the variables (Wt : t ∈
T ) in L2(�,U,P ), for (�,U,P ) the probability space on which W is defined,
equipped with the square norm ‖h‖2

H
= EL2.

LEMMA 4.1. The RKHS of (Wt : t ∈ T ) is the set of real parts of the functions
(from T to C)

t �→
∫

ei(λ,t)ψ(λ)μ(dλ),

when ψ runs through the complex Hilbert space L2(μ). The RKHS-norm of the
displayed function equals the norm in L2(μ) of the projection of ψ on the closed
linear span of the set of functions (es : s ∈ T ) (or, equivalently, the infimum of ‖ψ‖2
over all functions ψ giving the same function in the preceding display). If T ⊂ R

d

has an interior point and (3.3) holds, then this closed linear span is L2(μ) and the
RKHS norm is ‖ψ‖L2(μ).

PROOF. The spectral representation (3.2) can be written as EWsWt =
〈et , es〉L2(μ), for et the function defined by et (λ) = exp(i(λ, t)). By definition the
RKHS is therefore the set of functions as in the display, with ψ running through
the closure LT in L2(μ) of the linear span of the set of functions (es : s ∈ T ), and
the norm equal to the norm of ψ in L2(μ). Here the “linear span” is taken over
the reals. If instead we take the linear span over the complex numbers, we obtain
complex functions whose real parts give the RKHS.

The set of functions obtained by letting ψ range the full space L2(μ) is precisely
the same, as a general element ψ ∈ L2(μ) gives exactly the same function as its
projection �ψ on LT . However, the associated norm is the L2(μ) norm of �ψ .
This proves the first assertion of the lemma. For the second we must show that
LT = L2(μ) under the additional conditions.
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The partial derivative of order (k1, . . . , kd) with respect to (t1, . . . , td) of the
map t �→ et at t0 is the function λ �→ (iλ1)

k1 · · · (iλd)kd et0(λ). Appealing to the
dominated convergence theorem we see that this derivative exists as a derivative
in L2(μ). Because t0 is an interior point of T by assumption, we conclude that
the function λ �→ (iλ)ket0(λ) belongs to LT for any multindex k of nonnega-
tive integers. Consequently, the function pet0 belongs to LT for any polynomial
p : Rd → C in d arguments. It suffices to show that these functions are dense
in L2(μ).

Equivalently, it suffices to prove that the polynomials themselves are dense
in L2(μ). Indeed, if ψ ∈ L2(μ) is orthogonal to all functions of the form pet0 ,
then ψet0 is orthogonal to all polynomials. Denseness of the set of polynomials
then gives that ψet0 vanishes μ-almost everywhere, whence ψ vanishes μ-almost
everywhere.

That the polynomials are dense in L2(μ) appears to be well known. A proof
for d = 1 is given in [38]. For completeness we include a proof for general di-
mension d . Suppose that ψ ∈ L2(μ) is orthogonal to all polynomials. Since μ is a
finite measure, the complex conjugate ψ is μ-integrable, and hence we can define
a complex measure ν by

ν(B) =
∫
B

ψ(λ)μ(dλ).

It suffices to show that ν is the zero measure, so that ψ = 0 almost everywhere
relative to μ.

By the Cauchy–Schwarz inequality and (3.3), with ‖ν‖ the (total) variation mea-
sure of ν, ∫

eδ‖λ‖/2‖ν‖(dλ) < ∞.(4.1)

By a standard argument, based on the dominated convergence theorem (see, e.g.,
[3], Theorem 8.3.5), this implies that the function z �→ ∫

e(λ,z)ν(dλ) is analytic
on the strip � = {z ∈ C

d : |Re z1| < δ/(2
√

d), . . . , |Re zd | < δ/(2
√

d)}. Also for z

real and in this strip, by the dominated convergence theorem,

∫
e(λ,z)ν(dλ) =

∫ ∞∑
n=0

(λ, z)n

n! ν(dλ) =
∞∑

n=0

∫
(λ, z)n

n! ψ(λ)μ(dλ).

The right-hand side vanishes, because ψ is orthogonal to all polynomials by as-
sumption.

We conclude that the function z �→ ∫
e(λ,z)ν(dλ) vanishes on the set {z ∈

� : Im z = 0}. Because this set contains a nontrivial interval in R for every co-
ordinate, we can apply (repeated) analytic continuation to see that this func-
tion vanishes on the complete strip �. In particular the Fourier transform t �→∫

ei(λ,t)ν(dλ) of ν vanishes on all of R
d , whence ν is the zero-measure. �
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For W = (Wt : t ∈ R
d) a homogeneous Gaussian random field with spectral

measure μ and a positive real number a, the rescaled process (Wat : t ∈ R
d) is

also homogenous and has spectral measure μa that is related to μ by

μa(B) = μ(B/a).

If μ has a (spectral) density f , then μa has density fa given by

fa(λ) = a−df (λ/a).

We shall obtain approximation properties and small-ball probabilities for the
process Wa = (Wat : t ∈ [0,1]d), viewed as a map in C[0,1]d . Let H

a be the
RKHS of Wa , with corresponding norm ‖ · ‖Ha . It is described in Lemma 4.1
with μ taken equal to μa .

The following lemma follows from general principles, or can be proved from
the characterization of RKHSs given in Lemma 4.1. By “scaling map” h �→ (t �→
h(at)) we mean the map that attaches to a given function h : [0, a]d → R the func-
tion g : [0,1]d → R defined by g(t) = h(at).

LEMMA 4.2. The scaling map h �→ (t �→ h(at)) is an isometry from the
RKHS of the process (Wt : t ∈ [0, a]d ]) onto H

a .

The next step is to bound the concentration function of the Gaussian prior Wa ,
again for a fixed a. The concentration function (at ε > 0) is the sum of minus
the log centered small probability, considered in Lemma 4.6, and the decentering
function inf{‖h‖2

Ha :‖h − w0‖∞ < ε}, which measures the positioning of the true
parameter w0 relative to the RKHS. We start by bounding the latter, separately for
the cases that the true parameter is Hölder or supersmooth in Lemmas 4.3 and 4.4.
The first lemma is fairly standard, and proceeds by approximating w0 by a suitable
convolution of w0 with a smooth function, which is contained in the RKHS.

LEMMA 4.3. Assume that the restriction of μ to some neighborhood of the
origin is Lebesgue absolutely continuous with a density that is bounded away from
zero. Let α > 0 be given. Then for any w ∈ Cα[0,1]d there exist constants C and D

depending only on μ and w such that, as a → ∞,

inf{‖h‖2
Ha :‖h − w‖∞ ≤ Ca−α} ≤ Dad.

PROOF. Let α be the biggest integer strictly smaller than α. Let G be a
bounded neighborhood of the origin on which μ has a Lebesgue density f that is
bounded away from 0. Take a function ψ : R → C with a symmetric, real-valued,
infinitely smooth Fourier transform ψ̂ that is supported on an interval I such that
I d ⊂ G and which equals 1/(2π) in a neighborhood of zero, so that ψ has mo-
ments of all orders and∫

(it)kψ(t) dt = 2πψ̂(k)(0) =
{

0, k ≥ 1,
1, k = 0.
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Define φ : Rd → C by φ(t) = ψ(t1) · · ·ψ(td). Then we have that
∫

φ(t) dt = 1,
and

∫
tkφ(t) dt = 0, for any nonzero multi-index k = (k1, . . . , kd) of nonnegative

integers. Moreover, we have that
∫ ‖t‖α|φ|(t) dt < ∞, and the functions |φ̂|/f and

|φ̂|2/f are uniformly bounded.
By Whitney’s theorem we can extend w : [0,1]d → R to a function w : Rd → R

with compact support and ‖w‖α < ∞. (See [50] or [41], Chapter VI; we can mul-
tiply an arbitrary smooth extension by an infinitely smooth function that vanishes
outside a neighborhood of [0,1]d to ensure compact support).

By Taylor’s theorem we can write, for s, t ∈ R
d ,

w(t + s) = ∑
j : j·≤α

Djw(t)
sj

j ! + S(t, s),

where

|S(t, s)| ≤ C‖s‖α

for a positive constant C that depends on w but not on s and t . If we set φa(t) =
φ(at) we get, in view of the fact that φ is a higher-order kernel, for any t ∈ R

d ,

ad(φa ∗ w)(t) − w(t) =
∫

φ(s)
(
w(t − s/a) − w(t)

)
ds =

∫
φ(s)S(t,−s/a) ds.

Combining the preceding displays shows that ‖adφa ∗ w − w‖∞ ≤ KCa−α , for
K = ∫ ‖s‖α|φ|(s) ds.

For ŵ the Fourier transform of w, we can write

1

(2π)d
(φa ∗ w)(t) =

∫
e−i(t,λ)ŵ(λ)φ̂a(λ) dλ =

∫
e−i(t,λ) ŵ(−λ)φ̂a(λ)

fa(λ)
dμa(λ).

Therefore, by Lemma 4.1 the function adφa ∗ w is contained in the RKHS H
a ,

with square norm a multiple of, with � the orthogonal projection in L2(μ) onto
the functions (et : t ∈ [0,1]d),

a2d
∫ ∣∣∣∣�

(
ŵφ̂a

fa

)∣∣∣∣
2

dμa ≤ ad
∫ |ŵ(λ)|2|φ̂(λ/a)|2

f (λ/a)
dλ

≤ ad
∫

|ŵ(λ)|2 dλ

∥∥∥∥ |φ̂|2
f

∥∥∥∥∞
.

Here (2π)d
∫ |ŵ|2(λ) dλ = ∫ |w|2(t) dt is finite, and |φ̂|2/f is bounded by the con-

struction of φ̂. �

The supersmooth case consists of the subcase that w0 is “super-super smooth,”
that is, it belongs itself to the RKHS, and the more regular case in which it is
approximated by its “projection” in the RKHS.
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LEMMA 4.4. Assume that μ has a Lebesgue density f such that |f (λ)| ≥
C3 exp(−D3‖λ‖ν) for some positive constants C3, D3 and ν.

• If w is the restriction to [0,1]d of an element of Aγ,r (Rd) for r ≥ ν, then w ∈ H
a

for all sufficiently large a with uniformly bounded norm ‖w‖Ha .
• If w is the restriction to [0,1]d of an element of Aγ,r (Rd) for r < ν, then there

exist constants a0, C and D depending only on μ and w such that, for a > a0,

inf{‖h‖2
Ha :‖h − w‖∞ ≤ Ce−γ ar

/a−r+1} ≤ Dad.

PROOF. The Fourier transform of a function w ∈ Aγ,r (Rd) is certainly inte-
grable, and hence, by the inversion formula,

w(t) =
∫

e−i(λ,t)ŵ(λ) dλ =
∫

e−i(λ,t) ŵ

fa

(λ) dμa(λ).

In view of Lemma 4.1 w ∈ H
a if ŵ/fa ∈ L2(μa). Now∫ ∣∣∣∣ ŵ

fa

∣∣∣∣
2

dμa ≤
∫

|ŵ(λ)|2 ad

C3
eD3‖λ‖ν/aν

dλ.

This is finite for every a > 0 if r > ν. If r = ν, then this is finite for a ≥ (D3/γ )1/ν .
In both cases the right side is bounded as a → ∞.

To prove the second assertion let φ be as in the proof of Lemma 4.3, with
compactly supported Fourier transform φ̂ constructed to be constant and equal to
(2π)−d on [−1,1]d , and bounded in absolute value by this constant everywhere.
By the argument given in this proof the function adφa ∗ w is contained in H

a with
square norm bounded above by a multiple of ad , for sufficiently large a. Also

|adφa ∗ w(t) − w(t)|2 =
∣∣∣∣
∫

e−i(λ,t)

(
(2π)dφ̂

(
λ

a

)
− 1

)
ŵ(λ) dλ

∣∣∣∣
2

≤
(∫

‖λ/a‖>1
2|ŵ(λ)|dλ

)2

≤ 4
∫
‖λ‖>a

e−γ ‖λ‖r

dλ

∫
|ŵ(λ)|2eγ ‖λ‖r

dλ,

by the Cauchy–Schwarz inequality. The second factor is finite if w ∈ Aγ,r (Rd).
The first is bounded by a multiple of e−γ ar

a−r+1, by a change of variable and
Lemma 4.9. �

Next we turn to bounding the centered small-ball probability. According to gen-
eral results on Gaussian processes (see [26]), this can be characterized in terms of
the entropy of the unit ball of the RKHS. In view of Lemma 4.1 this consists of
certain analytic functions, and therefore we can bound its entropy by employing
classical techniques as given in [25].

Let H
a
1 be the unit ball in the RKHS of Wa = (Wa : t ∈ [0,1]d), that is, the set

of functions h ∈ H
a with ‖h‖Ha ≤ 1.
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LEMMA 4.5. Let μ satisfy (3.3) for some δ > 0. There exists a constant K ,
depending only on μ and d , such that, for ε < 1/2,

logN(ε,H
a
1,‖ · ‖∞) ≤ Kad

(
log

1

ε

)1+d

.

PROOF. By Lemma 4.1 a typical element of H
a
1 can be written as the real part

of the function hψ : [0,1]d → C given by

hψ(t) =
∫

ei(λ,t)ψ(λ)μa(dλ),(4.2)

for ψ : Rd → C a function with
∫ |ψ |2μa(dλ) ≤ 1. We shall construct an ε-net

over these functions consisting of piecewise polynomials.
For R = δ/(3a

√
d) let {t1, . . . , tm} be an R/2-net in T = [0,1]d , for the maxi-

mum norm, and let T = ⋃
i Bi be a partition of T in sets B1, . . . ,Bm obtaining by

assigning every t ∈ T to a closest ti ∈ {t1, . . . , tm}. Consider the piecewise polyno-
mials P = ∑m

i=1Pi,ai
1Bi

, for

Pi,ai
(t) = ∑

n·≤k

ai,n(t − ti)
n.

Here the sum ranges over all multi-index vectors n = (n1, . . . , nd) ∈ (N ∪ {0})d
with n· = n1 + · · · + nd ≤ k, and for s = (s1, . . . , sd) ∈ R

d the notation sn is short
for s

n1
1 s

n2
2 · · · snd

d . We obtain a finite set of functions by discretizing the coeffi-
cients ai,n for each i and n over a grid of meshwidth ε/Rn· -net in the interval
[−C/Rn·,C/Rn· ], for given C > 0. The log cardinality of this set is bounded by

log
(∏

i

∏
n : n·≤k

#ai,n

)
≤ m log

( ∏
n : n·≤k

2C/Rn·

ε/Rn·

)
≤ mkd log

(
2C

ε

)
.

We can choose m ≤ (3/R/2)d . The proof is complete once it is shown that the
resulting set of functions is a Kε-net for constants C and K depending only on μ,
and for k of the order log(1/ε).

We can view the function hψ as a function of the argument it , ranging over
the product of the imaginary axes in C

d . In view of (3.3) and the Cauchy–
Schwarz inequality, this function can be extended to an analytic function z �→∫

e(λ,z)ψ(λ)dμa(λ) on the set {z ∈ C
d :‖Re z‖ < δ/2}, which includes the strip

� = {z ∈ C
d : |Re z1| ≤ R, . . . , |Re zd | ≤ R} for R = δ/(3a

√
d), and it satisfies

the uniform bound, for every z ∈ �,

|hψ(z)|2 ≤
∫

eδ‖λ‖μ(dλ) := C2.

By the Cauchy formula (d applications of the formula in one dimension suffice),
for C1, . . . ,Cd circles of radius R in the complex plane around the coordinates
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ti1, . . . , tid of ti , and with Dn the partial derivative of orders n = (n1, . . . , nd) and
n! = n1!n2! · · ·nd !,∣∣∣∣D

nhψ(ti)

n!
∣∣∣∣ =

∣∣∣∣ 1

(2πi)d

∮
C1

· · ·
∮
Cd

hψ(z)

(z − ti)n+1 dz1 · · ·dzd

∣∣∣∣ ≤ C

Rn· .

Consequently, for any z ∈ Bi , a universal constant K , and appropriately chosen ai∣∣∣∣ ∑
n·>k

Dnhψ(ti)

n! (z − ti)
n

∣∣∣∣ ≤ ∑
n·>k

C

Rn· (R/2)n· ≤ C

∞∑
l=k+1

ld−1

2l

≤ KC

(
2

3

)k

,

∣∣∣∣ ∑
n·≤k

Dnhψ(ti)

n! (z − ti)
n − Pi,ai

(z)

∣∣∣∣ ≤ ∑
n·≤k

ε

Rn· (R/2)n· ≤
k∑

l=1

ld−1

2l
ε ≤ Kε.

We conclude that the piecewise polynomials form a 2Kε-net for k sufficiently
large that (2/3)k is smaller than Kε. �

LEMMA 4.6. If the spectral measure satisfies (3.3), then for any a0 > 0 there
exists constants C and ε0 that depend only on a0, μ and d only such that, for
a ≥ a0 and ε < ε0,

− logP
(

sup
t∈[0,1]d

|Wa
t | ≤ ε

)
≤ Cad

(
log

a

ε

)1+d

.

PROOF. This is essentially a corollary of Lemma 4.5 in the present paper and
Theorem 2 of [26]. However, to make the dependence on the scaling factor a ex-
plicit it is necessary to go through the steps of the proof of the latter theorem. We
only sketch the main steps of the long derivation. Let φa

0 (ε) be the left side of the
lemma.

By formula (3.19) of [26], for any ε,λ > 0,

φa
0 (2ε) + log�

(
λ + �−1(

e−φa
0 (ε))) ≤ logN

(
ε

λ
,H

a
1,‖ · ‖∞

)
.

Choosing λ =
√

2φa
0 (ε), using the fact that �(

√
2x + �−1(e−x)) ≥ 1/2 for every

x > 0 (see Lemma 4.10), and applying Lemma 4.5 to the right of the preceding
display, we conclude that, for every ε < 1/2,

φa
0 (2ε) + log

1

2
≤ Kad

(
log

φa
0 (ε)

ε

)1+d

.

The (apparently) most difficult part of the proof is to show a crude bound of the
form, for ε < ε0 and a ≥ a0, and some τ > 0,

φa
0 (ε) ≤ Cτ

(
a

ε

)τ

.(4.3)
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Inserting this bound in the right of the preceding display gives that this is bounded
by

Kad

(
(τ + 1) log

1

ε
+ logCτ + τ loga

)1+d

.

This implies the assertion of the lemma.
The bound (4.3) follows for fixed a immediately from Proposition 2.4 of [36],

whose condition is satisfied for any α > 0 in our case, so that we can use any
τ > 0. To see the dependence on a we can follow the proof of Proposition 2.4,
which unfortunately is involved. We only note that the constants in Lemma 2.1
of [36] (which is quoted from [39]) are universal and hence cause no problems;
that Lemma 2.2 of [36] (which is quoted from [44]) can be formulated to say that
supk≤n kαek(u

∗) ≤ 32 supk≤n kαek(u) for every n, without conditions, and hence
only involves the constant 32; finally, the proof of Proposition 2.2 is given in [36]
and does not cause problems. �

For different values of a the processes Wa result from rescaling a single
Gaussian field by different amounts. This leads to a nesting property of the at-
tached RKHSs.

LEMMA 4.7. Assume (3.3). If a ≤ b, then
√

aH
a
1 ⊂ √

bH
b
1.

PROOF. This follows from the characterization of the RKHS given in Lem-
ma 4.1, together with the observations∫

ei(λ,t)ψ(λ)dμa(λ) =
∫

ei(λ,t)

(
ψ

fa

fb

)
(λ) dμb(λ),

∫ ∣∣∣∣ψ fa

fb

∣∣∣∣
2

dμb ≤
∥∥∥∥fa

fb

∥∥∥∥∞

∫
|ψ |2 dμa ≤ b

a

∫
|ψ |2 dμa.

Here we use that fa/fb(λ) = (b/a)f (λ/a)/f (λ/b) ≤ b/a by the assumed radial
monotonicity of the density f of the spectral measure μ. �

If a ↓ 0 the sample paths of Wa tend on compacta to the constant value W0. The
following lemma gives a corresponding property for the RKHSs.

LEMMA 4.8. Any h ∈ H
a
1 satisfies |h(0)| ≤ √‖μ‖ and |h(t) − h(0)| ≤ a‖t‖τ

for τ 2 = ∫ ‖λ‖2 dμ(λ), for every t ∈ T .

PROOF. By Lemma 4.1 a typical element of H
a
1 can be written as the real part

of h(t) = ∫
ei(λ,t)ψ(λ)dμa(λ) for a function ψ with

∫ |ψ |2 dμa ≤ 1. It follows
that |h(0)| ≤ ∫ |ψ |dμa and |h(t) − h(0)| ≤ ∫ |(λ, t)||ψ |(λ) dμa(λ). Two applica-
tions of the Cauchy–Schwarz inequality conclude the proof. �
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The final two lemmas in this section bound the tail probabilities of the scaling
variable A, and give a bound on the normal quantile function, for easy reference.

LEMMA 4.9. If the random variable A has a density g that satisfies (3.4) for
some q ≥ 0, then for ad(loga)q > 2|p − d + 1|/(D2d) and a > e,

P(A > a) ≤ 2C2a
p−d+1 exp(−D2a

d(loga)q)

D2d(loga)q
.

PROOF. Set jp,r (s) = sp exp(−D2s
d(log s)q)(log s)r and Jp,r (a) =∫ ∞

a jp,r (s) ds. The derivative of the function jp,0 can, with the help of the chain
rule, be expressed as the sum of three terms. By integrating this identity we see
that

jp,0(a) = D2dJp+d−1,q(a) + DqJp,q−1(a) − pJp−1,0(a).

The middle term on the right is nonnegative (the third is negative if and only if
p > 0). By the transformation p + d − 1 → p we conclude that

D2dJp,q(a) − |p − d + 1|Jp−d,0(a) ≤ jp−d+1,0(a).

Here Jp,q(a) ≥ (loga)qJp,0(a) and Jp−d,0(a) ≤ a−dJp,0(a). By substituting
these inequalities in the left-hand side and rearranging we obtain the bound on
P(A > a) ≤ C2Jp,0(a) asserted by the lemma. �

LEMMA 4.10. The standard normal distribution function � satisfies �(x) ≤
exp(−x2/2) for x < 0 and −√

2 log(1/u) ≤ �−1(u) for u ∈ (0,1) and �−1(u) ≤
−1

2

√
log(1/u) for u ∈ (0,1/4).

5. Proof of Theorem 3.1. For a given a > 0 define centered and decentered
concentration functions of the process Wa = (Wat : t ∈ [0,1]d) by

φa
0 (ε) = − logP(‖Wa‖∞ ≤ ε),

φa
w0

(ε) = inf
h∈Ha : ‖h−w0‖∞≤ε

‖h‖2
Ha − logP(‖Wa‖∞ ≤ ε).

Then P(‖Wa‖∞ ≤ ε) = exp(−φa
0 (ε)) by definition, and by results of [27] (cf.

Lemma 5.3 of [48]),

P(‖Wa − w0‖∞ ≤ 2ε) ≥ e
−φa

w0
(ε)

.(5.1)

By Lemma 4.6 we have that φa
0 (ε) ≤ C4a

d(log(a/ε))1+d for a > a0 and ε < ε0,
where the constants a0, ε0,C4 depend only on μ and w.

For B1 the unit ball of C[0,1]d and given positive constants M,r, δ, ε set

B =
(
M

√
r

δ
H

r
1 + εB1

)
∪

(⋃
a<δ

(MH
a
1) + εB1

)
.
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By Lemma 4.7 the set B contains the set MH
a
1 + εB1 for any a ∈ [δ, r]. This

is true also for a < δ, trivially, by the definition of B . Consequently, by Borell’s
inequality (see [5] or Theorem 5.1 in [48]), for any a ≤ r ,

P(Wa /∈ B) ≤ P(Wa /∈ MH
a
1 + εB1) ≤ 1 − �

(
�−1(

e−φa
0 (ε)) + M

)
≤ 1 − �

(
�−1(

e−φr
0(ε)) + M

)
,

because e−φa
0 (ε) = P(supt∈aT |Wt | ≤ ε) is decreasing in a. For

M ≥ −2�−1(
e−φr

0(ε)),
the right-hand side is bounded by 1 − �(M/2) ≤ e−M2/8. The latter condition is
certainly satisfied if (cf. Lemma 4.10),

M ≥ 4
√

φr
0(ε) and e−φr

0(ε) < 1/4.

Here e−φr
0(ε) ≤ e−φ1

0(ε) for r > 1 and is certainly smaller than 1/4 if ε is smaller
than some fixed ε1. Therefore, in view of Lemma 4.6 the inequalities are satisfied
if

M2 ≥ 16C4r
d(

log(r/ε)
)1+d

, r > 1, ε < ε1 ∧ ε0.(5.2)

In view of Lemma 4.9, for r larger than a positive constant depending on d and the
density of A only,

P(WA /∈ B) ≤ P(A > r) +
∫ r

0
P(Wa /∈ B)g(a) da

(5.3)

≤ 2C2r
p−d+1e−D2r

d logq r

D2d logq r
+ e−M2/8.

This inequality is true for any B = BM,r,δ,ε with M,r, δ, ε satisfying (5.2).
By Lemma 4.5, for M

√
r/δ > 2ε and r > a0,

logN

(
2ε,M

√
r

δ
H

r
1 + εB1,‖ · ‖∞

)
≤ logN

(
ε,M

√
r

δ
H

r
1,‖ · ‖∞

)

≤ Krd

(
log

(
M

√
r/δ

ε

))1+d

.

By Lemma 4.8 every element of MH
a
1 for a < δ is within uniform distance

δ
√

dτM of a constant function for a constant in the interval [−E,E], for E =
M

√‖μ‖. It follows that, for ε > δ
√

dτM ,

N

(
3ε,

⋃
a<δ

(MH
a
1) + εB1,‖ · ‖∞

)
≤ N(ε, [−E,E], | · |) ≤ 2E

ε
.
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The covering number of a union is bounded by the sum of the covering numbers.
Therefore, with the choice δ = ε/(2

√
dτM), together the last two displays yield,

since log(x + y) ≤ log(2(x ∨ y)) logx + 2 logy for x ≥ 1, y ≥ 2, for 2E/ε ≥ 2,

logN(3ε,B,‖ · ‖∞) ≤ Krd

(
log

(
M3/2

√
2τrd1/4

ε3/2

))1+d

(5.4)

+ 2 log
2M

√‖μ‖
ε

.

This inequality is valid for any B = BM,r,δ,ε with δ = ε/(2
√

dτM), and any
M,r, ε with

M3/2
√

2τrd1/4 > 2ε3/2, r > a0, M
√‖μ‖ > ε.(5.5)

In the remainder of the proof we make special choices for these parameters, de-
pending on the assumption on w0.

5.1. Hölder smoothness. Suppose that w0 ∈ Cα[0,1]d for some α > 0. In
view of Lemmas 4.3 and 4.6, for every a0 there exist positive constants ε0 < 1/2,
C, D and K that depend on w and μ only such that, for a > a0, ε < ε0 and
ε > Ca−α ,

φa
w0

(ε) ≤ Dad + C4a
d

(
log

a

ε

)1+d

≤ K1a
d

(
log

a

ε

)1+d

for K1 depending on a0, μ and d only. Therefore, for ε < ε0 ∧ Ca−α
0 [so that

(C/ε)1/α > a0], by (5.1),

P(‖WA − w0‖∞ ≤ 2ε) ≥
∫ ∞

0
e
−φa

w0
(ε)

g(a) da

≥
∫ 2(C/ε)1/α

(C/ε)1/α
e−K1a

d log1+d (a/ε)g(a) da

≥ C1e
−K2(1/ε)d/α(log(1/ε))(1+d)∨q

(
C

ε

)p/α(
C

ε

)1/α

,

in view of (3.4), for a constant K2 that depends only on K1,C,D1, d,α, q . We
conclude that P(‖WA − w0‖∞ ≤ εn) ≥ exp(−nε2

n) for εn a large multiple of
n−1/(2+d/α)(logn)γ , for γ = ((1 + d) ∨ q)/(2 + d/α), and sufficiently large n.

By (5.2)–(5.3) P(WA /∈ B) is bounded above by a multiple of exp(−C0nε2
n) for

an arbitrarily large constant C0 if (5.2) holds and

D2r
d(log r)q ≥ 2C0nε2

n,

rp−d+1 ≤ eC0nε2
n,(5.6)

M2 ≥ 8C0nε2
n.
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Given C0 we first choose r = rn as the minimal solution to the first equation,
and next we choose M = Mn to satisfy the third equation and (5.2). The second
equation is then automatically satisfied, for large n.

With these choices of M and r and ε̄n bounded below by a power of n the
right-hand side of (5.4) is bounded by a multiple of rd

n (logn)1+d + logn. This is
bounded by nε̄2

n for ε̄2
n a large multiple of (rd

n /n)(logn)1+d . Inequalities (5.5) are
clearly satisfied.

5.2. Infinite smoothness, r ≥ ν. Suppose that w0 is the restriction of a function
w0 ∈ Aγ,r (Rd) for r ≥ ν, and that the spectral density is bounded below by a mul-
tiple of exp(−D3‖λ‖ν) for some positive constants D3 and ν. By combining the
first part of Lemma 4.4 and Lemma 4.6, we see that there exist positive constants
a0 < a1, ε0, K1 and C4 that depend on w and μ only such that, for a ∈ [a0, a1] and
ε < ε0,

φa
w0

(ε) ≤ K1 + C4a
d

(
log

a

ε

)1+d

.

Consequently, by (5.1),

P(‖WA − w0‖∞ ≤ 2ε) ≥
∫ ∞

0
e
−φa

w0
(ε)

g(a) da

≥ e−K1−C4a
d
1 log1+d (a1/ε)P (a0 < A < a1).

We conclude that P(‖WA − w0‖∞ ≤ εn) ≥ exp(−nε2
n) for εn a large multiple of

n−1/2(logn)(d+1)/2, and sufficiently large n.
Next we choose B of the form as before, with r and M solving (5.6) and sat-

isfying (5.2), that is, rd
n and M2

n large multiples of (logn)d+1. Then (5.2)–(5.3)
show that P(WA /∈ B) is bounded above by a multiple of exp(−C0nε2

n), and the
right-hand side of (5.4) is bounded by a multiple of rd

n (log(1/ε) + log logn)1+d +
log(1/e)+ log logn. For ε = ε̄n a large multiple of n−1/2(logn)d+1 this is bounded
above by nε̄2

n.

5.3. Infinite smoothness, r < ν. Consider the situation as in the preceding
section, but now with r < ν. Combining the second part of Lemma 4.4 and
Lemma 4.6, we see that there exist positive constants a0, ε0, C, D, K1 and C4
that depend on w and μ only and γ ′ > γ such that, for a > a0, ε < ε0 and
C exp(−γ ′ar) < ε,

φa
w0

(ε) ≤ Dad + C + 4ad

(
log

a

ε

)1+d

.

Consequently, by (5.1), for constants D1,D2 that depend on w and μ only,

P(‖WA − w0‖∞ ≤ 2ε) ≥
∫ ∞
(log(C/ε)/γ ′)1/r

e
−φa

w0
(ε)

g(a) da

≥ D2e
−D1(log(1/ε))d/r+d+1

.
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We conclude that P(‖WA − w0‖∞ ≤ εn) ≥ exp(−nε2
n) for εn a large multiple of

n−1/2(logn)d/(2r)+(d+1)/2, and sufficiently large n.
Next we choose B of the form as before, with r and M solving (5.6), that

is, rd
n and M2

n large multiples of (logn)d/r+d+1. Then (5.2) and (5.3) show that
P(WA /∈ B) is bounded above by a multiple of exp(−C0nε2

n), and the right-hand
side of (5.4) is bounded by a multiple of rd

n (log(1/ε)+ log logn)1+d + log(1/ε)+
loglogn. For ε = ε̄n a large multiple of n−1/2(logn)d+1+d/(2r) this is bounded
above by nε̄2

n.
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[35] LEPSKIĬ, O. V. (1992). Asymptotically minimax adaptive estimation. II. Schemes without
optimal adaptation. Adaptive estimates. Teor. Veroyatnost. i Primenen. 37 468–481.
MR1214353

[36] LI, W. V. and LINDE, W. (1999). Approximation, metric entropy and small ball estimates for
Gaussian measures. Ann. Probab. 27 1556–1578. MR1733160

[37] NUSSBAUM, M. (1985). Spline smoothing in regression models and asymptotic efficiency in
L2. Ann. Statist. 13 984–997. MR0803753

[38] PARTHASARATHY, K. R. (2005). Introduction to Probability and Measure. Texts and Readings
in Mathematics 33. Hindustan Book Agency, New Delhi. MR2190360

[39] PISIER, G. (1989). The Volume of Convex Bodies and Banach Space Geometry. Cambridge
Tracts in Mathematics 94. Cambridge Univ. Press, Cambridge. MR1036275

[40] RASMUSSEN, C. E. and WILLIAMS, C. K. I. (2006). Gaussian Processes for Machine Learn-
ing. MIT Press, Cambridge, MA.

[41] STEIN, E. M. (1970). Singular Integrals and Differentiability Properties of Functions. Prince-
ton Mathematical Series 30. Princeton Univ. Press, Princeton, NJ. MR0290095

[42] STONE, C. J. (1984). An asymptotically optimal window selection rule for kernel density esti-
mates. Ann. Statist. 12 1285–1297. MR0760688

http://www.ams.org/mathscinet-getitem?mr=1417678
http://www.ams.org/mathscinet-getitem?mr=2089134
http://www.ams.org/mathscinet-getitem?mr=0591862
http://www.ams.org/mathscinet-getitem?mr=0673923
http://www.ams.org/mathscinet-getitem?mr=0254999
http://www.ams.org/mathscinet-getitem?mr=0124720
http://www.ams.org/mathscinet-getitem?mr=1237989
http://www.ams.org/mathscinet-getitem?mr=1258983
http://www.ams.org/mathscinet-getitem?mr=2388859
http://www.ams.org/mathscinet-getitem?mr=0971380
http://www.ams.org/mathscinet-getitem?mr=1130921
http://www.ams.org/mathscinet-getitem?mr=0517434
http://www.ams.org/mathscinet-getitem?mr=1643256
http://www.ams.org/mathscinet-getitem?mr=1091202
http://www.ams.org/mathscinet-getitem?mr=1147167
http://www.ams.org/mathscinet-getitem?mr=1214353
http://www.ams.org/mathscinet-getitem?mr=1733160
http://www.ams.org/mathscinet-getitem?mr=0803753
http://www.ams.org/mathscinet-getitem?mr=2190360
http://www.ams.org/mathscinet-getitem?mr=1036275
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.ams.org/mathscinet-getitem?mr=0760688


ADAPTIVE BAYESIAN FUNCTION ESTIMATION 2675

[43] TOKDAR, S. T. and GHOSH, J. K. (2005). Posterior consistency of Gaussian process priors in
density estimation. J. Statist. Plann. Inference 137 34–42. MR2292838

[44] TOMCZAK-JAEGERMANN, N. (1987). Dualité des nombres d’entropie pour des opérateurs
à valeurs dans un espace de Hilbert. C. R. Acad. Sci. Paris Sér. I Math. 305 299–301.
MR0910364

[45] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical
Processes. Springer, New York. MR1385671

[46] VAN DER VAART, A. W. and VAN ZANTEN, J. H. (2008). Rates of contraction of posterior
distributions based on Gaussian process priors. Ann. Statist. 36. MR2418663

[47] VAN DER VAART, A. W. and VAN ZANTEN, J. H. (2007). Bayesian inference with rescaled
Gaussian process priors. Electron. J. Stat. 1 433–448. MR2357712

[48] VAN DER VAART, A. W. and VAN ZANTEN, J. H. (2008). Reproducing kernel Hilbert spaces
of Gaussian priors. IMS Collections 3 200–222.

[49] WAHBA, G. (1978). Improper priors, spline smoothing and the problem of guarding against
model errors in regression. J. Roy. Statist. Soc. Ser. B 40 364–372. MR0522220

[50] WHITNEY, H. (1934). Analytic extensions of differentiable functions defined in closed sets.
Trans. Amer. Math. Soc. 36 63–89. MR1501735

DEPARTMENT OF MATHEMATICS

VRIJE UNIVERSITEIT

DE BOELELAAN 1081A

1081 HV AMSTERDAM

THE NETHERLANDS

E-MAIL: aad@cs.vu.nl
harry@cs.vu.nl

http://www.ams.org/mathscinet-getitem?mr=2292838
http://www.ams.org/mathscinet-getitem?mr=0910364
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2418663
http://www.ams.org/mathscinet-getitem?mr=2357712
http://www.ams.org/mathscinet-getitem?mr=0522220
http://www.ams.org/mathscinet-getitem?mr=1501735
mailto:aad@cs.vu.nl
mailto:harry@cs.vu.nl

	Introduction
	Notation

	Main results
	Density estimation
	Fixed design regression
	Classification

	Rescaled Gaussian fields
	Auxiliary results
	Proof of Theorem 3.1
	Hölder smoothness
	Infinite smoothness, r>=nu
	Infinite smoothness, r<nu

	References
	Author's Addresses

