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Abstract: We consider the minimax rate of testing or estimation of non-
linear functionals defined on semiparametric models. Existing methods ap-
pear not capable of determining a lower bound on the minimax rate if the
semiparametric model is indexed by several infinite-dimensional parame-
ters. These methods test a single null distribution to a convex mixture of
perturbed distributions. To cope with semiparametric functionals we ex-
tend these methods to comparing two convex mixtures. The first mixture
is obtained by perturbing a first parameter of the model, and the second
by perturbing in addition a second parameter. We obtain a lower bound on
the affinity of the resulting pair of mixtures of product measures in terms
of three parameters that measure the sizes and asymmetry of the perturba-
tions. We apply the new result to two examples: the estimation of a mean
response when response data are missing at random, and the estimation of
an expected conditional covariance.
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1. Introduction

Let X1, X2, . . . , Xn be a random sample from a density p relative to a measure
µ on a sample space (X ,A). It is known that p belongs to a collection P of
densities, and we wish to estimate the value χ(p) of a functional χ:P → R. In
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this setting the mimimax rate of estimation of χ(p) relative to squared error
loss can be defined as the root of

inf
Tn

sup
p∈P

Ep|Tn − χ(p)|2,

where the infimum is taken over all estimators Tn = Tn(X1, . . . , Xn). Determi-
nation of a minimax rate in a particular problem often consists of proving a
“lower bound”, showing that the mean square error of no estimator tends to
zero faster than some rate ε2n, combined with the explicit construction of an
estimator with mean square error ε2n.

The lower bound is often proved by a testing argument, which tries to separate
two subsets of the set {P n: p ∈ P} of possible distributions of the observation
(X1 , . . . , Xn). Even though testing is a statistically easier problem than estima-
tion under quadratic loss, the corresponding minimax rates are often of the same
order. The testing argument can be formulated as follows. If Pn and Qn are in
the convex hulls of the sets {P n: p ∈ P, χ(p) ≤ 0} and {P n: p ∈ P, χ(p) ≥ εn}
and there exists no sequence of tests φn = φn(X1, . . . , Xn) of Pn versus Qn with
both error probabilities Pnφn and Qn(1−φn) tending to zero, then the minimax
rate is not faster than a multiple of εn. See [5], [4] page 47, or [1] Corollary 1.
For easy reference we also present a readily applicable version of the result in
the appendix.

Here existence of a sequence of tests with errors tending to zero (a perfect
sequence of tests) is determined by the asymptotic separation of the sequences
Pn and Qn and can be described, for instance, in terms of the Hellinger affinity

ρ(Pn, Qn) =

∫

√

dPn

√

dQn.

If ρ(Pn, Qn) is bounded away from zero as n→ ∞, then no perfect sequence of
tests exists (see [5] or e.g. Section 14.5 in [10]).

One difficulty in applying this simple argument is that the relevant (approx-
imately least favorable) two sequences of measures Pn and Qn need not be
product measures, but can be arbitrary convex combinations of product mea-
sures. In particular, it appears that for nonlinear functionals at least one of the
two sequences must be a true mixture. This complicates the computation of the
affinity ρ(Pn, Qn) considerably. Birgé and Massart [1] derived an elegant lower
bound on the affinity when Pn is a product measure and Qn a convex mixture
of product measures, and used it to determine the testing rate for functionals of
the type

∫

f ◦p dµ, for a given smooth function f : R → R, the function f(x) = x2

being the crucial example. Other versions of this argument, which can also be
conveniently framed using the chisquare-distance, can be found in e.g. [3] and [9].

In this paper we are interested in structured models P that are indexed
by several subparameters and where the functional is defined in terms of the
subparameters. It appears that testing a product versus a mixture is often not
least favorable in this situation, but testing two mixtures is. Thus we extend
the bound of [1] to the case that both Pn and Qn are mixtures. In our examples
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Pn is equal to a convex mixture obtained by perturbing a first parameter of the
model, and Qn is obtained by perturbing in addition a second parameter. We
also refine the bound in other, less essential directions.

The main general result of the paper is stated in Section 2. In Sections 3
and 4 we use this result to obtain a (sharp) lower bound on the minimax rate in
two examples of interest. The proof of the main result can be found in Section 5.

1.1. Notation

In our examples our a-priori models for the parameters are subsets of Hölder
spaces. We define ‖ · ‖α as the norm of the Hölder space Cα[0, 1]d of α-smooth
functions on [0, 1]d (cf. e.g. Section 2.7.1 in [11]). The notation a . b means
a ≤ Cb for a universal constant C, and a ∼ b means a . b and b . a.

2. Main result

For k ∈ N let X = ∪k
j=1Xj be a measurable partition of the sample space. Given

a vector λ = (λ1, . . . , λk) in some product measurable space Λ = Λ1 × · · · × Λk

let Pλ and Qλ be probability measures on X such that

(1) Pλ(Xj) = Qλ(Xj) = pj for every λ ∈ Λ, for some probability vector
(p1, . . . , pk).

(2) The restrictions of Pλ and Qλ to Xj depend on the jth coordinate λj of
λ = (λ1, . . . , λk) only.

For pλ and qλ densities of the measures Pλ and Qλ that are jointly measurable
in the parameter λ and the observation, and π a probability measure on Λ,
define p =

∫

pλ dπ(λ) and q =
∫

qλ dπ(λ), and set

a = max
j

sup
λ

∫

Xj

(pλ − p)2

pλ

dµ

pj
,

b = max
j

sup
λ

∫

Xj

(qλ − pλ)2

pλ

dµ

pj
,

d = max
j

sup
λ

∫

Xj

(q − p)2

pλ

dµ

pj
.

Theorem 2.1. If npj(1 ∨ a ∨ b) ≤ A for all j and B ≤ pλ ≤ B for positive
constants A,B,B, then there exists a constant C that depends only on A,B,B
such that, for any product probability measure π = π1 ⊗ · · · ⊗ πk,

ρ
(

∫

P n
λ dπ(λ),

∫

Qn
λ dπ(λ)

)

≥ 1 − Cn2(max
j
pj)(b

2 + ab) − Cnd.

The main difference with the bound obtained in [1] is that the affinity on the
left side concerns two mixtures, rather than a product measure and a mixture.
The measures Pλ in the first mixture may be viewed as perturbations of the
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measure with density p, with the parameter a giving the size of these perturba-
tions. The measures Qλ in the second mixture may be viewed as perturbations
of the perturbations, of relative sizes measured by the parameter b. The parame-
ters a and b enter into the bound on the right side in an asymmetric way. This is
appropriate if they concern perturbations of different types, as in our examples
of semiparametic models indexed by two functional parameters, which can be
perturbed independently.

The parameter d measures the size of the difference of the average perturba-
tions, and should be small if the perturbations are inserted symmetrically. In
our examples this parameter is identically zero.

For a = 0 and d = 0 the bound reduces to the one given in [1], apart from
the fact that we consider general “priors” πj rather than measures supported on
two points. We believe the latter generalization is not essential, but does make
the result and its proof more transparent.

The theorem can be applied to proving a lower bound on a minimax rate by
constructing perturbations such that the difference

min
λ
χ(qλ) − max

λ
χ(pλ)

of the functional of interest on the two types of perturbations is as large as
possible, while the parameters a, b, d are small enough to keep the right side of
the theorem bounded away from zero. This is somewhat of an art, although for
standard model classes the form of the perturbations seems to take a standard
form. In the semiparametric case the main issue is where and how to insert these
perturbations. We illustrate this in the next two sections on two examples.

The proof of the theorem is deferred to Section 5.

3. Estimating the mean response in missing data models

Suppose that a typical observation is distributed as X = (Y A,A, Z), for Y and
A taking values in the two-point set {0, 1} and conditionally independent given
Z. We are interested in estimating the expected value EY of Y .

This model is a canonical example of a study with missing response variable,
which arises frequently in biostatistical studies. The value of a response variable
of interest can often not be ascertained for some subset of the study popula-
tion. Ignoring this fact would lead to a bias in the estimate of the response
distribution. To avoid bias, covariate information is obtained for the complete
population. The covariate is chosen so that it can explain why some responses
are missing, or at least can explain causes that also influence the response. In
the language of missing data models, the covariate should be such that, given
the value of the covariate, a response is “missing at random”.

This assumption can be described precisely for our model, as follows. The
variable Y is the response, and the variable A indicates whether it is observed
(A = 1, implying AY = Y ) or not (A = 0, implying AY = 0). The indicator A
is always observed, and the “missing at random” assumption is made precise in
the assumption that Y and A are conditionally independent given the covariate
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Z. To make this true the covariate must contain the information on possible
dependence between response and missingness. The conditional independence
of Y and A can equivalently be described by saying that the conditional law
of Y given (Z,A) is independent of the value of A. From this it is seen that
EY = EE(Y A|A = 1, Z). Thus the assumption of “missing at random” renders
the parameter of interest EY identifiable from the observed data.

While the introduction of the covariate is necessary to make the parameter
of interest identifiable, it also comes at a price: the statistical model for the
data X = (Y A,A, Z) will include the conditional laws of Y and A given Z,
and the marginal law of Z. If these laws are only nonparametrically specified,
then the resulting problem of estimating EY is semiparametric, and may involve
“smoothing”. If the covariate Z is high-dimensional, then this may lead to slow
convergence rates. We shall assume that Z is d-dimensional, and for definiteness
assume that it takes its values in Z = [0, 1]d.

The model can be parameterized by the marginal density f of Z relative to
Lebesgue measure measure ν on Z, and the probabilities b(z) = P(Y = 1|Z = z)
and a(z)−1 = P(A = 1|Z = z). Alternatively, the model can be parameterized
by the function g = f/a, which is the conditional density of Z given A = 1 up
to the norming factor P(A = 1). Under this latter parametrization which we
adopt henceforth, the density p of an observation X is described by the triple
(a, b, g) and the functional of interest E {E [Y |A = 1, Z]} is expressed as

χ(p) =

∫

abg dν.

The parameterization through g rather than f appears to correspond to an
essential feature of the structure of the observational model. On the other hand,
the parameterization of P(A = 1|Z = z) by the inverse of a rather than this
function itself is for convenience of notation, as our a-priori model, imposing
smoothness of a, does not change if a is replaced by 1/a.

Define ‖ · ‖α as the norm of the Hölder space Cα[0, 1]d of α-smooth functions
on [0, 1]d (cf. e.g. Section 2.7.1 in [11]). For given positive constants α, β, γ and
m,M , we consider the models

• P1 = {(a, b, g): ‖a‖α, ‖b‖β ≤M, g = 1/2, m≤ a−1, b ≤ 1 −M}.
• P2 = {(a, b, g): ‖a‖α, ‖b‖β, ‖g‖γ ≤M,m ≤ a−1, b ≤ 1 −M, g ≥ m}.

If (α+β)/2 ≥ d/4, then a
√
n-rate is attainable over P2 (see [6]), and a standard

“two-point” proof can show that this rate cannot be improved. Here we are
interested in the case (α + β)/2 < d/4, when the rate becomes slower than
1/

√
n. The paper [6] (or in part [7]) constructs an estimator that attains the

rate
n−(2α+2β)/(2α+2β+d)

uniformly over P2 if

γ

2γ + d
>
(α ∨ β

d

)(d− 2α− 2β

d+ 2α+ 2β

)

: = γ(α, β). (3.1)
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We shall show that this result is optimal by showing that the minimax rate over
the smaller model P1 is lower bounded by the same rate.

In the case that α = β these results can be proved using the method of [1], but
in general we need a construction as in Section 2 with Pλ based on a perturbation
of the coarsest parameter of the pair (a, b) and Qλ constructed by perturbing in
addition the smoothest of the two parameters. The rate n−4β/(4β+d) obtained
if α = β is the same as the rate for estimating

∫

p2 dµ based on a sample from
a β-smooth density p. In that sense the semiparametric structure changes the
essence of the problem only if α 6= β (if (3.1) holds).

Because the left side of (3.1) is increasing in γ, this assumption requires that
the (conditional) covariate density g is smooth enough (relative to a and b). We
believe that the rate for estimating the functional may be slower if this condition
fails. We have obtained some upper bounds in the situation of a very unsmooth
covariate density, but not a closed theory, and do not address this situation in
this paper.

Theorem 3.1. If (α+β)/2 < d/4, then the minimax rate over P1 for estimating
∫

abg dν is at least n−(2α+2β)/(2α+2β+d).

Proof. Let H : Rd → R be a C∞ function supported on the cube [0, 1/2]d with
∫

H dν = 0 and
∫

H2 dν = 1. Let k be the integer closest to n2d/(2α+2β+d)

and let Z1, . . . ,Zk be translates of the cube k−1/d[0, 1/2]d that are disjoint and
contained in [0, 1]d. For z1, . . . , zk the bottom left corners of these cubes and
λ = (λ1, . . . , λk) ∈ Λ = {−1, 1}k, let

aλ(z) = 2 +
(1

k

)α/d
k
∑

i=1

λiH
(

(z − zi)k
1/d
)

,

bλ(z) =
1

2
+
(1

k

)β/d k
∑

i=1

λiH
(

(z − zi)k
1/d
)

.

These functions can be seen to be contained in Cα[0, 1]d and Cβ[0, 1]d with
norms that are uniformly bounded in k. We choose a uniform prior π on λ, so
that λ1, . . . , λk are i.i.d. Rademacher variables.

We partition the sample space {0, 1}× {0, 1}×Z into the sets Xj = {0, 1}×
{0, 1} × Zj and the remaining set. An observation X falls in such a set if and
only if the corresponding covariate Z falls in Zj . Because Z has density fλ =
gaλ = 1

2aλ under model P1 and 1
2aλ is a perturbation of the uniform density

obtained by redistributing mass within each Zj (as
∫

H dν = 0) we have that
Pλ(Xj) = Qλ(Xj) = pj is independent of j and of the order k−1.

The likelihood for the model P1, indexed by (a, b, 1), can be written as

(a− 1)1−A(Z)
(

bY (Z)(1 − b)1−Y (Z)
)A

.

Because
∫

H dν = 0 the values of the functional
∫

abg dν at the parameter
values (aλ, 1/2, 1/2) and (2, bλ, 1/2) are both equal to 1/2, whereas the value at
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(aλ, bλ, 1/2) is equal to

∫

aλbλ
dν

2
=

1

2
+
(1

k

)α/d+β/d
∫

(

k
∑

i=1

H
(

(z−zi)k
1/d
)

)2
dν

2
=

1

2
+

1

2

(1

k

)α/d+β/d

.

The minimax rate is not faster than (1/k)α/d+β/d for k = kn such that the
convex mixtures of the products of the perturbations do not separate completely
as n → ∞. We choose the mixtures differently in the cases α ≤ β and α ≥ β.

Assume α ≤ β. We define pλ by the parameter (aλ, 1/2, 1/2) and qλ by the
parameter (aλ, bλ, 1/2). Because

∫

aλ dπ(λ) = 2 and
∫

bλ dπ(λ) = 1/2, we have

p(X): =

∫

pλ(X) dπ(λ) =
(

bY (Z)(1 − b)1−Y (Z)
)A

,

(pλ − p)(X) = (1 − A)(aλ − 2)(Z),

(qλ − pλ)(X) = A(bλ − 1/2)Y (1/2− bλ)1−Y ,

(q − p)(X): =

∫

(qλ − pλ)(X) dπ(λ) = 0.

Therefore, it follows that the number d in Theorem 2.1 vanishes, while the
numbers a and b are bounded above by

max
j

∫

Zj

(aλ − 2)2

pλ

dν

pj
, and max

j

∫

Zj

(bλ − 1/2)2

pλ

dν

pj
,

respectively. Because pλ is bounded away from zero, these two expressions are
equal to k−2α/d and k−2β/d times a multiple of

max
j

∫

Zj

(

k
∑

i=1

λiH
(

(z − zi)k
1/d
)

)2
dν

pj
∼ 1,

as pj ∼ 1/k. Theorem 2.1 shows that there exists a constant C ′ such that

ρ
(

∫

P n
λ dπ(λ),

∫

Qn
λ dπ(λ)

)

≥ 1 − C ′n2 1

k

(

k−4β/d + k−2α/dk−2β/d
)

. (3.2)

For k ∼ n2d/(2α+2β+d) the right side is bounded away from 0. Substitution of
this number in the magnitude of separation (1/k)α/d+β/d leads to the rate as
claimed in the theorem.

Assume α ≥ β. We define pλ by the parameter (2, bλ, 1/2) and qλ by the
parameter (aλ, bλ, 1/2). The computations are very similar to the ones in the
case α ≤ β.

4. Estimating an expected conditional covariance

Let a typical observation take the form X = (Y, A, Z), where Y and A are
dichotomous, with values in {0, 1}, and Z takes its values in Z = [0, 1]d. Different
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from the previous section we always observe Y ; also we do not assume that Y
and A are conditionally independent given Z. We are interested in estimating
the expected conditional covariance E cov(Y, A|Z).

This functional often arises in the biostatistical and epidemiological literature
on estimation of the effect of a binary treatment, in the following manner. The
most common model used in observational studies to analyze the causal effect
of a treatment A on a continuous response Y in the presence of a vector Z of
continuous pretreatment confounding variables is the semiparametric regression
model

E(Y |A, Z) = ξA+ ν(Z), (4.1)

where ξ is an unknown parameter and ν is an unknown function. Specifically,
it is shown in [8] that this model arises whenever we assume (i) no unmeasured
confounders (i.e. ignorability of treatment A within levels of Z) and (ii) a con-
stant additive effect of treatment A on the mean of Y . A nonzero estimate of
the parameter ξ in this model indicates a causal effect of the treatment A.

In situations where the assumption of additivity is not expected to hold, one
may more generally consider the the treatment effect function

c(z) = E(Y |A = 1, Z = z) − E(Y |A = 0, Z = z),

which measures the difference in effect of the treatments as a function of co-
variate value. Under model (4.1) this reduces to the constant ξ. More generally,
a (weighted) average of this function could be used as a summary measure of
the causal effect of the treatment. A convenient average (see [2] for further
discussion) is the variance-weighted average treatment effect, given by

τ : =
Evar(A|Z)c(Z)

E var(A|Z)
=

E cov(Y, A|Z)

E var(A|Z)
. (4.2)

Under model (4.1) this again reduces to the constant ξ. (The equality follows by
simple algebra, for instance starting from the identity cov(Y, A|Z) =

(

E(Y |A =

1, Z) − E(Y |Z)
)

E(A|Z) and the corresponding identity for cov(Y, 1 − A).)
A convenient method of inference for the parameter τ is as follows. For

any t ∈ R, define Y (t) = Y − tA and the corresponding functional ψ(t) =
E cov

(

Y (t), A|Z
)

. It is easily checked that the parameter τ given in (4.2) is the
unique solution to the equation ψ(t) = 0. Thus inference on τ can be obtained
by “inverting” the inference on ψ(t), and we can aim on the estimation of the
functional ψ(t) at a fixed value of t. For simplicity we restrict ourselves to the
estimation of ψ(0), which is the expected conditional covariance E cov(Y, A|Z).

The expected conditional covariance functional can be decomposed as EY A−
EE(Y |Z)E(A|Z), where the first part EY A is estimable at 1/

√
n-rate by the

empirical mean of the variables YiAi. Therefore, we shall concentrate on obtain-
ing a lower bound for estimating the functional EE(Y |Z)E(A|Z).

Define functions a, and b by a(z) = P(A = 1|Z = z), and b(z) = P(Y =
1|Z = z), furthermore, recall that c(z) = P(Y = 1|A = 1, Z = z) − P(Y =
1|A = 0, Z = z). In view of the dichotomous nature of A, we then have

P(Y = 1|A, Z) = c(Z)
(

A− a(Z)
)

+ b(Z).
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Therefore we can parameterize the model by the quadruple (a, b, c, f), for f
the marginal density of Z. In terms of this parameterization the functional of
interest is

χ(p) =

∫

abf dν.

The parameter c, which vanishes if Y and A are conditionally independent given
Z, does not enter into the functional, and appears not to be important for the
problem otherwise either.

For given positive constants α, β, γ and m,M , we consider the models

• P1 = {(a, b, c, f): ‖a‖α, ‖b‖β, ‖c‖α∧β ≤M, f = 1, m ≤ a, b ≤ 1 −m},
• P2 = {(a, b, c, f): ‖a‖α, ‖b‖β, ‖f‖γ ≤M,m ≤ a, b ≤ 1 −m, f ≥ m}.

We are mainly interested in the case (α+β)/2 < d/4, when the rate of estimation
of χ(p) is slower than 1/

√
n. The paper [6] constructs an estimator that attains

the rate
n−(2α+2β)/(2α+2β+d)

uniformly over P2 if equation (3.1) holds. (The same rate as in Section 3.) We
shall show that this rate is optimal by showing that the minimax rate over the
smaller model P1 is not faster.

Theorem 4.1. If (α+β)/2 < d/4, then the minimax rate over P1 for estimating
∫

abf dν is at least n−(2α+2β)/(2α+2β+d).

Proof. We use the same partition of the sample space, the same function H ,
and the same priors as in the proof of Theorem 3.1. The likelihood of the model
P1, indexed by the parameter (a, b, c, 1), is given by

a(Z)A(1 − a)(Z)1−A
(

c(1 − a) + b
)

(Z)Y A
(

1 − c(1 − a) − b
)

(Z)(1−Y )A

× (−ca + b)(Z)Y (1−A)(1 + ca− b)(Z)(1−Y )(1−A).

The perturbations are defined differently in the cases α < β and α ≥ β.
Assume α < β. Set

aλ(z) =
1

2
+
(1

k

)α/d
k
∑

i=1

λiH
(

(z − zi)k
1/d
)

,

bλ(z) =
1

2
+
(1

k

)β/d k
∑

i=1

λiH
(

(z − zi)k
1/d
)

,

cλ(z) =
1/2 − bλ(z)

1 − aλ(z)
.

At the parameter values (aλ, 1/2, 0, 1) the functional takes the value
∫

aλbλ1 dν = 1/4 and the likelihood is pλ(X) = 1
2
aλ(Z)A(1 − aλ)(Z)1−A,

whereas at the parameter values (aλ, bλ, cλ, 1) the functional attains the value
1/4 + (1/k)α/d+β/d and the likelihood is given by qλ(X) = (aλ/2)(Z)A(bλ −
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aλ/2)(Z)Y (1−A)(1 − bλ − aλ/2)(Z)(1−Y )(1−A). We conclude that

p(X): =

∫

pλ(X) dπ(λ) = 1/4,

(pλ − p)(X) = 1
2 (aλ − 1/2)(Z)A(1/2− aλ)(Z)1−A,

(qλ − pλ)(X) = (1 −A)(bλ − 1/2)(Z)Y (1/2− bλ)(Z)1−Y ,

(q − p)(X): =

∫

(qλ − pλ)(X) dπ(λ) = 0.

Therefore, it follows that the number d in Theorem 2.1 vanishes, while the
numbers a and b are bounded above by a multiple of

max
j

∫

Zj

h2

pλ

dν

pj

for h equal to the functions aλ − 1/2 and bλ − 1/2, respectively. As in the proof
of Theorem 3.1 these two expressions are of the orders k−2α/d and k−2β/d,
respectively.

Theorem 2.1 shows again that (3.2) holds, and for k ∼ n2d/(2α+2β+d) the
two mixtures have affinity bounded away from zero. For this choice of k the
separation of the functional is the minimax rate n−(2α+2β)/(2α+2β+d).

Assume that α ≥ β. Even though the model and the functional of interest is
symmetric in Y and A, the parameterization of the model is not, and therefore
this case needs to be treated separately. Define the functions aλ and bλ as above,
and set

cλ =
(1/2 − aλ)bλ
(1 − aλ)aλ

.

At the parameter values (1/2, bλ, 0, 1) the functional takes the value 1/4 with
corresponding likelihood pλ(X) = 1

2bλ(Z)Y (1 − bλ)(Z)1−Y , whereas at the pa-

rameter values (aλ, bλ, cλ, 1) the functional attains the value 1/4 + k−α/d−β/d

and the likelihood is given by qλ(X) = (bλ/2)(Z)Y (aλ − bλ/2)(Z)(1−Y )A(1 −
aλ − bλ/2)(Z)(1−Y )(1−A). It follows that

p(X): =

∫

pλ(X) dπ(λ) = 1/4,

(pλ − p)(X) = 1
2(bλ − 1/2)(Z)Y (1/2− bλ)(Z)1−Y ,

(qλ − pλ)(X) = (1 − Y )(aλ − 1/2)(Z)A(1/2− aλ)(Z)1−A,

(q − p)(X): =

∫

(qλ − pλ)(X) dπ(λ) = 0.

These are the same equations as in the case that α < β, except that Y and A
(and aλ and bλ) are permuted. Therefore, the proof can be finished as before.

5. Proof of main result

The proof of Theorem 2.1 is based on two lemmas. The first lemma factorizes the
affinity between two mixtures of product measures into (conditional) affinities
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of certain products of restrictions to the partitioning sets. The latter are next
lower bounded using the second lemma. The reduction to the partioning sets is
useful, because it reduces the n-fold products to lower order products for which
the second lemma is accurate.

Define probability measures Pj,λj
and Qj,λj

on Xj by

dPj,λj
=

1Xj
dPλ

pj
, dQj,λj

=
1Xj

dQλ

pj
. (5.1)

Lemma 5.1. For any product probability measure π = π1 ⊗ · · · ⊗ πk on Λ and
every n ∈ N,

ρ
(

∫

P n
λ dπ(λ),

∫

Qn
λ dπ(λ)

)

= E

k
∏

j=1

ρj(Nj),

where (N1 , . . . , Nk) is multinomially distributed on n trials with success prob-
ability vector (p1, . . . , pk) and ρj : {0, . . . , n} → [0, 1] is defined by ρj(0) = 1
and

ρj(m) = ρ
(

∫

Pm
j,λj

dπj(λj),

∫

Qm
j,λj

dπj(λj)
)

, m ≥ 1.

Proof. Set P̄n: =
∫

P n
λ dπ(λ) and consider this as the distribution of the vector

(X1 , . . . , Xn). Then, for pλ and qλ densities of Pλ and Qλ relative to some
dominating measure, the left side of the lemma can be written as

ρ
(

∫

P n
λ dπ(λ),

∫

Qn
λ dπ(λ)

)

= EP̄n

√

√

√

√

∫
∏k

j=1

∏

i:Xi∈Xj
qλ(Xi) dπ(λ)

∫ ∏k
j=1

∏

i:Xi∈Xj
pλ(Xi) dπ(λ)

.

Because by assumption on each partitioning set Xj the measures Qλ and Pλ de-
pend on λj only, the expressions

∏

i:Xi∈Xj
qλ(Xi) and

∏

i:Xi∈Xj
pλ(Xi) depend

on λ only through λj . In fact, within the quotient on the right side of the preced-
ing display, they can be replaced by

∏

i:Xi∈Xj
qj,λj

(Xi) and
∏

i:Xi∈Xj
pj,λj

(Xi)
for qj,λj

and pj,λj
densities of the measures Qj,λj

and Pj,λj
. Because π is a

product measure, we can next use Fubini’s theorem and rewrite the resulting
expression as

EP̄n

√

√

√

√

∏k
j=1

∫ ∏

i:Xi∈Xj
qj,λj

(Xi) dπj(λj)
∏k

j=1

∫
∏

i:Xi∈Xj
pj,λj

(Xi) dπj(λj)
.

Here the two products over j can be pulled out of the square root and replaced
by a single product preceding it. A product over an empty set (if there is no
Xi ∈ Xj) is interpreted as 1.

Define variables I1, . . . , In that indicate the partitioning sets that contain the
observations: Ii = j if Xi ∈ Xj for every i and j, and let Nj = (#1 ≤ i ≤ n: Ii =
j) be the number of Xi falling in Xj .

The measure P̄n arises as the distribution of (X1 , . . . , Xn) if this vector is
generated in two steps. First λ is chosen from π and next given this λ the vari-
ables X1, . . . , Xn are generated independently from Pλ. Then given λ the vector
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(N1, . . . , Nk) is multinomially distributed on n trials and probability vector
(

Pλ(X1), . . . , Pλ(Xk)
)

. Because the latter vector is independent of λ and equal
to (p1, . . . , pk) by assumption, the vector (N1, . . . , Nk) is stochastically indepen-
dent of λ and hence also unconditionally, under P̄n, multinomially distributed
with parameters n and (p1, . . . , pk). Similarly, given λ the variables I1, . . . , In
are independent and the event Ii = j has probability Pλ(Xj), which is indepen-
dent of λ by assumption. It follows that the random elements (I1, . . . , In) and
λ are stochastically independent under P̄n.

The conditional distribution of X1, . . . , Xn given λ and I1, . . . , In can be
described as: for each partitioning set Xj generate Nj variables independently
from Pλ restricted and renormalized to Xj, i.e. from the measure Pj,λj

; do so
independently across the partitioning sets; and attach correct labels {1, . . . , n}
consistent with I1, . . . , In to the n realizations obtained. The conditional dis-
tribution under P̄n of X1, . . . , Xn given In is the mixture of this distribution
relative to the conditional distribution of λ given (I1, . . . , In), which was seen to
be the unconditional distribution, π. Thus we obtain a sample from the condi-
tional distribution under P̄n of (X1, . . . , Xn) given (I1, . . . , In) by generating for

each partitioning set Xj a set of Nj variables from the measure
∫

P
Nj

j,λj
dπj(λj),

independently across the partitioning sets, and next attaching labels consistent
with I1, . . . , In.

Now rewrite the right side of the last display by conditioning on I1, . . . , In as

EP̄n
EP̄n





k
∏

j=1

√

∫
∏

i:Ii=j qj,λj
(Xi) dπj(λj)

∫
∏

i:Ii=j pj,λj
(Xi) dπj(λj)

∣

∣

∣I1, . . . , In



 .

The product over j can be pulled out of the conditional expectation by the
conditional independence across the partitioning sets. The resulting expression
can be seen to be of the form as claimed in the lemma.

The second lemma does not use the partitioning structure, but is valid for
mixtures of products of arbitrary measures on a measurable space. For λ in a
measurable space Λ let Pλ and Qλ be probability measures on a given sample
space (X ,A), with densities pλ and qλ relative to a given dominating measure
µ, which are jointly measurable. For a given (arbitrary) probability density p
define functions ℓλ = qλ − pλ and κλ = pλ − p, and set

a = sup
λ∈Λ

∫

κ2
λ

pλ
dµ,

b = sup
λ∈Λ

∫

ℓ2λ
pλ
dµ,

c = sup
λ∈Λ

∫

p2

pλ
dµ,

d = sup
λ∈Λ

∫

(∫

ℓµ dπ(µ)
)2

pλ
dµ.
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Lemma 5.2. For any probability measure π on Λ and every n ∈ N,

ρ
(

∫

P n
λ dπ(λ),

∫

Qn
λ dπ(λ)

)

≥ 1−
n
∑

r=2

(

n

r

)

br−2n2
n−1
∑

r=1

(

n − 1

r

)

arb−2n2cn−1d.

Proof. Consider the measure P̄n =
∫

P n
λ dπ(λ), which has density p̄n(~xn) =

∫ ∏n
i=1pλ(xi) dπ(λ) relative to µn, as the distribution of (X1, . . . , Xn). Using

the inequality E
√

1 + Y ≥ 1 − EY 2/2, valid for any random variable Y with
1 + Y ≥ 0 and EY = 0 (see [1], Lemma 1), we see that

ρ
(

∫

P n
λ dπ(λ),

∫

Qn
λ dπ(λ)

)

= EP̄n

√

1 +

∫ [∏n
i=1qλ(Xi) −

∏n
i=1pλ(Xi)

]

dπ(λ)

p̄n(X1, . . . , Xn)

≥ 1 − 1

2
EP̄n

∫ [
∏n

i=1qλ(Xi) −
∏n

i=1pλ(Xi)
]

dπ(λ)2

p̄n(X1, . . . , Xn)2
. (5.2)

It suffices to upper bound the expected value on the right side. To this end
we expand the difference

∏n
i=1qλ(Xi) −

∏n
i=1pλ(Xi) as

∑

|I|≥1

∏

i∈Ic pλ(Xi)×
∏

i∈I ℓλ(Xi), where the sum ranges over all nonempty subsets I ⊂ {1, . . . , n}.
We split this sum in two parts, consisting of the terms indexed by subsets of
size 1 and the subsets that contain at least 2 elements, and separate the square
of the sum of these two parts by the inequality (A +B)2 ≤ 2A2 + 2B2.

If n = 1, then there are no subsets with at least two elements and the sec-
ond part is empty. Otherwise the sum over subsets with at least two elements
contributes two times

∫

∫
∑

|I|≥2

∏

i∈Ic pλ(xi)
∏

i∈I ℓλ(xi) dπ(λ)2
∫
∏

i pλ(xi) dπ(λ)
dµn(~xn)

≤
∫ ∫ (

∑

|I|≥2

∏

i∈Ic

√
pλ(xi)

∏

i∈I

ℓλ√
pλ

(xi)

)2

dπ(λ) dµn(~xn)

=
∑

|I|≥2

∫ ∫

∏

i∈Ic

pλ(xi)
∏

i∈I

ℓ2λ
pλ

(xi) dπ(λ) dµn(~xn).

Here to derive the first inequality we use the inequality (EU)2/EV ≤ E(U2/V ),
valid for any random variables U and V ≥ 0, which can be derived from Cauchy-
Schwarz’ or Jensen’s inequality. The last step follows by writing the square of
the sum as a double sum and noting that all off-diagonal terms vanish, as they
contain at least one “loose” ℓλ and

∫

ℓλ dµ = 0. The order of integration in
the right side can be exchanged, and next the integral relative to µn can be
factorized, where the integrals

∫

pλ dµ are equal to 1. This yields the contribution
2
∑

|I|≥2 b
|I| to the bound on the expectation in (5.2).

The sum over sets with exactly one element contributes two times
∫

∫ ∑n
j=1

∏

i 6=j pλ(xi)ℓλ(xj) dπ(λ)2
∫ ∏

i pλ(xi) dπ(λ)
dµn(~xn). (5.3)
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Here we expand

∏

i 6=j

pλ(xi) −
∏

i 6=j

p(xi) =
∏

i 6=j

pλ(xi) −
∏

i 6=j

(pλ − κλ)(xi)

= −
∑

|I|≥1,j /∈I

∏

i∈Ic

pλ(xi)
∏

i∈I

(−κλ)(xi),

where the sum is over all nonempty subsets I ⊂ {1, . . . , n} that do not contain
j. Replacement of

∏

i 6=j pλ(xi) by
∏

i 6=j p(xi) changes (5.3) into

∫

∫ ∑n
j=1

∏

i 6=j p(xi)ℓλ(xj) dπ(λ)2
∫ ∏

i pλ(xi) dπ(λ)
dµn(~xn)

≤ n

n
∑

j=1

∫

∏

i 6=j p
2(xi)

∫

ℓλ(xj) dπ(λ)2
∫ ∏

i pλ(xi) dπ(λ)
dµn(~xn)

≤ n

n
∑

j=1

∫ ∫

∏

i 6=j

p2

pµ
(xi)

∫

ℓλ dπ(λ)2

pµ
(xj) dπ(µ) dµn(~xn).

In the last step we use that 1/EV ≤ E(1/V ) for any positive random variable
V . The integral with respect to µn in the right side can be factorized, and the
expression bounded by n2cn−1d. Four times this must be added to the bound
on the expectation in (5.2).

Finally the remainder after substituting
∏

i 6=j p(xi) for
∏

i 6=j pλ(xi) in (5.3)
contributes

∫

∫ ∑n
j=1

∑

|I|≥1,j/∈I

∏

i∈Ic pλ(xi)
∏

i∈I(−κλ)(xi)ℓλ(xj) dπ(λ)2
∫ ∏

i pλ(xi) dπ(λ)
dµn(~xn)

≤
∫ ∫

(

n
∑

j=1

∑

|I|≥1,j/∈I

∏

i∈Ic

√
pλ(xi)

∏

i∈I

−κλ√
pλ

(xi)
ℓλ√
pλ

(xj)

)2

dπ(λ) dµn(~xn)

≤ n

n
∑

j=1

∫ ∫

(

∑

|I|≥1,j/∈I

∏

i∈Ic

√
pλ(xi)

∏

i∈I

−κλ√
pλ

(xi)

)2
ℓ2λ
pλ

(xj) dπ(λ) dµn(~xn)

= n

n
∑

j=1

∑

|I|≥1,j/∈I

∫ ∫

∏

i∈Ic

pλ(xi)
∏

i∈I

κ2
λ

pλ
(xi)

ℓ2λ
pλ

(xj) dπ(λ) dµn(~xn).

In the last step we use that
∫

κλ dµ = 0 to reduce the square sum to the sum over
the squares of its terms. We exchange the order of integration and factorize the
integral with respect to µn to bound the far right side by n2

∑

|I|≥1,j/∈I a
|I|b.

We are ready for the proof of Theorem 2.1.
The numbers a, b and d in Theorem 2.1 are the maxima over j of the numbers

a, b and d defined in Lemma 5.2, but with the measures Pλ and Qλ replaced
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there by the measures Pj,λj
and Qj,λj

given in (5.1). Define a number c similarly
as

c = max
j

sup
λ

∫

Xj

p2

pλ

dµ

pj
.

Under the assumptions of the theorem c is bounded above by B/B.
Define (N1, . . . , Nk) and the functions ρj as in the statement of Lemma 5.1.

By Lemma 5.2

k
∏

j=1

ρj(Nj) ≥
k
∏

j=1



1 −
Nj
∑

r=2

(

Nj

r

)

br − 2N2
j

Nj−1
∑

r=1

(

Nj − 1

r

)

arb− 2N2
j c

Nj−1d





≥ 1 −
k
∑

j=1





Nj
∑

r=2

(

Nj

r

)

br + 2N2
j

Nj−1
∑

r=1

(

Nj − 1

r

)

arb+ 2N2
j c

Nj−1d



 ,

provided every of the k terms in the product in the middle is nonnegative,
where in the second step we use that

∏k
j=1(1 − aj) ≥ 1 −∑k

j=1aj for any
numbers a1, . . . , ak in [0, 1]. If one or more of the terms are negative, then these
inequalities may be false, but then the far right side is negative and hence still
is a lower bound for the far left side. Hence in all cases

k
∏

j=1

ρj(Nj) ≥ 1 −
k
∑

j=1





Nj
∑

r=2

(

Nj

r

)

br + 2N2
j

Nj−1
∑

r=1

(

Nj − 1

r

)

arb+ 2N2
j c

Nj−1d



 .

By Lemma 5.1 the expectation of the left side is a lower bound on the left side
of the theorem. The expected values on the binomial variables Nj in the right
side can be evaluated explicitly, using the identities, for N a binomial variable
with parameters n and p,

E

N
∑

r=2

(

N

r

)

br = E
(

(1 + b)N − 1 −Nb
)

= (1 + bp)n − 1 − npb,

EN2cN−1 = np(cp+ 1 − p)n−2(cnp+ 1 − p),

EN2
N−1
∑

r=1

(

N − 1

r

)

ar = EN2
(

(1 + a)N−1 − 1
)

= np(1 + ap)n−2(1 + nap+ np− p) − np(1 − p) − n2p2.

Under the assumption that np(1 ∨ a ∨ b ∨ c) . 1, the right sides of these ex-
pressions can be seen (by Taylor expansions with remainder) to be bounded by
multiples of (npb)2, np and (np)2a, respectively. We substitute these bounds
into the expectation of the second last display, and use the equality

∑

j pj = 1
to complete the proof.

Remark 5.1. If minpj ∼ maxj pj ∼ 1/n1+ε for some ε > 0, which arises for
equiprobable partitions in k ∼ n1+ε sets, then there exists a number n0 such that
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P(maxj Nj > n0) → 0. (Indeed, the probability is bounded by k(nmaxj pj)
n0+1.)

Under this slightly stronger assumption the computations need only address Nj ≤
n0 and hence can be simplified.

6. Appendix: Minimax rates and testing hulls

Let P be a set of probability densities p on a measurable space (X ,A) with
corresponding distributions P , and let χ:P → R besome functional. Let P n be
the n-fold product measure of P , and define

Pn,≤0 = {P n: p ∈ P, χ(p) ≤ 0}, Pn,≥ε = {P n: p ∈ P, χ(P ) ≥ ε}.

The convex hulls of these sets are the sets of measures
∑k

i=1λiP
n
i for k ∈ N,

λ1, . . . , λk ≥ 0 with
∑k

i=1λi = 1, and P n
1 , . . . , P

n
k ranging over the set under

consideration.
We are given n i.i.d. observations X1, . . . , Xn distributed according to one of

the densities p ∈ P. An estimator is a measurable function Tn: (X n,An) → R,
and a test φn is an estimator that takes its values in the interval [0, 1].

Proposition 6.1. Suppose that for some εn → 0 there exist measures Pn and
Qn in the convex hulls of Pn,≤0 and Pn,≥εn

, respectively, such that

lim inf
n→∞

(

Pnφn +Qn(1 − φn)
)

> 0,

for any sequence of tests φn. Then,

lim inf
n→∞

1

ε2n
inf
Tn

sup
p∈P

Ep|Tn − χ(p)|2 > 0.

Proof. The assertion is equivalent to the statement that for every estimator
sequence Tn the liminf of ε−2

n supp∈P Ep|Tn −χ(p)|2 is positive. We shall in fact
show that

lim inf
n→∞

sup
p∈P

Pp

(

|Tn − χ(p)| > εn/2
)

> 0.

The assertion then follows, because ε−2EY 2 ≥ P
(

|Y | ≥ ε
)

, for any random
variable Y and every ε > 0.

To prove the assertion in the preceding display suppose that Tn were a se-
quence of estimators for which the right side of the display is 0. We can then
define tests by φn = 1Tn≥εn/2.

If χ(p) ≤ 0, then Tn ≥ εn/2 implies that |Tn − χ(p)| ≥ εn/2, and hence
P nφn ≤ Pp

(

|Tn − χ(p)| ≥ εn/2
)

for every P n ∈ Pn,≤0. It follows that Pnφn ≤
supp Pp

(

|Tn − χ(p)| ≥ εn/2
)

→ 0.
Similarly, if χ(p) ≥ εn, then Tn ≤ εn/2 implies that |Tn − χ(p)| ≥ εn/2, and

hence P n(1 − φn) ≤ Pp

(

|Tn − χ(p)| ≥ εn/2
)

for every P n ∈ Pn,≥εn
. It follows

that Qn(1 − φn) → 0. We have arrived at a contradiction, because both error
probabilities of φn tends to zero.
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