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Transcriptional and Posttranslational Modifications of Titin
Implications for Diastole

Attila Borbély, Loek van Heerebeek, Walter J. Paulus

Myocardial diastolic stiffness has been variably attrib-
uted to extracellular matrix composition, cytoskeletal

properties of cardiomyocytes, or residual diastolic cross-
bridge cycling because of incomplete relaxation or cytosolic
calcium removal.1 Extracellular matrix and cardiomyocyte
cytoskeleton are presumed to mediate chronic rises in myo-
cardial diastolic stiffness, as occur during aging, pressure
overload or heart failure, whereas residual diastolic cross-
bridge cycling accounts for acute changes, as observed during
ischemia, exercise, or pharmacological interventions. The
elegant study by Krüger et al, published in this issue of
Circulation Research, challenges this conceptual frame-
work.2 The study demonstrates that protein kinase (PK)G is
capable of phosphorylating the giant cytoskeletal protein titin,
as previously reported for PKA3,4 and that phosphorylation by
PKG or PKA of a serine residue within the N2B fragment of
titin leads to an acute fall in cardiomyofibrillar stiffness. An
acute effect produced by a cytoskeletal protein invalidates the
concept of distinct mediators for chronic or acute changes in
myocardial diastolic stiffness. From these and other recent
observations it becomes evident that the cytoskeletal protein
titin can alter myocardial diastolic stiffness, both acutely and
chronically, through multiple mechanisms such as isoform
shifts, phosphorylation by PKG or PKA, and titin–actin
interaction at the Z-disc (Figure).

Isoform Shifts of Titin
As a result of alternative splicing, human myocardium
expresses both the stiff N2B and the compliant N2BA titin
isoform. Higher expression of the compliant N2BA titin isoform
has been observed in dilated cardiomyopathy with eccentric
left ventricular (LV) remodeling (ie, low LV mass/volume
ratio).5,6 In these patients, myocardial N2BA/N2B titin iso-
form ratio correlated with peak oxygen consumption during
exercise.6 This correlation with exercise tolerance was ex-
plained by more N2BA and less N2B titin isoform improving
diastolic LV distensibility and enhancing LV preload reserve.

The shift from the N2B to the N2BA titin isoform was
therefore considered to be a compensatory mechanism cor-
recting for a rise in myocardial stiffness induced by changed
composition of the extracellular matrix. This hypothesis was
corroborated by in vitro shifts in titin isoform expression
observed in primary cardiomyocyte cultures prepared from
embryonic rats.7 In these cultures, the shift from the fetal
compliant N2BA titin isoform to the adult stiff N2B titin
isoform depended on matrix stiffness as it differed between
flexible rubber membranes and rigid plastic surfaces.

Although the compensatory role of titin isoform shifts
seems evident in eccentric LV remodeling, similar arguments
are lacking for concentric LV remodeling (ie, high LV
mass/volume ratio). Patients with diastolic heart failure and
concentric LV remodeling had lower N2BA/N2B titin iso-
form ratios than patients with systolic heart failure and
eccentric LV remodeling despite similar myocardial fibrosis.8

Moreover, in spontaneously hypertensive rats with intense
myocardial collagen deposition the N2BA/N2B ratio was
lower than normal.9 Hence, in concentric LV remodeling
shifts in titin isoforms no longer seem to correct for elevated
myocardial stiffness but seem to contribute to it. Stimuli other
than extracellular matrix composition could therefore also be
important for transcriptional modification of titin. This was
indeed demonstrated in cardiomyocyte cultures,7 in which
3,5,3�-triiodo-L-thyronine (T3) was a potent stimulus for
shifting from the fetal N2BA to the adult N2B titin isoform.
Regulation by T3 could also be relevant for failing myocar-
dium because of the marked upregulation of T3 degrading
deiodinase in cardiac hypertrophy and failure.10,11

Phosphorylation of Titin
Previous studies showed administration of PKA to reduce
resting tension of rat cardiomyocytes3 and of rat cardiac
myofibrils.4 The fall in resting tension resulted from phos-
phorylation of the N2B fragment of titin.3 The present study
by Krüger et al2 extended these observations as it identified
the serine residue S469 situated within the N2B fragment of
titin to be the site on the titin molecule responsible for the fall
in resting tension following phosphorylation by either PKG
or PKA. In contrast to PKA, which only phosphorylates titin
at serine residue S469, PKG phosphorylates titin at multiple
sites. An effect on myocardial passive stiffness by PKG
resulted, however, only from phosphorylation of the serine
residue S469. The distinct site, through which phosphoryla-
tion affects cardiomyocyte stiffness, allows for interactive
effects between phosphorylation and isoform shifts and be-
tween phosphorylation and titin–actin overlap.

The phosphorylation-induced reduction of cardiomyocyte
resting tension is titin isoform–dependent, with the largest
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effect observed in rat ventricular myocardium, which has an
N2BA/N2B ratio of �0.1, and the smallest effect in bovine
atrial myocardium, which has an N2BA/N2B ratio of �9.12

These observations are consistent with the reported effects of
PKA administration on resting tension of human cardiomyo-
cytes isolated from LV biopsies of patients with systolic and
diastolic heart failure.8 In patients with systolic heart failure,
who have a higher N2BA/N2B titin isoform ratio, adminis-

tration of PKA resulted in a smaller drop in cardiomyocyte
resting tension than in patients with diastolic heart failure,
who have a lower N2BA/N2B titin isoform ratio.

Patients with diastolic heart failure and type 2 diabetes
mellitus had significantly higher cardiomyocyte resting ten-
sion and wider sarcomeric Z-discs than nondiabetic patients
with diastolic heart failure.13 Z-disc widening had also been
observed previously in transgenic mice after nebulin or
muscle LIM protein knockout. Z-disc widening could imply
altered titin–actin interaction, which is an important determi-
nant of cardiomyocyte resting tension. This was evident from
treatment of cardiac myofibrils with gelsolin, which removed
actin from the cardiomyocytes. Gelsolin treatment resulted in
a fall in steady-state resting tension and dynamic resting
tension transients14,15 because less titin–actin interaction
weakened the anchoring of titin in the Z-disc and reduced the
internal force on the elastic segments of titin. Cardiomyocyte
resting tension still responded to PKA after prior gelsolin
treatment.12 This indicated that phosphorylation of titin could
compensate for cardiomyocyte stiffness changes induced
both by titin isoform shifts and by titin–actin interaction at the
Z-disc. Modified titin–actin interaction could derive not only
from Z-disc widening but possibly also from oxidative
myocardial damage, as suggested by the presence of nitrated
titin and actin fragments in plasma of patients with Chagas
heart disease.16

Weakly Bound Crossbridges
Lower cardiomyocyte resting tension following administra-
tion of PKG or PKA could result not only from more
phosphorylation of titin but also from less actin–myosin
interaction of weakly bound crossbridges. An effect of
weakly bound crossbridges on resting tension of normal
cardiac myofibrils was ruled out in previous studies, which
observed no effect on resting tension of 2,3-butadionemonoxime
(BDM), an ATPase inhibitor that prevents actin–myosin inter-
actions.14 Increased myofilamentary calcium sensitivity ob-
served in failing myocardium could, however, promote forma-
tion of weakly bound crossbridges, and, therefore, actin–myosin
interaction could still be relevant for the high resting tension of
failing cardiomyocytes.8 This was confirmed in a study by Flagg
et al, also reported in this issue of Circulation Research.17 This
study observed significant sarcomere lengthening after adminis-
tration of BDM to cardiomyocytes derived from mice undergo-
ing lipotoxic diabetic cardiomyopathy. Cardiomyocytes isolated
from these cardiomyopathic hearts indeed had increased myo-
filamentary calcium sensitivity.

“Adaptive Suspension”
Phosphorylation by PKG or PKA acutely adjusts the spring
properties of titin and provides the cardiomyocyte with an
“adaptive suspension.” To improve insight into diastolic
dysfunction of diabetic, hypertrophied and failing hearts,
future studies should focus on this adaptive suspension and
investigate titin phosphorylation deficits, relative phosphory-
lation of titin isoforms, and titin phosphorylation correcting
for altered titin–actin interaction.

Figure. Titin alters cardiomyocyte stiffness through isoform
shifts, phosphorylation, and titin–actin interaction. A, Sarcomeric
structure with detailed view of I-band region of N2B titin isoform
showing tandem immunoglobulin (Ig), N2B, and elastic PEVK
segments. B through D, Shift from N2B to N2BA titin isoform (B)
and phosphorylation by PKG or PKA at S469 (C) reduce stiff-
ness of the elastic PEVK segment, whereas wider titin–actin
overlap at the Z-disc possibly increases stiffness of the elastic
PEVK segment (D).
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