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Pioglitazone Improves Cardiac Function and Alters
Myocardial Substrate Metabolism Without Affecting
Cardiac Triglyceride Accumulation and High-Energy

Phosphate Metabolism in Patients With Well-Controlled
Type 2 Diabetes Mellitus

Rutger W. van der Meer, MD, PhD*; Luuk J. Rijzewijk, MD*; Hugo W.A.M. de Jong, PhD;
Hildo J. Lamb, MD, PhD; Mark Lubberink, PhD; Johannes A. Romijn, MD, PhD;

Jeroen J. Bax, MD, PhD; Albert de Roos, MD, PhD; Otto Kamp, MD, PhD;
Walter J. Paulus, MD, PhD; Robert J. Heine, MD, PhD; Adriaan A. Lammertsma, PhD;

Johannes W.A. Smit, MD, PhD; Michaela Diamant, MD, PhD

Background—Cardiac disease is the leading cause of mortality in type 2 diabetes mellitus (T2DM). Pioglitazone has been
associated with improved cardiac outcome but also with an elevated risk of heart failure. We determined the effects of
pioglitazone on myocardial function in relation to cardiac high-energy phosphate, glucose, and fatty acid metabolism
and triglyceride content in T2DM patients.

Methods and Results—Seventy-eight T2DM men without structural heart disease or inducible ischemia as assessed by
dobutamine stress echocardiography were assigned to pioglitazone (30 mg/d) or metformin (2000 mg/d) and matching
placebo for 24 weeks. The primary end point was change in cardiac diastolic function from baseline relative to
myocardial metabolic changes, measured by magnetic resonance imaging, proton and phosphorus magnetic resonance
spectroscopy, and [18F]-2-fluoro-2-deoxy-D-glucose and [11C]palmitate positron emission tomography. No patient
developed heart failure. Both therapies similarly improved glycemic control, whole-body insulin sensitivity, and blood
pressure. Pioglitazone versus metformin improved the early peak flow rate (P�0.047) and left ventricular compliance.
Pioglitazone versus metformin increased myocardial glucose uptake (P�0.001), but pioglitazone-related diastolic
improvement was not associated with changes in myocardial substrate metabolism. Metformin did not affect myocardial
function but decreased cardiac work relative to pioglitazone (P�0.006), a change that was paralleled by a reduced
myocardial glucose uptake and fatty acid oxidation. Neither treatment affected cardiac high-energy phosphate
metabolism or triglyceride content. Only pioglitazone reduced hepatic triglyceride content (P�0.001).

Conclusions—In T2DM patients, pioglitazone was associated with improvement in some measures of left ventricular
diastolic function, myocardial glucose uptake, and whole-body insulin sensitivity. The functional changes, however, were not
associated with myocardial substrate and high-energy phosphate metabolism. (Circulation. 2009;119:2069-2077.)
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Cardiac disease is the leading cause of mortality in type 2
diabetes mellitus (T2DM).1 In asymptomatic patients,

cardiac abnormalities exist, even in the absence of coronary
artery disease (CAD) or hypertension, due to diabetic cardio-
myopathy.2,3 Increased left ventricular (LV) diastolic stiff-

ness is a common and early finding.3 Although diabetic
cardiomyopathy is a multicausal condition, evidence obtained
from animal studies indicates that diabetes-related metabolic
abnormalities are the major contributors to the observed
cardiac defects.3 Thus, increased nonesterified fatty acid
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(NEFA) fluxes that result in myocardial triglyceride accumu-
lation, the formation of toxic intermediates, mitochondrial
dysfunction, and oxidative stress have been implicated.3

Although NEFAs are the preferred cardiac substrate under
physiological conditions, the heart should be able to readily
switch to glucose oxidation during stress or ischemia.

Editorial p 2020
Clinical Perspective p 2077

Because of prolonged exposure to an abnormal metabolic
environment, the diabetic heart may lose its flexibility to
switch between NEFA and glucose as substrates as required
by the circumstances.4 Consequently, the initially adaptive
mechanism will transform into a maladaptive vicious circle
that leads to altered high-energy phosphate metabolism and
contractile dysfunction.3,5 Mechanistic in vivo studies in
humans are limited, but similar mechanisms have been
proposed to underlie human diabetic cardiomyopathy.2,6–9

By targeting lipotoxicity and insulin resistance, the blood
glucose–lowering agent pioglitazone may favorably influence
cardiac risk in T2DM.10,11 In the PROactive Study (PROspec-
tive pioglitAzone Clinical Trial In macroVascular Events),
pioglitazone reduced cardiovascular disease in high-risk pa-
tients with T2DM.12 However, although pioglitazone im-
proved cardiac function in experimental diabetic cardiomy-
opathy,13,14 its use in patients may result in heart failure due
to fluid retention.15 Inasmuch as the majority of patients in the
PROactive study had CAD and longstanding diabetes, it is
feasible that cardiac inability to accommodate metabolic
changes may have contributed to the pioglitazone-related
heart failures. Indeed, substrate manipulation in heart failure
due to CAD decreased myocardial efficiency and cardiac
function,16 which reveals the close connection of metabolism
and function in the compromised heart. At present, however,
it is unknown whether interventions aimed at altering cardiac
metabolism will lead to changes in function in the nonische-
mic diabetic heart. We studied the effect of pioglitazone
versus metformin on myocardial function, dimensions, and
perfusion in association with cardiac glucose and fatty acid
metabolism, as well as triglyceride content and high-energy
phosphate metabolism, using magnetic resonance imaging
(MRI), magnetic resonance (MR) spectroscopy, and positron
emission tomography (PET). To avoid confounding by ische-
mia, we performed the studies in patients with well-controlled
T2DM of short duration and with verified absence of cardiac
ischemia.

Methods
Study Design and Patients
The PIRAMID (Pioglitazone Influence on tRiglyceride Accumula-
tion in the Myocardium In Diabetes) study was a 24-week prospec-
tive, randomized, double-blind, double-dummy with active compar-
ator, 2-center parallel-group intervention. Men with uncomplicated
T2DM, 45 to 65 years of age, were eligible. Inclusion criteria were
a glycohemoglobin level of 6.5% to 8.5% at screening, body mass
index [weight/(length2)] of 25 to 32 kg/m2, and blood pressure not
exceeding 150/85 mm Hg (with or without the use of antihyperten-
sive drugs). Exclusion criteria were any clinically significant disor-
der, particularly any history or complaints of cardiovascular or liver
disease or diabetes-related complications, and prior use of thiazo-

lidinediones or insulin. Written informed consent was obtained from
all participants. The protocol was approved by the medical ethics
committee of both centers, and the study was performed in full
compliance with the Declaration of Helsinki.

Study Procedures
Participants underwent a 2-step screening procedure that consisted of
a medical history, physical examination, ECG, Ewing tests to
exclude autonomic neuropathy, and fasting blood and urine analysis
(screening visit 1), as well as dobutamine stress echocardiography to
exclude cardiac ischemia or arrhythmias (screening visit 2). After
successful screening, participants entered a 10-week run-in period
during which their previous blood glucose–lowering agents (met-
formin monotherapy 39.8%, sulfonylurea monotherapy 25.6%, and
metformin and sulfonylurea combination therapy 34.6%) were
washed out; they were transferred to glimepiride monotherapy,
which was titrated until a stable dose was reached during the 8 weeks
before randomization. Mean glycohemoglobin levels at screening
and at the end of the run-in period were comparable (data not
shown). All patients underwent MRI; the first 60 patients underwent
both MRI and PET examinations (see below). Because of the
demanding protocol, phosphorus MR ([31P]-MR) spectroscopy was
offered as an optional test.

Patients were randomized to pioglitazone (15 mg once daily,
titrated to 30 mg once daily after 2 weeks) or metformin (500 mg
twice daily, titrated to 1000 mg twice daily) and matching placebo,
to be taken in addition to glimepiride throughout the study. A
randomization code list, with a block size of 4, was generated by the
trial pharmacist (Amsterdam). Treatments were allocated chronolog-
ically and stratified for study center. All study investigators and
study personnel were unaware of treatment assignment for the
duration of the study. If recurrent hypoglycemia occurred, the
glimepiride dose was lowered in a stepwise fashion to levels of
nonoccurrence. Back titration to pioglitazone 15 mg once daily or
metformin 500 mg twice daily was made if persistent, study
drug–related side effects occurred. Patients were assessed in the
fasting state at 2- to 8-week intervals for 24 weeks and underwent
outcome measurements at baseline and at study termination as
outlined below. They were requested to adhere to prestudy lifestyle
and dietary habits throughout the study.

Cardiac MRI Protocol
MR assessments were performed after an overnight fast at a single
site (Leiden) with a 1.5-T whole-body MR scanner (Gyroscan
ACS/NT15; Philips, Best, the Netherlands). During MR examina-
tions, blood samples were collected to determine substrates, and
blood pressure and heart rate were monitored. Rate-pressure product
was calculated as the product of systolic blood pressure and heart
rate. The entire heart was imaged in the short-axis orientation with
ECG-gated breath-hold balanced steady state free-precession imag-
ing.17 Measures of systolic function were LV ejection fraction and
cardiac index (cardiac index�cardiac output/body surface area). LV
end-diastolic volume, LV end-systolic volume, and stroke volume
were cardiac dimensions. An ECG-gated gradient echo sequence
with velocity encoding was performed to measure blood flow across
the mitral valve for the determination of LV diastolic function
parameters, including peak filling rates of the early filling phase (E)
and atrial contraction (A), and their ratio (E/A) was calculated. Also,
the peak (E-decpeak) and mean (E-decmean) deceleration gradients of E
were calculated.17 LV filling pressures (E/Ea) were estimated.18

Images were analyzed quantitatively with dedicated software (MASS
and FLOW, Medis, Leiden, the Netherlands).

Cardiac and Hepatic Proton MR Spectroscopy
Cardiac and hepatic proton MR spectroscopy ([1H]-MRS) was
performed as described previously.17,19 Briefly, myocardial [1H]-
MRS spectra were obtained from the interventricular septum care-
fully to avoid contamination from epicardial fat. Spectroscopic data
acquisition was double-triggered with ECG triggering and respira-
tory navigator echoes to minimize motion artifacts. Water-
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suppressed spectra were acquired to measure myocardial triglyceride
content, and spectra without water suppression were acquired and
used as an internal standard.17 [1H]-MRS data were fitted by use of
Java-based MR user interface software (jMRUI version 2.2, Leuven,
Belgium), as described previously.19 Myocardial triglyceride content
relative to water was calculated as (signal amplitude of triglyceride)/
(signal amplitude of water)�100.17,19 [1H]-MRS of the liver was
performed with an 8-mL voxel positioned in the liver, with care
taken to avoid gross vascular structures and adipose tissue depots.
The twelfth thoracic vertebra was used as a landmark to ensure the
same voxel position during both visits. Sixty-four averages were
collected with water suppression.19

Phosphorus MRS
A 100-mm-diameter surface coil was used to acquire ECG-triggered
[31P]-MR spectra of the LV anterior wall with subjects in the supine
position. Volumes of interest were selected by image-guided spec-
troscopy with 3D-ISIS. Shimming was performed automatically, and
tuning and matching of the [31P] surface coil were performed
manually. Technical details of data acquisition and spectral quanti-
fication were similar to those described previously.20 In brief,
spectroscopic volume size was typically 7�7�7 cm. Acquisitions
were based on 192 averaged free induction decays, and total
acquisition time was 10 minutes. [31P]-MR spectra were quantified
automatically in the time domain by use of prior spectroscopic
knowledge and were corrected for partial saturation effects and for
the ATP contribution from blood in the cardiac chambers. The
phosphocreatine/ATP ratios of the spectra were calculated and used
as a parameter to represent myocardial high-energy phosphate
metabolism.21

PET Imaging Protocol
PET examinations were performed after an overnight fast at a single
center (Amsterdam) with an ECAT EXACT HR� scanner (Siemens/
CTI, Knoxville, Tenn). Patients received 2 venous catheters, 1 in the
antecubital vein and 1 in the vein of the opposite hand, the latter
being wrapped in a heated blanket to obtain arterialized blood.
During procedures, patients were monitored by telemetry, and blood
pressure was measured at 5-minute intervals. PET was used to
measure myocardial blood flow with H2

15O; myocardial fatty acid
uptake, �-oxidation, and esterification with [11C]palmitate; and
myocardial metabolic rate of glucose uptake (MMRglu) with [18F]-
2-fluoro-2-deoxy-D-glucose (18FDG). Perfusion and NEFA metabo-
lism were assessed in the fasting state, whereas MMRglu was
measured during a euglycemic-hyperinsulinemic clamp procedure
(see below). After a 10-minute transmission scan, H2

15O was injected
(t�10 minutes), and a 10-minute dynamic emission scan (40 frames)
was acquired. Subsequently, a 30-minute dynamic emission scan (34
frames) was performed after [11C]palmitate injection (t�35 minutes).
Next, the clamp procedure was begun (t�65 minutes), as described
previously,22 to approximate an isometabolic steady state and mea-
sure whole-body insulin sensitivity. At steady state (approximately
t�155 minutes), after a new transmission scan was performed,
18FDG was injected, and a 60-minute dynamic emission scan (40
frames) was acquired. Blood samples were collected during [11C]palmi-
tate and 18FDG scans at predefined time points to measure glucose,
NEFA, lactate, lipids, and insulin levels. In addition, 11CO2 was
measured during the [11C]palmitate scan.9

PET Image Analysis
PET data were quantitatively reconstructed with filtered backproj-
ection, with all appropriate corrections applied. To generate myo-
cardial time-activity curves, regions of interest were defined on
resliced LV short-axis (summed) [11C]palmitate and 18FDG images
and subsequently projected onto the dynamic images. Regions of
interest were drawn as described previously23 and grouped for
further analysis. Myocardial segments exposed to liver spill-in were
omitted from the analysis of [11C]palmitate data. Additional regions
of interest were defined in left and right ventricular chambers for
[11C]palmitate and H2

15O image–derived input functions. A separate

aorta ascendance region of interest was defined for 18FDG image–
derived input functions.

Myocardial blood flow was determined with the standard single-
tissue compartment model.24 [11C]palmitate time-activity curves
were analyzed with a 3-tissue plasma input kinetic model, which,
together with plasma NEFA concentrations, enabled calculation of
myocardial fatty acid uptake, oxidation, and esterification.25 The
[11C]palmitate image–derived input function was corrected for 11CO2

metabolites and the difference between plasma and whole-blood
concentrations, as described elsewhere.9 This model is similar to that
described by Bergmann et al26 but has a reduced number of
parameters, thereby increasing the precision of derived estimates
(see online-only Data Supplement for details). MMRglu was calcu-
lated by multiplying the net influx constant for 18FDG, Ki, by the
mean plasma glucose concentration. For determination of Ki, Patlak
graphic analysis was used.27

Study End Points
The primary end point was change from baseline to follow-up (24
weeks) in diastolic function as operationalized by the 4 parameters,
ie, the E-decpeak and E-decmean, early peak filling rate, and E/A ratio.
Secondary efficacy measures included difference in cardiac dimen-
sions, systolic function parameters, and myocardial metabolism and
perfusion variables, as described above, as well as differences in
hepatic and myocardial triglyceride content, body mass index, blood
pressure, glycohemoglobin (reference values 4.3% to 6.1%), plasma
lipids, and whole-body insulin sensitivity. Exploratory analyses
included changes in the relation of LV end-diastolic volume and
estimates of LV filling pressure, including N-terminal pro-brain
natriuretic peptide, the ratio of early diastolic velocity (E) and early
diastolic tissue velocity (Ea), and high-energy phosphate metabolism
(phosphocreatine/ATP ratio). Blood samples for end-point measure-
ments were analyzed at a central laboratory (Amsterdam).

Statistical Analysis
Because at the time of study design, no data were available relative
to the effect of thiazolidinediones on MR-measured cardiac function,
we based our sample-size calculations on previous MR studies.2 To
detect a subtle 15% (SD 20%) difference in the diastolic functional
parameter of early peak filling rate with 90% power, �80 random-
ized patients were needed (primary end point). The sample size for
the PET measurements was based on available PET studies.6 We
calculated that 60 randomized patients would be necessary to detect
a difference of 20% (SD 25%; estimated dropout rate 20%) in
cardiac metabolism with 80% power. Values are shown as mean�SE
or median (interquartile range) when nonnormally distributed.
Between-group comparisons were performed with ANCOVA with
adjustments for treatment group and baseline values. Within-group
changes from baseline were assessed with independent paired t tests
or Wilcoxon signed-rank tests. Correlations were calculated by
Pearson’s or Spearman’s correlation analyses, as appropriate. All
statistical tests were 2-sided, and significance was considered at the
level of 0.05. Analyses were done with SPSS software version 15.0
(SPSS Inc, Chicago, Ill). This study was initiated, designed, per-
formed, analyzed, and submitted for publication by the investigators
at both centers, without any interference from the funding source.

The authors had full access to and take full responsibility for the
integrity of the data. All authors have read and agree to the
manuscript as written.

Results
Figure 1 shows the trial flowchart. At baseline, the study
groups were well matched (Tables 1 and 2). Glimepiride dose
adjustment was needed in 4 patients randomized to pioglita-
zone and in 3 assigned to metformin. Two patients required
metformin back titration. No clinically evident fluid retention
or heart failure occurred during the study.

At 24 weeks, pioglitazone and metformin similarly im-
proved glycemic control versus baseline (Table 2). Pioglita-
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zone versus metformin significantly increased HDL, whereas
metformin decreased total cholesterol and LDL cholesterol
levels (Table 2). Pioglitazone but not metformin induced
weight gain relative to baseline (from 91�2 to 94�2 kg
versus 92�2 to 92�3 kg; between-group P�0.001). Both
pioglitazone and metformin significantly improved whole-body
insulin sensitivity, by a median 35.1% and 29.6%, respectively,
which was paralleled by reduced NEFA levels during hyperin-
sulinemia that were more suppressed by pioglitazone (Table
2); however, neither treatment affected fasting NEFA levels.
Metformin increased and pioglitazone decreased fasting lac-
tate levels (Table 2). In both groups, similar decreases in
systolic blood pressure and rate-pressure product were ob-
served, whereas diastolic blood pressure and heart rate
remained unchanged (Table 3).

At follow-up, pioglitazone increased indices of diastolic
function, including E-decpeak, E-decmean, and the early peak
filling rate (Table 3). Pioglitazone-treated patients showed an
increase in LV end-diastolic volume, whereas N-terminal
pro-brain natriuretic peptide levels and E/Ea remained un-
changed (Tables 2 and 3). In contrast to metformin, piogli-
tazone shifted the relations of LV end-diastolic volume and
estimates of LV filling pressure toward improved compliance

(Figure 2A and 2B). Metformin had no significant effect on
the diastolic cardiac parameters measured. Comparisons be-
tween groups of diastolic function parameters revealed a
significant difference in early peak filling rate, whereas only
a trend was observed for E-decmean (Table 3). A significant
between-group difference in stroke volume, cardiac index,
and cardiac work was observed, whereas ejection fraction
remained unaltered in both groups (Table 3).

PET examinations were successful in 54 subjects (90%).
At follow-up, pioglitazone significantly increased and met-
formin markedly decreased MMRglu from baseline
(between-group P�0.001; Figure 2C and 2D). At 24 weeks,
pioglitazone and metformin therapy did not significantly
change myocardial fatty acid uptake from baseline, whereas
only metformin significantly reduced myocardial fatty acid
oxidation (Figure 2D). Myocardial fatty acid esterification
was negligible in both groups; however, increases from
baseline were observed after pioglitazone and to a lesser
extent after metformin therapy (Figure 2C and 2D). These
minor changes measured by PET were not detected by the
[1H]-MRS measurements, because myocardial triglyceride
content remained unchanged in both groups (pioglitazone
0.77�0.05% versus 0.82�0.07%; metformin 0.87�0.08%

Figure 1. Trial profile.
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versus 0.89�0.07%; between-group P�0.774). In contrast,
pioglitazone but not metformin decreased hepatic triglyceride
content (pioglitazone 5.9% [2.6% to 17.4%] versus 4.1%
[1.9% to 12.3%]; metformin 7.7% [3.7% to 23.9%] versus
10.7% [5.1% to 22.0%]; between-group P�0.001). Phospho-
creatine/ATP ratio was successfully obtained on both study
occasions from 22 patients (n�13 in the pioglitazone group),
which was similar at baseline in both groups and was not
influenced by either treatment (pioglitazone 2.02�0.06 ver-

sus 1.99�0.11; metformin 2.19�0.10 versus 2.04�0.07;
between-group P�0.976). Phosphocreatine/ATP ratio of the
remaining participants either could not be collected at base-
line or at follow-up or appeared to be of insufficient spectral
quality (Cramér-Rao SD �20%). Metformin but not pioglita-
zone slightly increased myocardial blood flow from baseline
(metformin 0.86�0.05 to 0.93�0.04 g � mL�1 � min�1; pioglita-
zone 0.94�0.04 versus 0.92�0.03 g � mL�1 � min�1; between-
group P�0.254). No associations were observed between
pioglitazone-related changes in diastolic function and alterations
in myocardial NEFA metabolism, MMRglu, or phosphocre-
atine/ATP ratio (data not shown).

Discussion
Pioglitazone but not metformin improved LV diastolic function
and compliance in men with well-controlled, uncomplicated
T2DM and verified absence of cardiac ischemia. Although
both treatments improved whole-body insulin sensitivity,
pioglitazone and metformin induced differential alterations in
myocardial substrate utilization. These changes in substrate
utilization did not affect high-energy phosphate metabolism
or myocardial triglyceride content, but only pioglitazone
significantly lowered hepatic triglyceride content. The effects
of pioglitazone on diastolic function were not related to
myocardial metabolism.

Thiazolidinedione-related improvements in cardiac diastol-
ic function have been reported by some studies28,29 but not by
others.30,31 These contrasting findings may be due to differ-
ences in study populations, severity and duration of diabetes,
comorbid conditions (including preexistent cardiac dysfunc-
tion and CAD), medication use, and the use of echocardiog-
raphy versus MRI in small populations. The relatively normal
cardiac function at baseline may explain the seemingly

Table 1. Patient Characteristics at Baseline*

Pioglitazone
(n�39)

Metformin
(n�39)

Age, y 56.8�1.0 56.4�0.9

Time since diagnosis of diabetes, y 4 (3–6) 3 (1–5)

Current smoker, n (%) 10 (26) 7 (18)

Body mass index, kg/m2 28.2�0.5 29.3�0.6

Waist circumference, cm 103.8�1.5 104.9�1.8

Concomitant medication, n (%)

Statin 19 (48.7) 19 (48.7)

Any antihypertensive medication 19 (48.7) 15 (38.5)

�-Blocker 5 (12.8) 2 (5.1)

Diuretic 6 (15.4) 6 (15.4)

ACE inhibitor 9 (23.1) 9 (23.1)

ARB 6 (15.4) 3 (7.7)

Calcium antagonist 1 (2.6) 3 (7.7)

ACE indicates angiotensin-converting enzyme; ARB, angiotensin receptor
blocker.

Values are presented as mean�SE, median (interquartile range), or No. and
% of total.

*No statistically significant differences were found between treatment groups.

Table 2. Biochemical and Metabolic Characteristics and Whole-Body Insulin Sensitivity at Baseline and 24 Weeks

Pioglitazone Metformin

Baseline 24 Weeks P Baseline 24 Weeks P P (Between Groups)

Fasting

HbA1c, % 7.1�0.2 6.5�0.1 �0.001 7.0�0.1 6.3�0.1 �0.001 0.146

Plasma glucose, mmol/L 8.4 (7.2–10.3) 7.6 (6.7–9.4) 0.002 8.2 (6.8–9.1) 6.8 (5.8–7.4) 0.001 0.141

NEFA, mmol/L 0.45 (0.41–0.59) 0.46 (0.34–0.57) 0.369 0.53 (0.39–0.77) 0.49 (0.39–0.56) 0.136 0.933

Insulin, pmol/L 58 (38–83) 49 (34–70) 0.106 80 (31–99) 59 (32–98) 0.377 0.151

Lactate, mmol/L 1.2 (1.0–1.5) 1.0 (0.8–1.2) 0.001 1.1 (1.0–1.5) 1.5 (1.2–1.8) 0.012 0.001

Total cholesterol, mmol/L 4.5�0.1 4.6�0.2 0.374 4.9�0.2 4.5�0.2 0.001 0.042

LDL cholesterol, mmol/L 2.5�0.1 2.5�0.1 0.380 2.9�0.1 2.6�0.2 0.001 0.107

HDL cholesterol, mmol/L 1.07 (0.94–1.28) 1.23 (0.99–1.46) 0.003 1.13 (0.90–1.42) 1.02 (0.86–1.26) 0.133 0.009

Triglycerides, mmol/L 1.4 (1.0–2.2) 1.4 (0.9–2.3) 0.926 1.5 (0.9–2.1) 1.7 (0.9–2.3) 0.519 0.596

NT-proBNP, ng/L 24 (20–38) 26 (19–40) 0.731 32 (18–43) 33 (20–43) 0.134 0.505

During hyperinsulinemia

NEFA, mmol/L 0.07 (0.05–0.13) 0.04 (0.02–0.05) �0.001 0.09 (0.04–0.16) 0.06 (0.03–0.14) 0.006 0.036

Insulin, pmol/L 572 (503–620) 521 (447–590) 0.014 614 (540–710) 520 (472–601) �0.001 0.292

Lactate, mmol/L 1.1 (1.0–1.3) 1.1 (1.0–1.2) 0.070 1.0 (0.9–1.3) 1.4 (1.2–1.7) �0.001 0.001

M/I value, (mg/kg � min)/(pmol/L) 0.46 (0.28–0.73) 0.54 (0.43–0.97) 0.001 0.45 (0.19–0.80) 0.58 (0.35–1.00) 0.033 0.501

LDL indicates low-density lipoprotein; HDL, high-density lipoprotein; NT-proBNP, N-terminal pro-brain natriuretic peptide; and M/I value, whole-body insulin
sensitivity adjusted during steady state.

Data are mean (SE) or median (interquartile range).
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modest pioglitazone-induced diastolic functional improve-
ments in patients in the present study. Given the absence of
treatment-related effects on the MR estimate of LV filling
pressure (E/Ea) in both treatment groups, we hypothesize that
pioglitazone-improved LV compliance accounts for the ob-

served favorable changes in the transmitral filling pattern.
The most important finding in LV functional change, how-
ever, was the pioglitazone-related increase in LV end-diastol-
ic volume at similar estimates of LV filling pressure, which is
compatible with an improved LV compliance.32,33 These data

Table 3. Hemodynamic Parameters and Cardiac Dimensions and Function at Baseline and 24 Weeks

Pioglitazone Metformin

Baseline 24 Weeks P Baseline 24 Weeks P P (Between Groups)

Hemodynamics

Systolic blood pressure, mm Hg 130�2 125�2 0.036 126�2 121�2 0.026 0.486

Diastolic blood pressure, mm Hg 77�1 74�1 0.064 74�1 73�1 0.118 0.971

Heart rate, beats/min 65�1 63�1 0.235 65�1 64�1 0.061 0.904

Rate pressure product, (beats/min) � mm Hg 8508�256 7853�195 0.040 8206�215 7744�193 0.009 0.771

Cardiac function and dimensions

LV mass, g 108�2 105�3 0.171 107�3 103�3 0.066 0.542

LV end-systolic volume, mL 66�3 66�3 0.821 60�2 59�2 0.704 0.911

LV end-diastolic volume, mL 160�4 166�5 0.045 152�4 148�4 0.148 0.003

Stroke volume, mL 94�3 99�3 0.016 92�3 89�2 0.095 0.001

Ejection fraction, % 59�1 60�1 0.228 61�1 60�1 0.574 0.533

Cardiac index, L � min�1 � m�2 2.9�0.1 2.9�0.1 0.845 2.9�0.1 2.7�0.1 0.019 0.008

Cardiac work, mm Hg � L�1 � min�1 57�2 57�2 0.898 55�2 50�2 0.002 0.006

E peak filling rate, mL/s 422�15 440�14 0.067 409�14 407�13 0.890 0.047

E-decpeak, mL/s2�10�3 3.5�0.2 3.8�0.2 0.034 3.5�0.2 3.5�0.2 0.792 0.106

E-decmean, mL/s2�10�3 2.3�0.1 2.4�0.1 0.080 2.3�0.1 2.2�0.1 0.498 0.064

E/A peak flow 1.07�0.05 1.09�0.05 0.583 1.01�0.04 1.01�0.03 0.939 0.348

E/Ea 9.2 (7.4–11.4) 9.1 (6.6–12.0) 0.695 9.3 (6.3–12.3) 10.3 (8.3–11.8) 0.203 0.254

Data are mean�SE, except for E/Ea, which is median (interquartile range).

Figure 2. Relations of LV end-diastolic volume (LVEDV) and estimates of LV filling pressure, including E/Ea (A) and N-terminal pro-brain
natriuretic peptide (NT-proBNP; B), before (black) and after (white) 24 weeks of treatment with pioglitazone (circles) or metformin
(squares). Myocardial fatty acid uptake (MFAU), oxidation (MFAO), and esterification (MFAE) and the metabolic rate of glucose uptake
(MMRglu) in patients with T2DM before (black) and after (white) 24 weeks of treatment with pioglitazone (C) or metformin (D). Probabil-
ity values for between-group differences: MFAU, P�0.056; MFAO, P�0.091; MFAE, P�0.467; and MMRglu, P�0.001. Myocardial fatty
acid metabolism was assessed during fasting, and myocardial glucose metabolism was assessed during hyperinsulinemia.
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are in line with earlier findings in diabetic rats showing that
pioglitazone improved diastolic function by reducing myo-
cardial collagen content and by favorably affecting matrix
remodeling.13,34 A more recently described mechanism pos-
sibly underlying the observed LV compliance improvement
may be the pioglitazone-induced inhibition of macrophage
chemotaxis, cardiac macrophage expression of proinflamma-
tory genes, and secretion of the inflammatory glycophospho-
protein osteopontin, which is associated with myocardial
fibrosis and stiffness.35

Only pioglitazone increased stroke volume, as reported by
others, possibly owing to a decrease in peripheral resis-
tance.36 Metformin trended to decrease cardiac index, which
is compatible with the reported metformin-related effects on
cardiac sympathovagal balance.37 Both treatments induced
similar decreases in systolic blood pressure and rate-pressure
product, whereas diastolic blood pressure and heart rate
remained unchanged. Although previous studies showed
comparable decreases in systolic blood pressure after thiazo-
lidinedione therapy, the observation that systolic blood pres-
sure was also reduced by metformin suggests that part of the
changes in systolic blood pressure may be attributed to an
initial stress response rather than to the effect of therapy.38

The present study is timely in light of the ongoing debate
on the safety profile of thiazolidinediones.39,40 During this
short-term trial, we observed no cardiac events or heart
failure. In the PROactive Study population, the majority of
whom had a history of CAD, pioglitazone use was associated
with an increased risk of heart failure. The present data
indicate that when pioglitazone is used in patients with
uncomplicated T2DM without cardiac ischemia, it may re-
verse the process of cardiac concentric remodeling, which is
among the hallmarks of diabetic cardiomyopathy, by shifting
the LV end-diastolic pressure-volume relation toward im-
proved compliance. However, it is conceivable that in pa-
tients with compromised hearts, in particular those with
(ischemic) dilated cardiomyopathy, pioglitazone may actually
promote the risk of overt heart failure.

Cardiac glucose uptake was assessed under hyperinsu-
linemic euglycemic conditions to standardize metabolic con-
ditions and to improve the signal-to-noise ratio. Because
NEFA substrate metabolism was measured in the fasting
state, direct reciprocal associations of cardiac glucose and
NEFA metabolism were limited. Both treatments induced
significant albeit different changes in cardiac substrate me-
tabolism. Pioglitazone increased MMRglu, which may be due
to the simultaneous reduction of competing substrates, in
particular NEFA, but also may be due to direct enhancement of
myocardial insulin signaling and expansion of the available pool
and translocation of GLUT-4 receptors in the heart.31

Metformin significantly lowered MMRglu and myocardial
fatty acid oxidation. These changes were paralleled by an
increase in plasma lactate, although NEFA levels decreased
during hyperinsulinemia and remained unchanged during
fasting. Others have shown a trend toward MMRglu decline
but no changes in lactate levels in 9 patients after 26-week
metformin therapy.41 The normal human heart may be re-
garded as a metabolically flexible omnivore that utilizes the
most energy-efficient substrate available. Although NEFAs

are the preferential substrate because they have the highest
ATP yield, during stress, increased workload, and ischemia,
the heart can switch to energetically more favorable sub-
strates, including glucose and lactate.3 Because myocardial
lactate uptake has been shown to be directly proportional to
circulating lactate levels,42 it might be speculated that met-
formin could have increased myocardial lactate utilization, as
was previously shown for skeletal muscle.43 However, the
observed decreases in cardiac glucose and NEFA metabolism
in the metformin group might also be linked to the treatment-
related reduction in cardiac work, because less ATP needs to be
generated to maintain adequate high-energy phosphate levels.

Unexpectedly, and contrary to findings from animal stud-
ies, we found no association between treatment-related cardiac
functional and metabolic changes. Few and partly conflicting
data exist on NEFA uptake/utilization in the human (pre)diabetic
heart and its relation to cardiac function.44,45 On the basis of
animal studies, it was proposed that the diabetic heart
primarily relies on the abundantly supplied NEFA in the
presence of myocardial insulin resistance.46 Chronically ele-
vated NEFA utilization may lead to impaired �-oxidation,
accumulation of toxic intermediates, production of reactive
oxygen species, mitochondrial dysfunction, and finally, car-
diac functional abnormalities. Because glucose oxidation
relative to NEFA oxidation requires less oxygen per mole of
ATP produced, therapies that enhance myocardial glucose
utilization, including insulin and thiazolidinediones, have
been advocated in T2DM patients with cardiac ischemia.
However, it is unknown whether enforced myocardial glu-
cose use is beneficial in all circumstances.

Similarly, rosiglitazone increased MMRglu in T2DM pa-
tients with CAD without affecting echocardiographically
measured function.31 Additionally, indirect stimulation of
myocardial glucose metabolism by acute deprivation of
NEFA by acipimox in heart failure patients resulted in
depressed cardiac work and efficiency.16 These findings
support the notion that compromised hearts may lose their
flexibility to respond to imposed changes in substrate avail-
ability and readily switch to another substrate. In contrast, it
is likely that the myocardiums of patients with uncomplicated
T2DM of short duration still possesses sufficient oxidative
capacity to benefit from NEFA as the preferential myocardial
substrate. Forced glucose utilization in these patients will not
necessarily lead to improved cardiac function. Because
changes in myocardial metabolism and function in the
pioglitazone-treated patients were not related, it is unlikely
that the improvement in diastolic function originated from
altered metabolism.

Because we did not measure myocardial oxygen consump-
tion, no calculation of treatment-related changes in cardiac
efficiency can be made. Nevertheless, because resting perfu-
sion is tightly coupled to oxidative metabolism, the un-
changed cardiac work and resting perfusion after pioglitazone
may suggest that cardiac efficiency was unaffected by this
therapy. In contrast, metformin significantly reduced cardiac
work and increased resting perfusion, both of which effects
appear compatible with an actual reduction in cardiac effi-
ciency. These changes, however, did not translate into a
decrease in phosphocreatine/ATP ratio, which implies an
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adaptive cardiac response sufficient to preserve high-energy
phosphate metabolism. Additional studies addressing the
effects of these pharmacological interventions relative to
myocardial energetics and efficiency in T2DM are warranted.

Pioglitazone decreased hepatic but not myocardial triglyc-
eride content, which indicates differential regulation of vari-
ous body lipid compartments. We recently found an indepen-
dent association between diastolic function and myocardial
triglyceride content in T2DM patients,47 which confirms and
extends previous data from McGavock et al.8 However, as
noted earlier, because myocardial triglyceride content was not
altered by pioglitazone, the improvements in LV filling
dynamics and compliance were likely caused by other mech-
anisms.13,34,35 The actual mechanisms by which pioglitazone
improved LV diastolic function and compliance, however,
could not be identified in the present study with the present
technology. Further studies are therefore warranted to define
those mechanisms.

The major asset of the present study is the combined use of
PET, MRI/[1H]-MRS, and [31P]-MR to evaluate the cardiac
effects of pioglitazone and metformin. The relatively short
intervention time and the exclusion of women and patients
with ischemia, however, are limitations that preclude gener-
alization of the results.

Conclusions
Only pioglitazone improved LV diastolic function and com-
pliance, whereas both pioglitazone and metformin altered
myocardial substrate metabolism, likely owing to treatment-
specific changes in plasma substrate levels. Pioglitazone-
related improvement in diastolic function was not associated
with concomitant alterations in myocardial substrate metab-
olism. Treatment with pioglitazone in patients with uncom-
plicated, well-controlled T2DM and absence of cardiac ische-
mia might be beneficial, as demonstrated by the improved
diastolic function and LV compliance, in the presence of
unaltered myocardial high-energy phosphate metabolism.
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CLINICAL PERSPECTIVE
Cardiac disease is the leading cause of mortality in type 2 diabetes mellitus. The blood glucose–lowering thiazolidinedione
pioglitazone has been associated with improved cardiac outcome but also with an elevated risk of congestive heart failure.
Use of metformin, at present the drug of choice in the treatment of type 2 diabetes mellitus, showed improved outcome
in the United Kingdom Prospective Diabetes Study but has been related to adverse cardiac events in other studies. Using
magnetic resonance imaging and proton and phosphorus magnetic resonance spectroscopy, as well as [18F]-2-fluoro-2-
deoxy-D-glucose and [11C]palmitate positron emission tomography, this randomized, controlled, double-blinded study
investigated the effects of 24-week treatment with pioglitazone or metformin on myocardial function and metabolism in
men with well-controlled, uncomplicated type 2 diabetes mellitus who had no clinical evidence of myocardial ischemia.
The major findings revealed that pioglitazone but not metformin improved left ventricular diastolic function and cardiac
compliance. In addition, pioglitazone and metformin showed differential action on myocardial substrate metabolism;
however, this did not translate into alterations in myocardial high-energy phosphate metabolism or myocardial triglyceride
content. Both agents improved whole-body insulin sensitivity. None of the treatments were associated with clinically
evident edema or congestive heart failure. These data suggest that for male patients with well controlled, uncomplicated
type 2 diabetes mellitus without cardiac ischemia, treatment with pioglitazone may be a good safe option because it may
favorably influence myocardial function.
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Supplemental material 

 

For [11C]palmitate kinetic analysis, a modification of the three tissue plasma input model as proposed by 

Schelbert 1 and Bergmann 2 was used which is shown in Figure X. The first tissue compartment is the 

cytosol and the third is the mitochondrion. The second compartment describes the slow turnover pool of 

esterified [11C]palmitate. A total of three rate constants between the compartments were used. The first, 

kp1, simply reflects myocardial perfusion and capillary permeability for [11C]palmitate. This perfusion 

phase is followed by two elimination phases. The first elimination phase is considered to represent beta-

oxidation, k13, and it is clinically the most important. The parameter k12 mainly reflects esterification into 

a slow turnover pool.3 Spill-over of activity from the left ventricle pool into the myocardium was also 

included in the model. 

 

The model is an optimized trade-off between detail in tracer physiology and accuracy of parameter 

estimation. To this end, back-diffusion of unaltered [11C] Palmitate (k1p) was omitted since it 

mathematically cannot be estimated independently from the parallel oxidation-path (k13, k3p). 

Furthermore, the transfer rate from the esterification pool back to the cell k21 was fixed to zero based on 

earlier findings that this rate is orders of magnitude smaller than the influx k12 in the pool.3,4  Finally, k3p 

was fixed equal to k13 ,based on the assumption that no 11CO2 is accumulated in the cell. 

 

As input to the model, [11C]palmitate concentrations were determined by correcting venous whole-blood 

samples for plasma /whole blood concentration ratios and 11CO2 levels. 

 

Oxidation and esterification were described using mathematical indices MFAO and MFAE that can 

directly be calculated from the model 3,4: MFAO = CNEFA × kp1 × k13/(k12 + k13), MFAE = CNEFA × kp1 × 

k12/(k12 + k13), where CNEFA is the plasma fatty acid concentration [mmol/mL]. The total fatty acid 

utilization MFAU was defined as the sum of MFAO and MFAE. 
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Supplemental figure 

 

Fig X: Modified Bergmann model for myocardial [11C]palmitate kinetics 
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