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Abstract

Background: The variance explained by genetic variants as identified in (genome-wide) genetic association studies is
typically small compared to family-based heritability estimates. Explanations of this ‘missing heritability’ have been mainly
genetic, such as genetic heterogeneity and complex (epi-)genetic mechanisms.

Methodology: We used comprehensive simulation studies to show that three phenotypic measurement issues also provide
viable explanations of the missing heritability: phenotypic complexity, measurement bias, and phenotypic resolution. We
identify the circumstances in which the use of phenotypic sum-scores and the presence of measurement bias lower the
power to detect genetic variants. In addition, we show how the differential resolution of psychometric instruments (i.e.,
whether the instrument includes items that resolve individual differences in the normal range or in the clinical range of a
phenotype) affects the power to detect genetic variants.

Conclusion: We conclude that careful phenotypic data modelling can improve the genetic signal, and thus the statistical
power to identify genetic variants by 20–99%.
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Introduction

The aim of genome-wide association studies (GWAS) is to find

genetic variants that are associated with variation in a phenotype

of interest or with increased risk of disease. GWAS have

successfully located genetic variants for medical and psychiatric

disorders [1–7], but the variance explained collectively by these

genetic variants is small compared to the heritability estimates

obtained in family studies. For instance, the heritability (h2) of

ADHD is estimated at ,76% [8], yet the variants identified in

GWAS explain only ,1% of the variance [9].

This issue of ‘missing heritability’ [10] is viewed as a serious

problem in GWAS. The majority of explanations and solutions

put forward to date concern genetic issues, such as genetic

coverage, penetrance, copy number variation, epistasis, gene-

environment interaction, epigenetics, genetic heterogeneity, rare

variants, limited genetic variation in the study sample, genotyping

errors, incomplete LD between the marker SNPs and the causal

variants, and parent-of-origin effects [10–17]. However, at least as

important to the detection of genetic variants for complex traits is

the way complex traits are measured, and the phenotypic

information is modelled. Researchers are generally aware of the

theoretical importance of unbiased, reliable and replicable

measurement, but the issue of modelling of phenotypic informa-

tion has not enjoyed much attention in GWAS. This neglect is

unfortunate because, as we demonstrate here, measurement

problems can diminish the association signal, and thus hamper

the detection of genetic variants. Using simulation studies, we

show that three phenotypic measurement issues - phenotypic

complexity (Study 1), measurement bias (Study 2), and phenotypic

resolution (Study 3) - provide additional viable explanations of the

missing heritability.

Many psychological, psychiatric, and other (medical) traits

cannot be observed directly, and are therefore measured using

psychometric or diagnostic instruments. Such traits are denoted as

latent variables [18] to emphasize that the trait itself is an

unobservable attribute (e.g., ‘intelligence’, ‘depression’, ‘asthma’),

which plays a causal role in shaping observable behaviour, such as

scores on an IQ test, or the presence of depressive or asthma

symptoms. In the studies presented below, we adhere to this

standard latent trait perspective, as this is the prevailing view on

phenotypes in behavioural genetics. We illustrate how advanced
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modelling of the phenotypic information can lead to identification

of genetic variants that may otherwise go undetected. In the studies

below, we used R [19] to simulate data, and used R or Mx [20] for

data analysis. All simulations scripts are available online (Scripts S1).

Materials and Methods

Study 1: phenotypic complexity
Psychometric or diagnostic instruments are used to measure

latent traits. While the aim of many GWAS is to detect genetic

variants that cause individual differences in a given latent

phenotype, actual GWAS analyses often rely on a sum-score

operationalization. A sum-score is simply the sum of the responses

to the test’s items or symptoms. In the case of diagnostic

instruments, the sum-score usually consists of the number of

endorsed symptoms, and is often dichotomized to create an

affection-status dichotomy, which serves to distinguish cases and

controls. This dichotomized sum-score is used in GWAS to

examine allele frequency differences between cases and controls.

Many latent traits of interest are essentially multidimensional

(Figure 1), and instruments are designed to measure the distinct

dimensions. For example, multidimensionality of cognitive ability

is evident in the 14 subscales of the Wechsler Adult Intelligence

Scale [21], which measure four correlated latent variables: Verbal

Comprehension, Perceptual Organisation, Working Memory and

Perceptual Speed. Twin and family studies have shown that this

phenotypic multidimensionality is mirrored by genetic multidi-

mensionality: genetic influences contribute to the phenotypic

correlations between the dimensions, but dimension-specific

genetic effects are also substantial [22–26, but also 27]. Similarly,

the multiple dimensions describing ADHD-related childhood

behavioural problems (e.g., hyperactivity, cognitive problems,

attention problems, impulsivity, social problems) are all represent-

ed in instruments such as the Child Behavior Check List [28]. Again,

these phenotypic dimensions are genetically correlated, but also

show dimension-specific genetic effects [29–30].

Notwithstanding the complexity of traits, overall sum-scores,

calculated across all subscales or dimensions, commonly feature as

Figure 1. Uni- or multidimensionality in latent factor models. Figure 1a shows a graphical representation of a unidimensional factor model:
one latent factor affecting the scores on 6 items. The effect of the genetic variant (GV) on the items scores is indirect, running via the latent trait.
Often, however, scores on a test are not determined by one, but by multiple latent traits, or sub-dimensions of a latent trait, such as depicted in
Figure 1b, where the scores on the first two items are determined by dimension 1, the scores on the last two items by dimension 2, and the scores on
the middle items by both dimensions of the latent trait. Genetic association studies are complicated by this multidimensionality, because it is
unknown beforehand whether genetic variants affects either or both dimensions.
doi:10.1371/journal.pone.0013929.g001
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the dependent variable in GWAS. However, sum-scores are

‘sufficient statistics’, i.e., exhaustively summarizing all information

available in the individual items or symptoms, only if the following

three conditions hold [31–32]:

1) the test is unidimensional: only one latent trait underlies the

scores on the set of items (or symptoms), and conditional on

this latent trait, the items are statistically independent;

2) the expected values of the item responses have identical

functional relations to the latent trait, operationalized as

equal factor loadings in linear latent factor models for

continuous items, or equal discrimination parameters in item-

response theory models for dichotomous items;

3) in the linear latent factor model, the variance not explained

by the latent trait (residual variance) is equal for all items.

If any these conditions are violated, sum-scores no longer

optimally represent the latent trait, and the use of sum-scores may

decrease the power to detect genetic variants for that trait,

compared to more advanced phenotypic models, such as latent

factor models. In family-based heritability studies, the unwarrant-

ed use of sum-score can result in the attenuation of phenotypic

correlations between family members [33–34], but the effect of the

use of sum-scores has not been studied in the context of GWAS. In

Study 1, we investigated how the unwarranted use of sum-scores

can affect the power to detect genetic variants in GWAS.

General settings Study 1. The following settings were used

in all simulations in Study 1, unless stated otherwise. We assumed a

measurement instrument including 6 standard normally

distributed (,N(0,1)) test items. These items were indicators of

one or more latent factors. We simulated a biallelic genetic variant

(A-a), with allele frequencies .5/.5, and coded the genotypes 21

(aa), 0 (Aa), and 1 (AA). The genetic variant explained 1% of the

variance in one of the latent factors (note that this genetic variant is

related to the test items but only via the latent factor). Conditional

on this genetic variant, the factors were all standard normally

distributed (,N(0,1)). As the items were standardized, the residual

variances of the items can be calculated as 12lij
2*(Yj+(bj

2*.5)),

where lij is the factor loading of the ith item on the jth factor, Yj is

the variance of the jth factor conditional on the genetic variant (1),

bj is the weight of the regression of the jth latent factor on the

genetic variant, and .5 is the variance of the genetic variant (given

the present coding of the three genotypes and allele frequency of

.5).

We simulated data for 1200 subjects using exact data simulation

[35]. In each simulation study, we compared the power in two

designs to detect the genetic variant. First, we added the scores on

the items to form the sum-score, and then regressed the sum-score

directly on the genetic variant (the ‘sum-score model’). Second, we

modelled the data according to the true model, i.e., the model used

to simulate the data, and regressed the latent factor on the genetic

variant (the ‘true model’). To get an indication of the statistical

power to detect the genetic variant, we fixed the regression

coefficient to zero in both models, to obtain the increase in x2 (i.e.,

the likelihood ratio test with 1 degree of freedom, df).

Violation unidimensionality. To investigate the question of

how violation of the unidimensionality condition affects the power

to detect genetic effects in the sum-score model, we simulated data

according to a two- and a three-factor model. In the two-factor

model (Figure 2a), items 1 to 3 loaded on the first factor, and items

4 to 6 loaded on the second factor. The correlation between the

two factors was .2 or .6, and the genetic variant affected the second

latent factor only. In the three-factor model (Figure 2b), items 1

and 2 loaded on the first latent factor, two items 3 and 4 on the

second factor, and items 5 and 6 on the third factor. The

correlation between the first and second factor equalled .3, but the

correlation between the third factor and the other two factors was

.2 or .6, and the genetic variant affected the third latent factor

only. In both models, all factor loadings equalled .7.

Violation equal factor loadings. To find out how the

violation of equal factor loadings affects the power to detect

genetic effects in the sum-score model, we simulated data according

to a unidimensional measurement model, comprising 6 or 12 items.

In simulation 1, half of the factor loadings equalled .3 (unreliable

items), and half to .9 (reliable items). In simulation 2, 1/3 of the

factor loadings equalled .5, 1/3 equalled .7, and 1/3 equalled .9. So

as not to violate the condition of equal residual variances, we set all

residual variances to .6, irrespective of the factor loadings.

Violation equal residual variance. To investigate how the

violation of equal residual variances affects the power to detect

genetic effects in the sum-score model, we simulated data

according to a unidimensional factor model, with 6 or 12 items.

Factor loadings of all items equalled .6. In simulation 1, half of the

residual variances equalled .64, and the other half 1.64 (1 SD

higher). In simulation 2, half of the residual variances equalled .64,

and half 2.64 (2 SD higher).

Study 2: Measurement bias
In comparing groups with respect to the latent trait, one needs

to establish that the test used to measure the trait is not biased, i.e.,

that the instrument is ‘measurement invariant’ (MI) with respect to

group [36–37]. MI implies that the test measures the same latent

trait in the different groups or samples. For example, imagine a

test measuring psychometric IQ. Subjects who have the same

latent intelligence should have equal probability of answering the

items on this test correctly. If the test is not MI with respect to, say,

sex, men and women with the very same latent intelligence have

systematically different probabilities of answering one or more

items on that test correctly. For instance, items requiring

mechanical knowledge may reflect sex differences in interest and

experience rather than sex differences in intelligence. As a

consequence, the sex differences in observed test scores can not

be taken as indicative of sex differences in latent intelligence, and

such bias-related variation in observed test scores may suppress

variation due to genetic variants.

In the linear factor model, MI holds if the following four

conditions are satisfied. First, the factor structure is the same in all

samples (the configuration of factor loadings is identical: ‘config-

ural invariance’). Second, the factor loadings are equal over

samples (‘metric invariance’). Third, the mean differences between

samples on the level of the observed test items are fully attributable

to mean differences between the samples at the level of the latent

trait(s) (‘strong factorial invariance’). In combination with equal

factor loading, this condition is satisfied if the intercepts in the

regression of the observed item responses on the latent trait(s) are

equal over samples. Fourth, the residual item variances (not

explained by the latent trait(s)) are equal across samples

(homogeneity of the residual variances, ‘strict factorial invariance’).

Although heterogeneous residual variances do not invalidate the

interpretation of observed mean differences in terms of latent trait

mean differences, such heterogeneity may decrease the power to

detect the effects of genetic variants in the combined sample.

Implicitly, the phenotypic measures used in GWAS are assumed

to be MI across different samples (e.g., men-women, cases-

controls, samples from different countries), but MI is rarely

actually tested. Consequences of violations of MI have been

studied in family-based heritability research [34,38], but not in

GWAS. Yet, MI is potentially important in GWAS, because

Phenotype Complexity in GWAS
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information of samples is compared (case-control design) or

combined (analysis of pooled raw datasets, i.e., mega-analysis).

Violations of MI with respect to the genetic variant itself are also

possible. In GWAS, researchers assume that the genetic variant

explains variance in the latent trait, and that the effect of the variant

on individual items or symptoms is mediated by the latent trait

(Figure 1a). It is however conceivable [39–40] that a genetic variant

affects items or symptoms directly (Figure 2c). For instance, a genetic

variant could relate to the ADHD symptom ‘fidgety’ but not to

ADHD symptoms ‘temper outbursts’, ‘forgetful’, and ‘has lots of

fears’. Similarly, variants could relate to visuo-spatial performance,

but not to other cognitive abilities represented in intelligence tests,

like memory and vocabulary. If genotype groups do not differ with

respect to the latent trait (i.e., the genetic variant is not associated

with ADHD or intelligence), but they do differ with respect to a

specific symptom or ability, then this is a violation of MI with respect

to the genetic variant. In Study 2, we investigated how the power to

detect genetic variants is affected by all five violations of MI.

General settings Study 2. The following settings were used

in all simulations presented in Study 2, unless stated otherwise. We

Figure 2. Factor models used for simulation in Studies 1 and 2. Study 1: Data were simulated according to a 2-dimensional (Figure 2a) or 3-
dimensional (Figure 2b) latent factor model, with factorial correlations r ranging between .2 and .6, and factor loadings fixed to .7. Study 2: Data were
simulated according to a 1-factor model (Figure 2c), with all items having either a weak or a strong relation to the latent factor (factor loadings of .3 or
.7, respectively). The genetic variant (GV) affected the first item only.
doi:10.1371/journal.pone.0013929.g002
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assumed a measurement instrument including 6 standard normally

distributed (,N(0,1)) test items, influenced by one or more latent

factors. We simulated a biallelic genetic variant, with allele

frequencies .5/.5, and coded the genotypes 21, 0, and 1. The

genetic variant explained 1% of the variance in one of the latent

factors. Note that the genetic variant is related to the test items via

the latent factor. Conditional on this genetic variant, the factors

were all standard normally distributed (,N(0,1)) (again, as all

items were standardized, the residual variances of the items can be

calculated as 12lij
2*(Yj+(bj

2*.5)), where lij is the factor loading of

the ith item of the jth factor, Yj is the variance of thejth factor

conditional on the genetic variant (1), bj is the weight of the

regression of the jth latent factor on the genetic variant, and .5 is

the variance of a genetic variant with allele frequencies .5/.5. We

simulated data for two samples of N = 600 each using exact data

simulation34. In each simulation study, we compared the power to

detect the genetic variant between two designs: the ‘sum-score

model’ (the sum-score calculated across all items is regressed on

the genetic variant), and the ‘true model’ (the items are subjected

to the model that was used to simulate the data, and the latent

factor is regressed on the genetic variant). To get an indication of

the statistical power to detect the genetic variant in the two

designs, we studied the deterioration of the model fit, expressed as

increase in x2, when the association between the genetic variant

and the operationalisation of the trait (sum-score or latent factor)

was fixed to 0, i.e., a test with 1 degree of freedom (df).

Measurement invariance with respect to sample:

configural invariance. A violation of configural invariance

implies that the factor structure (i.e., the configuration of factor

loadings) is not identical across samples. We simulated data for the

first sample according to a 2-factor model, with items 1 and 2

loading on Factor 1, with factor loadings of .4, and .5, respectively,

and items 3 to 6 loading on Factor 2, with loadings of .7,.6, .5, and

.4, respectively. For the second sample, items 3 and 4 also loaded

on the first factor, with loadings of .3 or .6, respectively. In both

samples, Factors 1 and 2 correlated .3, and the genetic variant

affected only the second factor.

Measurement invariance with respect to sample: metric

invariance. A violation of metric invariance implies that the

factor loadings are not equal over samples. In practice, such a

violation may concern only a few of the factor loadings. We

simulated data in two samples according to a 1-factor model. In

the first sample, all loadings equalled .5. In the second sample, the

loadings of items 1 and 2 were either.3 or .9. Irrespective of the

factor loadings, the residual variances of all items in both samples

equalled .747 (i.e., given a factor loading of .5 and the GV, the

variance of the indicator was 1).

Measurement invariance with respect to sample: strong

factorial invariance. Strong factorial invariance implies that

differences between samples in expected values of observed scores

are not solely indicative of differences between samples in latent

factor scores. If for some items, the expected observed item score

differences can not be explained by differences on a latent level

(because the observed differences are too small, or too large, given

the difference in latent factor means between the samples), then

these items are considered to be biased. In both samples, we

simulated data according to a 1-factor model with factor loadings

equal to .5. In the first sample, the means of all items and the latent

factor were fixed to 0. In the second sample, all means were fixed

to 0, except the means of the first two items, which varied from .1,

to .5, to 1, i.e., the second sample scored .1, .5 or 1 SD higher on

these items than the first sample, even though both samples had

equal latent factor means. In terms of the factor model, this setup

implies that the intercept of items 1 and 2 differ across the samples.

Measurement invariance with respect to sample: strict

factorial invariance. Strict factorial invariance implies that the

factor structure, factor loadings, item intercepts and residual item

variances are equal across samples. If the factor loadings and

factorial variances are equal across samples, but the residual

variances are not, then this implies that the percentage of variance

explained by the factor in the items is not equal across samples,

and thus that the reliability of the items is not the same (in the

context of the factor model, the reliability of an item is defined as

the ratio of the variance explained by the factor and the total

variance of the item). In the factor model, the item variance is

decomposed in to a part due to (explained by) the common

factor(s) and a residual part. Because the residual variances are

separated from the latent factor, differences between samples in

residual variances (i.e., violations of strict factorial invariance) are

not expected to greatly affect the power to detect a genetic variant

if the genetic effect is directly on the latent factor. To investigate

this we simulated in two samples data we simulated data according

to a 1-factor model, with factor loadings for all items fixed to .5,

and all means fixed to 0. In the first sample, residual variances

equalled .747, while in the second sample the residual variances of

the first two items equalled this value plus .5, 1, or 2, i.e., these

residual variances were .5, 1 or 2 SD larger.

Measurement invariance with respect to the genetic

variant. A direct relation between a genetic variant and an

item (or symptom, or subtest; Figure 2c), rather than via the latent

factor, can be viewed as a violation of MI. MI with respect to the

genetic variant implies that observed differences between the

genotype groups are interpretable in terms of differences in the

latent trait. If the three genotype groups (i.e., aa, Aa, and AA) do

not differ with respect to the latent trait (i.e., the variant is not

associated with the latent trait), but they do differ with respect to

any item (i.e., direct relation between the variant and the item),

then this item is considered biased with respect to the genetic

variant.

To find out how violations of MI with respect to the genetic

variant itself affect the power to detect that variant, we again

assumed a measurement instrument including 6 items, and

simulated data according to a 1-factor model for N = 1200

subjects. We now introduced the genetic effect directly on only the

first item, not on the factor (Figure 2c). The genetic variance

explained 1% of the variance in the first item. Allele frequencies

were set to .5/.5. The factor loadings of all items equalled either .3

or .7, such that the sum-score could serve as a sufficient statistic

(with respect to the phenotypic part of the data). We studied the

power to detect the genetic variant in 4 designs: 1) the sum-score

model, 2), the 1-factor model with the genetic effect modeled on

the latent factor, 3) the item model, in which only the first item is

regressed on the genetic variant (i.e., information from the other 5

items is discarded), and 4) the true model, i.e., a 1-factor model

with the genetic effect directly on the first item only (Figure 2c).

Study 3: Phenotypic resolution
The statistical power to detect a genetic variant depends on the

reliability of the phenotypic instrument. Test-reliability is often

expressed as some approximation of the ratio of the variance

attributable to the latent trait of interest (systematic variance) to

the total variance of the measure (including unsystematic and error

variance). For example, if a sample size of N<780 is required for a

power of 80% to detect a genetic variant that explains 1% of the

variance in the error-free latent trait, then N<1300 is required to

achieve the same power if the psychometric instrument has a

reliability of .7. In this conceptualisation, the reliability of a test is

stable across the entire phenotypic range of a certain population.

Phenotype Complexity in GWAS
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However, the issue of reliability, however, can be conceptualized

as one of ‘resolution’ [41], and the resolution of a test is not usually

stable across the entire phenotypic continuum.

The resolution of a test is defined as its ability to resolve

phenotypic differences between individuals. Ideally, a test should

contain items with difficulty parameters well distributed across the

full range of the latent phenotype and with good resolution

(Figure 3).

In practice, however, tests are usually tailored to a certain target

population. For instance, most cognitive tests are designed to

resolve individual differences in the middle or ‘normal range’, and

therefore include items with intermediate difficulty. In contrast,

measures of psychopathology, such as depression, aim to

differentiate between subjects who do, and who do not, qualify

for clinical diagnosis, and therefore comprise relatively extreme

items. Since items like ‘‘I think of suicide everyday’’ will not be

endorsed by many people from the general population, this item’s

ability so resolve individual differences in depression-related

behaviour in the general population is limited. In a clinical

subsample, however, this same item may be very informative as it

distinguishes individuals suffering from mild or severe depression.

Ideally, a test should have high resolution throughout the

expected phenotypic range that characterizes the population of

interest. Because the range of interest in GWAS often spans the

normal/unaffected as well as the affected, and thus is necessarily

wide, there is no guarantee that the resolution of the psychometric

instrument is sufficient throughout the entire range of interest. In

family-based heritability studies, insufficient resolution can result

in underestimation of h2 [e.g., 42], and spurious gene-environment

interaction [43]. In Study 3, we investigated how resolution affects

the power to detect genetic variants in GWAS, and where on the

latent phenotype continuum the test should have good resolution

to maximize the probability to detect genetic variants.

General settings Study 3. In Item Response Theory (IRT),

discrete test items are characterized by 2 parameters: a difficulty

parameter and a discrimination parameter (Figure 3) [44–45]. An

item’s discrimination parameter, corresponding to the slope of the

item characteristic curve, is informative concerning the item’s

ability to resolve individual differences (i.e., discriminate between

subjects with different latent trait scores), with high parameters

indicating that the item discriminates well between subjects, whose

latent phenotype scores lie closely together. The difficulty

parameter of an item corresponds to the position on the latent

phenotype continuum where the resolution of the item is maximal.

If an item has low (high) difficulty, then the item resolves

individual differences in the lower (higher) range of the latent

phenotype continuum.

Using IRT as theoretical basis of our simulations, we simulated

27 items across the entire phenotypic continuum, with difficulty

parameters ranging from 24 to 3.8, with steps of .3 (assuming a

standard normal latent trait), and fixed discrimination parameters

of 1 (i.e., Rasch model). Specifically, the difficulty parameter of the

first item equalled 24, so that subjects with a latent trait score of

24 have 50% chance to answer this item correctly. The difficulty

parameter of the 15th item equaled .02, so that subjects with a

latent trait score of .02 have 50% chance to answer this item

correctly, etcetera. As all items had equal discrimination

parameters, a sum-score would be a sufficient statistic for this test.

We used the 27 items to compose 5 separate test instruments: 1)

a comprehensive instrument including all 27 items, 2) an

instrument including only the 9 middle items (difficulty parameters

21.3, 21.0, 20.7, 20.4, 20.1, 0.2, 0.5, 0.8, and 1.1),

corresponding to a test constructed to measure behavior within

the normal range, 3) an instrument including 9 high extreme items

(difficulty parameters 1.4, 1.7, 2.0, 2.3, 2.6, 2.9, 3.2, 3.5, and 3.8),

corresponding to a diagnostic test constructed to measure extreme

behavior, 4) an instrument including 9 items covering the entire

continuum (difficulty parameters 24.0, 23.1, 22.2, 21.3, 20.4,

0.5, 1.4, 2.3, and 3.2), and 5) an instrument including 5 low-

extreme items, and 4 high-extreme items (difficulty parameters

24.0, 23.7, 23.4, 23.1, 22.8, and 2.9, 3.2, 3.5, 3.8).

We simulated 71 genetic variants for N = 2500 subjects: 50 with

small effect (genotypic value = .01), 20 with a larger effect

(genotypic value = .05), and 1 with a still larger effect (genotypic

value = .1). Frequencies of alleles A and a were both .5 for all 71

variants. We then created individual subject’s latent phenotype

scores by summing the genotypic values associated with the

individual’s genotypes on all 71 variants. Variation in the latent

trait scores was thus solely due to the effects of the 71 genetic

variants. We then standardized these latent trait scores to z-scores.

The genetic variants with small, medium and large effect

explained ,.05%, ,2.5% and ,11% of the variance in the

Figure 3. Item characteristic curves in a 2-parameter Item
Response Theory (IRT) model. Figure 3 shows the item character-
istic curves of two items describing the probability of answering the
items correctly (affirmatively) given one’s latent trait score h. The first
item (left) has difficulty parameter b = 21, i.e., subjects with (standard-
ized) latent trait score equal to q = 21 have 50% probability to endorse
this item, while subjects with latent trait score q = 2 endorse this item
with 95% probability. The second item (right) has difficulty parameter
b = 2, i.e., subjects with latent trait score q = 2 have 50% probability to
endorse this item, while subjects with latent trait score q = 21 only
have 5% chance. Both items have discrimination parameter a = 1 (i.e.,
equal slopes), determining the degree to which a given item
discriminates between subjects with different latent trait scores. In
contrast to items with low discrimination parameters (flat slopes), items
with high discrimination parameters (steep slopes) discriminate well
between subjects whose latent trait scores lie closely together within a
narrow range. The 2-parameter logistic model [44,45] can be used to
calculate for every subject i the probability of endorsing an item Xj

given this item’s discrimination parameter aj and difficulty parameter bj.
doi:10.1371/journal.pone.0013929.g003
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standardized latent trait score, respectively. We used the

standardized latent trait scores to calculate, for every person, the

probability of answering each of the 27 items correctly, using the

formula for the 2-parameter IRT model [44,45]

P(Xj~correct)~
1

1ze{aj (qi{bj )
,

where Xj is the score on item j, aj and bj are the discrimination

parameter and the difficulty parameter for the j th item,

respectively, and hi is the standardized latent trait score of the

i th person (note that this formula reduces to the Rasch model as all

ai’s are fixed to 1 in our simulation).

Based on these probabilities, we created item scores coded 0

(incorrect) or 1 (correct) for every subject, and calculated the 5

sum-scores for each of the 5 instruments (e.g., a sum-score based

on all 27 items, a sum-score based on the 9 middle items, etc). We

related these 5 sum-scores to the first genetic variant with small

effect (genotypic value of .01, explaining about .05% of the

variance in the trait under study) in two designs: 1) a population-

based sample design, with 2500 subjects randomly selected from

across the entire trait continuum, and 2) a selected-samples design,

with 1250 subjects with phenotype scores in the top 5% range

(‘cases’) and 1250 subjects with phenotype scores in the 0–95%

range (random selection; ‘controls’).

In each design, we related the 5 different sum-scores to the

genetic variants using a one-way ANOVA with three groups (i.e.,

the genotype groups aa, Aa, and AA), yielding 5 different p-values.

As the creation of the test scores was based on a stochastic process,

this entire simulation was repeated 10.000 times.

Results

Study 1: phenotypic complexity
Figure 4 summarize the effects of the violations of the three

conditions required for sum-scores to be sufficient statistics

(unidimensionality, equal factor loadings, and equal residual

variances) on the power to detect genetic effects (see also Tables

S1, S2, S3, S4, S5, S6, S7).

Note first that if the three conditions are satisfied, the power of

the sum-score model is identical to the power of the true factor

model (not shown). Second, we found that, when genetic

association analysis is conducted on sum-scores, while the

unidimensionality condition is violated, the power to detect

genetic variants that are specific to one dimension is substantially

decreased, especially when the number of dimensions increases,

and the correlations between dimensions increase (Figure 4a). This

is because a sum-score mainly summarizes the variance shared by

the factors (i.e., shared by the underlying items). Genetic effects

that are specific to one of the factors, i.e., are related to the

variance that is not shared between the factors, will be harder to

detect when the variance shared between the factors is large and

dominates the sum-score. Specifically, in our simulation, the

power of the sum-score models was only 33–43%, and 19–27% of

the power of the true latent factor model for the case of 2 and 3

latent dimensions, respectively. Given 6 items, N = 1200, and 10

genetic variants explaining 1% of the variance each in one

dimension of a two-dimensional trait, the probability to detect 6 or

more of these variants would be ..95 under the true latent factor

model, and ,.20 when using the sum-score model (with the exact

probability depending on the correlation between the factors). For

a three-dimensional trait, these probabilities are ..90 and ,.01,

respectively. Only in the specific case that the genetic variant

affects all latent dimensions to exactly the same extent, is the

power to detect the genetic variant approximately equal for the

sum-score model and the factor model (see Tables S3, S4). Third,

we found that when the condition of equal factor loadings is

violated (Figure 4b), the power to detect genetic effects on sum-

scores is decreased compared to the true latent factor model,

which accommodates unequal factor loadings. The difference in

power is larger when the factor loadings are more variable, and

Figure 4. The power to detect genetic variants is lower if sum-
scores are not sufficient statistics (results Study 1). Figures 4a–c
show the sample size required for a power of 80% to detect a genetic
variant (GV) that explains 1% of the variance on the latent level, using
either the sum-score model or the true latent factor model. Figures
show the effects of violation of unidimensionality (Figure 4a), violations
of equal factor loadings (Figure 4b), and of violations of equal residual
variances (Figure 4c).
doi:10.1371/journal.pone.0013929.g004

Phenotype Complexity in GWAS

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e13929



the number of items increases. Specifically, for 6 items, the power

of the sum-score model was 86–93% of the power of the true latent

factor model, depending on the differences between the factor

loadings. For 12 items, the effect of the violation of equal factor

loadings was more pronounced, with the power of the sum-score

model being 39–78% of the power of the true latent factor model.

Given 6 items, N = 1200, and 10 genetic variants explaining 1% of

the variance each on the level of the latent trait, the probability to

detect 6 or more of these variants would be high for both the sum-

score model and the factor model (.97 and .98, respectively) even if

the factor loadings show considerable differences (Simulation 1).

Yet for 12 items, the probabilities would be .29 and .99 for the

sum-score model and the factor model, respectively, suggesting

increasing misfit and increasing loss of power with increasing

number of items. Fourth, we found that if the condition of equal

residual variances is violated, the power to detect genetic effects on

sum-scores is decreased compared to the true latent factor model

(Figure 4c). The difference in power becomes larger when the

residual variances are more variable, and the number of items

increases. Specifically, the power of the sum-score model was 78–

98% of the power of the true latent factor model when the residual

variances differed about 1 SD, and became 56–82% when the

residual variances differed 2 SD. Given 6 items, N = 1200, and 10

genetic variants explaining 1% of the variance each on the level of

the latent trait, the probability to detect 6 or more of these variants

is quite comparable for the sum-score model and the true latent

factor model (.88 and .93, respectively), if the difference in residual

variance is 1 SD, but less so if the difference is 2 SD (.78 versus .91,

respectively). For 12 items, the probabilities are .78 and .98 for

1SD, and .51 and .98 for 2 SD, for the sum-score model and the

factor model, respectively. This again suggests increasing misfit

and increasing loss of power with increasing number of items.

In sum, the simulations of Study 1 show that when conditions

for calculating sum-scores are violated, proper phenotypic

modelling, instead of the use of simple sum-scores, will generally

confer appreciable increases in the power detect genetic variants.

Study 2: Measurement bias
Figure 5 shows the results of four types of violations of MI with

respect to sample. In each simulation we compared the power to

detect the genetic variant in the sum-score model to the power in

the true latent factor model, in which we accommodated the

violations. To test the effect of these violations in its purest form,

we chose all simulation settings such that a sum-score could in

principle serve as a sufficient statistic, except for the violation of

interest. In this ideal situation, cross-sample violations of equality

of factor loadings, equality of residual variances, and equality of

observed item means hardly affected the power to detect genetic

variants (Figure 5b–d). Configural invariance, however, necessarily

implies a multi-dimensional model, so sum-scores are never

sufficient statistics (see Study 1), and the power to detect genetic

variants under the sum-score model is always lower than the

power under the true latent factor model. However, comparisons

within models (loading = 0 versus loading = .3 or .6) show that

violations of configural invariance affect the power in both models,

but more so in the sum-score model (Figure 4a). Actually, whether

the power to detect the genetic variant reduces or indeed increases

as a result of violations of configural invariance, depends on

whether the cross-loadings concern the latent factor that is

associated with the variant (increase in power) or the latent factor

that is not associated with the variant (decrease in power, see

Figures S1, S2 and Tables S8, S9, S10, S11, S12, S13, S14, S15).

If the effect of a genetic variant is specific to a certain item or

symptom, rather than affecting all items via the common factor

Figure 5. The power to detect genetic variants is slightly affected by violations of measurement invariance with respect to sample
(results Study 2). In the case of continuous items, measurement invariance (MI) with respect to sample holds if 1) the factor structure is identical
across samples (‘configural invariance’; Figure 5a), 2) the factor loadings relating the observed items to the latent trait(s) are identical across samples
(‘metric invariance’; Figure 5b), 3) mean differences between samples on the individual items are attributable to mean differences at the latent level
(‘strong factorial invariance’; Figure 5c), and 4) the variance in item scores not explained by the latent trait(s) is equal across samples (‘strict factorial
invariance’; Figure 5d). We simulated these four types of violations of MI, and analyzed the data using either the sum-score model or the true latent
factor model. Figures 5a–d show the sample size required for a power of 80% to detect a genetic variant that explains 1% of the variance on the
latent level under these four different kinds of violations of MI.
doi:10.1371/journal.pone.0013929.g005
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(i.e., violation of MI with respect to the genetic variant, Figure 2c),

then the likelihood to detect that variant is greatly diminished if its

effect is modelled on the sum-score or directly on the latent factor

(‘incorrect latent factor model’), compared to the correctly

specified latent factor model and a model in which that specific

item/symptom is directly regressed on the genetic variant

(Figure 6, Table S16). Sample sizes required for a power of 80%

increase from ,800 subjects in the correctly specified models to

over 6,000 or even 16,000 subjects in incorrectly specified models.

Practically, given 6 items, N = 1200, and 10 genetic variants

explaining 1% of the variance each in the first item only, the

probability to detect 6 or more of these genes would be ..99 for

the correctly specified latent factor model and the model in which

the specific item is directly regressed on the genetic variant. The

chance to detect 6 or more of these genes is dramatically decreased

to ,.01, if the sum-score model or the incorrectly specified latent

factor model is used.

In sum, the simulations of Study 2 show that the presence of

measurement bias constitutes a threat to the success of GWAS, but

primarily when the bias concerns the genetic variant itself: in that

case, the power of misspecified models is considerably lower.

Study 3: Phenotypic resolution
The results of the 10.000 simulations are summarized in Table 1

(see Figures S3, S4 for the distributions of the p-values, and Figures

S5, S6 for the Test Information Curves of both designs, as well as

Table S17 for the results of similar simulations with a genetic

variant explaining .6% of the variance, which showed a very

similar pattern of results). The results in Table 1 show that in both

the selected-samples design and the population-based design, the

genetic variant is detected most often, when the test including all

27 items is used. Of the subscales including only 9 of 27 items, the

scale including 9 middle items conferred the greatest power to

detect the genetic effect, irrespective of the study design. Given

a= .05, the power of this subscale is 77 to 90% of the power of the

full scale for the population-based design and the selected-samples

design, respectively. The power of the subscale including 9 high-

extreme items is only 52 to 81%. Note also that the scale including

Figure 6. The power to detect item-specific genetic variants greatly depends on the fitted phenotypic model (results Study 2). When
the effect of a genetic variants does not run via the latent factor but is directly on, and specific to, one of the items (as illustrated in Figure 2c), we
speak of violations of measurement invariance with respect to the genetic variant itself. Figure 6 shows the sample size required for a power of 80%
to detect such an item-specific genetic variant that explains 1% of the variance in the first item only.
doi:10.1371/journal.pone.0013929.g006

Table 1. Results simulation study (Nsim = 10.000) into the power to detect a genetic variant explaining .1% of the variance with 5
differently constructed phenotypic instruments (an complete scale with 27 items, a subtest with the 9 middle items, a subtest with
9 items selected to cover the entire continuum, a subtest with 5 low-extreme and 4 high-extreme items, and a subtest with 9 high-
extreme items) in two designs: a population design (N = 2500) and a selected-samples design (1250 extreme subjects and 1250
subjects from the normal range).

a = .05 a = .01 a = .001

Population Selected samples population Selected samples population Selected samples

#hits Ratio #hits Ratio #hits ratio #hits Ratio #hits ratio #hits ratio

All 27 items 3763 5692 1741 3324 524 1276

9 middle items 3289 .87 5119 .90 1477 .85 2780 .84 406 .77 985 .77

9 high extreme 1967 .52 4629 .81 706 .41 2340 .70 143 .27 768 .60

9 items across the scale 2606 .69 4546 .80 1009 .60 2358 .71 246 .47 780 .61

5 low-extreme+4 high-extreme 1171 .31 2589 .45 362 .21 1030 .31 56 .11 224 .18

Note. #hits denotes the number of p-values,a= .05, a= .01, or a= .001, respectively. Ratio denotes the % of hits that the 4 subscales pick up, compared to the full
instrument including all 27 items.
doi:10.1371/journal.pone.0013929.t001
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9 items across the entire scale is usually more powerful than the

scale including 9 extreme items only. The scale including 5 low

and 4 high extreme items is the least powerful in both designs.

Practically, this means that in a population-based design,

N = 2500, a= .05, and 10 genetic variants explaining only .1%

of the variance each, the probability to detect 5 or more of these

variants would be .13, .07,.01, .02 and .0004 for the test including

27 items, 9 middle items, 9 extreme items, 9 items across the scale,

and the scale including 5 low and 4 high extreme items,

respectively. For the selected-samples design, the probabilities

are considerably higher: .55, .41, .29, .27, and .02, respectively.

Of the subscales, the scale including 9 middle items always

performs best in the context of GWAS because the variation in test

scores on this scale ‘matches’ the expected genetic variation.

Specifically, cases (i.e., individuals with high latent trait scores), will

endorse (almost) all middle items, such that the variation in their

test scores is low. In contrast, the scores of ‘controls’ (i.e.,

individuals with latent trait scores representative of the ‘normal

population’) are more variably on this scale, as they sometimes

endorse items, but sometimes do not. In addition, given the

common-trait-common-variant model, cases more often carry one

or two (but not 0) copies of the detrimental allele, so variability in

genotypes is lower in this group, compared to the genetic

variability in subjects representing the normal population. For

the test including 9 middle items, the variation in test scores (high

in controls, low in cases) thus matches the genetic variation (high

in controls, low in cases). In contrast, on the test including 9

extreme items, cases will show variability in test scores, while

controls will hardly ever endorse these extreme items. Conse-

quently, the variation in phenotypic scores on this subscale (low in

controls, high in cases) does not match the genetic variation (high

in controls, low in cases).

In sum, the results of Study 3 underline the importance of

choosing phenotypic measurement instruments that resolve

individual differences specifically in the part of the study

population, where the genotypic variance is expected to be largest.

Discussion

Our three simulation studies suggest that at least part of the

missing heritability problem of complex phenotypes may originate

in misspecification of the phenotypic model. The three phenotypic

measurement issues that we consider can all strongly influence the

genetic signal, and thus the power to detect genetic variants, and

the appraisal of the associated effect sizes. Simulation results

presented in Studies 1 and 2 suggest that re-analysis of available

genotype-phenotype data is likely to identify additional genetic

variants when the multi-dimensionality of the phenotype, and the

possibility of genetic effects being specific to certain phenotypic

dimensions or items, are taken into account. These re-analyses

require the availability of phenotypic information on the level of

individual items or questions. Such detailed information, at

present only scarcely available, should be made accessible in

public genotype-phenotype databases. Relevant for future research

is our finding in Study 3 that the power to detect genetic variants

improves if the trait of interest is measured using phenotypic

instruments that resolve individual differences in those subpopu-

lations, where the genotypic variance is assumed to be largest.

More sophisticated modelling of phenotypic information in the

context of genetic association studies may greatly enhance the

power to detect genetic variants, but creates its own demands.

First, running genome-wide analyses on full factor models rather

than on sum-scores is computationally more demanding. The use

of cluster computers (and parallel software), which allow the

parallel processing of information on multiple nodes at the same

time, will overcome this disadvantage. Second, while establishing

the link between a phenotypic sum-score and a genetic variant is

straightforward, finding the ‘location’ of the genetic effect within a

more complicated factor model (e.g., specific to one of the latent

factors, or to one of the items) is potentially more complicated. So-

called modification indices, used in factor analytic approaches to

identify local misfit in larger models [46], may prove useful in

guiding researchers towards the exact location. Finally, while

determining the association with a sum-score or affection-status

dichotomy requires one statistical test per genetic variant,

establishing the association of a genetic variant in the context of

a complex factor model may require multiple statistical tests per

variant. The foreseen expansion of the multiple testing problem

merits appropriate attention.

The heritabilities of potentially suboptimal phenotypic operatio-

nalizations (e.g., sum-scores) are often found to be considerable in

family-based studies. How can this be reconciled with our finding

that the use of these same sum-scores can seriously affect the power

to detect the genetic variants underlying the high heritability

estimates? The considerable heritability estimates observed for sum-

scores reflect the concerted effect of all genetic effects on all

individual items that are summed: not only the additive effects that

are shared by all items, but also genetic effects that are specific to

only one or a few of these items, dominance effects, epigenetic

effects, epistatis, and effects of complete genetic pathways. Although

heritability estimates based on sum-score operationalizations are

expected to often be underestimated as well (see for example van

den Berg and colleagues [47], who demonstrated that the sum-score

of 7 attention problem items showed a heritability of 40%, while the

heritability increased to 73% when it was estimated in the context of

an item response theory model), they can still be considerable. A

high heritability of the sum-score does, however, not guarantee that

this operationalization is also useful for the detection of variant-

specific effects, which are likely to be very small to begin with. The

detection of variant-specific effects will suffer greatly when

suboptimal operationalizations are used as the expected weak

statistical association will be even weaker in the context of a poor

and noisy operationalization.

We analyzed the impact of phenotypic measurement issues on

gene finding from the standard continuous latent trait perspective.

In this perspective, we accord the latent traits a causal status: one’s

position on the latent trait determines the probability of endorsing

a given item or psychiatric symptom [18,48]. This causal view of

latent traits is consistent with the aim of GWAS to detect genetic

variants that cause individual differences in operationalizations

such as sum-scores. Of course, this causal interpretation of latent

variables is based on a theoretical position, which itself is open to

investigation. Recently, researchers in the field of psychology have

challenged the existence of latent traits, specifically in the context

of intelligence research [49–51] and psychiatric comorbidity

research [40]. The proposed alternative phenotypic models, such

as the network model, the mutualism model, and the index

variable view, do not necessarily appeal to causal latent traits.

Consequently, sum-score operationalizations, which in principle

make sense under the latent trait model, do not do so under these

alternative models. Deceptively, sum-scores can show considerable

heritability under all these alternative phenotypic models [e.g. 49],

even if the operationalization is not sensible from a phenotypic or

genetic point of view. This implies that high family-based

heritability is no guarantee that a sum-score is a reasonable proxy

of a causal latent trait, or that a causal latent trait even exists.

In this paper, we focussed on phenotypic measurement issues

that can be encountered in the gauging, operationalization, and
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quantification of complex phenotypes like psychological, psychi-

atric, and other (e.g., medical) traits. In this context of phenotypes

whose operationalization and measurement poses a challenge, we

showed that suboptimal operationalization and misspecifications

of the phenotypic model can greatly dilute the genetic signal. The

three measurement issues that we discussed do, however, not apply

to phenotypes like height and weight (body mass index), whose

actual measurement is simple, but whose considerable heritability

also hitherto remains largely ‘‘missing’’ [but see 17]. We note that

the genetic explanations of the missing heritability, which may

apply to these simple-to-measure phenotypes (e.g., incomplete LD

between markers and causal variants [17]), may apply equally to

the psychometrically complex phenotypes. Clearly, with respect to

their effect on power to detect genetic association with a complex

phenotype, genetic issues discussed elsewhere [10–17] and the

measurement issues discussed here are by no means mutually

exclusive.

Irrespective of the phenotypic model of choice, optimized

modelling of the phenotypic part of the genotype-phenotype data

improves the power to detect genetic variants. Modern psycho-

metrics [44–45] offers statistically and theoretically well developed

methods, such as (genetically informed) latent factor models and

Item Response Theory, for addressing the phenotypic measure-

ment issues discussed here, and as such has the potential to

contribute considerably to the success of genetic studies. We have

shown how phenotypic measurement issues can improve the

success of GWAS, and expect that phenotype-related measure-

ment issues will attract more attention in the future [52–53].

Together with advances in genetic information modelling (e.g.,

gene-network approaches [54–55]), advances in phenotypic

modelling can contribute substantially to the success of future

gene-finding studies.
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5 low-extreme and 4 high-extreme items, and a subtest with 9
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the individual items, the test information depends on the number

of items as well as the informativeness of every individual item for

a certain level of the latent trait.

Found at: doi:10.1371/journal.pone.0013929.s005 (1.52 MB

TIF)

Figure S6 Test information curves for each subtest (an complete

scale with 27 items, a subtest with the 9 middle items, a subtest

with 9 items selected to cover the entire continuum, a subtest with

5 low-extreme and 4 high-extreme items, and a subtest with 9

high-extreme items) for the selected samples design.

Found at: doi:10.1371/journal.pone.0013929.s006 (1.19 MB

TIF)

Table S1 2-factor model with effect genetic variant on second

factor only.

Found at: doi:10.1371/journal.pone.0013929.s007 (0.05 MB

DOC)

Table S2 3-factor model with effect genetic variant on third

factor only.

Found at: doi:10.1371/journal.pone.0013929.s008 (0.05 MB

DOC)

Table S3 2-factor model with effect genetic variant equally

strong on both factors.

Found at: doi:10.1371/journal.pone.0013929.s009 (0.05 MB

DOC)

Table S4 3-factor model with effect genetic variant equally

strong on all three factors.

Found at: doi:10.1371/journal.pone.0013929.s010 (0.05 MB

DOC)

Table S5 Unequal factors loadings 6 items.

Found at: doi:10.1371/journal.pone.0013929.s011 (0.05 MB

DOC)

Table S6 Unequal factors loadings 12 items.

Found at: doi:10.1371/journal.pone.0013929.s012 (0.05 MB

DOC)

Table S7 Unequal residual variances 6 and 12 items.

Found at: doi:10.1371/journal.pone.0013929.s013 (0.05 MB

DOC)

Table S8 Violations of configural invariance (equal factor

structure) modeled according to Figure S1.

Found at: doi:10.1371/journal.pone.0013929.s014 (0.04 MB

DOC)

Phenotype Complexity in GWAS

PLoS ONE | www.plosone.org 11 November 2010 | Volume 5 | Issue 11 | e13929



Table S9 Violations of configural invariance (equal factor

structure) modeled according to Figure S2.

Found at: doi:10.1371/journal.pone.0013929.s015 (0.04 MB
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means across samples) in the context of 12 items.

Found at: doi:10.1371/journal.pone.0013929.s019 (0.04 MB

DOC)

Table S14 Violations of strict factorial invariance (equal residual

variances across samples) in the context of 6 items.

Found at: doi:10.1371/journal.pone.0013929.s020 (0.04 MB

DOC)

Table S15 Violations of strict factorial invariance (equal residual

variances across samples) in the context of 12 items.

Found at: doi:10.1371/journal.pone.0013929.s021 (0.04 MB

DOC)

Table S16 Violation of measurement invariance with respect to

the genetic variant itself.

Found at: doi:10.1371/journal.pone.0013929.s022 (0.05 MB

DOC)

Table S17 Results simulation study (Nsim = 10.000) into the

power to detect a genetic variant explaining .6% of the variance

with 5 differently constructed phenotypic instruments (an complete

scale with 27 items, a subtest with the 9 middle items, a subtest

with 9 items selected to cover the entire continuum, a subtest with

5 low-extreme and 4 high-extreme items, and a subtest with 9

high-extreme items) in two designs: a population design (N = 2500)

and a selected-samples design (1250 extreme subjects and 1250

subjects from the normal range).

Found at: doi:10.1371/journal.pone.0013929.s023 (0.05 MB

DOC)

Scripts S1 Supplemental information: the scripts used for the

simulations.

Found at: doi:10.1371/journal.pone.0013929.s024 (0.04 MB ZIP)
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