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Geometric interpretation of the Pancharatnam
connection and non-cyclic polarization changes
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If the state of polarization of a monochromatic light beam is changed in a cyclical manner, the beam
acquires—in addition to the usual dynamic phase—a geometric phase. This geometric or Pancharatnam–Berry
phase equals half the solid angle of the contour traced out on the Poincaré sphere. We show that such a geo-
metric interpretation also exists for the Pancharatnam connection, the criterion according to which two beams
with different polarization states are said to be in phase. This interpretation offers what is to our knowledge a
new and intuitive method to calculate the geometric phase that accompanies non-cyclic polarization changes.
© 2010 Optical Society of America

OCIS codes: 350.1370, 260.5430, 260.6042.
n
i

S
o
i
i
t

r

T
e

s
p
w
a
b
B
�
n
t
c
t
l
o
t

n 1984 Berry pointed out that a quantum system whose
arameters are cyclically altered does not return to its
riginal state but acquires, in addition to the usual dy-
amic phase, a so-called geometric phase [1]. It was soon
ealized that such a phase is not just restricted to quan-
um systems, but also occurs in contexts such as Fou-
ault’s pendulum [2]. Also the polarization phenomena de-
cribed by Pancharatnam [3] represent one of its
anifestations. The polarization properties of a mono-

hromatic light beam can be represented by a point on the
oincaré sphere [4]. When, with the help of optical ele-
ents such as polarizers and retarders, the state of polar-

zation is made to trace out a closed contour on the
phere, the beam acquires a geometric phase. This
ancharatnam–Berry phase, as it is nowadays called, is
qual to half the solid angle of the contour subtended at
he origin of the sphere [5–10].

In this work we show that such a geometric relation
lso exists for the so-called Pancharatnam connection, the
riterion according to which two beams with different po-
arization states are in phase, i.e., their superposition pro-
uces a maximal intensity. This relation can be extended
o arbitrary (e.g., non-closed) paths on the Poincaré
phere and allows us to study how the phase builds up for
uch non-cyclic polarization changes. Our work offers a
eometry-based alternative to the algebraic work pre-
ented in [11,12].

The state of polarization of a monochromatic beam can
e represented as a two-dimensional Jones vector [13]
ith respect to an orthonormal basis �ê1 , ê2� as

E = cos �ê1 + sin � exp�i��ê2, �1�

ith 0���� /2, −�����, and êi · êj=�ij �i , j=1,2�. The
ngle � is a measure of the relative amplitudes of the two
omponents of the electric vector E, and the angle � de-
1084-7529/10/091972-5/$15.00 © 2
otes their phase difference. Two different states of polar-
zation, A and B, can hence be written as

EA = �cos �A,sin �Aei�A�T, �2�

EB = ei�AB�cos �B,sin �Bei�B�T. �3�

ince only relative phase differences are of concern, the
verall phase of EA in Eq. (2) is taken to be zero. Accord-
ng to Pancharatnam’s connection [5] these two states are
n phase when their superposition yields a maximal in-
ensity, i.e., when

�EA + EB�2 = �EA�2 + �EB�2 + 2 Re�EA · EB
� � �4�

eaches its greatest value, implying that

Im�EA · EB
� � = 0, �5�

Re�EA · EB
� � � 0. �6�

hese two conditions uniquely determine the phase �AB,
xcept when the states A and B are orthogonal.

Let us now consider a sequence of three polarization
tates with each successive state being in phase with its
redecessor. As the initial state we take the basis state X
ith Jones vector EX= �1,0�T. It follows immediately that
ny polarization state A with Jones vector EA as defined
y Eq. (2) is in phase with X. Consider now a third state
. This state is in phase with A provided that the angle
AB in Eq. (3) satisfies relations (5) and (6). Clearly, B is
ot in phase with X, but rather with ei�ABX. Apparently
he total geometric phase that is accrued by following the
losed circuit XAB equals �AB. This observation allows us
o make use of Pancharatnam’s classic result which re-
ates the accumulated geometric phase to the solid angle
f the geodesic triangle XAB [3]. According to this result
hen, the angle (phase) � between the states A and B
AB
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or which they are in phase is given by half the solid angle
XAB of the triangle XAB subtended at the center of the
oincaré sphere, i.e.,

�AB = �XAB/2. �7�

he solid angle �XAB is taken to be positive (negative)
hen the circuit XAB is traversed in a counterclockwise

clockwise) manner. Thus we have −2���XAB�2�, and
ence −���AB��. Hence we arrive at the following geo-
etric interpretation of Pancharatnam’s connection: The

hase �AB for which the superposition of two beams with
olarization states A and B yields a maximum intensity
quals half the solid angle subtended by their respective
tokes vectors and the Stokes vector corresponding to the
asis state X. We emphasize that �AB is defined with re-
pect to a certain basis. We return to this point later.

Several consequences follow from the geometric inter-
retation. First, consider a state B that lies on the great
ircle through the points A and X. As illustrated in Fig. 1,
wo cases can be distinguished. If B is not on the geodesic
hat connects −A and −X, then the curves XA, AB, and BX
ancel each other [see Fig. 1(a)], i.e., �AB=�XAB /2=0. If B
oes lie on the geodesic connecting −A and −X [see Fig.
(b)], then these three curves together constitute the en-
ire great circle and hence �AB=�XAB /2=�. Consequently,
e arrive at
Corollary 1. All polarization states that lie on the great

ircle that runs through A and X and which are not part of
he geodesic curve that connects −A and −X are in phase
ith state A. All other states on the great circle are out of
hase with state A.
(We exclude the pathological case A= ±X.)
The great circle through A and X divides the Poincaré

phere into two hemispheres. For all states B on one

ig. 1. (Color online) The great circle through A, B, and basis
tate X. (a) If state B does not lie on the segment between −A and
X, then the sum of the three geodesics XA, AB, and BX is zero.

b) If B lies on the segment between −A and −X, then the sum of
he three geodesics equals the great circle.
emisphere, the path XAB runs clockwise. For B on the
ther hemisphere, the path XAB always runs counter-
lockwise. Thus we find

Corollary 2. The great circle that runs through A and
divides the Poincaré sphere into two halves, one on

hich all states have a positive phase with respect to A,
nd one on which all states have a negative phase with re-
pect to A.

Thus far we have not specified the basis vectors in
hich the Jones vectors are expressed. The two most com-
only used are the Cartesian representation and the he-

icity representation. The Stokes vectors corresponding to
he basis state X are (1,0,0) and (0,0,1) in these two bases,
espectively. Our results so far are valid for any choice of
epresentation. For computational ease, however, we will
rom now on make use of the Cartesian basis.

Given two different polarization states A and B, we
ay inquire about the set �B�� of all states which have the

ame phase difference �AB with respect to A as B has. We
egin by noticing that the solid angle �ABC subtended at
he origin of the Poincaré sphere by three unit vectors A,
, and C satisfies the equation [14]

tan��ABC

2 � =
A · �B 	 C�

1 + B · C + A · C + A · B
. �8�

n taking A, B, and C as the Stokes vectors correspond-
ng to states A, B, and X, i.e., C= �1,0,0�, Eqs. (7) and (8)
ield

tan �AB =
AyBz − AzBy

1 + Bx + Ax + AxBx + AyBy + AzBz
. �9�

or �AB and A fixed, we thus find that the three compo-
ents of B must satisfy the relation

cxBx + cyBy + czBz + D = 0, �10�

ith the coefficients cx, cy, cz, and D given by

cx = tan �AB�1 + Ax�, �11�

cy = tan �ABAy + Az, �12�

cz = tan �ABAz − Ay, �13�

D = cx. �14�

he solutions of Eq. (10) form a plane. In addition, the
ector B must be of unit length, ensuring that it lies on
he Poincaré sphere. The intersection of the plane and the
phere is a circle that runs through B. Finding two other
oints on this circle defines it uniquely. It can be verified
y substitution that the Stokes vectors −A and −X both
atisfy Eq. (10). Hence, for all states on the circle that
uns through B, −A, and −X, the phase �AB has the same
alue, mod �. Since the plane defined by Eq. (10) does, in
eneral, not include the origin of the Poincaré sphere, this
ircle is not a great circle. This is illustrated in Fig. 2,
here the circle through B is drawn as dashed. The
ashed circle intersects the great circle through A and X
t the points −A and −X. According to Corollary 2, �AB
hanges sign at these points. Since Eq. (9) defines the
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hase modulo �, it follows that �AB undergoes a � phase
ump at these points. We thus arrive at

Corollary 3. Consider the circle through −A, −X, and
. It consists of two segments, both with end points −A
nd −X. The segment which includes B equals the set �B��
f states such that �AB�=�AB. The other segment represents
tates for which �AB�=�AB±�.

It can be shown that the plane-sphere intersection is al-
ays a circle, and not just a single point, if the pathologi-

al case A= ±X is excluded. If, for a fixed state A, the state
is being varied, the plane given by Eq. (10) rotates

long the line connecting −A and −X.
We now demonstrate how our geometric interpretation

mplies that for a fixed state A the phase �AB may vary in
ifferent ways when the state B is moved across the
oincaré sphere. We specify the position of B by spherical
oordinates �
 ,��, where 0�
�2� and 0���� repre-
ent the azimuthal angle and the angle of inclination, re-
pectively. If A is taken to be at the south pole and B
B�
� lies on the equator, then

�AB =
�XAB

2
=

1

2�
�/2

� �
0




sin �d
�d� =
1

2

. �15�

ig. 3. (Color online) Selected contours of the phase �AB for the
ase A= �0,0.8,0.6�. The basis state X, the equator (Eq.), and the
eridian through X are also shown.

ig. 2. (Color online) Illustration of the intersection of the plane
iven by Eq. (10) and the Poincaré sphere. This intersection is a
ircle (indicated by the dashed curve) that runs through the
oints −A, −X, and B. All points on the circle segment that runs
rom −A to B to −X constitute the set �B�� of states that have the
ame phase difference �AB with respect to A as the state B. The
reat circle through A and X is shown as a solid-dotted curve.
learly, the phase varies linearly with the angle 
 in this
ase.

Let us now consider the contours of equal phase �AB as
hown in Fig. 3. It is seen that the intersections of the
ontours with the equator are not equidistant. Hence in
his case the phase depends in a nonlinear way on the
ngle 
.
The singular behavior, finally, of the phase is a direct

onsequence of the fact that two anti-podal states A and
A do not interfere with each other [see the remark below
q. (6)]. From Eq. (8) it follows that the phase is antisym-
etric under the interchange of the points C=X and A.
ence we expect two singular points, namely, −A and −X,
ith opposite topological charges (�1). This is illustrated

n Figs. 4 and 5. We note that the existence of singular
oints is in agreement with the “hairy ball theorem” due
o Brouwer [15], according to which there is no non-
anishing continuous tangent vector field on a sphere in
3. This implies that ��AB has at least one zero, in this
ase at the two singularities.

ig. 4. (Color online) Contours of equal phase of �AB for the case
hat the state A is taken to be (0.6,0,0.8). Two singular points
ith opposite topological charges can be seen at −A and −X.

ig. 5. (Color online) Contours of equal phase of �AB for the case
hat the state A is taken to be (0,0,1). The singularity at −A is
een to have a topological charge of +1.
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Let us now apply our results for the Pancharatnam
onnection to study the geometric phase for an arbitrary,
.e., non-closed, path ABC on the Poincaré sphere. The
uccessive states are assumed to be in phase. Therefore
he geometric phase accumulated on this path equals

�ABC 	 �AB + �BC = ��XAB + �XBC�/2 = �XABC/2, �16�

here �XABC is the generalized solid angle of the path X
A→B→C→X. �XABC can consist of two triangles (see

ig. 6), whose contribution is positive or negative depend-
ng on their handedness.

Now we keep states A and C fixed and study how the
eometric phase �ABC changes when state B is varied. We
ill show that this change, in contrast to �AB, is indepen-
ent of the choice of basis vectors. Consider the phase

ABC� in a non-Cartesian basis (for example, the helicity
asis) whose first basis state we call N. We then have, in
nalogy to Eq. (16),

�ABC� 	 �AB� + �BC� = ��NAB + �NBC�/2 = �NABC/2. �17�

lso,

�NABC − �XABC = �NABC + �CBAX = �NAXC. �18�

he justification of the last step of Eq. (18) is illustrated
n Fig. 7. It follows on using Eqs. (16)–(18) that

�ABC� − �ABC = �NAXC/2. �19�

he term �NAXC /2 is a constant, independent of B, i.e.,
he geometric phase in both representations differs by a
onstant only. Hence the variation of the geometric phase
ith B is independent of the choice of the basis, as it

hould be for an observable quantity. This is in contrast to
AB, which explicitly depends on the choice of basis, as is
vident from Eqs. (2) and (3).

A C

B

X

K

ig. 6. (Color online) Illustration of the generalized solid angle
XABC. In going from state A to state B, the beam acquires a geo-
etric phase equal to half the solid angle �XAB, which is positive.

n going from B to C the acquired phase equals half the solid
ngle �XBC, which is negative. Since the triangle BKX does not
ontribute, this is equivalent to the generalized solid angle
XABC, which equals half the solid angle of the triangle ABK

positive), plus half the solid angle of the triangle XKC
negative).
The behavior of �ABC on varying B can be linear [16],
onlinear [17], or singular [18–20], as we have also shown

or �AB. However �AB has singularities at B=−A and
=−X. The first is due to the orthogonality of A and −A,
hile the second is a consequence of the choice of repre-

entation. The phase �ABC is singular only at B=−A and
=−C, and not at B=−X.
In conclusion, we have shown how the Pancharatnam

onnection may be interpreted geometrically. Our work of-
ers a geometry-based approach to calculate the
ancharatnam–Berry phase associated with non-cyclic
olarization changes. As such it is an alternative to the
lgebraic treatments presented in [11,12]. Our approach
an be extended to the description of geometric phases in
uantum mechanical systems.
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