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Background: Intratumorous hypoxia triggers a broad cellular response mediated by the transcription
factor hypoxia inducible factor 1 (HIF-1). HIF-1a concentrations increase during breast carcinogenesis,
and are associated with poor prognosis. An earlier study noted two HIF-1a overexpression patterns:
diffuse scattered throughout the tissue and confined to perinecrotic cells.
Aims: To investigate the prognostic impact of these different HIF-1a overexpression patterns in relation to
its downstream effectors carbonic anhydrase (CA) IX and glucose transporter 1 (GLUT-1).
Methods: HIF-1a, CA IX, and GLUT-1 expression was studied by immunohistochemistry, including double
staining for CA IX and HIF-1a. Clinical data included disease free survival, lymph node status, and tumour
size.
Results: HIF-1a overexpression (44% of cases) had a perinecrotic (13.5%) or diffuse staining pattern
(30.5%). CA IX expression was detectable in 12.5% of breast cancers, whereas GLUT-1 expression was
seen in 29%, with both showing perinecrotic membrane staining. Perinecrotic HIF-1a overexpression was
highly associated with CA IX and GLUT-1 overexpression, and double staining for HIF-1a and CA IX
showed strong expression in the same cells. Diffusely overexpressed HIF-1a was not associated with CA IX
or GLUT-1 expression. Patients with diffuse HIF-1a staining had a significantly better prognosis than
patients with perinecrotically overexpressed HIF-1a.
Conclusions: Different regulation pathways of HIF-1a overexpression exist in breast cancer: (1) hypoxia
induced, perinecrotic HIF-1a overexpression with strong expression of hypoxia associated genes (CA IX
and GLUT-1), which is associated with a poor prognosis; and (2) diffuse HIF-1a overexpression lacking
major hypoxia associated downstream effects, resulting in a more favourable prognosis.

H
ypoxia is one of the hallmarks of cancer. The presence
of hypoxia has been demonstrated in different types of
solid tumours, including breast cancer.1 Intratumorous

hypoxia is caused by the lack of functional blood vessels in
proliferating tumour tissue, resulting in low intratumorous
oxygen concentrations. If hypoxia is severe or prolonged, cell
death occurs. Malignant cells can undergo genetic and
adaptive changes that allow them to escape from dying of
oxygen deprivation. These changes are associated with
a more aggressive malignant phenotype, and resistance
to chemotherapy and radiotherapy, resulting in a poor
prognosis.2 3

‘‘Malignant cells can undergo genetic and adaptive
changes that allow them to escape from dying of oxygen
deprivation’’

The broad cellular response caused by hypoxia is mediated
by the action of the transcription factor hypoxia inducible
factor 1 (HIF-1). HIF-1 binds to the hypoxia response
element in promoters of various target genes. Hypoxia
inducible genes regulate several crucial biological processes,
including apoptosis, migration (metastasis), cell prolifera-
tion, angiogenesis, and glycolytic metabolism.4 Changes in
the expression patterns of these genes counteract hypoxia
and increase oxygenation, whereas others affect the cellular
adaptation to decreased oxygen concentrations or mediate
cell death signalling pathways.5 6

The HIF-1 protein is a heterodimer consisting of two
subunits, HIF-1a and HIF-1b.7 HIF-1b is constitutively
expressed and will bind to HIF-1a when concentrations of

HIF-1a are high. Under normoxic conditions, hydroxylation
of HIF-1a allows the von Hippel Lindau E3 ubiquitin ligase
complex to bind to HIF-1a, which is then degraded by the
proteasome.8 During hypoxia, stabilisation of HIF-1a occurs
through inhibition of 4-prolyl hydroxylase activity, an
enzyme that requires oxygen to be functional.9 Upon
stabilisation, HIF-1a protein is transported into the nucleus
where it heterodimerises with HIF-1b, forming the active
HIF-1 transcription complex. Oxygen independent HIF-1a
expression may occur by genetic alterations, such as loss of
tumour suppressor genes or activation of oncogenes.10

Increased concentrations of HIF-1a are found in many
solid human cancers.11 In breast cancer, increased concentra-
tions of HIF-1a were associated with increased proliferation
and poor differentiation, indicating the association of HIF-1a
expression with a more aggressive phenotype.12 Several
studies have reported the prognostic relevance of HIF-1a
overexpression in human cancer.13 14 In breast cancer,
increased concentrations of HIF-1a are independently asso-
ciated with shortened survival in lymph node negative
patients.15 In these tissue studies, it was noted that HIF-1a
overexpression may be diffuse throughout the tumour or may
be seen in perinecrotic tumour cells. Whether these different
patterns have different cell biological and prognostic implica-
tions is yet unknown. One crucial aspect of this is whether
there is a differential activation of HIF-1 downstream target
genes.

Abbreviations: CA IX, carbonic anhydrase IX; DFS, disease free
survival; GLUT-1, glucose transporter 1; HIF-1, hypoxia inducible factor
1; HRE, hypoxia response element; VEGF, vascular endothelial growth
factor
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Carbonic anhydrase IX (CA IX), a member of the family of
zinc metalloenzymes, is a major downstream target of HIF-
1a.16 Its function is to regulate intracellular and extracellular
pH by converting CO2 to carbonic acid. Previous clinical
studies revealed that CA IX has prognostic value in breast
cancer,17 18 cervical cancer,19 non-small cell lung cancer,20 and
nasopharyngeal cancer.21 In these studies, significant associa-
tions were found between CA IX expression and necrosis.
Because the presence of necrosis represents the result of
previous and ongoing intratumorous hypoxia,22 23 these
results indicate that CA IX is an intrinsic marker of tumour
hypoxia.
Glucose transporter 1 (GLUT-1) is a membrane bound

protein involved in glucose transport, which is frequently
overexpressed in tumours, thereby allowing increased glu-
cose uptake of cancer cells.24 Expression of GLUT-1 was found
to be regulated by hypoxia in a HIF-1 dependent way.25

We hypothesised that the perinecrotic and diffuse HIF-1a
expression patterns may have different cell biological and
clinical implications. Therefore, we investigated these HIF-1a
expression patterns in a large group of patients with invasive
breast cancer with longterm follow up, in relation to its
downstream targets, CA IX and GLUT-1.

MATERIALS AND METHODS
Paraffin wax embedded material was still available from
200 patients who formed part of a previously extensively
described group of patients with invasive breast cancer.26

Anonymous use of leftover tumour material is part of
the standard treatment agreement with patients in our
hospital.

All tumours had been fixed for at least 24 hours in neutral
buffered 4% formaldehyde, were classified according to the
World Health Organisation, and were graded according
to a modification of Bloom and Richardson’s method.27

Histological classification revealed 144 ductal, 30 lobular, 11
tubular, two papillary, four mucinous, four medullary, two
apocrine, and three cribriform cancers. The mean tumour
diameter was 2.2 cm, ranging from 0.3 to 10.0 cm. The group
included 72 lymph node positive and 115 lymph node
negative patients, whereas for 13 patients lymph node status
was unknown. None of the patients received preoperative
chemotherapy, hormonal treatment, or radiotherapy. Adju-
vant systemic treatment (chemotherapy for premenopausal
and tamoxifen for postmenopausal patients) was given
according to established guidelines. Oestrogen receptor status
had been determined routinely by immunohistochemistry.

Immunohistochemistry
Immunohistochemistry was performed on 4 mm thick serial
sections derived from formaldehyde fixed, paraffin wax
embedded tumour tissue blocks. All sections were dewaxed
and rehydrated.
HIF-1a staining was performed as described previously.12

In short, antigen retrieval was performed (45 minutes at
96 C̊) in target retrieval solution (Dako, Glostrup, Denmark).
The primary mouse antibody (anti-HIF-1a; 1/500 dilution;
BD Transduction Laboratories, Lexington, Kentucky, USA)
was incubated for 30 minutes at 20 C̊. The catalysed signal
amplification system (Dako) was used to detect HIF-1a
staining.
For CA IX staining, sections were incubated without

antigen retrieval with mouse anti-CA IX (MN 75; 1/50
dilution; kindly provided by Dr S Pastorekova, Institute of
Virology, Academy of Science, Bratislava, Slovakia) for 30
minutes at 20 C̊ and subsequently developed with an avidin–
biotin–peroxidase complex method (Envision system per-
oxidase mouse; Dako). All sections were developed using
diaminobenzidine, and subsequently counterstained with
haematoxylin.
For GLUT-1 staining, sections were incubated without

antigen retrieval with a rabbit polyclonal anti-GLUT-1 anti-
body (clone A 3536; Dako) and subsequently developed with
a standard avidin–biotin–peroxidase complex method (bio-
tinlyated goat antirabbit antibody; Dako; streptavidin per-
oxidase system; Dako) using an autostainer (Autostainer
480-2D; LabVision, Freemont, California, USA).
Double staining for CA IX and HIF-1a was achieved by first

performing HIF-1a single staining, as described above. After
diaminobenzidine development, sections were incubated
with mouse anti-CA IX antibody (1/50 dilution) and the
Power Vision System antimouse APH (Dako), and subse-
quently stained with Fast Blue BB (Sigma, St Louis, Missouri,
USA). Before the slides were mounted, all sections were
dehydrated in alcohol and xylene.

Quantification
The percentages of nuclei positive for HIF-1a were scored
blindly by two observers (PvD and MMV), only counting
homogeneously and darkly stained nuclei as positive. For
HIF-1a, a percentage of > 1% positive nuclei was considered
positive, as described previously.12 15 Reanalysis of different
HIF-1a thresholds for the present data set again made it clear
that this was the optimal prognostic cutoff value. For CA IX
and GLUT-1, staining was scored as positive or negative, with
any membranous staining around tumour cells classed as
positive. Using a magnification of6200, the presence of any
necrosis on haematoxylin and eosin stained sections was
scored as positive.

Table 1 Association of HIF-1a expression with
clinicopathological features in patients with invasive
breast cancer (n = 200)

n
HIF-1a
,1%

HIF-1a
.1% p Value (x2)

Total 200 112 88
Histological type
Ductal 144 76 68
Lobular 30 22 8
Tubular 11 9 2
Papillary 2 1 1
Mucinous 4 1 3
Medullary 4 0 4
Apocrine 2 0 2
Cribriform 3 3 0 NA*

Histological grade
I 61 46 15
II 78 48 30
III 61 18 43 ,0.001

Tumour size
0–2 cm 97 61 36
2–5 cm 89 42 47
.5 cm 14 9 5 0.080

Lymph node status
Negative 115 69 46
Positive 72 35 37 0.127

Necrosis
Negative 162 101 61
Positive 38 11 27 ,0.001

CA IX
Negative 175 108 67
Positive 25 4 21 ,0.001

GLUT-1
Negative 143 97 46
Positive 57 15 42 ,0.001

*Lobular breast carcinomas showed significantly less frequent HIF-1a
expression than ductal cancers (p = 0.03).
CA IX, carbonic anhydrase IX; GLUT-1, glucose transporter 1; HIF-1a,
hypoxia inducible factor 1a; NA, not associated.
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Statistical and survival analysis
The x2 test (SPSS for Windows version 9.01; 1999 SPSS Inc,
Chicago, Illinois, USA) was used to test the correlations
between HIF-1a, CA IX, GLUT-1, and the presence of
necrosis. Two sided p values , 0.05 were considered
significant.
For survival analysis, clinical data were available from 166

patients. The endpoint of analysis was recurrence, defined as
the first reappearance of breast cancer at any site or death
(disease free survival (DFS) analysis). Survival estimates and
curves were calculated using the Kaplan–Meier technique
and differences in time to recurrence were tested by means of
a log rank test.

RESULTS
HIF-1a expression was detectable in 88 of 200 (44%) patients
with breast cancer. Two staining patterns were observed:
predominantly around necrotic areas for 27 cases (fig 1A) or
diffusely throughout the tumour for 61 cases (fig 1B).
Nuclear HIF-1a expression was occasionally demonstrated
in normal tissue surrounding the tumour. Cytoplasmic

Figure 1 Immunohistochemical analysis of hypoxia inducible factor 1a (HIF-1a) and carbonic anhydrase IX (CA IX) in human breast cancer. (A) HIF-
1a nuclear expression around necrotic (N) areas. (B) Diffuse nuclear HIF-1a expression, not related to necrosis. (C) CA IX membrane expression
around necrotic areas. (D) Glucose transporter 1 (GLUT-1) membrane expression around necrotic areas. (E, F) Double staining revealing strong
staining of HIF-1a and CA IX around necrotic areas (original magnification, 6200).

Table 2 Associations between HIF-1a staining pattern,
grade, and expression of CA IX and GLUT-1 for HIF-1a
positive breast cancer cases (n = 88)

n

HIF-1a staining pattern*

p Value (x2)Diffuse Necrotic

Grade
I 15 13 2
II 30 25 5
III 43 23 20 0.007

CA IX
Negative 67 55 12
Positive 21 6 15 ,0.001

GLUT-1
Negative 46 41 5
Positive 42 20 22 ,0.001

*One case, which was grouped with the perinecrotic cases, showed both
diffuse and perinecrotic expression.
CA IX, carbonic anhydrase IX; GLUT-1, glucose transporter 1; HIF-1a,
hypoxia inducible factor 1a.
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staining was seen in tumour associated macrophages in some
cases. CA IX expression was absent in normal tissue
surrounding the tumours but was found in 25 of 200
(12.5%) breast cancer cases. Positive staining was usually
focal and mainly restricted to tumour cells adjacent to areas
of necrosis (fig 1C). GLUT-1 staining was frequently seen in
erythrocytes and endothelium. Membranous GLUT-1 stain-
ing around cancer cells was seen in 57 of 200 (28.5%) breast
cancer cases. Positive staining was mainly associated with the
presence of necrosis (fig 1D).
High HIF-1a expression was significantly associated with

poor histological grade (p , 0.001), the presence of necrosis
(p , 0.001), CA IX expression (p , 0.001), and GLUT-1
expression (p , 0.001) (table 1).
Table 2 shows the associations between HIF-1a staining

patterns, grade, GLUT-1 expression, and CA IX expression for
the HIF-1a positive cases (n = 88). Perinecrotic HIF-1a
overexpression was related to poor differentiation grade
(p = 0.007), CA IX expression (p , 0.001), and GLUT-1
expression (p , 0.001). In all cases, perinecrotic HIF-1a
overexpression was topographically associated with CA IX
and/or GLUT-1 expression in serial sections, and strong
expression of HIF-1a and CA IX in perinecrotic regions was
confirmed by double staining (fig 1E, F).

Forty one HIF-1a positive cases showed no CA IX or GLUT-
1 expression. Thirty nine of 41 of these cases showed a diffuse
HIF-1 staining pattern. Sixteen HIF-1a positive cases showed
double positivity for CA IX and GLUT-1. From these double
positives, 12 of 16 showed a perinecrotic staining pattern.
In univariate survival analysis, a significant negative

relation was found between HIF-1a expression and DFS
(p = 0.01; table 3; fig 2A, B), with a relative 2.2 fold
increased risk for recurrences compared with the HIF-1a
negative group. A separate analysis according to type of HIF-
1a expression showed that perinecrotic HIF-1a expression
was associated with a worse prognosis (relative risk, 3.1)
than diffuse HIF-1a expression (relative risk, 2.0; table 3).

DISCUSSION
In a previous study, we noted two HIF-1a overexpression
patterns: diffuse throughout the tumour and restricted to
perinecrotic tumour cells.12 This was confirmed in our present
study, in which we performed immunohistochemical and
survival analyses in a group of 200 patients with breast
cancer. We used whole tissue sections because there is often
pronounced intratumour heterogeneity for HIF-1a staining
because of focal perinecrotic staining, which is clinically
relevant. Data derived from a tissue array study would
probably be less reliable with regard to associations between
HIF-1a and prognosis. Indeed, a recent study found only 5%
of breast cancers to be HIF-1a positive on tissue microarray.28

Nuclear HIF-1a overexpression was seen in 44% of breast
cancer cases by single immunohistochemical staining, mainly
in ductal, medullary, and apocrine types, and very rarely in
lobular, tubular, and cribriform cancers. Strong CA IX and
GLUT-1 membrane staining was seen in 13% and 29% of
cancers, respectively, and was mainly confined to areas
around necrosis. Previous single staining studies have
reported similar expression levels for HIF-1a and CA IX as
individual markers in invasive breast cancer,17 29 non-small
cell lung cancer,19 and nasopharyngeal carcinoma.17

Perinecrotic HIF-1a expression was seen in 27 of 88 HIF-1a
positive cancers and was significantly associated with the
expression of CA IX and GLUT-1. Tomes et al previously
showed HIF-1a expression around necrosis with strong
expression of its downstream genes CA IX, GLUT-1, and
vascular endothelial growth factor (VEGF).30 However, our
present study is the first to confirm the coexpression of HIF-
1a and CA IX in the same cells by double staining
experiments. In addition to the perinecrotic staining observed
by Tomes et al, we have demonstrated HIF-1a positivity with
a diffuse staining pattern. Interestingly, these diffuse HIF-1a
positive cases (61 of 88) did not show coexpression of CA IX
or GLUT-1 expression as the perinecrotic HIF-1a positive
cases did.
GLUT-1 expression is induced by hypoxia in a HIF-1

dependent way.25 However, we found that GLUT-1 was also
sometimes overexpressed in the absence of HIF-1a over-
expression (15 of 200 cases). In these cases, GLUT-1
overexpression might be induced by other factors, such as
growth factors, mitogens, and activated oncogenes.25 In
contrast, only four breast cancer cases showed CA IX
expression in the absence of HIF-1a expression. Because CA
IX expression is induced at a reduced oxygen concentration,
but above that necessary for HIF-1a stabilisation, it is
possible that CA IX expression may also be induced
independently of HIF-1a activation.31 Furthermore, CA IX
expression is seen not only in hypoxic tumour regions, but
also in those regions previously affected by hypoxia.32

Nevertheless, our results showed that, in contrast to GLUT-1,
CA IX expression is more tightly regulated by hypoxia.
Therefore, CA IX might be a useful marker of hypoxic areas
in tumours. However, this is not an absolute relation, because

1.0

0.8

0.4

0.6

0.2

0.0
1097 864 5

Years

HIF 0

HIF +

HIF + diffuse

HIF + perinecrotic

HIF 0

310 2

A

1.0

0.8

0.4

0.6

0.2

0.0
1097 864 5

Years
310 2

B

Figure 2 Kaplan–Meier recurrence free survival curves for 166 patients
with breast cancer. (A) Recurrence free survival curves for patients with
(> 1%) (n = 66) or without hypoxia inducible factor 1a (HIF-1a)
expression (n = 100); log rank p value, 0.01. (B) Recurrence free
survival curves for patients without (, 1%) HIF-1a expression (n = 100)
versus diffuse HIF-1a expression (n = 51) or necrosis related HIF-1a
expression (n = 15); global log rank p value, 0.02.
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11 of 38 breast cancers with necrosis showed absence of both
HIF-1a and CA IX expression. In these cases, factors other
than hypoxia alone may contribute to the development of
necrosis, such as metabolic or vascular mechanisms.33

‘‘Both groups have a worse disease free survival prognosis
compared with patients with HIF-1a negative breast
cancer, indicating the potential for HIF-1 as a therapeutic
target’’

Because many diffuse HIF-1a positive cases (39 of 61)
showed total absence of CA IX and GLUT-1 expression, this
may point to a lack of activation of HIF-1 target genes. These
variations in transcriptional activation may represent differ-
ential tumour behaviour. Therefore, we investigated the
differential prognostic impact of these different staining
patterns. Using (DFS) analysis, HIF-1a expression was found
to be a predictor of poor prognosis. These results are in
agreement with our earlier results in another breast cancer
patient group,15 and the results of other groups.13 Our results
showed that in breast cancer, perinecrotic HIF-1a over-
expression was associated with a worse prognosis than
diffuse HIF-1a overexpression, underlying the clinical impor-
tance of the presence of downstream HIF-1a effects. The
prognostic impact of diffuse and perinecrotic HIF-1a expres-
sion patterns was previously investigated in oropharyngeal
cancer. In that study, the staining pattern (focal versus
diffuse) had no significant influence on local tumour control
or patient survival.34 Thus, our study is the first to show a
differential prognostic impact of the HIF-1a staining pattern
in breast cancer.
HIF-1a expression away from necrosis might be caused by

mechanisms other than hypoxia. Cytokines and other
signalling molecules stimulate HIF-1a synthesis by acting
on the phosphatidylinositol 39-kinase or mitogen activated
protein kinase pathways involved in HIF-1a protein synth-
esis. Furthermore, HIF-1a expression or activity is increased
in response to genetic alterations. For example, loss of
function mutations in tumour suppressor genes, such as p53

and von Hippel-Lindau, influence the concentrations and
functions of HIF-1. The expression of oncogenes, such as
v-Src and H-ras, has also been implicated in HIF-1a
expression at normoxia.10 HIF-1a overexpression at normoxia
might also be caused by genetic changes in the HIF-1a
gene.35 36 These alternative HIF-1 regulation pathways need to
be studied with regard to HIF-1a expression patterns and
HIF-1 transcriptional activation in vivo.
In conclusion, we found supporting evidence for the

hypothesis that different upstream pathways exist for
regulation of HIF-1a expression, namely: (1) hypoxia related
HIF-1a induction and (2) normoxia related HIF-1a induc-
tion. In hypoxic conditions, HIF-1a expression is seen
perinecrotically, and induces hypoxia associated downstream
target genes such as CA IX and GLUT-1, whereas under
normoxic circumstances, HIF-1a can be stabilised via other
pathways, without activation of these downstream genes.
The clinical importance of these normoxic versus hypoxic
staining patterns is underlined by the relatively better
prognosis of patients with diffuse HIF-1a overexpression in
their invasive breast cancers. However, both groups have a
worse DFS prognosis compared with patients with HIF-1a
negative breast cancer, indicating the potential for HIF-1 as a
therapeutic target.
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