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Network Measures in Civil Air Transport: A 

Case Study of Lufthansa 

Aura Reggiani,a Sara Signoretti,a Peter Nijkamp,b Alessandro Centoc 

Abstract   Air transport networks have exhibited a trend towards complex dynam-

ics in recent years. Using Lufthansa’s networks as an example, this paper aims to 

illustrate the relevance of various network indicators – such as connectivity and 

concentration – for the empirical analysis of airline network configurations. The 

results highlight the actual strategic choices made by Lufthansa for its own net-

work, as well in combination with its partners in Star Alliance. 

Keywords: air transport, complex networks, connectivity, concentration, Luf-

thansa. 

1 Introduction 

Network analysis has already a long history in operations research and quantita-

tive social science research. In the past, much attention has been paid to shortest-

route algorithms (for example, the travelling salesman problem), where the spatial 

configuration of networks was put in the centre of empirical investigation. Integer 

programming, linear and nonlinear programming turned out to offer a proper ana-

lytical toolbox. In recent years, we have seen several new trends, in particular, the 

rise of hub-and-spoke systems in liberalized networks, the emergence of dynamic 

adjustments to new competitive conditions and the increase in complexity in in-

ternational networks. 

Furthermore, it appears that in the past decades many social, spatial and eco-

nomic systems show an organized pattern characterized by network features, such 

as transportation, telecommunication, information or energy systems. As a conse-

quence, much attention has recently been paid to the study of network properties 
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emerging in many social, spatial and economic fields, as witnessed by the vast 

amount of literature published in the past years (Barthélemy 2003; Gorman and 

Kulkarny 2004; Gorman 2005; Schintler et al. 2005a,b; Reggiani and Nijkamp 

2006; Patuelli 2007). Air transport is a prominent example of modern network 

constellations and will be addressed in this paper from a connectivity perspective. 

Air transport shows indeed clear network features, which impact on the way 

single airline carriers operate (Button and Stough 2000). The abundant scientific 

literature on airline networks has addressed this topic in terms of theoretical mod-

elling and empirical measurements on different typologies of airline network con-

figurations. This strand of recent research aimed to measure the network structure 

in relation to the effects of: (a) the market deregulation in United States in 1978 

and in the European Union in the 1990s, (b) new trends in recent airline business 

strategies denoted as ‘low cost’ principles. Low cost carriers developed rather fast 

after the deregulation policy, by acquiring a competitive network advantage on 

traditional airlines, which consequently seemed to reorganise rapidly their airline 

network to respond to the new market dynamics. 

In this context, interesting research has emerged that mainly addressed the issue 

of describing and classifying networks by means of geographical concentration 

indices of traffic or flight frequency (Caves et al. 1984; Toh and Higgins 1985; 

McShan 1986; Reynolds-Feighan 1994, 1998, 2001; Bowen 2002; Lijesen 2004; 

Cento 2006). These measures, such as the Gini concentration index or the Theil 

index, provide a proper measure of frequency or traffic concentration of the main 

airports in a simple, well-organized network. However, if a real-world network 

structure is complex, including multi-hub or mixed point-to-point and hub-spokes 

connections, the concentration indices may record high values for all types of 

structure, but fail to clearly discriminate between different network shapes (Al-

derighi et al. 2007). There is a need for a more appropriate measurement of con-

nectivity structures in complex networks. 

Starting from the above considerations and research challenges, the present pa-

per aims to investigate the scientific potential and applicability of a series of net-

work connectivity/concentration indices, in order to properly typify and map out 

complex airline network configurations. Specifically, these various network indi-

cators will be adopted and tested to describe the main properties – in terms of the 

network connectivity and configuration – of Lufthansa’s airline system. The aims 

of the present paper are then: (a) to detect the extent to which the real network 

configuration is close to typical network models that evolved over time; (b) to ex-

amine how concentration measures can point to the different network topologies; 

and (c) to study the way nodes are connected, that is, to analyse their distribution 

function.  

The present article is organized as follows: Section 2 will provide a brief de-

scription of the main models of network connectivity that have been developed in 

the framework of (spatial or social) network analysis. In this section, the focus 

will mainly be on the concept of vertex degree distribution in a network and on the 

main indicators used for the analysis of air transport. Next, Section 3 presents a 

novel empirical analysis of Lufthansa’s network; the methods provided by net-
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work analysis are applied in order to understand more thoroughly the real net-

work’s topology. Finally, Section 4 will offer some conclusions from the present 

paper, as well as some further research challenges. 

2 Network Models and Measures in Air Transport Systems 

2.1 Preface 

Many economic activities are currently characterized by network characteristics 

with a high degree of complexity, since their processes and outcomes depend not 

only on the choices of the single agents but also on the dynamic – often nonlinear 

– interactions between them in a continuous dynamic interplay (Reggiani and 

Nijkamp 20061). A clear example of a complex spatial-economic network is the 

geographical network of the air transport industry: understanding its peculiarities 

and responding to these features can bring about substantial advantages for both 

consumers and producers (Button and Stough 2000). Airline network analysis has 

gained much popularity in recent years. 

Modelling complex networks is also a great challenge: on the one side, the to-

pology of the network is governing the complex connectivity dynamics (see, for 

instance, Barabási and Oltvai 2004); on the other side, the functional-economic re-

lationships in such networks might also depend on the type of connectivity struc-

ture. The understanding of these two interlinked network aspects may be instru-

mental for capturing and analysing airline network patterns. Starting from the 

above considerations, we will review, in the next subsection, the main connec-

tivity models and measures which have recently gained a great deal of attention in 

the scientific literature, with a particular view to air transport networks. 

2.2 Network Models  

In the last decades network theory has gained scientific interest and sophisticated 

network models have been used in different fields, including economics and geog-

raphy (Waters 2006). This trend faced also quite some difficulty, because existing 

models were not able to clearly describe the network properties of many real-

                                                           
1 These authors point out that the main feature of complexity is that the outcome (of the activity 

of a complex system) ‘should not be obvious from the single building blocks’ (Bossomaier 

and Green 2000). Consequently, the term complexity indicates that the final result cannot be 

foreseen even when the single components of a system are known and studied. 
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world systems, whose complexity could not fully be understood (Barabási and Al-

bert 1999). 

Spatial-economics systems – including air transport networks – are complex, 

because agents interact, obtaining significant benefits by means of a joint activity 

(Boschma 2005). This interacting process may become a permanent feature thus 

leading to a new meso- or macro structure, for example, to the creation of clusters. 

Air transport systems have over the past years been experiencing such cluster-

ing processes. An example is provided by airlines’ alliances.2 The main reason 

why airline carriers cooperate of aggregate stems from cost reductions they can 

thus obtain. Being a member of an alliance impacts on the carriers’ strategy for a 

long time and also influences the network configuration they adopt. It is worth 

noteworthy that alliances play also an important role in determining market dy-

namics; in 2005, the three main alliances in air transport accounted for 80 per cent 

of the total capacity offer.3 Therefore, we need to develop airline network models 

that can adequately take into account clustering and merger processes.  

A further important trend many real networks show is the so-called ‘Small-

World (SW) effect’. This term indicates that the diameter4 of a network is so short 

that it takes only a few movements along links in order to move between any two 

nodes of a network (Reggiani and Vinciguerra 2007). In air transport systems, we 

can point out the SW effect by taking into consideration and comparing the net-

work configuration of single carriers or of alliances; such systems exhibit a clear 

SW effect when it takes only a small number of flights to link the two most distant 

airports in the network.  

Alongside the SW effect, the SW network model has been developed in order 

to take into account both the SW effect and the related clustering processes (Watts 

and Strogatz 1998). The main features of this model are a short diameter and a 

high clustering coefficient. 

A further elaboration of the SW model is the so called Scale-Free (SF) network 

introduced by Barabási and Albert (1999) in order to incorporate two mechanisms 

upon which many real networks have proven to be based: growth and preferential 

attachment. The former points to the dynamic character of networks, which grow 

by the addition of new nodes and new vertices; the latter explains how new nodes 

enter the network, namely by connecting themselves to the nodes having the high-

est number of links. 

An important feature of SF networks is represented by their vertex degree dis-

tribution5 ( )P k  which is proportional to k   (with k being the number of links), 

that is, to a power law. The value of the degree exponent γ depends on the attrib-

                                                           
2 The processes underlying the creation of an alliance can be clearly depicted by considering the 

integration of Lufthansa and Swiss, described in the Lufthansa Annual Report (2005); availa-

ble on the website http://konzern.lufthansa.com/en/html/ueber_uns/swiss/index.html). 
3 See http://www.tourismfuturesintl.com/special%20reports/alliances.html. 
4 The concept of a diameter will be defined in Subsection 2.3. 
5 P(k) is the probability that a chosen node has exactly k links (Barabási and Oltvai 2004). See 

also Eq. (1). 
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utes of the single systems and is crucial to detect the exact network topology, in 

particular the existence of the hubs (highly connected nodes). As Barabási and 

Oltvai (2004) highlight, a SF network embeds the proper hub-and-spoke model 

only when γ = 2, while for 2 < γ ≤ 3 a hierarchy of hubs emerge. For γ > 3, the hub 

features are absent and the SF network behaves like a random one. 

In air transport systems, we can point out SW networks by considering full-

service carriers. Without national or political impediments in a free market, these 

carriers typically organize their network into a hub-and-spoke system, where one 

or a few central airports called ‘hubs’ have a high number of links to the other air-

ports called ‘spokes’. Passengers travelling from a place of origin to a place of 

destination have to stop typically in one or a few hubs to change aircraft. Hubs are 

organised in order to allow flight connectivity by coordinating the scheduled time-

table of the arriving and departing flights. Investigating the airline strategy in de-

signing hub connectivity and timetable coordination has been the aim of several 

empirical network studies. Some examples of theoretical and empirical investiga-

tion of hub connectivity can be found in the works of Bootsma (1997), Dennis 

(1998), Rietveld and Brons (2001), Veldhuis and Kroes (2002), and Burghouwt 

and de Wit (2003). As a consequence, the hub has to manage normally a high vol-

ume of traffic at the same time, due to their central connecting role in the network. 

In contrast to SF networks, we have to highlight also random networks (Erdös 

and Rényi 1959), which display homogeneous, sparse patterns, without cluster 

characters. Their vertex degree distribution follows a Poisson distribution.6 

In air transport, random networks are useful to map point-to-point connections, 

as it is the case for low-cost airlines (Cento 2006). In the ideal point-to point net-

work all airports are connected to each other, so that passengers can fly from one 

airport to any other directly without stopping in any hub to change aircrafts. These 

networks have a low diameter, as a consequence of the high number of direct links 

between airports. Reggiani and Vinciguerra (2007, p. 148) point out that a random 

network can be seen as ‘a homogeneous system which gives accessibility to the 

majority of the nodes in the same way’. Furthermore, as it is evident by looking at 

the plot of the exponential function, the probability to find highly connected nodes 

is equal to 0. Therefore, no clear hubs exist, and the network configuration appears 

to be random because no single airport displays a dominant role in a connected 

network.  

In the next Subsection 2.3, we will address two main degree (connectivity) dis-

tributions that have often been observed in empirical experiments, vis-à-vis expo-

nential and power-law. 

                                                           
6 For a review of random models, SW models and SF models, see Albert and Barabási (2002) 

and Joeng (2003). 



Network Measures in Civil Air Transport: A Case Study of Lufthansa      3 

2.3 Network Degree Distributions 

The vertex degree distribution is one of the key tools we may use to point out the 

network configuration (Reggiani and Vinciguerra 2007), since this function de-

termines the way nodes are connected. It can be defined as the probability P(k) of 

finding nodes with k links. 

In general, we can state that: 

( ) ( ) ,P k N k N  (1) 

where ( )N k  is the number of nodes with k links and N is the number of nodes of 

the network. 

With regard to the network topologies developed in the framework of graph 

theory, complex systems tend to show two main degree distributions: the Poisson 

distribution (Erdös and Rényi 1959) and the power-law function (Barabási and 

Bonabeau 2003). 

The former is defined as: 

( ) ,
!

k
k k

P k e
k

   
  (2) 

and describes networks – so-called random networks – where the majority of 

nodes have approximately the same number of links, close to the average degree 

k   (Barabási and Albert 1999). Eq. (2) is a distinctive feature of point-to-point 

networks, such as those adopted by low-cost airlines; this network topology is 

typical of equilibrated economic-geographical areas, where a high number of di-

rect links can be profitably operated. 

The power-law function is defined as: 

( ) ,P k k   (3) 

and characterizes networks having a small number of nodes with a very high de-

gree while the majority of nodes have a few links. Eq. (3) has important economic 

implications: it characterizes SF networks, where the term SF refers to the fact that 

‘the power-law distribution does not change its form no matter what scale is used 

to observe it’ (Reggiani and Vinciguerra 2007, p. 150), and that, in these net-

works, distances are irrelevant. Therefore, we expect to find SF networks in 

‘global networks’, such as the Internet and air transport, and in general in those 

networks where relevant economic aggregation clusters (preferential attachments) 

attract flows from distant nodes.  

It interesting to note that from the above distribution functions (Eqs 2 and 3) we 

can extrapolate the related cost/utility/impedance functions (Reggiani and Vin-

ciguerra 2007). However, when the identification of the two functions is ambigu-
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ous, we need to obtain additional information from network theory (for example, 

centrality indices, dominance indices). A multidimensional approach is needed in 

this respect, where not only the way airports are connected is relevant (spatial 

network components), but also the geometrical architecture of the network, as well 

as its degree of network homogeneity (physical network components). 

In the subsequent Subsections 2.4 and 2.5 we will now introduce some indica-

tors and measures we can adopt to study the network configuration of carriers: the 

computation of the above indices is crucial to understand the tendency to agglom-

eration of concentration patterns, and hence the possibility of hierarchical network 

relations among nodes.  

It is moreover important to identify a SF network because of its strong features 

in terms of robustness and vulnerability. In the case of a random attack (or distur-

bance) on nodes, the SF network will strongly persist, because a random attack 

will probably damage nodes that have only a few connections, which are the ma-

jority. Nevertheless in case of an attack against the main hubs, the network will 

easily be fragmented. Consequently, we might also talk of ‘vulnerabil-

ity/permeability’ of the SF network: if a strategic input, for example, a virus, is 

dispersed in the hubs, it is certainly diffused all over the network. On the other 

hand, random networks are weak against a random attack which will cause the 

split of the network.  

Consequently, it is important to identify hubs in the network in order to prevent 

targeted attacks and to preserve the system (Gorman 2005). The identification of 

such characteristics is certainly useful to the understanding of the dynamics of air 

network configurations, also from the perspective of policy/planning interven-

tions. 

2.4 Network Topology Indices 

Airline networks may exhibit simple or complex topologies. Networks have been 

given several definitions in the framework of graph theory, as for instance by Ha-

rary (1969): ‘a network is a graph, or directed graph, together with a function 

which assigns a positive real number to each edge’. In this context it is useful to 

outline the geometrical indicators most frequently used to represent the network 

shape; they are illustrated in Table 1. 

It should be mentioned that the first three indices measure the centrality of a 

vertex in a graph, while the last two can be used to investigate the networks’ topo-

logical properties (Reggiani and Vinciguerra 2007). It is necessary to underline 

that the ‘geodesic distance’, used to compute closeness, betweenness and diame-

ter, represents the shortest of all distances between two nodes (Freeman 1979). 

In the context of our empirical experiments, we will apply the above indicators 

to explore Lufthansa’s network structure and configuration, since all complex sys-

tems characterized by a network structure share properties exclusively depending 

on network’s configuration (see also Waters 2006). Before starting our empirical 
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analysis, Subsection 2.5 will illustrate additional indices that we may use to inves-

tigate the networks’ concentration. 

Table 1 Network’s topology indices 

Index or 

measurement 

Description Formulation Variables Source 

Degree The degree of a 

node is given by 

the number of its 

links 

 

( )k v  ( )k v  is the number of 

links of node v 

Barabási 

and Oltvai 

(2004) 

Closeness It indicates a 

node’s proximity 

to the other nodes 

1
( )

vt

t V

C v
d






 
vtd  is the shortest path 

(geodesic distance) 

between nodes v and t; n 

is the number of nodes in 

the network 

Newman 

(2003) 

Betweenness It indicates a 

node’s ability to 

stand between the 

others, and 

therefore, to 

control the flows 

among them 

( )
( ) st

s t v V st

v
B v



  

 
 ( )st v  and 

st  are, 

respectively, the number 

of geodesic distances 

between s and t that pass 

through node v, and the 

overall number of 

geodesic distances 

between nodes s and t 

Freeman 

(1977) 

Diameter It measures the 

maximum value of 

the geodesic 

distances between 

all nodes 

, ,maxs t V s t stD d   dst is the geodesic 

distance between nodes s 

and t 

Boccaletti 

et al. 

(2006) 

Clustering 

coefficient 

It measures the 

cliquishness of a 

node 
max

( ) v

v

l
Cl v

l


 vl  and 
max vl  are, 

respectively, the number 

of existing and maximum 

possible links between 

the nodes directly 

connected to node v (its 

neighbours) 

Watts and 

Strogatz 

(1998) 

2.5 Network Concentration Indices 

If we want to detect the networks’ configuration (random versus SF) we also need 

to understand to what extent these networks are concentrated, because the exis-

tence of hubs implies a high degree of concentration (Reynolds-Feighan 2001). To 



6      Aura Reggiani, Sara Signoretti, Peter Nijkamp, Alessandro Cento 

this purpose we will use: a) the Gini concentration index; b) the Freeman central-

ity index;7 and c) the entropy index. These three indices are illustrated in Table 2.  

Table 2 Network’s concentration indices 

Indicator Formula Use Variables used Sources 

Gini 

concentration 

index 

1 1

22

n n

i ji j
x x

G
n 

 



   

It is a measure 

of 

geographical 

concentration 

xi, xj are the number of 

weekly flights from 

airports i and j, ranked 

in increasing order; n is 

the number of airports in 

the network; μ is 

/ii
x n  

Cento 

(2006) 

Freeman 

centrality 

index 

*

3 2

( ) ( )

4 5 2

B B ii

B

F x F x
F

n n n

  
  

  
It is a measure 

of similarity to 

a perfect star 

network 

( ) ( )B i jk iF x b x  is 

the j < k j < k 

betweenness centrality 

of node xi; FB(x
*
) is the 

highest betweenness 

centrality value of the 

distribution 

Cento 

(2006) 

Entropy 

function 
lnij ijij

E p p   It measures 

the degree of 

spatial 

organisation 

and variety in 

a system 

pij is the probability of a 

link between nodes i and 

j 

Nijkamp 

and 

Reggiani 

(1992); 

Frenken 

(2006) 

 

 

The first index G measures the inequality existing in a distribution, and ranges 

between 0 and 1; the higher its value, the more uneven is the distribution (Free-

man 1979). The second index F takes into account the structure of the system, and 

measures the network shape as the degree of inequality in a network with respect 

to a perfect star network (Freeman 1979).  

The third is the entropy function E, which shows the degree of variety existing 

in an economic or spatial network (Frenken 2006). In particular, entropy can be 

employed as a tool for studying spatial differentiation, that is, heterogeneity in a 

system: ‘for instance, by investigating whether certain spatial configurations are 

completely arbitrary and disordered or whether these configurations show a cer-

                                                           
7 The concept of concentration aims at discerning whether or not the activity we are studying is 

located homogeneously over a geographical area, without considering the form of correspond-

ing system. In the framework of our experiments, networks are concentrated to the extent that 

some nodes have a share of flights which is higher than the area they occupy (Freeman 1979). 

The concepts of centrality – referring to single nodes – and centralization – referring to a whole 

network – are closely related: a network is centralized when a node, or a group of nodes, can 

control the flows the network represents and are consequently given higher centrality values 

(Freeman 1977). We can, therefore, state that centralized networks are always concentrated as 

well, while the opposite does not always holds. 
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tain degree of spatial organization or regularity’ (Nijkamp and Reggiani 1992, 

pp. 18–19). Therefore the entropy function indicates how organized a system is: 

the higher is the value of E, the more diversified the network (Frenken 2006). 

Next, in Section 3 we will carry out an empirical study on four networks – 

based on Lufthansa’s airline network – by means of the analytical tools previously 

described. 

3 An Empirical Application to Lufthansa’s Airline Network 

3.1 The Data Base 

This section will focus on the geographical analysis of Lufthansa’s aviation net-

work in the year 2006. The airline network measurement is essential for exploring 

the airline behaviour and its implications for the supply, the traffic demand, the 

airports’ infrastructure and aviation planning. The airline network can be subdi-

vided into domestic, international or intercontinental configurations depending on 

whether the airports connected are located within a country, a continent or in dif-

ferent continents. Furthermore, an airline network can be interconnected or inter-

lined to partner’s networks within the alliance concerned. This classification is 

based on geographical, air transport-political and economic characteristics, such as 

airlines’ degree of freedom from the Chicago Convention (see Cento 2006) market 

liberalization, or costs and traffic demand. Therefore, the overall network configu-

ration is the result of the integrated optimisation of the domestic, international, and 

intercontinental parts of the total network. These sub-network configurations may 

range from fully-connected or point-to-point to hub-and-spokes configurations to 

alliances (fully-contracted) or to a mix of these configurations. Within this con-

ceptual framework, we will position our analysis of four sub-networks of Luf-

thansa. As summarized in Table 3, we coin networks A1 and A2, referring respec-

tively to the flights operated by Lufthansa in Europe and in the whole world, while 

networks B1 and B2 take into consideration – respectively at a European and at a 

global level – the flights operated by all the carriers which are members of Star 

Alliance (to which Lufthansa belongs).8 

The variable under analysis is represented by the number of direct connections 

of each airport in the summer season of the year 2006, measured on a weekly ba-

sis. The networks are represented in Figure B1, B2 and B3 in Annex B. 

                                                           
8 The Star Alliance member carriers are currently: Air Canada; Air New Zealand; ANA; Asiana 

Airlines; Austrian; bmi; LOT Polish Airlines; Lufthansa; Scandinavian Airlines; Singapore 

Airlines; South African Airlines; Spanair; Swiss; TAP Portugal; THAI; United Airlines; US 

Airways; VARIG (the list was retrieved from www.staralliance.com). 
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Table 3 Lufthansa’s network constellation (2006) 

Network Area under 

consideration 

Carrier or alliance operating the 

flight 

Nodes Total number of 

links 

A1 Europe Lufthansa 111   522 

A2 World Lufthansa 188   692 

B1 Europe Star Alliance 111 3230 

B2 World Star Alliance  188 6084 

 

 

In all four cases we only consider those airports where Lufthansa operates with 

its fleet and not by partner’s airlines. When we consider A1 and A2 networks, we 

clearly see that the majority of Lufthansa’s flights are operated at a continental 

level. On the contrary, nearly half of Star Alliance’s flights are operated outside 

Europe. This finding is not surprising, if we consider that the carriers making up 

Star Alliance are mainly from non-European countries.  

Subsections 3.2, 3.3 and 3.4 will now illustrate the empirical results of our ex-

periments, aiming at analysing the connectivity and concentration patterns in the 

above mentioned networks.  

3.2 Lufthansa’s Network Geometry  

On the basis of the indicators illustrated in Table 1, we will now show the results 

emerging from the related applications to the four Lufthansa’s network domains 

A1, A2, B1 and B2. In particular, since all the indicators displayed in Table 1 

characterise the nodes in a network, we will investigate by means of these indica-

tors – in our four networks – the single nodes’ features as well as the relations 

among nodes. 

More specifically, in order to examine the nodes’ location, we have computed 

the three centrality measures (degree, closeness and betweenness) described in 

Table 1. Concerning the investigation of the nodes’ relations, we have examined 

the diameter and the clustering coefficient of the network (see again Table 1).  

The degree of a node (Table 1) can be seen as a measure of centrality if we as-

sume – in the framework of our analysis – that the best connected airports have a 

greater power over the whole network, as they can control a considerable amount 

of all flights. In all networks we find that the airports of Frankfurt and Munich 

have always the highest degree (see Table A1 in Annex A). 

A further analysis of nodes’ centrality focuses on their ‘ease-of-access’ to the 

other nodes.9 In order to investigate this concept we have computed the closeness 

                                                           
9 It can be assumed that access to the network is easier when nodes are closer (Freeman 1979). 
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centrality10 (Table 1). The values of this index for the networks under considera-

tion (listed in Table A2 in the Annex) show that the highest values usually corre-

spond to the best connected nodes; therefore, closeness centrality is able to map 

out – in the framework of our study – the most important airports in terms of con-

nectivity. A similar trend can be observed by considering betweenness centrality 

(Table 1; the values for networks A1, A2, B1 and B2 are listed in Table A3 in An-

nex A). This finding is not surprising, since hubs – in the framework of the hub-

and-spoke model – are chosen from those airports falling among the highest pos-

sible number of pairs of other airports (O’Kelly and Miller 1994; Button and 

Stough 2000). 

The networks’ topology can also be explored by examining how the various 

nodes relate and link, since this last attribute impacts the configuration of the 

whole structure. For this purpose we have computed the clustering coefficient (de-

fined in Table 1; the ten highest values for the nodes of the four networks of our 

experiments are listed in Table A4 in the Annex). The values indicate a significant 

difference between the networks A1 and A2 and the networks B1 and B2; in the 

former case the airports of Frankfurt and Munich dominate the chart; in the latter 

case, other airports appear to emerge, thus showing that flights are spread more 

equally on the whole network.  

In addition, we will also consider the diameter of the above networks in order 

to investigate how the links’ patterns influence the ability to move inside the net-

work. Both A1 and A2 have a diameter of 4, while B1 and B2 have a diameter of 

2. This can be justified only if there is no significant difference in the geographical 

configuration between A1 and A2, approximately a hub-and spoke, while B1 and 

B2 can be a mixture of hub-and-spoke and point-to-point networks. In other 

words, the integration of Lufthansa network in the Star Alliance reduces the travel 

distance, as the passengers can benefit from more connections and thus shorter 

paths to travel between the origin and the destination. This has important implica-

tions in the context of our study, because it entails that Lufthansa’s networks 

shrink, when we consider the flights of all Star Alliance members. 

Having examined now Lufthansa nodes’ characteristics, we will explore Luf-

thansa’s network features, in particular its network concentration and connectivity. 

The related results will be offered in the following Subsections 3.3 and 3.4. 

3.3 Lufthansa’s Network Concentration  

The study of the networks’ degree of concentration – which is carried out in the 

present subsection – is crucial in order to detect the exact network topology, be-

cause the hub-and-spoke model is highly concentrated, while point-to-point net-

works do not show this feature. 

                                                           
10 We compute the closeness centrality, as well as the subsequent betweenness centrality, using 

the Pajek software (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). 
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First, Table 4 presents the normalized Gini index (see Table 1) for the four 

networks under consideration. Both Star Alliance networks are less concentrated 

than the Lufthansa counterparts, meaning that when we enlarge the measurement 

to a broader network including intercontinental destinations and partners' net-

works, the configuration will probably evolve into a mix of multi hub-and-spoke 

and point-to-point structures. In particular, network A2 appears to be the most 

concentrated. 

Table 4 Normalized Gini index 

Network Gini index 

A1 0.762 

A2 0.813 

B1 0.524 

B2 0.600 

 

 

The information provided by the Gini index refers to the degree of concentra-

tion existing in a network, without any evidence on how this concentration im-

pacts on the network topology. For this last purpose the Freeman centrality index 

(Table 1) has been computed. Its normalized values are represented in Table 5. 

This index assumes the value 1 for a hub-and-spoke network, and the value 0 for a 

point-to-point network (Cento 2006). 

Table 5 Normalized Freeman index 

Network Freeman index 

A1 0.504 

A2 0.757 

B1 0.059 

B2 0.056 

 

 

According to the Freeman index, again networks A1 and A2 turn out to be the 

most concentrated ones. In particular, A2 network seems to be again the closest to 

the hub-and-spoke model; we may suppose that this network is characterized by a 

strong hierarchy among nodes. 

Finally, concerning the last concentration index, that is, entropy (Table 1), Ta-

ble 6 shows the related values for the networks A1, A2, B1 and B2. The results 

from Table 6 show that the entropy values are higher when we consider those 

flights operated by Lufthansa’s partners (networks B1 and B2). A likely explana-

tion for this increase is given by the process of construction of these networks, ob-

tained by the addition of flights to the nodes of A1 and A2, respectively. Both B1 

and B2 are therefore the ‘sum’ of the networks implemented by the different carri-
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ers that are members of Star Alliance, and hence they are not the result of a spe-

cific strategy, as is the case for A1 and A2. Clearly, the above values indicate that 

A1 and A2 networks are more concentrated and less dispersed than the B1 and B2 

networks; more specifically, A1 appears to be the most concentrated network. 

Table 6 Entropy values 

Network Entropy 

A1 5.954 

A2 6.194 

B1 7.790 

B2 8.389 

 

 

In conclusion, from the above three indicators, networks A1 and A2 appear to 

be the most concentrated. However, among these two networks, A2 seems the 

most concentrated with respect to two indicators (Gini and Freeman), while A1 

seems the most concentrated with respect to the entropy index. 

In order to formally detect hub-and-spoke models, our next step will be the 

analysis of the vertex connectivity distribution functions of the four networks A1, 

A2, B1 and B2, in the light of their performance indicators (see also Section 2.3). 

3.4 Lufthansa’s Network Configuration 

In Section 2.3 we have already stressed the importance of the vertex degree distri-

bution function, in order to detect the most plausible network configuration. In this 

section, we will explore whether the variable ‘number of weekly connections’ is 

rank-distributed – over A1, A2, B1 and B2 – according to either an exponential or 

a power function. 

The R
2
 values and the b coefficients of the two interpolating functions (expo-

nential and power) concerning the four ranked distributions (in log terms) are 

listed in Table 7. The plots of both functions for the four networks under consid-

eration are displayed in Figs 1 and 2. 
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Table 7 Exponential and power fitting of rank distributions 

Network → 

Network parameters → 

Distribution function ↓ 

A1 A2 B1 B2 

R
2 

b R
2
 b R

2
 b R

2
 b 

Power 0.95 0.99 0.93 0.82 0.75 0.67 0.70 0.65 

Exponential 0.75 0.03 0.67 0.01 0.66 0.02 0.48 0.01 
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Fig. 1 Rank distribution fitting for networks A1 and A2 

Both Table 7 and Figures 1 and 2 highlight that our data sets better fit a power 

function, as the higher R
2
 values indicate. It is worth noting that the b coefficient 

of the power function for A1, A2, B1 and B2 is respectively equal to 0.99, 0.82, 

0.67 and 0.65. If we carry out a transformation11 of these coefficients, we observe 

                                                           
11 Adamic (2000) shows that the power-law exponent γ (emerging from the nodes’ probability 

distribution (Eq. 3)) is related to the power function coefficient b (emerging from the distribu-
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that the A1 network displays a power-law exponent equal to 2, thus indicating a 

stronger tendency to a hub-and-spoke system according to Barabási and Oltvai 

(2004), while the other three networks A2, B1 and B2 display power-law exponent 

between 2 and 3, thus indicating a tendency to a hierarchy of hub/agglomeration 

patterns. 
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Fig. 2 Distribution fitting for networks B1 and B2 

A further issue concerns the fitting of the exponential function. Also in this 

case we obtain high R
2 

values, although inferior to the ones emerging in the power 

case; however, the coefficient of the exponential function is always very low, 

ranging from 0.01 to 0.03 (Table 7). 

                                                                                                                                     
tion relating the degree of the nodes to their rank (rank size rule); see Figs 1 and 2) as follows: 

1 (1/ ).b    
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Therefore, if we look at the R
2 

indicators, all networks under consideration ap-

pear to be in a ‘border-line’ situation (that is, an ambiguity between a power and 

exponential fitting). Nevertheless, if we look at the coefficient values, the four 

networks seem to show a tendency toward an agglomeration structure of SF type, 

expressed by a clear power-law vertex degree distribution, with the degree expo-

nent γ equal to 2 (network A1), or varying between 2 and 3 (networks A2, B1, 

B2). 

A further consideration concerns the plots of networks B1 and B2 (Fig. 2). We 

can clearly see that both identify a power function with a cut-off. Thus, if we 

eliminate – in both networks B1 and B2 – those nodes which have less than 10 

links, we slightly improve the fitting of their power function, obtaining for net-

works B1 and B2 respectively R
2
 values of 0.84 and 0.75, but still lower than the 

R
2
 values regarding A1 and A2. 

In conclusion, from the estimation results displayed in Table 3, the networks 

A1, A2 appear to show the strongest characteristics of concentration and preferen-

tial attachment. In particular, network A1 appears to be the closest to the hub-and-

spoke model, from the perspective of Barabási and Oltvai’s approach. Given these 

preliminary results, it is worth to examine these configurations, by exploring fur-

ther indicators of the network concentration, such as those defined in Sections 2.4 

and 2.5. Consequently, a multidimensional method, such as Multi Criteria Analy-

sis (MCA), taking into account – by means of an integrative approach – all 

adopted indicators and related results, was next carried out and applied.12 The al-

ternatives are the four networks A1, A2, B1, B2 under consideration, while the 

criteria have been grouped according to three macro-criteria: network concentra-

tion, topology and connectivity (Table 8). It should be noted that, concerning the 

topology criteria, we have considered the diameter and the clustering coefficient, 

since these two indices provide the network geometry’s features (see Section 3.2). 

In particular, concerning the latter, the average clustering coefficient has been 

adopted (Barabási and Oltvai 2004). 

Table 8 Alternatives and criteria  

Alternatives A1 (Lufthansa, Europe) 

A2 (Lufthansa, World) 

B1 (Star Alliance, Europe) 

B2 (Star Alliance, World) 

‘Concentration’ criteria  Gini index 

Freeman index 

Entropy 

‘Topology’ criteria Diameter 

Average Clustering Coefficient 

                                                           
12 In particular, the Regime method and software has been used (Hinloopen and Nijkamp 1990). 
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‘Connectivity’ criteria  R
2
 of the fitted power function (ranked degree distribution) 

Coefficient of the power function 

R
2 
of the fitted exponential function (ranked degree distribution) 

Coefficient of the exponential function 

 

 

The first group of macro-criteria is related to the networks’ concentration. It 

should be noted that in our MCA procedure, the entropy indicator needs to be 

transformed positively because the real values of the entropy function increase 

when networks are more heterogeneous, that is, less concentrated.13 The second 

group of macro-criteria refers to the networks’ physical measurement. Here, the 

diameter needs to be converted in utility, because its value is higher when net-

works are less centralized. The third group of macro-criteria is related to connec-

tivity. This property is investigated through the interpolation of the ranked degree 

distributions, where – in the power function – the highest exponent of 0.99 implies 

a value of the exponent degree14 – in the associated power-law distribution – close 

to 2 (perfect hub-and-spoke). The R
2 

and the coefficient of the exponential func-

tion need to be converted to utility, since both values indicate random and homo-

geneous patterns. 

We have carried out five scenarios by considering: (a) all the criteria mentioned 

above; (b) each macro-criteria separately; (c) concentration and topology criteria 

together. In each scenario an equal weight, that is, unknown priority, has been 

given to the single criteria. The results are listed in Table 9. 

Table 9 Findings of multi-criteria analyses 

Criteria 

considered 

All criteria 

combined 

Concentration 

criteria 

Topology 

criteria 

Connectivity 

criteria 

Concentration and 

topology criteria 

Hierarchy of the 

alternatives  

A1 

A2 

B2 

B1 

A2 

A1 

B2 

B1 

B1 

B2 

A1 

A2 

A1 

B1 

A2 

B2 

A1 

B1 

A2 

B2 

 

 

These findings point out that network A1 prevails, however with two excep-

tions. The former is represented by network A2, which is the top-scorer when we 

consider the criteria related to the networks’ concentration/geography: this finding 

comes from the higher centralization and concentration degree of network A2, as 

demonstrated by the Freeman and Gini indices. The latter exception is represented 

                                                           
13 The relation between concentration and centralization is described in Footnote 6 in Section 

2.5. 
14 See Footnote 12. 
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by network B1, which prevails when we consider the criteria related to the physi-

cal measurement of networks. 

It turns out that the Lufthansa network A1 is the most connected one; we can 

conjecture that A1 is close to a hub-and-spoke system, according to the values ex-

pressed by its exponent degree in the power-law distribution (see Table 7). This 

result confirms the dual-hubs network strategy advocated by the German carrier 

(Lufthansa 2005). Frankfurt and Munich act as central hubs, where all interconti-

nental flights depart and arrive in conjunction with the European and domestic 

flights. This timetable coordination is designed to allow passengers to transfer 

from one flight to another for different national and international destinations. The 

general conclusions of the present article are included in the Section 4. 

4 Conclusions    

Airline networks are fascinating examples of emerging complex and interacting 

structures, which may evolve in a competitive environment under liberalized mar-

ket conditions. They may exhibit different configurations, especially if a given 

carrier has developed a flanking network framework together with partner airlines.  

The present paper has investigated the network structure of four networks of 

Lufthansa by considering several indicators concerning the concentration, topol-

ogy and connectivity (degree distribution) functions characteristics of this carrier. 

An integrated multidimensional approach, in particular multicriteria analysis has 

been adopted, in order to take into account all information obtained by the above 

indicators.  

The related results point out that all the four Lufthansa networks can be prop-

erly mapped into the SF model of the Barabási type. In particular, network A1 can 

be formally identified as a hub-and-spoke structure. In general, we can conjecture 

a ‘tendency’ towards a hubs’ hierarchy or hub-and-spoke configuration in Luf-

thansa’s European network, as also witnessed by the emergence of various nodes 

(Frankfurt, Munich and Dusseldorf) which are organized as hubs in the framework 

of Lufthansa’s activities. All in all the four networks exhibit a hierarchical struc-

ture mainly dominated by German airports. 

The results obtained thus far highlight various characteristic features of com-

plex aviation networks, but need to be complemented with additional investiga-

tions, in particular, on the structure and driving forces of the demand side (types of 

costumers, in particular). Furthermore, the market is decisive in a liberalized air-

line system, and hence also price responses of customers as well as competitive 

responses of main competitors would need to be studied in the future.  

From a methodological viewpoint a refined weighted network analysis – taking 

into account the strength of each connecting link – might offer better insights into 

the topological structure of the airline network at hand (see, for example, Barrat et 

al. 2004). 
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Annex A 

In this annex, we will present the top ten scores of the airports – according to the 

main topological indices illustrated in Table 1 – belonging to the four airline net-

works A1, A2, B1 and B2. These networks are visualized in the subsequent Annex 

B. 

Table A1 Top-ten scores of airports according to the degree index (corresponding values in 

brackets) 

A1 A2 B1 B2 

MUC (82) FRA (138) FRA (106) FRA (183) 

FRA (81) MUC (100) MUC (105) MUC (179) 

DUS (39) DUS (41) BRE (97) HAM (172) 

HAM (24) HAM (24) HAM (97) DUS (171) 

STR (18) STR (18) BSL (94) STR (168) 

TXL (10) TXL (10) DUS (94) LEJ (166) 

CDG (8) CDG (8) LEJ (92) ZRH (165) 

NUE (8) NUE (8) NUE (92) TXL (164) 

BRU (7) BRU (7) STR (92) NUE (163) 

LHR (6) MXP (6) CGN (89) BRE (162) 

 

Table A2 Top-ten scores of airports according to the closeness index (corresponding values in 

brackets) 

A1 A2 B1 B2 

MUC (0.78) FRA (0.79) FRA (0.96) BRE (1) 

FRA (0.76) MUC (0.64) MUC (0.95) DUS (1) 

DUS (0.60) DUS (0.53) HAM (0.89) ZRH (1) 

HAM (0.55) HAM (0.51) DUS (0.87) FRA (0.98) 

STR (0.54) STR (0.50) NUE (0.86) MUC (0.95) 

TXL (0.51) CDG (0.49) STR (0.86) HAM (0.93) 

CDG (0.51) NUE (0.49) LEJ (0.85) STR (0.91) 

NUE (0.51) BRU (0.48) CGN (0.84) LEJ (0.89) 

LHR (0.51) LHR (0.48) TXL (0.84) NUE (0.89) 

MXP (0.51) MXP (0.48) ZRH (0.84) FMO (0.85) 

VIE (0.48) 
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Table A3 Top-ten scores of airports according to the betweenness index (corresponding values 

in brackets) 

A1 A2 B1 B2 

MUC (0.51) FRA (0.76) MUC (0.06) MUC (0.06) 

FRA (0.50) MUC (0.03) FRA (0.06) FRA (0.06) 

DUS (0.06) DUS (0.03) DUS (0.05) DUS (0.06) 

KUF (0.05) BKK (0.02) HAM (0.05) BRE (0.05) 

HAM (0.03) KUF (0.02) STR (0.05) CGN (0.05) 

GOJ (0.02) HAM (0.01) BRE (0.04) HAM (0.05) 

STR (0.01) CAI (0.01) HAJ (0.04) NUE (0.05) 

CDG (4.5e
-4

) CAN (0.01) NUE (0.04) STR (0.05) 

CGN (9.5e
-5

) GOJ (0.01) TXL (0.04) ZRH (0.05) 

BRU (1.9e
-5

) GRU (0.01) CGN (0.04) CGN (0.05) 

JED (0.01) DRS (0.05) 

KRT (0.01)  LEJ (0.05) 

LOS (0.01)  

PHC (0.01)  

 

Table A4 Top-ten scores of airports according to the clustering coefficient (corresponding values 

in brackets) 

A1 A2 B1 B2 

MUC (0.82) FRA (0.75) FRA (0.96) BRE (1) 

FRA (0.80) MUC (0.48) MUC (0.89) DUS (1) 

DUS (0.24) DUS (0.11) LEJ (0.77) ZRH (1) 

HAM (0.10) HAM (0.04) ZRH (0.67) FRA (0.96) 

STR (0.06) STR (0.02) BSL (0.66) MUC (0.88) 

CDG (0.01) TXL (6e-3) STR (0.57) LEJ (0.84) 

TXL (0.01) CDG (5e-6) DUS (0.55) BSL (0.81) 

NUE (9e-3) NUE (4e-3) HAM (0.55) GVA (0.67) 

BRU (6e-3) BRU (2e-3) GVA (0.48) HAM (0.63) 

MXP (4e-4) ZRH (2e-3) TXL (0.47) STR (0.60) 

VIE (4e-4) 
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Table A5 Nomenclature of airports under study 

BKK Bangkok 

BRE Bremen 

BRU Bruxelles 

BSL Basel 

CDG Paris Charles de Gaulle 

CGN  Koln 

DRS Dresden 

DUS Dusseldorf 

FMO Munster 

FRA  Frankfurt 

GOJ Novgorod 

GRU Sao Paulo 

GVA  Geneva 

HAM  Hamburg 

JED Jedda 

KRT Khartoum 

KUF Samara 

LEJ  Leipzig 

LHR London-Heathrow 

LOS  Laos 

MUC  Munich 

MXP Milano-Malpensa 

NUE Nuremberg 

PHC Port Harcour 

STR Stuttgart 

TXL Berlin-Tegel 

VIE Wien 

ZRH Zurich 
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Annex B 

 

Source: OAG (2006). 

Fig. B1 Lufthansa medium haul network in Europe (Network A1) 

 

Source: OAG (2006). 

Fig. B2 STAR Alliance medium haul network in Europe (Network B1) 



Network Measures in Civil Air Transport: A Case Study of Lufthansa      23 

 

Source: OAG (2006). 

Fig. B3 Lufthansa global network (Network A2) 

 

Source: OAG (2006). 

Fig. B4 STAR Alliance global network (Network B2) 


