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Abstract

In this paper we consider the problem of sharing water from a river among a group of agents

(countries, cities, firms) located along the river. The benefit of each agent depends on the

amount of water consumed by the agent. An allocation of the water among the agents is

efficient when it maximizes the total benefits. To sustain an efficient water allocation, the

agents can compensate each other by paying monetary transfers. Every water allocation

and transfer schedule yields a welfare distribution, where the utility of an agent is equal to

its benefit from the water consumption plus its monetary transfer (which can be negative).

The problem of finding a fair welfare distribution can be modelled by a cooperative game.

For a river with one spring and increasing benefit functions, Ambec and Sprumont

(2002) propose the downstream incremental solution as the unique welfare distribution

that is core-stable and satisfies the condition that no agent gets a utility payoff above its

aspiration level. Ambec and Ehlers (2008) generalized the Ambec and Sprumont river

game to river situations with satiable agents, i.e., the benefit function is decreasing beyond

some satiation point. In such situations externalities appear, yielding a cooperative game

in partition function form. In this paper we consider river situations with satiable agents

and with multiple springs. For this type of river systems we propose the class of so-called

weighted hierarchical solutions as the class of solutions satisfying several principles to be

taken into account for solving water disputes. When every agent has an increasing benefit

function (no externalities) then every weighted hierarchical solution is core-stable. In case

of satiation points, it appears that every weighted hierarchical solution is independent of

the externalities.

Keywords: Water allocation, river game, externality, core, hierarchical outcome.
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1 Introduction

The aim of this paper is to introduce and analyze rules for a fair distribution of welfare

resulting from allocating the water flow of a river among the agents (countries, cities,

firms) along the river. We consider the case of an international river, where the agents are

countries located from upstream to downstream along the river, and water flows possible

from the inland into the river on every agent’s territory.1 Since water flows from upstream

to downstream, water inflow at the territory of downstream agents can not be consumed

by upstream agents. This is in contrast to a transboundary river where the river forms a

common border and all countries have equal access to the water. A welfare maximizing

allocation of the water flow among the agents typically requires that some agents do not

consume the total inflow on their own territory, but that upstream agents let pass some

of the water flow to their downstream agents, who derive higher welfare from the water.

However, since every agent benefits from the consumption of water, giving up water is re-

garded as unacceptable. Therefore monetary compensation schemes are required in order

to make a welfare maximizing allocation implementable. International law states that the

nations involved should mutually agree on sharing the river through negotiations, but it

is left in the middle to what extend unilateral decisions can be made in the absence of

agreement. Moreover, such negotiations are often deadlocked, because almost all govern-

ments in water stressed regions became aware of the water issues after having experienced

serious shortages. Unless politics either deepens or broadens the water agenda, as in e.g.

Bennett, Ragland and Yolles (1998), the situation is most likely to stay put or might even

deteriorate ending in conflict.

Coalition formation, the division of gains within coalitions, unilateral decisions prior to

the negotiations and incentive compatibility to sustain an agreement, belong traditionally

to the realm of game theory. This is also recognized by global institutions involved in

river management such as the World Bank, see for instance Carraro, Machiori and Sgobbi

(2005a,b). Many researchers in economics and game theory have addressed the water issue,

see for instance Dinar, Ratner and Yaron (1992) and Dinar et al. (2005) for extensive

surveys. A lot of this research focuses on the problem of allocating water in which a

common resource has to be shared by several users, for instance allocating water in case

of transboundary rivers or in case of common groundwater aquifers. In contrast to such

common pool situations, a feature peculiar to international rivers is the one-directionality

of the water flow, imposing in some sense dominance of upstream agents over downstream

agents. International water law, as laid down in the Helsinki Rules of 1966 and the UN

Convention on the Law of the Non-Navigational Uses of International Watercourses of

1The results also apply when the agents are cities or firms along the river within one country.
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1997, does neither recognize claims by upstream countries on the water caught on its

territory, nor downstream nations claims of historical rights, which makes the application

of negotiation theory even more difficult. The international river problem is studied in for

instance Kilgour and Dinar (1995, 2001), Bennett, Ragland and Yolles (1998), Ambec and

Sprumont (2002), Supalla et al. (2002) and Ambec and Ehlers (2008).

To address the problem of a fair welfare distribution, Ambec and Sprumont (2002)

model the international river problem as a cooperative game on the set of agents (coun-

tries). For a river with one spring and one sink, i.e., the agents are successively located

from the most upstream agent at the spring of the river to the most downstream agent at

the sink, they propose and axiomatize the so-called downstream incremental distribution.

This is the welfare distribution that assigns all gains of cooperation between agents in a

coalition to the most downstream agent, subject to the core stability constraints of all

upstream coalitions. For a two agent situation this means the following. To maximize

total welfare, typically part of the water inflow on the territory of the upstream agent goes

to the downstream agent. The downstream agent pays an amount of money just enough

to compensate the upstream agent for the loss of utility caused by transferring part of his

water inflow to the downstream agent. So, the downstream incremental solution makes

the upstream agent indifferent between the optimal allocation of water with the mone-

tary compensation or using all his water by himself. The downstream agent receives all

the surplus of cooperation. In van den Brink, van der Laan and Vasil’ev (2007) it is ar-

gued that the downstream incremental distribution ignores the dominance, caused by the

one-directionality of the water flow, of the upstream agents over the downstream agents.

For example, in the two agent situation mentioned above, the upstream agent can claim

all gains from cooperation by playing the ultimatum game, refusing cooperation with the

downstream agent when the latter agent does not agree to let all gains of the cooperation

to the upstream agent and thus making the downstream agent indifferent between cooper-

ation or not. In contrast to this ‘negotiation power’ of the upstream agent, the downstream

incremental distribution gives all gains from cooperation to the downstream agent. In van

den Brink, van der Laan and Vasil’ev (2007) it has been shown that replacing one of the

characterizing properties of the downstream incremental distribution by some other prop-

erty, yields the alternative upstream incremental welfare distribution. This distribution

assigns all gains of cooperation between agents in a coalition to the most upstream agent,

subject to the core stability constraints of all downstream coalitions. Within a different

solution concept, the same result is obtained in Herings, van der Laan and Talman (2007).

In both papers it is argued that the upstream incremental distribution is in accordance to

the dominance of the upstream agents because the one-directionality of the water flow.
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In this paper we want to derive, within the framework of a cooperative game, fair wel-

fare distributions for international rivers with multiple springs (i.e. there are side rivers

merging into one mainstream), by taking into account well-known principles in interna-

tional water allocation problems. In Kilgour and Dinar (1995) several principles have been

discussed to prevent or resolve disputes on water allocation within an international wa-

ter basin. Since there is no binding international law governing the allocation of water

in international rivers, these principles, in combination with the 1966 Helsinki Document

(see Kilgour and Dinar), are the only guidelines that are available in determining a fair

distribution of the welfare resulting from the water allocation among the agents.2

According to the 1966 Helsinki Document two considerations that are to be included

when distributing the welfare from allocating the water are ‘efficiency of the water use’

and ‘Pareto optimality’. Efficiency of water use and Pareto optimality imply that (i) every

coalition of agents distributes the water over its members in such a way that no water is

wasted and the water ends up at the agent(s) that derive(s) the greatest (marginal) utility

from it, and (ii) the monetary transfers are budget balanced, i.e., the sum of all (positive

and negative) payments over all agents is equal to zero. To attain the first condition the

marginal utilities are equalized as much as possible given the constraints arising from the

one-directionality of the water flow. The other principles discussed by Kilgour and Dinar

(1995) concern the ‘water rights’ assigned to the different agents (countries) along the river.

The principle of Absolute Territorial Sovereignty (ATS), or Harmon doctrine, states that an

agent has absolute sovereignty over the area of any river basin on its territory. This principle

clearly favors upstream agents in that it allows agents to use any water that flows into the

river on their territory without taking into account what consequences this might have for

the countries downstream to it. Within the cooperative game theoretical framework of

this paper this principle results in the requirement that the welfare distribution should be

core-stable. That means that every coalition of connected agents (i.e. for every two agents

in the coalition, every agent that is passed when going along the river from the first to the

second agent is also in the coalition) can secure themselves the welfare level that can be

reached by allocating the water that they control optimally amongst themselves, given the

constraints from the one-directionality of the flow and thus the monetary transfers should

be at least big enough to compensate them for any loss of welfare due to allocating water

from their territory to agents outside the coalition.

The second doctrine listed in Kilgour and Dinar (1995) is the principle of Territorial

Integration of all Basin States (TIBS). This principle favors downstream states, to which it

accords “equal” use, without regard to their contribution to the flow. It does not consider

2These principles can, of course, also be used when the agents in the model are not countries but, for
instance, firms or cities.
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any country the legal owner of the water, but instead it states that the water belongs

to all the countries, no matter where it enters the river. Of course, also when applying

this principle we do have to take into account the one-directionality of the water flow

and thus the assignment of water rights has to be compatible with the actual territorial

inflows. Ambec and Sprumont (2002) apply an extreme case of the TIBS principle, called

Unlimited Territorial Integrity (UTI). For the international river with a single spring,

they conclude from the UTI principle that the welfare distribution should be such that

no coalition should get a total utility above its so-called aspiration level, defined as the

maximum worth the coalition can attain by an optimal allocation among its members of

the total water inflow from the spring to the most downstream member of the coalition.

Combining this aspiration level requirement with the core-stability requirement from the

ATS principle yields the downstream incremental welfare distribution.

In this paper we allow for more flexible interpretations of the TIBS principle, including

the above UTI principle as an extreme case. The general TIBS principle states that, given

some agent, this agent and all its downstream agents are entitled to receive ‘a share’ in

the water inflow at that agent. Since in this paper water and utility are interchangeable

(consumption of water yields utility), to say that a certain country has the right to a cer-

tain share in the water flow comes down to saying that a country has the right to a certain

share in the welfare resulting from the water flow. The TIBS principle therefore implies

that each agent has the right to a specific amount of utility (corresponding to the share

of water that it has the right to according to the principle). Suppose that, for one reason

or another, the agents along a river with multiple springs are cooperating in two separate

coalitions as follows. For some agent, say i, one of the coalitions consists of agent i and

all its upstream agents, and the other coalition is its complement, i.e., consists of all other

agents. For instance this happens when agent i is not willing to cooperate with its unique

downstream neighbor. The question that then can be asked is: how should the gain in

welfare (utility) that is created when the two coalitions join together into one coalition of

all agents, be divided among the agents? Evidently, we can ask this question for every

single agent i (except the unique most downstream agent). The TIBS principle provides us

with an answer. First, notice that according to the TIBS principle every agent is entitled

to receive a certain share of the water inflow, but that it does not specify these shares and

even does not require the shares to be equal. Now, let there be for each agent a nonnegative

number, its weight, with sum over all agents equal to one, which corresponds to the share

of the agent when all agents cooperate together. Then we interpret the TIBS principle by

requiring that for each agent i the gain in welfare that is created by merging i’s upstream

coalition and its complement, should be divided among the two coalitions proportional to

the sum of the weights of the agents in these two coalitions. We will show that for every
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specific vector of weights this requirement, together with efficiency, characterizes a particu-

lar welfare distribution resulting from a welfare maximizing water allocation. The extreme

case where the most downstream agent has weight equal to one yields the downstream

incremental welfare distribution, the special case that all weights are taken to be equal

yields a welfare distribution that can be seen as taking the average of so-called hierarchical

outcomes as introduced by Demange (2004), see also Herings, van der Laan and Talman

(2008).

In Ambec and Sprumont (2002) it is assumed that the utility that an agent derives from

water consumption is strictly increasing in the amount of water. Under this assumption

only coalitions of consecutive agents will form. When for instance a coalition consists of an

upstream consecutive part and a downstream consecutive part with in-between some agents

outside the coalition, then every water flow sent from the upstream part to the downstream

part would immediately be taken by the in-between agents. Ambec and Ehlers (2008) allow

for satiable agents. For such an agent the utility is increasing up to a certain amount of

water, but decreasing beyond that amount. The existence of satiation points has serious

consequences, because now also coalitions of non-consecutive agents might form. When

every in-between outside agent has a satiation point, then it might be profitable for the

upstream part of a coalition to transfer water to the downstream part. Although some

of this flow might be taken by the in-between agents, these agents will only take water

up to their satiation points. When the flow is big enough, cooperation between the up-

stream part and the downstream part could be profitable. Now, consider some coalition

of consecutive agents. Without satiated agents, such a coalition of consecutive agents ob-

tains its maximum welfare by allocating optimally the water inflow on their own territory

among themselves. This maximum welfare does not depend on the behavior of the agents

upstream and downstream of the coalition, because the upstream agents will never pass

water to the downstream agents. However, in case of satiation, this might happen and

when it happens, the agents in-between might take part of this water flow up to their sa-

tiation points. Therefore the welfare of a coalition of consecutive agents might be affected

positively when the agents upstream of the coalition are going to cooperate with the agents

downstream of the coalition, i.e., a coalition might experience positive externalities from

cooperation between the upstream and downstream agents outside the coalition3.

Ambec and Ehlers (2008) generalizes the model of Ambec and Sprumont for externali-

ties, but still consider rivers with one spring and one sink. In this paper we consider river

3This type of externality is consistent with the definition given by e.g. Meade (1973): ‘An external
economy (diseconomy) is an event which confers an appreciable benefit (inflicts an appreciable damage) on
some person or persons who were not fully consenting parties in reaching the decision or decisions which
led directly or indirectly to the event in question.’
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situations with multiple springs and allowing for externalities. In general, situations in

which the formation of a coalition yields externalities on the agents outside the coalition

can be modeled by a cooperative game in partition function form, as proposed in Thrall

and Lucas (1963).4 Applying the efficiency and TIBS principles mentioned above to river

games in partition function form, we will see that these axioms imply an externality-free

solution, i.e., this solution can be obtained by associating a standard cooperative game to

the game in partition function form.

The paper is organized as follows. Section 2 contains preliminaries on cooperative

games, Section 3 introduces the cooperative game model for international rivers with one

spring and one sink and then generalizes to a cooperative game model for rivers with

multiple springs and to games in partition function form for rivers with multiple springs

and satiated agents. In Section 4 we discuss several principles for allocating water in

international rivers with multiple springs, but without satiated agents, and specify these

principles into axioms for solutions in our game model. We characterize the solutions that

are determined by these principles. In Section 5 we discuss the implications of this for

the special case of a river with only one spring, and in Section 6 we discuss the case with

satiated agents. Finally, Section 7 contains concluding remarks.

2 Preliminaries on cooperative games

A cooperative game with transferable utility in characteristic function form, or simply a

TU-game, is a pair (N, v), where N = {1, ..., n} is a finite set of n players, and v: 2N → R
is a characteristic function on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the

worth of coalition S, i.e., the members of coalition S can obtain a total payoff of v(S) by

agreeing to cooperate. When we take the player set N to be fixed, we represent a TU-game

by its characteristic function v and we denote the collection of all TU-games on N by GN .

A game v ∈ GN is superadditive if v(S)+ v(T ) ≤ v(S ∪T ) for any pair of subsets S, T ⊆ N

such that S∩T = ∅. Further, a game v ∈ GN is convex if v(S)+v(T ) ≤ v(S∪T )+v(S∩T )

for all S, T ⊆ N .

For a collection of games G ⊆ GN , a set-valued solution F on G assigns a set

F (v) ⊂ Rn of payoff vectors to every TU-game v ∈ G. The most applied set-valued

solution on GN is the Core (Gillies, 1953) which assigns to every TU-game v ∈ GN the set

4Despite its early introduction, the partition function form turned out to be a methodological tough
problem, and only during the last decade breakthroughs are reported, see e.g. Funaki and Yamato (1999),
Ray and Vohra (1999), Albizuri, Arin and Rubio (2005), Gomez (2005), Gomez and Jehiel (2005), De
Clippel and Serrano (2008) and Albizuri (2010).
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given by

Core(v) = {x ∈ Rn |
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ⊂ N},

i.e., the core is the set of all efficient payoff vectors that are stable in the sense that no

coalition S ⊂ N can do better by deviating from the grand coalition N and realising its

own worth v(S). The core of a game is nonempty if and only if v is balanced, see e.g.

Bondareva (1963) or Shapley (1967). Since every convex game is balanced, it follows that

the core is nonempty for every convex game.

A single-valued solution f on G ⊆ GN assigns precisely one payoff vector f(v) ∈ Rn

to every v ∈ G. The most applied single-valued solution on GN is the Shapley value which

is defined as the average of all marginal vectors over all permutations of the players. For

a permutation π: N → N , assigning rank number π(i) ∈ N to any player i ∈ N , we define

πi = {j ∈ N |π(j) ≤ π(i)}, i.e., πi is the set of all players with rank number at most

equal to the rank number of i, including i itself. Then the marginal vector mπ(v) ∈ IRn

of game v and permutation π is given by mπ
i (v) = v(πi) − v(πi \ {i}), i ∈ N . Denoting

by Π(N) the collection of all permutations on player set N , the Shapley value (Shapley

(1953)) Sh:GN → IRn is given by

Shi(v) =
1

n!

∑
π∈Π(N)

mπ
i (v) for all i ∈ N.

For convex games each marginal vector lies in the core of the game, and by convexity of the

core also the Shapley value and any other convex combination of marginal vectors belongs

to the core.

In a TU-game the worth of a coalition does not depend on the activities of players

outside the coalition, and thus does not take account of externalities on the worth of a

coalition resulting from the formation of coalitions of agents outside the coalition. Situa-

tions in which the worth of a coalition S ⊂ N depends on the coalition formation outside S

can be modeled by a cooperative game with transferable utility in partition function form,

or shortly a PFF-game. A partition P = {S1, . . . , Sk} of the set N into k subsets denotes

a cooperation structure within the grand coalition N , i.e., players in set T cooperate if and

only if T ∈ P . Then a PFF-game assigns a worth v(S,P) to for every pair (S,P) such

that S ∈ P , i.e., the worth of a coalition S in P of N depends on the cooperation structure

P \{S} of the players in N \S. For S ∈ P , the worth v(S,P) denotes the amount that the

players in S can guarantee themselves by cooperating, when the players outside S form

coalitions T , T ∈ P \ {S}.
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3 River games

3.1 The basic river game

In their paper ‘Sharing a river’, Ambec and Sprumont (2002) consider the problem to find a

‘fair’ distribution of the welfare resulting from allocating the water flows of an international

river to the agents (e.g. firms, cities, countries) located along the river from upstream to

downstream. Let N = {1, . . . , n} be the set of players representing the agents, in the sequel

also called countries, along the river, numbered successively from upstream to downstream,

and let ei ≥ 0 be the inflow of water on the territory of agent i, i = 1, . . . , n. Every agent

is assumed to have a quasi-linear utility function given by ui(xi, ti) = bi(xi) + ti, where

ti is a monetary compensation to agent i, xi is the amount of water allocated to agent

i, and bi: IR+ → IR is a continuous function yielding the benefit bi(xi) to agent i of the

consumption xi of water. Ambec and Sprumont (2002) make the following assumption.

Assumption 3.1 In the river game every benefit function bi: IR+ → IR is a strictly in-

creasing and strictly concave function, which is differentiable for xi > 0 with derivative

going to infinity as xi tends to zero.

Because of the one-directionality of the water from upstream to downstream, every

agent can be assigned at most the water inflow at the territories of himself and his upstream

agents, but the water inflow downstream of some agent can not be allocated to this agent.

Therefore a water allocation x ∈ IRn
+ assigns an amount of water xi to agent i, i = 1, . . . , n,

under the restrictions

j∑
i=1

xi ≤
j∑

i=1

ei, j = 1, . . . , n,

i.e., for every agent j, the sum of the water assignments x1, . . . , xj is at most equal to

the sum of the inflows e1, . . . , ej. A water allocation x yields total welfare
∑n

i=1 bi(xi). A

compensation scheme t ∈ IRn gives a monetary compensation ti to agent i, i = 1, . . . , n,

under the restriction

n∑
i=1

ti ≤ 0.

So, the sum of all positive compensations (agents that receive money) is at most equal to

the absolute value of the sum of all negative compensations (agents that have to pay). A

welfare distribution is a pair (x, t) of a water allocation x and a compensation scheme t

yielding utility ui(xi, ti) = bi(xi) + ti to every agent i, i = 1, . . . , n. A welfare distribution

8



is Pareto efficient if no water and no money is wasted. So (x, t) is Pareto efficient if and

only if x ∈ IRn
+ maximizes the welfare maximization problem

max
x1,...,xn

n∑
i=1

bi(xi) s.t.

j∑
i=1

xi ≤
j∑

i=1

ei, j = 1, . . . , n, and xi ≥ 0, i = 1, . . . , n, (3.1)

and the compensation scheme is budget balanced:

n∑
i=1

ti = 0.

Let x∗ be a solution of problem (3.1). Then a Pareto efficient welfare distribution (x∗, t)

yields payoffs (utilities)

zi = bi(x∗) + ti, i = 1, . . . , n,

with sum of payoffs equal to the Pareto efficient total welfare
∑n

i=1 bi(x∗i ).

The problem to find a ‘fair’ distribution of the Pareto efficient total welfare can

be modeled by the following TU-game (N, v). Obviously, the worth v(N) is given by

v(N) =
∑n

i=1 bi(x∗i ). Further, for any pair of agents i, j with j > i, it holds that water inflow

entering the river before the upstream agent i can only be allocated to the downstream

agent j if every agent h between agents i and j cooperates. Otherwise, since every benefit

function bh is strictly increasing in xh, every agent between i and j can increase its utility

by taking the flow from i to j for its own use. Hence, a coalition T is admissible if and

only if T is consecutive, i.e., T = {i, i + 1, . . . , j} for some i, j ∈ N, i ≤ j. In the sequel we

denote such a coalition of consecutive agents by [i, j]. For any consecutive coalition [i, j]

its worth v([i, j]) is given by

v([i, j]) =

j∑
h=i

bh(x
[i,j]
h ) where x[i,j] = (x

[i,j]
h )j

h=i solves

max
xi,...,xj

j∑
h=i

bh(xh) s.t.
l∑

k=i

xk ≤
l∑

k=i

ek, l = i, . . . , j, and xk ≥ 0, k = i, . . . , j. (3.2)

So, the worth of a consecutive coalition is obtained by solving a similar maximization prob-

lem as for the ‘grand coalition’ N in (3.1) but restricted to the water inflows and benefits

of agents in the coalition. For any other (non-consecutive) coalition S, the worth v(S)

is equal to the sum of the worths of its maximal consecutive subsets.5 For benefit func-

tions satisfying Assumption 3.1, we refer to this game introduced in Ambec and Sprumont

(2002), as the basic river game and denote the collection of all basic river games on N

5A subset T of S is maximal consecutive if T is consecutive and T∪h is not consecutive for any h ∈ S\T .
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by GN
b . It has been shown by Ambec and Sprumont (2002) that every basic river game is

convex.

We can now apply any solution concept from cooperative game theory to find a

distribution of the Pareto efficient total welfare. Notice that a solution f assigns payoff

vector z = f(v) ∈ IRn to game v ∈ GN
b , which can be implemented by the welfare distrib-

ution (x∗, t) with ti = zi − bi(x∗i ), i = 1, . . . , n. The fairness of such a distribution depends

on the properties of the solution. A minimal requirement is that the solution should be

core-stable, i.e., for every v ∈ GN
b the payoff vector f(v) ∈ Core(v). We will discuss this in

more detail in Section 4.

3.2 River systems with multiple springs

In this subsection we extend the river game analysis to rivers that start at different springs.

Thus, we consider a river system with several side-rivers which originate at different springs

and that merge together to one river. Further, each spring is identified by an agent, i.e. we

consider the most upstream agent along a side river as its spring. Every agent has precisely

one downstream neighbor (except the final most downstream agent), but agents can have

multiple upstream neighbors, namely in case an agent is located where two or more rivers

merge together. We denote the number of springs by s and denote O = {1, . . . , s} as the

set of agents located at some spring, i.e., agent j is located at spring j, j = 1, . . . , s. Let

n > s be the total number of agents. We index the (unique) most downstream agent by

n. For agent k, let Uk denote the set of upstream neighbors of k. Every agent i ∈ N\{n}
is in exactly one Uk for some k ∈ N . Notice that the structure of the river system is fully

determined by the n-tuple of sets (Uk)k∈N , with Uk = ∅ if and only if k ∈ O. We denote

this n-tuple by U . A pair (N,U) consisting of a set of agents N and a river structure U is

then called a river system.

Example 3.2 Let (N,U) represent a river system with N = {1, 2, 3, 4, 5, 6, 7} and U1 =

U2 = U3 = ∅, U4 = {3}, U5 = {2, 4}, U6 = {1, 5} and U7 = {6}, see Figure 1. So,

O = {1, 2, 3} is the set of springs and n = 7 is the (unique) most downstream agent. The

two rivers originating at 2 and 3 merge together at agent 5 and then this stream merges

together at agent 6 with the side river originating at agent 1. 2

For k ∈ N , let P k denote the set of all agents upstream of k, including k itself.

Clearly, (i) Uk ⊆ P k \ {k} for every k ∈ N , (ii) P k = {k} and Uk = ∅ if k ∈ O, and

(iii) P n = N . Further, denote Nk = N \ P k, i.e., Nk is the complement of the set P k

consisting of the set of agents not in P k. Thus Nk contains all agents downstream to agent

k and also all springs j ∈ O \ P k that are not upstream of k and all agents downstream of

10
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Figure 1: River structure from Example 3.2

these springs. Notice that for every agent k, both the |Pk|-tuple6 (U i ∩P k)i∈P k = (U i)i∈P k

and the |Nk|-tuple (U i ∩ Nk)i∈Nk
are also river structures, so the pairs (Pk, (U

i)i∈P k) and

(Nk, (U
i ∩ Nk)i∈Nk

) are sub-river systems on the sets P k, respectively Nk. Finally, let Qk

denote the set of all agents downstream to agent k, including k itself, and for k 6= n, let dk

be the unique downstream neighbor of k. Taking k = 5 in Example 3.2, P 5 = {2, 3, 4, 5},
N5 = {1, 6, 7}, Q5 = {5, 6, 7} and d5 = 6. Further, the sub-river system (N5, (U

i∩N5)i∈N5)

is given by the river structure U1 ∩N5 = ∅, U6 ∩N5 = {1} and U7 ∩N5 = {6}.
We assume again that each agent has a quasi-linear utility function given by ui(xi, ti)

= bi(xi) + ti and that Assumption 3.1 holds. Now we slightly have to adapt the constraint

in the definition of water allocation x to∑
i∈P j

xi ≤
∑
i∈P j

ei, j = 1, . . . , n,

i.e., for every agent j, the sum of the water assignment uses of agent j and all its upstream

agents is at most equal to the sum of the inflows at j and all its upstream agents, and

correspondingly we have to modify the constraints in the welfare maximization problem

(3.1).

Modeling the problem to find a ‘fair’ distribution of the Pareto efficient total welfare

by a TU-game (N, v) in case of multiple springs, we assume that a coalition of agents S

can cooperate together when (i) there exists a k ∈ S such that S ⊆ P k, i.e., there is a

unique most downstream agent, and (ii) for every i ∈ S \ {k}, every agent between i and k

is also in S. Condition (i) means that agents on two branches can not cooperate if they do

not have a common most downstream agent, for instance in Example 3.2 the two upstream

branches {1} and {3, 4} can not benefit from cooperation in the coalition {1, 3, 4}. The

second condition generalizes the notion of a coalition of consecutive agents to the case of

multiple springs: it implies that when j cooperates with an upstream agent i, every agent

on the branch between i and j also cooperates. In Example 3.2, agents 2 and 6 can only

6For a set A, |A| denotes the number of elements in A.
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cooperate when also 5 agrees. We say that a coalition S is connected when S satisfies (i)

and (ii). Modeling this situation as a TU-game, the worth v(S) of a connected coalition S

is given by

v(S) =
∑
h∈S

bh(xS
h) where xS = (xS

h)h∈S solves

max
{xh≥0|h∈S}

∑
h∈S

bh(xh) s.t.
∑

i∈P j∩S

xi ≤
∑

i∈P j∩S

ei, j ∈ S, and xi ≥ 0, i ∈ S. (3.3)

For any other (non-connected) coalition S, the worth v(S) is equal to the sum of the worths

of its maximally connected subsets.7

In particular we consider an agent k which has at least two upstream neighbors,

i.e., k is an agent at which at least two rivers merge together. By definition the set P k

is connected for every k, but at an agent k with at least two upstream neighbors the set

P k \ {k} is not connected (in Example 3.2 the set P 5 \ {5} = {2, 3, 4} is not connected,

but it contains two maximal connected subsets: {2} and {3, 4}). For every k ∈ N it holds

that

v(P k \ {k}) =
∑
j∈Uk

v(P j).

The triple (N,U , v) completely describes a river game on a river system with multiple

springs. When we take the river system (N,U) as given, we denote the collection of all

characteristic functions v obtained from river situations on (N,U) with benefit functions

satisfying Assumption 3.1 by G(N,U).

3.3 River games with externalities

Ambec and Ehlers (2008) have generalized the basic one-spring river game of Ambec and

Sprumont by allowing for satiable agents. This means that Assumption 3.1 is weakened

by deleting the requirement that the benefit function is strictly increasing.

Assumption 3.3 In the river game every benefit function bi: IR+ → IR is a strictly concave

function, which is differentiable for xi > 0 with derivative going to infinity as xi tends to

zero.

Hence, either bi is strictly increasing, or there exists a unique number, say si, such that bi

is strictly increasing on xi < si and strictly decreasing when xi > si, thus the derivative of

bi is zero at point si. The point si is the satiation point of agent i. We now consider a river

7A subset T of S is maximal connected in S if T is connected in the sub-river system (S, (Uk ∩ S)k∈S)
and T ∪ h is not connected in this sub-river system for any h ∈ S \ T .
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with multiple springs and each agent having a benefit function satisfying Assumption 3.3.

Without loss of generality (see Ambec and Ehlers, 2008), we further assume that ei < si

for all i (with si = ∞ when bi is strictly increasing).8

The existence of satiation points has serious consequences for the resulting game.

Before, under Assumption 3.1, only connected coalitions were able to cooperate because

any water transfered from one part of a non-connected coalition to another would fully

be consumed by ‘intermediary’ agents. So, a non-connected coalition S consisting of two

connected subsets of agents, say an upstream connected subset S1 and a downstream con-

nected subset S2, would never transfer water from S1 to S2 because the strictly increasing

benefit functions of the agents would make that all water sent from S1 to S2 would im-

mediately be taken by the agents in-between S1 and S2. In contrast, under Assumption

3.3 it might be profitable for a non-connected coalition to transfer water between its non-

connected subsets. When all agents in-between S1 and S2 have a satiation point then it

might be profitable for the not connected coalition S = S1 ∪ S2 to send water from its

upstream part S1 to its downstream part S2. Although some of this flow might be taken

by the in-between agents, these agents will only take water up to their satiation points.

So, when the flow is big enough, part of it will reach S2, possibly rendering cooperation

between the two non-connected parts of the coalition profitable. As a result of the change

in the assumption, the worth of an non-connected coalition S can now be higher than the

sum of the worths of its maximal connected subsets.

This phenomenon might cause positive externalities on a connected coalition T .

Under Assumption 3.1, the worth of T follows from the maximization program (3.3).

However, when all agents in T have satiation points, it might be profitable for agents

upstream of T to send water to agents downstream of T . Thus the worth of T depends on

the coalition formation of the agents outside T . The problem to find a fair distribution of

the Pareto efficient total welfare can now be modeled by a cooperative game in partition

function form. As mentioned in the preliminaries, such a game assigns a worth v(S,P)

to every coalition S in a coalition structure P on N . This worth denotes the maximum

welfare (sum of the benefits) that the agents in coalition S can guarantee themselves by

cooperating, when the agents outside S form coalitions T , T ∈ P \ {S}.9 When we take

the river system (N,U) as given, we denote the collection of all partition function form

games v on (N,U) with benefit functions satisfying Assumption 3.3 by PG(N,U).

When S ∈ P and every coalition T ∈ P , T 6= S, is a singleton, then the agents

outside S act individually and every i 6∈ S consumes at least its own water inflow ei

8If ei > si then in the optimal allocation problem ei − si can be considered as additional inflow at its
downstream neighbor di.

9For a river with one spring, Ambec and Ehlers (2008) provides an iterative procedure to find the
worths v(S,P) for every P and every S ∈ P.
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(because ei < si for all i). We denote PS = {S} ∪ {{i}, i 6∈ S} as the partition where

all agents outside S do not cooperate and act as singletons, and v∗(S) = v(S,PS) as the

corresponding worth in the partition function form game. This worth is called (Ambec

and Ehlers, 2008) the (non-cooperative) core lower bound of S. For a connected coalition

we have that v∗(S) = v(S), i.e., v∗(S) is precisely the worth that S can obtain by solving

the welfare maximizing problem (3.3) and thus is equal to the welfare that the agents in S

obtain when allocating optimally their own water inflows amongst themselves. We further

denote v∗(S) = v(S,PS), with PS = {S, N \ S} the partition such that all agents not in

S work together. The worth v∗(S) is called the (cooperative) core upper bound of S. It

is the amount that the agents in S can guarantee themselves when the agents outside S

cooperate together in coalition N \S. Notice that v∗(S) and v∗(S) are defined for every S,

not only for connected coalitions. Also notice that v∗(N) = v∗(N) = v(N, {N}) = v(N) is

the worth of the grand coalition when all agents cooperate together.

The following results have been stated in Ambec and Ehlers (2008) for rivers with

one spring and generalize straightforwardly to rivers with multiple springs.

Lemma 3.4 Let P be a partition of N and S ∈ P. Then

(i) v∗(S) ≤ v(S,P),

(ii) For any two different S, T ∈ P, v(S,P) + v(T,P) ≤ v(S ∪ T,P ′) with P ′ = (P \
{S, T}) ∪ {S ∪ T}.

Notice that (i) also implies that v∗(S) ≤ v∗(S) and that (ii) implies that

v∗(S) + v∗(T ) ≤ v∗(S ∪ T )

for every disjoint S and T . Hence, the worths v∗(S), S ⊆ N , induce a superadditive TU-

game (N, v∗). Recall that in the case without externalities the above inequality holds with

equality when S and T are two disjoint connected coalitions and S ∪ T is not connected.

This does not need to be true in the river game with satiation points. For instance when

S is upstream of T , the union S ∪ T may benefit from a water flow going from S to T .

For rivers with one spring it is also stated in Ambec and Ehlers (2008) that for coalitions

S = [1, i], i = 1, . . . , n,

v([1, i],P) = v∗([1, i]) for every P with [1, i] ∈ P ,

i.e., when coalition S consists of some agent i and all its upstream agents, then the worth

of S does not depend on the partition of the agents outside S. Indeed, by definition, the

worth of such an upstream coalition S does not depend on the behavior of the agents

downstream of S. In case of a river with multiple springs, this result generalizes to every

upstream coalition P k and its complement Nk = N \ P k, k ∈ N .
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Theorem 3.5 Let v ∈ PG(N,U) be a partition function form river game on (N,U). Then,

for every P and S ∈ P,

v(S,P) = v∗(S) if S = P k or S = Nk, for some k ∈ N.

Proof. Let S = P k for some k ∈ N . Since P k consists of agent k and all its upstream

agents, its worth v(P k,P) does not depend on the partition P \{P k} of the agents outside

P k. Hence v(P k,P) = v∗(P
k) for all P with P k ∈ P .

Next consider S = Nk for some k ∈ N . By definition of P k, agent k is the only agent

in P k that is connected to an agent in Nk, namely to its unique downstream neighbor dk.

Further, by definition of P k, there are no agents in P k downstream of k. By the assumption

that eh < sh for every h ∈ N , it follows that agent dk never receives any water from k,

independent of the partition of P k = N \Nk. So, v(Nk,P) = v∗(Nk) for all P with Nk ∈ P .

2

We say that the worth of every coalition of type P k or type Nk is externality-free,

i.e., the worth does not depend on the partition of the agents outside a coalition of such a

type.

4 Welfare distribution in international river basins

In this section we restrict the analysis for river systems with agents satisfying Assumption

3.1 and discuss the implications of principles for water allocation for the properties to be

satisfied by solutions on the class G(N,U) of river games with (possibly) multiple springs but

without externalities. We return to the case of externalities in Section 5.

4.1 Efficiency and the TIBS principle

In Kilgour and Dinar (1995) several principles have been proposed to prevent or resolve

disputes on water allocation within an international water basin. Since there is no binding

international law governing the allocation of water in international rivers, these principles,

in combination with a legal text called the 1966 Helsinki Document (see Kilgour and Dinar),

are the only guidelines that are available in determining a ‘fair’ welfare distribution and

thus a ‘fair’ solution for the class of cooperative TU-games on river systems with multiple

springs.10

According to the 1966 Helsinki Document two considerations that are to be included

in resolving water disputes are ‘efficiency of the water use’ and ‘Pareto optimality’. In the

10These principles can, of course, also be used when the agents in the model are not countries but, for
instance, firms or cities.
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context of this paper we can translate these considerations into an axiom that we can then

use (in combination with other axioms) to find a solution for a river game. Efficiency of

water use and Pareto optimality imply that the grand coalition optimally allocates its own

water inflow amongst its own members and that the monetary compensations are budget

balanced. So, translating efficiency of water use and Pareto optimality into an axiom for

a solution f gives us straightforwardly the following axiom to be satisfied by a solution f

on G(N,U).

Axiom 4.1 Efficiency

A solution f on the class of river games G(N,U) is efficient if
∑

i∈N fi(v) = v(N) for every

v ∈ G(N,U).

This axiom implies for any river game on (N,U) that the agents efficiently distribute the

worth of the grand coalition v(N) (the maximum utility they can obtain when they all

cooperate).

The principles discussed in Kilgour and Dinar (1995) concern the ‘water rights’

assigned to the different countries along the river. The principle of Absolute Territorial

Sovereignty (ATS), or Harmon doctrine, states that a country has absolute sovereignty over

the area of any river basin on its territory. This principle clearly favors upstream countries

in that it allows countries to use any water that flows into the river on their territory without

taking into account what consequences this might have for its downstream countries. For a

solution f on the class G(N,U) of river games this principle implies that for every connected

coalition of agents, the agents can secure themselves at least the welfare level that can

be reached by allocating optimally the water that they control amongst themselves (given

the one-directionality of the flow). So, for every connected coalition S it should hold that∑
i∈S fi(v) ≥ v(S). Then this condition also holds for every not connected subset, because

for such a set the worth v(S) is equal to the sum of the worths of its maximally connected

subsets. So, the ATS property results in the requirement that the welfare distribution

should be core-stable.

The second doctrine listed in Kilgour and Dinar (1995, p.1) is:

“The principle of Territorial Integration of all Basin States . Symmetrically, this

principle favors downstream states, to which it accords “equal” use, without regard to

their contribution to the flow”.

This TIBS-principle does not make any country the legal owner of water. Instead,

it states that the river water belongs to all the countries combined, no matter where it

enters the river, and that each country has the right to ‘a share’ of the total amount of

water. Of course, also with respect to this principle we have to take into account the
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one-directionality of the water flow. For instance we can not give agent 1 (at spring one

by the convention on the indexing of the agents in this paper) a right to more water than

actually enters the river at its own territory. However notice that, while agent 1 can never

obtain more water than enters the river on his own territory, he can reach a higher utility

level than the utility it obtains from consuming his own inflow because he has the option

to ‘trade’ some of the water with its downstream neighbor (that possibly derives a higher

utility from the water) in exchange for a monetary compensation. While ATS has a clear

implication for solutions, namely core stability, TIBS can be interpreted in several ways.

Since water cannot be allocated upstream, we interpret the TIBS principle as follows: given

some agent j ∈ N , this agent and all his downstream agents are entitled to receive a share

of the water inflow at the territory of agent j. It is not difficult to see that the TIBS

principle favors downstream countries more than the ATS principle.

An extreme interpretation of the TIBS principle, called Unlimited Territorial In-

tegrity (UTI), states that country j can claim at most a utility equal to the benefit of the

total inflow of water at the territories of country j itself and all its upstream countries. For

the basic river game with a single spring Ambec and Sprumont (2002) conclude from the

UTI principle that the welfare distribution should satisfy the property that no coalition

S should get a total welfare above its aspiration level, defined as the highest sum of all

benefits over the agents in S that can be obtained by an optimal allocation among its own

members of all the water inflows at all agents along the river from 1 to s, where s is the

most downstream agent of coalition S. So, the aspiration level is the welfare level that can

be obtained when the agents in S can also use the water inflows of the agents not in S, but

upstream to the most downstream member of S. Applying this to the upstream coalition

of consecutive agents from 1 to j, this aspiration level fairness property requires that the

solution of the cooperative TU-game gives a total payoff to coalition [1, j] at most equal to

the aspiration level upperbound v([1, j]). On the other hand, core-stableness requires that

coalition [1, j] receives at least v([1, j]). Therefore, core-stableness and fairness imply that

the total payoff to the agents in coalition [1, j] should be equal to v([1, j]). From this Am-

bec and Sprumont (2002) conclude that there is a unique welfare distribution that satisfies

both the core lower bounds and the aspiration level upper bounds, being the downstream

incremental welfare distribution that is given by the marginal vector of the game v (see

Section 2) with respect to the permutation π on N given by π(i) = i, i ∈ N , i.e. where

the agents enter from upstream to downstream. In the sequel we denote the solution that

assigns this marginal vector to any basic river game in the class GN
b by fd. So the solution

fd assigning the marginal contributions

fd
1 (v) = v(1) and fd

i (v) = v([1, i])− v([1, i− 1]), i = 2, . . . , n,

yields for every v ∈ GN
b the downstream incremental welfare distribution. Notice that it
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indeed follows from the convexity of every game v in this class that fd(v) is core-stable.

The downstream incremental welfare distribution has the property that for every i <

n, the total payoff of the agents in the consecutive coalition [1, i] upstream of i (including

i itself) is equal to v([1, i]), while the total payoff to the downstream coalition [i + 1, n]

is equal to v(N) − v([1, i]) ≥ v([i + 1, n]). In fact, all additional welfare that is realised

when the two coalitions [1, i] and [i + 1, n] merge to the grand coalition N goes to the

downstream coalition. However, any upstream coalition [1, i] can prevent that coalition

[i + 1, n] gets more than v([i + 1, n]) by using all its inflows e1, . . . , ei by itself. This is

the opposite extreme interpretation of the TIBS principle saying that country i is entitled

to receive at least all welfare gains from allocating optimally his own water inflow among

himself and all his downstream agents. In Herings, van der Laan and Talman (2007) and

van den Brink, van der Laan and Vasil’ev (2007) it is alternatively argued that a coalition

[1, i] can play some type of ultimatum game by claiming that they will use their total water

inflow
∑i

h=1 ei by themselves, unless the agents of the downstream coalition [i+1, j] agree

to make a monetary compensation almost equal to the total welfare gain of cooperation.

This results in precisely the opposite of the solution proposed by Ambec and Sprumont,

namely the upstream incremental welfare distribution, being the welfare distribution given

by the marginal vector with respect to the permutation π on N given by π(i) = n− i + 1,

i ∈ N , i.e. where the agents enter from downstream to upstream. In the sequel we denote

the solution that assigns this marginal vector to any basic river game in the class GN
b by

fu, being the solution assigning the marginal contributions

fu
n (v) = v(n) and fu

i (v) = v([i, n])− v([i + 1, n]), i = 2, . . . , n.

Although this solution does not satisfy the aspiration level upper bounds, it is also core-

stable. For these reasons Herings, van der Laan and Talman (2007) and van den Brink,

van der Laan and Vasil’ev (2007) assert that the solution fu is at least as reasonable as its

counterpart fd.

Whereas the above two interpretations of the TIBS principle are rather extreme, in

this paper we look at solutions that can be motivated by the TIBS principle in a broader

sense, including the above two extreme interpretations. To do so we have to translate

the TIBS principle into an axiom just as we did for the two considerations from the 1966

Helsinki Document. The general TIBS principle states that given some agent j ∈ N , this

agent and all its downstream agents are entitled to receive ‘a share’ of the water inflow

at agent j. In this paper water and welfare are interchangeable (water provides welfare

through the benefit function). To say that a certain country has the right to a certain

amount of water comes down to saying that a country has the right to a certain share in

the welfare. The TIBS principle therefore implies that each agent has the right to a specific
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share in welfare (depending on the share of water that it has the right to according to the

principle).

To translate this principle in a fairness axiom for a solution on the class of TU-games

G(N,U), suppose that the agents along the river are cooperating according to the coalition

structure P = {P i, Ni} for some agent i ∈ N \ {n}. So, agent i is cooperating with all its

upstream agents in coalition P i, while all other agents are cooperating in its complement

coalition Ni. This can happen, for instance, because agent i, for some reason or another,

is not willing to send water to its unique downstream neighbor di. In this situation the

agents in P i distribute their total welfare v(P i) and the agents in Ni distribute v(Ni). The

question that can then be asked is: how should the gain in welfare v(N) − v(P i) − v(Ni)

that is created by joining the two coalitions be divided among the agents? Evidently, we

can ask this question for each agent i ∈ N\{n}. The TIBS principle provides us with an

answer to this question. Let α ∈ IRn
+ with

∑
h∈N αh = 1 be a vector of weights, with

αh ≥ 0 the weight of agent h, h ∈ N . Then we interpret the TIBS principle by saying

that the gain in welfare that is created by joining the two coalitions P i and Ni, should be

divided among these two coalitions proportional to the sum of the weights in these two

coalitions. Denoting αS =
∑

i∈S αi for every S ⊆ N , we thus require that∑
k∈P i fk(v)− v(P i)∑
k∈Ni

fk(v)− v(Ni)
=

αP i

αNi

,

assuming that both αP i and αNi
are nonzero. This leads to the following fairness axiom

(which also is valid in case some weights are zero) for efficient solutions on the class of river

games.

Axiom 4.2 α-TIBS Fairness

Let α ∈ IRn
+ be such that

∑
i∈N αi = 1. An efficient solution f on the class of river games

G(N,U) satisfies α-TIBS fairness if, for every v ∈ G(N,U) and any i ∈ N\{n}, it holds that

αNi

(∑
k∈P i

fk(v)− v(P i)

)
= αP i

(∑
k∈Ni

fk(v)− v(Ni)

)
. (4.4)

Notice that the TIBS principle speaks about agents having the right to ‘a share’ of

the water inflow, but does not specify the shares and even does not require the shares to be

equal. Therefore we allow for any nonnegative weight vector α which components add up

to one. For the specific case that all weights are equal, i.e., αi = 1
n

for all i ∈ N , α-TIBS

fairness yields the following equal weights fairness axiom.11

11This axiom is similar to the so-called component fairness axiom of Herings, van der Laan and Talman
(2008) within the more general context of games on cycle-free graph structures (trees). In Béal, Rémila and
Solal (2009) this component fairness axiom is generalised to weighted component fairness for forest games.
However, this generalization differs from the α-TIBS fairness, because it assigns weights to so-called cones
(of a tree) instead of assigning weights to individual players.
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Axiom 4.3 Equal Weights TIBS Fairness

An efficient solution f on the class of river games G(N,U) satisfies equal weights TIBS

fairness if, for every v ∈ G(N,U) and any i ∈ N\{n}, it holds that

1

|P i|

(∑
k∈P i

fk(v)− v(P i)

)
=

1

|Ni|

(∑
k∈Ni

fk(v)− v(Ni)

)
. (4.5)

4.2 Weighted hierarchical solutions

The introduction of efficiency and α-TIBS fairness allows us to find a class of ‘fair’ (accord-

ing to these principles) solutions for river games without externalities in the class G(N,U).

We call this the class of weighted hierarchical solutions. Each solution from this class

assigns to every river game a weighted hierarchical outcome. The notion of hierarchical

outcome has been introduced by Demange (2004) in the context of games on cycle-free

graph structures. In this same context Herings, van der Laan and Talman (2008) pro-

pose the average of all hierarchical outcomes as the so-called average tree solution, whereas

Béal, Rémila and Solal (2010) generalize this solution to the class of all weighted averages

of the hierarchical outcomes. In this section we examine the class of weighted hierarchi-

cal solutions from the perspective of the river game without referring to the underlying

graph-theoretical concepts.

For an agent i ∈ N and an agent k downstream of i, let ki be the last agent before

k on the river branch from i to k (with ki = i when k = di). Now take some agent i ∈ N

and for every k ∈ N , consider the following payoff tik(v) for agent k (recall from Section 3

that Qi is the set of agents downstream of i, including i itself) given by

tik(v) =


v(P k)− v(P k \ {k}) if k ∈ N \Qi,

v(Nki)− v(Nki\{k}) if k ∈ Qi\{i},
v(N)− v(P k \ {k})− v(Nk) if k = i.

(4.6)

The payoff vector ti(v) gives a hierarchical outcome of Demange (2004) when i is

taken to be ‘top’ agent in the hierarchy. The set of agents N \ Qi consists of all agents

upstream to i and all agents neither upstream nor downstream of i. For instance, in

Example 3.2 the set N \ Q5 consists of the agents 2, 3 and 4 upstream of 5 and agent

1, which is neither upstream nor downstream of 5. Each agent k not in Qi receives his

marginal contribution to the coalition of agents P k consisting of this agent k and all his

upstream agents. For an agent k downstream of agent i we consider his upstream neighbor

ki on the branch to i. Then such an agent k receives his marginal contribution to the set

Nki , that is the marginal contribution to the set of agents who can be reached from k by

walking along the river without visiting his upstream neighbor ki on the branch from k to

i. Notice that k = dki , i.e., k himself is the (unique) downstream neighbor of ki. Finally,
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top agent i receives v(N)− v(P i \ {i})− v(Ni). Notice that the sets P i \ {i} of all agents

upstream of i and the set Ni of all agents not in P i can not cooperate without i and thus

v(N \{i}) = v(P i \{i})+v(Ni). So, tii(v) = v(N)−v(N \{i}), i.e., top agent i receives his

marginal contribution to the grand coalition N , which is equal to the additional welfare

that he generates by joining together the two coalitions P i \ {i} and Ni.

We can consider agent i as the top agent in a hierarchy on the set of all agents as

follows. For an agent h 6= i, let ih be the distance from i to h in the river system (N,U),

with the distance defined as the number of agents (including h itself, but not i) that has

to be visited when going from i to h along the river. For example, taking i = 4 in the

river system of Figure 1, the distance to agent 3 is one, the distance to agent 2 is two

and the distance to agents 1 or 7 is equal to three. Now, let πi be a permutation such

that an agent h 6= i enters before an agent k 6= i if ih > ik (and with agent i as the last

agent that enters). So, with i = 4 in Figure 1 first agents 1 and 7 with distance three

enter (in arbitrary order), then agents 2 and 6 with distance two, then agents 3 and 5 with

distance one and finally agent 4. Then it follows from the fact that for every S the worth

v(S) is equal to the sum of the worths of its maximally connected subsets that ti(v) is the

marginal vector of the game v with respect to this order in which agent i enters last. So,

considering the river system as a ‘hierarchy’ with agent i as the top agent, the agents enter

successively in order of their distance to the top and receive their marginal contribution

to the coalition of agents that entered before. Since every hierarchical outcome is equal to

the marginal vector corresponding to such a permutation πi, it follows by definition that

every hierarchical outcome is efficient and thus the sum of the payoffs is equal to v(N).

This also follows straightforwardly by the fact that the top agent is the last agent that

enters and receives everything that has not yet been assigned to the other agents.

Each agent i ∈ N induces a hierarchical outcome ti(v), so that the total number of

hierarchical outcomes is equal to n. For every nonnegative vector α ∈ IRn
+, with

∑
i∈N αi =

1, the payoff vector hα(v) ∈ IRn given by

hα(v) =
∑
i∈N

αit
i(v) (4.7)

is a weighted hierarchical outcome of v ∈ G(N,U). This gives us the next definition of a

weighted hierarchical solution on G(N,U).

Definition 4.4 A solution f on the class of river games G(N,U) is a weighted hierarchical

solution if there exists α ∈ IRn
+ with

∑
i∈N αi = 1, such that for every v ∈ G(N,U)

m

fi(v) = hα
i (v), ∀i ∈ N.

We now prove that every weighted hierarchical solution is the unique efficient solu-

tion that satisfies the corresponding α-TIBS fairness axiom. Therefore we first show some

lemmas.
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Lemma 4.5 Given a top agent j, consider an agent i and the hierarchical outcome tj(v).

Then

(i)
∑

k∈P i tjk(v) = v(N)− v(Ni) if j ∈ P i, and

(ii)
∑

k∈P i tjk(v) = v(P i) if j ∈ Ni.

Proof.

(i) If j ∈ P i, then for every h ∈ Ni, agent i has to be passed when one goes along the river

from j to h. So, for every h ∈ Ni the distance from j to h is bigger than the distance from

j to i, and thus every agent h ∈ Ni enters before i in every permutation πj that results in

the marginal vector tj(v). Hence all agents of the set Ni enter before i and the total payoff∑
h∈Ni

tjh(v) to these is equal to v(Ni). From the efficiency it then follows that the total

payment to the agents in the complementary set P i is equal to v(N)− v(Ni).

(ii) If j ∈ Ni then k ∈ N \ Qj for every k ∈ P i. So every k ∈ P i receives payoff

tjk(v) = v(P k)− v(P k \ {k}). Summing up over all k ∈ P i yields that
∑

k∈P i tjk(v) = v(P i).

2

Lemma 4.6 Let α ∈ IRn
+ be such that

∑
i∈N αi = 1. Then the solution hα on the class of

river games G(N,U) satisfies α-TIBS fairness.

Proof. We distinguish three cases.

Case 1. Consider an agent i ∈ N such that αP i > 0 and αNi
> 0. Then∑

k∈P i

hα
k (v)− v(P i) =

∑
k∈P i

∑
j∈N

αjt
j
k(v)− v(P i)

=
∑
k∈P i

∑
j∈P i

αjt
j
k(v) +

∑
k∈P i

∑
j∈Ni

αjt
j
k(v)− v(P i)

=
∑
j∈P i

∑
k∈P i

αjt
j
k(v) +

∑
j∈Ni

∑
k∈P i

αjt
j
k(v)− v(P i)

=
∑
j∈P i

αj

∑
k∈P i

tjk(v) +
∑
j∈Ni

αj

∑
k∈P i

tjk(v)− v(P i)

= αP i(v(N)− v(Ni)) + αNi
v(P i)− v(P i)

= αP i(v(N)− v(Ni)− v(P i)), (4.8)

where the first equality follows by definition of hα, the fifth equality follows from (i) and

(ii) of Lemma 4.5, and the last equality follows since αP i + αNi
= 1.
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In a similar way we derive∑
k∈Ni

hα
k (v)− v(Ni) =

∑
k∈Ni

∑
j∈N

αjt
j
k(v)− v(Ni)

=
∑
k∈Ni

∑
j∈Ni

αjt
j
k(v) +

∑
k∈Ni

∑
j∈P i

αjt
j
k(v)− v(Ni)

=
∑
j∈Ni

∑
k∈Ni

αjt
j
k(v) +

∑
j∈P i

∑
k∈Ni

αjt
j
k(v)− v(Ni)

=
∑
j∈Ni

αj

∑
k∈Ni

tjk(v) +
∑
j∈P i

αj

∑
k∈Ni

tjk(v)− v(Ni)

= αNi
(v(N)− v(P i)) + αP iv(Ni)− v(Ni)

= αNi
(v(N)− v(P i)− v(Ni)). (4.9)

From (4.8) and (4.9) it follows that

1

αP i

(∑
k∈P i

hα
k (v)− v(P i)

)
= v(N)− v(Ni)− v(P i) =

1

αNi

(∑
k∈N i

hα
k (v)− v(Ni)

)
,

which shows that the α-TIBS Fairness condition (4.4) is satisfied in this case.

Case 2. Consider an agent i ∈ N such that αP i = 0. Then αNi
= 1 and, since

αj > 0 only if j ∈ Ni, we have∑
k∈P i

hα
k (v) = v(P i),

showing that the α-TIBS Fairness condition (4.4) is also satisfied in this case.

Case 3. Consider an agent i ∈ N such that αNi
= 0. Then, similar as case 2,

αP i = 1 and, since αj > 0 only if j ∈ P i, we have∑
k∈Ni

hα
k (v) = v(Ni),

showing that the α-TIBS Fairness condition (4.4) is also satisfied in this case. 2

Next we state the characterization result.

Theorem 4.7 Let α ∈ IRn
+ be such that

∑
i∈N αi = 1. A solution f on the class of river

games G(N,U) satisfies the Efficiency axiom 4.1 and the α-TIBS Fairness axiom 4.2 if and

only if it is the weighted hierarchical solution hα.
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Proof. Since any hierarchical outcome is efficient, also every weighted hierarchical solution

is efficient. Further it follows from Lemma 4.6 that hα satisfies the α-TIBS Fairness axiom

4.2. Therefore it only remains to prove that the two axioms uniquely determine a solution.

Suppose that solution f satisfies the two axioms and let v ∈ G(N,U) be a river

game. Since equation (4.4) in Axiom 4.2 has to hold for every i 6= n, the α-TIBS fairness

yields n − 1 linear independent equations. Together with the Efficiency condition that∑
i∈N fi(v) = v(N), we thus have n linear independent equations in the n unknown

payoffs fi(v), i ∈ N . Hence the payoffs are uniquely determined and thus it must hold that

f(v) = hα(v), for every v ∈ G(N,U). 2

We conclude this subsection with considering the core-stability of weighted hierar-

chical solutions. In case of one spring it has been shown by Ambec and Sprumont that

under Assumption 3.1 the river game is convex and thus every marginal vector of the

game v belongs to the core of the game. Hence in this case every hierarchical outcome

is in the core and thus every weighted hierarchical solution, assigning a weighted hierar-

chical outcome hα(v) to every basic river game v, is core-stable. Although, in contrast

to the river game with one spring, the river game with multiple springs does not need to

be convex, it is superadditive because v(S) is the objective value of the underlying max-

imization problem. It also holds for every river game with multiple springs v ∈ G(N,U)

that v(S ∪ T ) = v(S) + v(T ) when S, T ⊂ N , S ∩ T = ∅ and S ∪ T is not connected.

Then, as has been shown by Demange (2004) within the framework of games on cycle-free

graph structures, the core of game v is not empty and every hierarchical outcome satisfies

the core lower bounds. Since the core is a convex set, it follows that also every weighted

hierarchical outcome is in the core of the game. This yields the following corollary.

Corollary 4.8 Under Assumption 3.1, every weighted hierarchical solution is core-stable

on the class of river games G(N,U).

4.3 Average hierarchical solution

When we take αn = 1, and thus αi = 0 for every i 6= n, then hα(v) = tn(v). Since j ∈ P n

for every j 6= n and Nn = ∅, the payoffs of this outcome as given in formula (4.6) reduce

to

tnk(v) = v(P k)− v(P k \ {k}), k ∈ N.

In case of a basic river game with one spring this is the downstream incremental solution as

proposed by Ambec and Sprumont. In its general form for games on the class G(N,U) of river

games with (possibly) multiple springs, it is the unique solution characterized by efficiency

and the corresponding α-TIBS fairness, which in this specific case of αn = 1 requires that
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the gain in welfare that is created by joining the two coalitions P i and Ni, i ∈ N , should

be fully allocated to coalition Ni. In other words, joining the coalitions P i and Ni has

no effect on the average utility of the agents in the upstream coalition P i. According

to Corollary 4.8 the generalized downstream incremental solution satisfies the core lower

bounds for every river game with multiple springs. In fact, it is straightforward to verify

that also in this case it is the unique solution that satisfies the core lower bounds and the

Ambec-Sprumont aspiration level upper bounds. The downstream incremental solution for

river games with multiple springs was also proposed in Khmelnitskaya (2009) as the unique

solution satisfying component efficiency and another property, called successor equivalence,

which generalizes the so-called upper equivalence property introduced in van den Brink,

van der Laan and Vasil’ev (2007) for line-graph games.

As for the one spring case, this generalized downstream incremental solution for

rivers with multiple springs has the disadvantage that all profits of cooperation between an

upstream and downstream coalition goes to the agents in the downstream coalition, while

the agents in the upstream coalition control the water flows from upstream to downstream.

However, in this situation its counterpart, the incremental upstream solution, is not of any

help. In case of one spring, the upstream incremental solution is the weighted hierarchical

solution with α1 = 1, thus assigning all weight to the most upstream agent 1. However,

in case of multiple springs there is not a unique most upstream agent and therefore there

is not a unique straightforward generalization of the upstream incremental solution. One

possibility could be to take the average of all hierarchical outcomes corresponding to the

agents located on one of the springs, so to take the average over all tj(v), j ∈ O. Instead

we consider the special case of considering the average of all hierarchical outcomes, thus

the hierarchical solution corresponding to αi = 1
n

for all i ∈ N . This average hierarchical

solution, where all agents have equal weight, is characterized by Efficiency and the Equal

Weights TIBS Fairness axiom and might be a good alternative to the extreme downstream

incremental solution.12 In the following, we denote the average hierarchical solution by hA.

There are several reasons to argue that the average hierarchical solution hA might

be a good alternative for the downstream and upstream (if any) incremental solutions.

First of all, according to Corollary 4.8 it is core-stable and so for every river game without

externalities v the core lower bounds reflecting the ATS principle are satisfied by the

outcome hA(v). Second, consider the following. For S ⊆ N , let hA(S) denote the total

payoff of the average hierarchical outcome to the agents in S. When, for some i 6= n, the

upstream coalition P i is going to cooperate with its complement Ni, then the the equal

12Within the context of games on cycle-free graph structures this solution is introduced in Herings, van
der Laan and Talman (2008) as the Average Tree solution and characterized by the so-called Component
Efficiency and Component Fairness axioms. A minor adjustment of these two axioms to the river games
setting gives the Efficiency and Equal Weights TIBS Fairness axioms.
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weights TIBS fairness property implies that

1

|P i|

(
hA(P i)− v(P i)

)
=

1

|Ni|

(
hA(Ni)− v(Ni)

)
.

Thus, the welfare distribution according to the average hierarchical solution has the prop-

erty that for every i 6= n, the welfare gain of the cooperation of the upstream coalition P i

and its complement coalition Ni is split among the coalition P i and Ni proportional to the

number of agents in these two coalitions, and thus the average welfare gain of an agent in

P i is equal to the average welfare gain of an agent in Ni.

As a special case we consider the implications of this for basic river games v ∈ GN
b .

Recalling that the agents are indexed from upstream to downstream and for j ≥ i, [i, j]

denotes the coalition of consecutive agents i, i + 1, . . . , j the equal weights TIBS fairness

property implies that the average weighted hierarchical outcome satisfies for every k 6= n

1

k

(
hA([1, k])− v([1, k])

)
=

1

n− k

(
hA([k + 1, n])− v([k + 1, n])

)
.

Thus, the welfare distribution according to the average hierarchical solution has the prop-

erty that for every k 6= n, the welfare gain of the cooperation of the upstream coalition

[1, k] and the downstream coalition [k+1, n] is split among the coalition [1, k] and [k+1, n]

proportional to the number of agents in these two coalitions, and thus the average welfare

gain of an agent in [1, k] is equal to the average welfare gain of an agent in [k + 1, n]. This

indeed respects the TIBS principle that, for each k, every agent in the coalition [k, n] is

entitled to a share in the water inflow at agent k. For the two agent case it states that

the welfare gain of the cooperation between the upstream agent 1 and the downstream

agent 2 is equally distributed between the two agents. It should be noticed that the equal

weights TIBS fairness also holds on every subgame. In particular, for some k, let vk be the

subgame on the upstream set of agents [1, k], i.e., this is the k-player TU-game on the set

[1, k] when this set does not cooperate with the downstream coalition [k + 1, n]. Further,

let Ak([i, j]) denote the total payoff to the agents in the set [i, j], 1 ≤ i ≤ j ≤ k, when

applying the average hierarchical solution on the k-player TU-game vk. Then the equal

weights TIBS fairness property says, for instance, that

1

k − 1

(
Ak([1, k − 1])− v([1, k − 1])

)
= Ak([k, k])− v([k, k]),

i.e., when agent k is going to cooperate with its upstream coalition [1, k − 1], then the

welfare gain to k is a fraction 1
k−1

of the total welfare gain of the agents in [1, k − 1].

Analogously, for some k, let vk be the subgame on the downstream set of agents [k, n], i.e.,

this is the n−k+1-player TU-game on the set [k, n] when this set does not cooperate with

the upstream coalition [1, k − 1]. Further, let Ak([i, j]) be the total payoff to the agents
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in the set [i, j], k ≤ i ≤ j ≤ n, when applying the average hierarchical solution on the

TU-game vk. Then the equal weights TIBS fairness property says, for instance, that

Ak([k, k])− v([k, k]) =
1

n− k

(
Ak([k + 1, n])− v([k + 1, n]

)
,

i.e., when agent k is going to cooperate with its downstream coalition [k + 1, n], then the

welfare gain to k is a fraction 1
n−k

of the total welfare gain of the agents in [k +1, n]. More

general, when either agent i−1 or agent i+k+1 joins the coalition [i, i+k] of k consecutive

agents, then this agent gets a ‘fair’ share 1
k+1

of the total welfare gain that results from

joining the coalition. In this sense the average hierarchical solution on the class of basic

river games meets the symmetric form of the TIBS principle as formulated by Kilgour and

Dinar (1995).

5 Weighted hierarchical solutions for river games with

externalities

In this section we consider the application of weighted hierarchical solutions to the class

PG(N,U) of partition function form river games with externalities. Similar as without exter-

nalities, we speak about an efficient solution if it always allocates the worth of the grand

coalition N when all agents cooperate, thus the worth v(N) = v(N, {N}) with v(N) the

solution of maximization problem 3.3 for S = N .

Axiom 5.1 Efficiency for river games with externalities

A solution f on the class of river games with externalities PG(N,U) is efficient if it holds

for any game v ∈ PG(N,U) that
∑

i∈N fi(v) = v(N, {N}).

Also the TIBS principle can be applied to river games with externalities in a sim-

ilar way as for the no-externality case. Let P(i) denote the coalition structure {P i, Ni}
and recall that the TIBS fairness axiom for games without externalities was obtained by

considering the situation that the agents along the river are cooperating according to the

coalition structure P(i) for some agent i 6= n, i.e., agent i is cooperating with all its up-

stream agents in coalition P i, while all other agents are cooperating in its complement

coalition Ni. Under externalities the agents in P i can obtain total welfare v(P i,P(i)) and

the agents in Ni earn v(Ni,P(i)). However, recall from Theorem 3.5 that these worths of

coalitions of type P i and Ni are externality-free and thus v(P i,P(i)) = v∗(P
i), respectively

v(Ni,P(i)) = v∗(Ni), being the non-cooperative core lower bounds of these coalitions. This

gives us the next α-TIBS fairness axiom for the class of river games with externalities.
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Axiom 5.2 α-TIBS Fairness for river games with externalities

Let α ∈ IRn
+ be such that

∑
i∈N αi = 1. An efficient solution f on the class of river games

with externalities PG(N,U) satisfies α-TIBS fairness if, for any v ∈ PG(N,U) and any

i ∈ N\{n}, it holds that

αNi

(∑
k∈P i

fk(v)− v∗(P
i)

)
= αP i

(∑
k∈Ni

fk(v)− v∗(Ni)

)
. (5.10)

Notice that this is the same as for the no externality case, only the worths of the

coalitions P i and Ni are replaced by their non-cooperative core lower bound values in the

partition function form game v. So, irrespective of externalities, this axiom states that the

gain in welfare that is created by joining the two coalitions P i and Ni, should be divided

among the two coalitions proportional to the sum of the weights in these two coalitions.

Similar as in the proof of Theorem 4.7 it follows that there is a unique solution that

satisfies efficiency and α-TIBS fairness for α ∈ IRn
+ with

∑
i∈N αi = 1. Moreover, similar

as in the proof of Lemma 4.6 it follows straightforwardly that the weighted hierarchical

solution to the associated non-cooperative lower bound TU-game v∗ satisfies both axioms.

This shows the following theorem.

Theorem 5.3 Let α ∈ IRn
+ be such that

∑
i∈N αi = 1. A solution f on the class of river

games with externalities PG(N,U) satisfies Efficiency and α-TIBS Fairness if and only if

f(v) = hα(v∗) for every v ∈ PG(N,U).

As before, also on the class of river games with multiple springs and externalities

we refer to solutions as characterized in this theorem as weighted hierarchical solutions. It

assigns for a given weight vector α with components adding up to one, the corresponding

weighted hierarchical outcome of the associated TU-game v∗.

We next show that every weighted hierarchical solution is externality free.

Definition 5.4 A solution f on the class of river games with externalities PG(N,U) is

externality-free if the payoffs only depend on the worths of the externality-free coalitions.

We first consider the hierarchical outcome ti(v∗) in case the river has only one spring.

Then formula (4.6) reduces to

tik(v∗) =


v∗([1, k])− v∗([1, k − 1]) if k < i,

v∗(N)− v∗([1, k − 1])− v∗([k + 1, n]) if k = i,

v∗([k, n])− v∗([k + 1, n]) if k > i.

(5.11)

An agent upstream of agent i receives its marginal contribution to the coalition of agents

consisting of this agent and all agents upstream to it. An agent downstream of agent i

28



receives its marginal contribution to the coalition of agents consisting of this agent and all

agents downstream to it. Finally, agent i receives its marginal contribution to the grand

coalition N , i.e., agent i receives the benefit of cooperation that is obtained by connecting

the upstream coalition [1, i− 1] and the downstream coalition [i + 1, n]. Further, formula

(5.11) shows that in every hierarchical outcome the payoffs are fully determined by the

worths v(S) with S of either type [1, j] or type [j, n] for some 1 ≤ j ≤ n, i.e., the payoffs

are fully determined by the worths of the upstream coalitions [1, j] and the downstream

coalitions [j, n], j = 1, . . . , n. The worths of all other coalitions [i, j], 1 < i < j < n

of consecutive agents don’t affect the payoffs. Noticing that, for i < n, P i = [1, i] and

Ni = [i+1, n] it follows from Theorem 3.5 that every coalition that appears in the formula

above is externality-free, illustrating that in case of a river with only one spring, the

hierarchical outcome only depends on the worths of the externality-free coalitions and so

every weighted hierarchical solution is externality-free for rivers with only one spring.

We now consider the case of multiple springs. For some i, first consider an agent

k ∈ N \Qi. Then, according to formula (4.6) the payoff to k in ti(v∗) is given by

tik(v∗) = v∗(P
k)− v∗(P

k \ {k}).

Since v∗(P
k \ {k}) =

∑
j∈Uk v∗(P

j) it follows that the payoff tik(v∗) only depends on the

worths of coalitions of type P j, j ∈ N . Second, consider an agent k ∈ Qi \ {i}. Then,

according to formula (4.6) the payoff to k in ti(v∗) is given by

tik(v∗) = v∗(Nki)− v∗(Nki\{k}).

Inspecting v∗(Nki\{k}) it follows that v∗(Nki\{k}) = v∗(Nk) +
∑

h∈Uk\{ki} v∗(P
h). Hence,

every term in the expression above is either of type v∗(P
i) for some i ∈ N or of type v∗(Ni)

for some i ∈ N . Apparently, also the payoff to player i only depends on the worths of

coalitions of type P j and Nj, j ∈ N . Since, according to Theorem 3.5 every coalition of

these types is externality-free, it follows that every hierarchical outcome ti(v∗) only depends

on the worths of the externality-free coalitions. This gives the following two corollaries.

Corollary 5.5 On the class PG(N,U) of river games with externalities, every weighted hi-

erarchical solution hα assigning payoff hα(v∗) for every v ∈ PG(N,U) is externality-free.

Corollary 5.6 On the class PG(N,U) of river games with externalities, the axioms of Effi-

ciency and α-TIBS Fairness imply externality-freeness.

We now consider core stability. Every weighted hierarchical outcome is a convex

combination of the hierarchical outcomes ti(v∗), i ∈ N . As seen before, for a river game

v without externalities, every hierarchical outcome is in the core of the game v. However,
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as we have seen in Section 3.3, for two connected, disjoint coalitions S and T the worth

v∗(S∪T ) can be bigger than the sum of the two worths v∗(S) and v∗(T ). Thus, a hierarchical

outcome ti(v∗) does not need to satisfy the non-cooperative core lower bound v∗(R) for

every coalition R. However, in Ambec and Ehlers (2008) it is argued that in river games it

is natural to restrict blocking for connected coalitions, because coordination among agents

becomes difficult when the agents are not neighboring. Clearly, every hierarchical outcome

satisfies the non-cooperative core lower bound for every connected coalition R. Hence, we

have the following corollary.

Corollary 5.7 For a river game with externalities v ∈ PG(N,U), a weighted hierarchical

solution satisfies the non-cooperative core lower bounds when blocking is restricted to con-

nected coalitions.

It should be noticed that it is shown in Ambec and Ehlers (2008) that for the river game

with a single spring and externalities, the downstream incremental solution (i.e. the hi-

erarchical outcome tn(v∗)) satisfies all non-cooperative core lower bounds. It is an open

question whether this also holds for river games with multiple springs.

Finally we would like to mention that also on the class of river games with multiple

springs and externalities the average hierarchical solution satisfies Equal Weights TIBS-

fairness. Hence, when an agent k stops cooperating with its unique downstream neighbor

such that coalition P k consisting of k and all its upstream neighbors does not want to

cooperate with its complement Nk, then the total payoff to the agents in P k is equal to

v∗(P
k) and the total payoff of the agents in Nk is equal to v∗(Nk). When the two coalitions

cooperate and distribute the total payoff according to the average hierarchical solution,

also in the game with externalities the average welfare gain of the agents in Pk is equal to

the average welfare gain of the agents in Nk.

6 Concluding remarks

In this paper we applied weighted hierarchical solutions, in particular the average hierarchi-

cal solution, to river games with and without externalities. These solutions give alternatives

to the downstream incremental solution and upstream incremental solution. In fact, the

downstream incremental solution and the upstream incremental solution (for rivers with

one spring) are extreme cases of the class of weighted hierarchical solutions. We con-

sidered rivers with multiple springs and allowed for satiable agents, yielding externalities

when non-connected coalitions cooperate. Using axioms underlying these solutions, in par-

ticular efficiency and fairness axioms, we argued that these principles (and corresponding

solutions) are a better implementation of the TIBS principle in Kilgour and Dinar (1995)
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than the UTI principle (and corresponding downstream incremental solution) of Ambec

and Sprumont (2002) which is an extreme interpretation of this principle.

For river games with one spring and nonsatiable agents the downstream incremental

solution was already criticized in van den Brink, van der Laan and Vasil’ev (2007) who

already proposed two alternatives. One alternative can be seen as an upstream incremental

solution, being the marginal vector where agents enter from downstream to upstream, and

thus assigns the dividends of cooperation fully to the upstream agents. Of course, this

solution is as extreme as the downstream incremental solution but awards upstream agents

for their dominant position on the river. Inspired by the equal gain split rule for sequencing

problems, as a compromise van den Brink, van der Laan and Vasil’ev (2007) proposed

the average of the downstream and upstream incremental solutions, and characterized

it by component efficiency and an alternative fairness property stating that when two

neighboring agents on the river stop cooperation, then the two ‘new’ river components

loose the same amount of payoff. In fact, this solution is the weighted hierarchical solution

with α1 = αn = 1
2

and αi = 0 for i ∈ {2, . . . , n− 1}.
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