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Abstract

A version of the classical secretary problem is studied, in which one is

interested in selecting one of the b best out of a group of n differently

ranked persons who are presented one by one in a random order. It

is assumed that b ≥ 1 is a preassigned number. It is known, already

for a long time, that for the optimal policy one needs to compute b

position thresholds, for instance via backwards induction. In this paper

we study approximate policies, that use just a single or a double position

threshold, albeit in conjunction with a level rank. We give exact and

asymptotic (as n →∞) results, which show that the double-level policy

is an extremely accurate approximation.

Keywords: Secretary Problem; Dynamic Programming; Approximate Poli-

cies

1 Introduction

The classical secretary problem is a well known optimal stopping problem from

probability theory. It is usually described by different real life examples, no-
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tably the process of hiring a secretary. Imagine a company manager in need of

a secretary. Our manager wants to hire only the best secretary from a given

set of n candidates, where n is known. No candidate is equally as qualified

as another. The manager decides to interview the candidates one by one in a

random fashion. Every time he has interviewed a candidate he has to decide

immediately whether to hire her or to reject her and interview the next one.

During the interview process he can only judge the qualities of those candi-

dates he has already interviewed. This means that for every candidate he has

observed, there might be an even better qualified one within the set of candi-

dates yet to be observed. Of course the idea is that by the time only a small

number of candidates remain unobserved, a recently interviewed candidate

that is relatively best will probably also be the overall best candidate.

There is abundant research literature on this classical secretary problem, for

which we refer to Ferguson [2] for an historical note and an extensive bibliogra-

phy. The exact optimal policy is known, and may be derived by various meth-

ods, see for instance Dynkin and Yushkevich [1], and Gilbert and Mosteller [4].

Also, many variations and generalizations of the original problem have been in-

troduced and analysed. One of these generalizations is the focus of our paper,

namely the problem to select one of the b best, where 1 ≤ b ≤ n is some preas-

signed number (notice that b = 1 is the classical secretary problem). Originally,

this problem was introduced by Gusein-Zade [5], who derived the structure of

the optimal policy: there is a sequence 0 ≤ s1 < s2 < · · · < sb ≤ sb+1 = n− 1

of position thresholds such that when candidate i is presented, and judged to

have relative rank k among the first i candidates1, then the optimal decision

says

i ≤ s1 : continue whatever k is;

sj + 1 ≤ i ≤ sj+1 (where j = 1, . . . , b) :





stop if k ≤ j

continue if k > j;

i = n : stop whatever k is.

1It is most convenient to rank the candidates 1, 2, . . . , n, with rank 1 being the best, rank

2 being second best, etc.
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Furthermore, [5] gave an algorithm to compute these thresholds, and derived

asymptotic expressions (as n →∞) for the b = 2 case. Also Frank and Samuels

[3] proposed an algorithm, and gave the limiting (as n →∞) probabilities and

limiting proportional thresholds sj/n.

The algorithms of [3, 5] are based on dynamic programming, which means that

the optimal thresholds sj, and the optimal winning probability are determined

numerically. The next interest was to find analytic expressions. To our best

knowledge, this has been resolved only for b = 2 by Gilbert and Mosteller [4],

and for b = 3 by Quine and Law [6]. Although the latter claim that their

approach is applicable to produce exact results for any b, it is clear that the

expressions become rather untractable for larger b. This has inspired us to

develop approximate results for larger b.

We consider two approximate policies for the general b case: single-level poli-

cies, and double-level policies. A single-level policy is given by a single position

threshold s in conjuction with a rank level r, such that when candidate i is

presented, and judged to have relative rank k among the first i candidates,

then the policy says

i ≤ s : continue whatever k is;

s + 1 ≤ i ≤ n− 1 :





stop if k ≤ r

continue if k > r;

i = n : stop whatever k is.

A double-level policy is given by two position thresholds s1 < s2 in conjuction

with two rank levels r1 < r2, such that when candidate i is presented, and

judged to have relative rank k among the first i candidates, then the policy
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says

i ≤ s1 : continue whatever k is;

s1 + 1 ≤ i ≤ s2 :





stop if k ≤ r1

continue if k > r1;

s2 + 1 ≤ i ≤ n− 1 :





stop if k ≤ r2

continue if k > r2;

i = n : stop whatever k is.

We shall derive the exact winning probability for these two approximate poli-

cies, when the threshold and level parameters are given. These expressions can

then used easily to compute the optimal single-level and the optimal double-

level policies, i.e., we optimize the winning probabilities (under these level

policies) with respect to their threshold and level parameters. The most im-

portant result is that the winning probabilities of the optimal double-level

policies are extremely close to the winning probabilities of the optimal poli-

cies (with the b thresholds), specifically for larger b. In other words, we have

found explicit formulas that approximate closely the winning probabilities for

this generalized secretary problem. As an example, we present in Table 1 the

relative errors in percentages for a few n, b combinations (a more extended

table can be found in Section 4). Our second contribution is the derivation of

Table 1: Relative errors (%) of the optimal double-level policies.

n = 100 n = 250 n = 1000
b = 10 1.702 1.841 1.911
b = 25 0.036 0.066 0.084

asymptotic results for our level policies as n → ∞. This means both for the

(optimal) winning probabilities, and the (optimal) fractional thresholds sj/n.

The paper is organized as follows. Section 2 contains the derivation of the exact

winning probability of the single-level policy, and the associated asymptotic

results; Section 3 deals with the two-level policies. Finally, in Section 4 we

demonstrate how accurate the approximate policies are performing.
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2 Single-level policies

Before we consider the single-level polcies we first introduce some notation we

use throughout this paper. The absolute rank of the i-th object is denoted by

Xi, while the relative rank of the i-th object is denoted by Yi. Ranks run from

1 to n, and we say that rank i is higher than rank j when i < j. Moreover

for natural numbers x and n, the falling factorial x(x − 1) . . . (x − n + 1) is

denoted by (x)n. Note that (x)n is the number of n-permutations of a set

containing x elements which is also the number of different injective functions

from {1, 2, . . . , n} to {1, 2, . . . , x}. It is easily seen that (x)n = n!
(

x
n

)
and thus

we have
(x)n

(y)n

=

(
x
n

)
(

y
n

) . (1)

2.1 Winning probability for single-level policies

In this variant of the well-known secretary problem the objective is to pick one

of the b best objects from n objects consecutively arriving one by one in the

usual random fashion known from the classical problem. In this subsection we

consider the performance of the class of so-called single-level policies which is

determined by two integer parameters s (called the position threshold) and r

(called the rank level). Following such a single-level policy objects are con-

sidered to be selected from position s + 1 and then the first one encountered

with a relative rank higher or equal than r is picked. Moreover, we assume

that if the first n−1 items are not picked that then the last object is certainly

picked independent of its relative rank Yn. Let π = π(s, r) be such a policy

with 0 ≤ s ≤ n − 1 and 1 ≤ r ≤ b. To analyze the performance of this class

of policies an explicit expression for the probability PSLP(π) of success when

applying the single-level policy π = π(s, r) will be obtained. Thus PSLP(π)

is the probability that an object is picked with absolute rank higher than or

equal to b if policy π is applied. Note: when we wish to express explicitly

parameters (n, b, s, r) we denote it, otherwise we omit it.

Theorem 1. For r = 1, 2, . . . , b we have that PSLP(π(s, r)) = b
n

if 0 ≤ s ≤ r−1
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or s = n− 1, and otherwise

PSLP(π(s, r)) =
n−1∑

i=s+1

(s)r

(i− 1)r

(
r

n
+

1

n

b∑
j=r+1

r∑

k=1

(
j−1
k−1

)(
n−j
i−k

)
(

n−1
i−1

)
)

+
(s)r

(n− 1)r

b

n
.

(2)

Before proving this expression we need two auxiliary results.

Lemma 2. For s = 0, 1, . . . , n− 2 and i = s + 2, s + 3, . . . , n we have that

P(min{Ys+1, Ys+2, . . . , Yi−1} > r) =





0 if s < r

(s)r

(i−1)r
if s ≥ r.

Proof. Let A be the event min{Ys+1, Ys+2, . . . , Yi−1} > r. If s < r then Ys+1 ≤
r and thus P(A) = 0. For s ≥ r, i = s + 2, . . . , n− 1 we have that P(A) is the

probability that the rankings 1, 2, . . . , r are contained in the first s positions of

a random permutation of the numbers 1, 2, . . . , i−1. Thus P(A) is the number

of distinct injective functions from {1, 2, . . . , r} to {1, 2, . . . , s} divided by the

number of distinct injective functions from {1, 2, . . . , r} to {1, 2, . . . , i − 1}.
Hence P(A) = (s)r

(i−1)r
.

Lemma 3. For i = s + 1, s + 2, . . . , n− 1 and r = 1, 2, . . . , b we have that

P(Yi ≤ r|Xi = j) =





1 for j = 1, 2, . . . , r
∑r

k=1

(j−1
k−1)(

n−j
i−k)

(n−1
i−1)

for j = r + 1, r + 2, . . . , b.

Proof. We have that Yi ≤ Xi and thus P(Yi ≤ r|Xi = j) = 1 if j ≤ r. Suppose

that j ∈ {r+1, r+2, . . . , b}. If Xi = j then Yi = k for k ∈ {1, 2, . . . , r} if k−1

objects from the j− 1 objects with absolute ranking smaller than j are among

the first i − 1 objects. Thus P(Yi = k|Xi = j) = P(H = k − 1) where H is

a hypergeometrically distributed random variable with population size n− 1,

sample size i− 1 and j − 1 successes in the population. Hence

P(Yi ≤ r|Xi = j) =
r∑

k=1

P(H = k − 1) =
r∑

k=1

(
j−1
k−1

)(
n−j
i−k

)
(

n−1
i−1

) .

6



Proof. (Of Theorem 1.) The case s = n− 1 is trivial because then PSLP(π(n−
1, r)) = P(Xn ≤ b) = b

n
.

The cases s = 0, . . . , r − 1 are also trivial because then for sure Ys+1 ≤ r,

and thus PSLP(π(s, r)) = P(Xs+1 ≤ b) = b
n
.

Now consider the ‘general’ case. For i = s+1, s+2, . . . , n and j = 1, 2, . . . , b

let Ai
j be the event that Xi = j and policy π(s, r) picks the object at position

i:

Ai
j = {min{Ys+1, Ys+2, . . . , Yi−1} > r, Yi ≤ r,Xi = j}.

Thus,

PSLP(π(s, r)) =
n∑

i=s+1

b∑
j=1

P(Ai
j)

=
b∑

j=1

P(As+1
j ) +

n−1∑
i=s+2

b∑
j=1

P(Ai
j) +

b∑
j=1

P(An
j ).

Cases i = s + 1 and i = n are treated seperately. Notice that for k < i the

relative ranks Yk are independent of both Xi and Yi, thus (for s+2 ≤ i ≤ n−1)

P(Ai
j) = P(min{Ys+1, Ys+2, . . . , Yi−1} > r, Yi ≤ r,Xi = j)

= P(min{Ys+1, Ys+2, . . . , Yi−1} > r)P(Yi ≤ r,Xi = j)

= P(min{Ys+1, Ys+2, . . . , Yi−1} > r)P(Yi ≤ r|Xi = j)P(Xi = j),

with P(Xi = j) = 1
n
, and the other two factors were determined in Lemma 2

and Lemma 3. For i = s + 1:

P(As+1
j ) = P(Xs+1 = j, Ys+1 ≤ r) = P(Ys+1 ≤ r|Xs+1 = j)P(Xs+1 = j),

and then apply Lemma 3 while noticing that (s)r/(i− 1)r = 1. For i = n:

P(An
j ) = P(min{Ys+1, Ys+2, . . . , Yn−1} > r,Xn = j)

= P(min{Ys+1, Ys+2, . . . , Yn−1} > r)P(Xn = j),

and apply Lemma 2.

We defer the comparison of the performance of single-level policies with

the optimal policy to Section 4.
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2.2 Asymptotic results for single-level policies

For any n ∈ N the probability of successfully applying a single-level policy

π(s, r) is given by (2). Moreover, by enumeration, marginal analysis, and/or

dynamic programming the values of s and r maximizing PSLP(π(s, r)) may be

obtained (see Section 4), but in general the computation time increases if n

gets larger. However, in the limit n →∞ the expression given by (2) may be

simplified. In this section we will find asymptotic results on the performance

of an important family of single-level policies for n → ∞. To obtain these

asymptotic results we restrict to the family of single-level policies for which

there exists some n0 ∈ N , r0 ∈ {1, 2, . . . , b} and 0 < α < 1 such that r = r0 for

all n ≥ n0 and limn→∞ s
n

= α. In other words we assume that the rank level

r is fixed for large n while the position threshold s ≈ αn. This is motivated

by numerical evidence from dynamic programming that optimal single-level

policies have these asymptotical properties. Under this assumption the optimal

values of r0 and α should depend (only) on b. The idea is that by obtaining

an asymptotic simplification of (2) for all positive integers b the corresponding

asymptotical optimal values for r0 and α could be obtained analytically.

Theorem 4. Fix r ∈ {1, . . . , b}, and let s = αn + o(n) (as n →∞), then

lim
n→∞

P
(n)
SLP(π(s, r)) = αr

∫ 1

α

1

xr

(
r +

b∑
j=r+1

r∑

k=1

(
j − 1

k − 1

)
xk−1(1− x)j−k

)
dx.

(3)

Proof. Consider the hypergeometric probability
(

j−1
k−1

)(
n−j
i−k

)
/
(

n−1
i−1

)
in the ex-

pression of the winning probability (2) (see also Lemma 3). Swapping the

parameters of sample size and the number of successes, we know that this

probability is equal to
(

i−1
k−1

)(
n−i
j−k

)
/
(

n−1
j−1

)
. This is interpreted as the probability

of finding k − 1 successes in a sample of size j − 1 when this sample is drawn

without replacement from a population of size n−1 containing a total number

of i − 1 possible successes. We notice in expression (2) that both population

size n− 1 and the total number of i− 1 successes tend to infinity, proportion-

ally, whereas the sample size j− 1 remains fixed. Hence, we may approximate
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the hypergeometric probability by a binomial probability:

(
i−1
k−1

)(
n−i
j−k

)
(

n−1
j−1

) =

(
j − 1

k − 1

) (
i− 1

n− 1

)k−1 (
n− i

n− 1

)j−k

+ o(1)

=

(
j − 1

k − 1

)
xk−1 (1− x)j−k + o(1),

(4)

where i, n →∞ such that (i−1)/(n−1) → x ∈ (0, 1). Notice that equivalently,

i/n → x.

Next, consider the ratio (s)r/(i− 1)r:

(s)r

(i− 1)r

=
r−1∏

k=0

s− k

i− 1− k
=

r−1∏

k=0

s
n
− k

n
i
n
− 1+k

n

=
r−1∏

k=0

α + o(1)
i
n

+ o(1)
=

(α

x

)r

+ o(1) (n →∞).

(5)

Combining the two asymptotics (4) and (5), it is easily seen that the first

term in the expression of the winning probability (2), i.e., the Σ part, can be

considered as a Riemann sum converging to the integral (3). Finally, the last

term in the expression of the winning probability (2) is clearly less than b/n,

and thus converges to zero as n →∞.

Denote the integrand in expression (3) of the asymptotic winning proba-

bility by f(x). Thus, the expression is

P
(∞)
SLP (π(α, r)) = αr

∫ 1

α

f(x) dx.

The function α ∈ (0, 1) 7→ P
(∞)
SLP (π(α, r)) is unimodal concave, thus making it

easy to find numerically the optimal α by solving the first-order condition using

the bisection procedure. Hence, we can compare empirically the asymptotic

optimal winning probability with (finite) optimal winning probabilities. As an

example, we set b = 5, r = 3. Then we find α∗ = 0.5046 and P
(∞)
SLP (π(α∗, r)) =

0.765697. Figure 1 shows the winning probabilities P
(n)
SLP(π(s∗, r)), where s∗ =

s∗(r) denotes the optimal position threshold given rank level r and the number

of candidates n, obtained by optimizing the P
(n)
SLP(π(s, r)) with respect to s (see

Section 4).
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Convergence of win.prob.

n

Figure 1: Optimal finite and asymptotic winning probabilities for single-level

policies with b = 5, r = 3.

3 Double-level policies

A natural extension of the single-level policies is the class of double-level poli-

cies for the secretary problem where the objective is to pick one of the b best

objects from n objects consecutively arriving one by one in the usual random

fashion. Let be given two rank levels 1 ≤ r1 < r2 ≤ b, and two position thresh-

olds r1 ≤ s1 < s2 ≤ n − 1 (we discard the trivial cases of s2 = n which gives

again a single-level policy, and s1 < r1 which leads to stopping at position

s1 + 1). The double-level policy says to observe the first s1 presented objects

without picking any; next, from objects at positions s1 + 1 up to s2 the first

one encountered with a relative rank higher or equal than r1 is picked; if no

such object appears, the first object at positions s2 + 1 up to n− 1 is selected

which has a relative rank of at least r2; finally, if all these n− 1 items are not

picked, the last object is certainly picked independent of its relative rank Yn.

Slightly abusing, we denote again by π = π(s, r) such a double-level policy and

by PDLP(π) its winning probability.

Theorem 5. The double-level policy given by rank levels 1 ≤ r1 < r2 ≤ b, and
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position thresholds r1 ≤ s1 < s2 ≤ n− 1 has winning probability

PDLP(π(s, r)) =

s2∑
i=s1+1

(s1)r1

(i− 1)r1

(
r1

n
+

1

n

b∑
j=r1+1

r1∑

k=1

(
j−1
k−1

)(
n−j
i−k

)
(

n−1
i−1

)
)

+
n−1∑

i=s2+1

(s1)r1 (s2 − r1)r2−r1

(i− 1)r2

(
r2

n
+

1

n

b∑
j=r2+1

r2∑

k=1

(
j−1
k−1

)(
n−j
i−k

)
(

n−1
i−1

)
)

+
(s1)r1 (s2 − r1)r2−r1

(n− 1)r2

b

n
.

(6)

Proof. Similar to the proof of Theorem 1, once we have established that

P(min{Ys1+1, . . . , Ys2} > r1; min{Ys2+1, . . . , Yi−1} > r2) =
(s1)r1 (s2 − r1)r2−r1

(i− 1)r2

.

This can be proved as follows. Let A be the event of concern, then P(A)

is the probability that the rankings 1, 2, . . . , r1 are contained in the first s1

positions of a random permutation of the numbers 1, 2, . . . , i − 1, and the

rankings r1 + 1, r1 + 2, . . . , r2 are contained in the first s2 positions. However,

any permutation for which 1, 2, . . . , r1 are contained in the first s1 positions,

leaves s2 − r1 positions for rankings r1 + 1, r1 + 2, . . . , r2 in order to become

a ‘feasible’ permutation; the remaining i − 1 − r2 rankings can be positioned

arbitrary. For P(A) we divide the number of feasible permutations by the total

number of permutations:

P(A) =
(s1)r1 (s2 − r1)r2−r1 (i− 1− r2)!

(i− 1)!
=

(s1)r1 (s2 − r1)r2−r1

(i− 1)r2

.

Theorem 6. Fix rank levels 1 ≤ r1 < r2 ≤ b, and let s1 = α1n + o(n) and

s2 = α2n + o(n) (as n →∞), where 0 < α1 < α2 < 1. Then

lim
n→∞

P
(n)
DLP(π(s, r)) = αr1

1

∫ α2

α1

1

xr1

(
r1 +

b∑
j=r1+1

r1∑

k=1

(
j − 1

k − 1

)
xk−1(1− x)j−k

)
dx

+ αr1
1 αr2−r1

2

∫ 1

α2

1

xr2

(
r2 +

b∑
j=r2+1

r2∑

k=1

(
j − 1

k − 1

)
xk−1(1− x)j−k

)
dx.

(7)

Proof. Similar to the proof of Theorem 4.
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Denote the two integrands in expression (7) of the asymptotic winning

probability by f1(x) and f2(x), respectively. Thus, the expression is

P
(∞)
DLP(π(α, r)) = αr1

1

∫ α2

α1

f1(x) dx + αr1
1 αr2−r1

2

∫ 1

α2

f2(x) dx.

The functions α1 ∈ (0, α2) 7→ P
(∞)
DLP(π(α, r)) (keeping α2 fixed), and α2 ∈

(α1, 1) 7→ P
(∞)
DLP(π(α, r)) (keeping α1 fixed) are unimodal concave, thus making

it easy to find numerically the optimal α = (α1, α2) by solving the first-order

conditions using the bisection procedure. Hence, we can compare empiri-

cally the asymptotic optimal winning probability with (finite) optimal win-

ning probabilities. As an example, we set b = 10, r1 = 2, r2 = 6. Then we find

α∗1 = 0.3630, α∗2 = 0.6446 and P
(∞)
DLP(π(α∗, r)) = 0.957643. Figure 2 shows the

winning probabilities P
(n)
DLP(π(s∗, r)), where s∗ = (s∗1(r), s

∗
2(r)) denotes the op-

timal position thresholds given rank levels r = (r1, r2) and the number of can-

didates n, obtained by optimizing the P
(n)
DLP(π(s, r)) with respect to s = (s1, s2)

(see Section 4).

2000 4000 6000 8000 10000

0.9576

0.96

0.963
Convergence of win.prob.

n

Figure 2: Optimal finite and asymptotic winning probabilities for double-level

policies with b = 5, r1 = 2, r2 = 6.
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4 Numerical Results

We can find numerically the optimal single-level policy for a given number of

candidates n, and a given worst allowable rank b, in a two-step approach as:

max
r=1,...,b

max
s=r,...,n−1

PSLP(π(s, r)).

Thus, in the first step, we fix also a rank level r (between 1 and b). The function

{r, . . . , n−1} → PSLP(π(·, r)) is unimodal concave (this follows after a marginal

analysis), and thus we can solve numerically for the optimal position threshold

s∗ = s∗(r), and the associated winning probability PSLP(π(s∗, r)). The second

step is simply a complete enumeration to determine

max{PSLP(π(s∗, r)) : r = 1, . . . b}.

However, it can be shown that the function {1, . . . , b} → PSLP(π(s∗(·), ·)) is

unimodal, which yields a shortcut in the second step. To check our numerical

results, we have constructed an alternative method to find the optimal posi-

tion threshold s∗(r), given n, b, r, namely by dynamic programming (see the

Appendix for the details).

Similarly, in the case of double-level policies, we have constructed a two-step

approach, where the first step finds the optimal position thresholds s∗1 =

s∗1(r1, r2) and s∗2 = s∗2(r1, r2) for any given pair of rank levels (r1, r2), and

its associated winning probability PDLP(π(s∗, r)) (vector notation for s and r).

Then a straightforward search procedure determines

max
r1=1,...,b−1

max
r2=r1+1,...,b

PDLP(π(s∗, r)).

Finally, as mentioned in the introductory section, dynamic programming can

be applied easily to obtain the optimal (multi-level) policy [3, 5].

Table 2 gives the relative errors of the winning probabilities of the optimal

single and double-level policies for n = 100, 250, and n = 1000, and for b =

5, 10, . . . , 25, relatively to the corresponding optimal multi-level policies. The

double-level policy gives extremely small errors for larger b, up to very large

population sizes n. Also we notice that the errors (for a given b) increase
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Table 2: Relative errors (%) of the optimal single- and double-level policies.

single-level double-level
n = 100 n = 250 n = 1000 n = 100 n = 250 n = 1000

b = 5 10.630 10.854 10.965 3.286 3.331 3.354
b = 10 5.262 5.674 5.876 1.702 1.841 1.911
b = 15 2.095 2.467 2.658 0.568 0.686 0.746
b = 20 0.739 0.996 1.131 0.155 0.221 0.258
b = 25 0.239 0.381 0.464 0.036 0.066 0.084

slightly as n increases. Finally, we have computed the optimal asymptotic

winning probabilities of the level policies:

max
r=1,...,b

P
(∞)
SLP (π(α∗, r)),

where α∗ = α∗(r) is the associated proportional rank level given r, obtained by

the procedure elaborated in Section 2. Similarly, for the double-level policies

max
r1=1,...,b−1

max
r2=r1+1,...,b

P
(∞)
DLP(π(α∗, r))

yields the optimal asymptotic winning probabilities. Table 3 summarizes our

computations for a range of b-values. Also we included the asymptotic results of

the optimal (full) policy, given in Frank and Samuels [3] (t1 = limn→∞ s∗1/n for

the optimal position threshold). Again we see how accurate the approximations

of the level policies are. Notice that the α∗ thresholds are not monotone in b,

this is due to the discrete character of the levels r1 and r2.

Table 3: Asymptotics of the optimal multi-level, single- and double-level poli-

cies.

b t1 P (π) r α PSLP(π) r1 r2 α1 α2 PDLP(π)
5 0.3255 0.860347 3 0.5046 0.765697 1 4 0.2996 0.6559 0.831420

10 0.3129 0.976530 4 0.4692 0.918487 2 6 0.3630 0.6446 0.957643
15 0.3068 0.995902 6 0.5152 0.968786 3 9 0.3960 0.6822 0.988265
20 0.3031 0.999271 7 0.4990 0.987504 4 12 0.4164 0.7051 0.996561
25 0.3006 0.999869 9 0.5270 0.994938 5 14 0.4304 0.6965 0.998961
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5 Conclusion

For the considered generalized secretary problem of selecting one of the b best

out of a group of n we have obtained closed expressions for the probability of

success for all possible single- and double-level policies. For any given finite

values of n and b these expressions can be used to obtain the optimal single-level

policy respectively optimal double-level policy in a straightforward manner.

Moreover, asymptotically for n →∞ we have also obtained closed expressions

for the winning probability for relevant families of single-level and double-level

policies. Optimizing this expression for the family of single-level policies an

asymptotic optimal rank level r and corresponding optimal position threshold

fraction α∗ and asymptotic winning probability are easily obtained. Similarly

we have done such asymptotic analysis and optimization for the relevant family

of double-level policies. Both for the single-level and double-level policies we

confirmed numerically for b = 5 that the winning probabilities for optimal

finite and double level policies for finite values of n converge if n increases

to the (respectively single-level and double-level) optimal asymptotic winning

probabilities.

Finally, we computed for varying b and n the optimal single-level and double-

level policies and corresponding winning probabilities and compared the results

to the overall optimal policy which is determined by b position thresholds. We

found that the single-level policies and especially the double-level policies per-

form nearly as well as the overall optimal policy. In particular for a generalized

secretary problem with a larger value of b applying the optimal single-level or

double-level policy could be considered, because implementation of the overall

optimal policy using b different thresholds is unattractive compared to using

only one or two thresholds for implementing the policy. Besides for large b the

gain in performance of the overall optimal policy over the optimal double-level

policy is very small.
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Appendix: Dynamic Programming

The dynamic programming method might be applied to find numerically the

optimal single-, double- and multiple-level (‘full’) policies. Here, we summarize

the algorithm for the single-level policy; it is straightforward how to generalize

the algorithm to the double-level, and the multiple-level cases.

Define the single-level policy with threshold s and level r, denoted π(s, r), by

its actions

i ≤ s : ai(k) = 1 for all k

s + 1 ≤ i ≤ n− 1 : ai(k) =





0, if k ≤ r

1, if k > r;

i = n : an(k) = 0 for all k,

where 1 means to continue, and 0 means to stop and select this candidate. We

restrict to 1 ≤ r ≤ b. Denote by PSLP(π(s, r)) the probability of winning when

π(s, r) is applied. Given level r we determine the optimal threshold s∗(r),

defined by

s∗(r) = arg max
s

PSLP(π(s, r)).

We use dynamic programming to find it. Define for i = 1, . . . , n− 1 the value

fi(1) to be the maximal probability of winning when Yi ≤ r is observed, and
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fi(2) to be the maximal probability of winning when Yi > r. The optimality

equations are:

fn−1(1) = max




P(Xn−1 ≤ b |Yn−1 ≤ r)︸ ︷︷ ︸

a=0

, P(Yn ≤ b) =
b

n︸ ︷︷ ︸
a=1





fn−1(2) =
b

n
;

for i = n− 2, n− 3, . . . , r

fi(1) = max {P(Xi ≤ b |Yi ≤ r)︸ ︷︷ ︸
a=0

, fi(2)︸︷︷︸
a=1

}

fi(2) =
r

i + 1
fi+1(1) +

i + 1− r

i + 1
fi+1(2),

and for i = r − 1, r − 2, . . . , 1 (since then surely Yi ≤ r and Yi+1 ≤ r):

fi(1) = max {P(Xi ≤ b)︸ ︷︷ ︸
a=0

, fi+1(1)︸ ︷︷ ︸
a=1

}

fi(2) = not defined.

One can show that the result of this DP recursion is indeed a SLP by setting

s∗(r) = max{i : a∗i = 1}. Moreover, note that probabilities P(Xi ≤ b |Yi ≤ r)

occuring in the optimality equations can easily be obtained, for example by

applying Lemma 3 and Bayes’ rule.
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