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Forecasting the U.S. Term Structure of Interest Rates

using a Macroeconomic Smooth Dynamic Factor Model

Siem Jan Koopman and Michel van der Wel

Abstract

We extend the class of dynamic factor yield curve models for the inclusion of macro-

economic factors. We benefit from recent developments in the dynamic factor literature

for extracting the common factors from a large panel of macroeconomic series and for

estimating the parameters in the model. We include these factors into a dynamic

factor model for the yield curve, in which we model the salient structure of the yield

curve by imposing smoothness restrictions on the yield factor loadings via cubic spline

functions. We carry out a likelihood-based analysis in which we jointly consider a

factor model for the yield curve, a factor model for the macroeconomic series, and their

dynamic interactions with the latent dynamic factors. We illustrate the methodology

by forecasting the U.S. term structure of interest rates. For this empirical study we

use a monthly time series panel of unsmoothed Fama-Bliss zero yields for treasuries

of different maturities between 1970 and 2009, which we combine with a macro panel

of 110 series over the same sample period. We show that the relation between the

macroeconomic factors and yield curve data has an intuitive interpretation, and that

there is interdependence between the yield and macroeconomic factors. Finally, we

perform an extensive out-of-sample forecasting study. Our main conclusion is that

macroeconomic variables can lead to more accurate yield curve forecasts.
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1 Introduction

Much interest has been given to the forecasting of interest rates for different maturities,

known as the yield curve or the term structure of interest rates. Initially, forecasting has

been based only on yield curve information. Recent literature has shown the strong relation

between the yield curve and macroeconomic developments; see, for example, Ang and Pi-

azzesi (2003) and Diebold, Rudebusch, and Aruoba (2006). It has given a renewed focus on

using macroeconomic information in forecasting the yield curve; see, for example, Moench

(2008) and Exterkate, Van Dijk, Heij, and Groenen (2010). We construct a dynamic factor

model for a joint likelihood-based analysis of the term structure of interest rates and a large

panel of macroeconomic series. In particular, estimating parameters, extracting the factors

from the joint dynamic factor model and forecasting the term structure of interest rates are

the aims of our analysis.

In our analysis we benefit from contributions to the literature on the general dynamic

factor model, which increasingly plays a major role in econometrics. Early contributions

to this literature can be found in Sargent and Sims (1977), Geweke (1977), Geweke and

Singleton (1981), Engle and Watson (1981), Watson and Engle (1983), Connor and Kora-

jczyk (1993) and Gregory, Head, and Raynauld (1997). Most of these papers consider time

series panels with limited panel dimensions. The increasing availability of high dimensional

data sets has intensified the quest for computationally efficient estimation methods. The

strand of literature headed by Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson

(2002) and Bai (2003) led to a renewed interest in dynamic factor analysis. These methods

are typically applied to high dimensional panels of time series. Exact maximum likelihood

methods such as proposed in Watson and Engle (1983) have traditionally been dismissed

as computationally too intensive for such high dimensional panels. Exceptions are studies

such as Quah and Sargent (1993) and Doz, Giannone, and Reichlin (2010) who consider

moderately sized panels of economic time series in their studies. Jungbacker and Koopman

(2008) however present new results that facilitate application of exact maximum likelihood

methods for very high dimensional panels.

In this paper we employ an econometric likelihood-based framework based on a dy-

namic factor model with smooth factor loadings as considered by Jungbacker, Koopman,

and van der Wel (2010). The smoothness conditions on the loadings are introduced via

spline functions that depend on knot coefficients, see Poirier (1976). The parameters in the

model are estimated via a maximum likelihood procedure that allows for imposing smooth-

ness in the factor structure. There are several motivations to impose smoothness on the

factor loadings in a dynamic factor model. The economic motivation is to establish an inter-

2



pretation for the factors. When the factor loadings are related to particular characteristics

of the corresponding variables in the panel, we can impose this relationship by specifying a

smooth flexible function for the factor loading coefficients. A smooth pattern in a column of

the loading matrix can lead to an interpretable factor that is associated with this column.

In our empirical study for a panel of interest rates, we impose smoothness on the loadings

through a spline function that depends on time to maturity. The common interpretation of

the factors as level, slope and curvature of the yield curve can be established. Also for the

macroeconomic variables we can consider a smooth relationship between the underlying fac-

tors and observations. The econometric motivation of smooth loadings is partly the aim for

a parsimonious model specification where individual loading coefficients are interpolated by

a flexible function that depends on a small number of coefficients. The precision of parame-

ter estimates is generally increased by considering more parsimonious models. Furthermore,

smoothness in factor loadings may also lead to models that are more robust to aberrant

observations. It is also often argued that forecasts based on a model with a small set of

parameters can be expected to be more precise than those based on a less parsimonious

model; see the discussion in Clements and Hendry (1998).

We extract a small number of latent factors from a large panel of macroeconomic series

using the general dynamic factor model. We follow Stock and Watson (2002) who extract

latent factors from a similarly large panel of economic time series to forecast eight macroe-

conomic series. We adopt the Jungbacker and Koopman (2008) likelihood-based framework

to extract the common factors from the macro panel. The macro factors are linked with the

smooth dynamic factors of the yield curve. In this way we obtain a macroeconomic smooth

dynamic factor model that can simultaneously analyse the yields and the panel of macroe-

conomic series. Estimation and forecasting take place as parts of a unified likelihood-based

analysis.

We empirically investigate whether the inclusion of macroeconomic factors in our smooth

dynamic factor model is effective by means of a forecasting study for a panel of U.S. interest

rate series for different times to maturity. Our primary aim is to investigate whether adding

a panel of macroeconomic time series variables can lead to more precise forecasts. The fol-

lowing two alternative model specifications are considered for yield curve forecasting: the

dynamic Nelson-Siegel model and the functional signal plus noise model. The first model

for the term structure is based on the seminal paper of Nelson and Siegel (1987) in which

the yield curve is approximated by a weighted sum of three smooth functions. The form of

these three functions depends on a single parameter. Diebold and Li (2006) use the Nelson-

Siegel framework to develop a two-step procedure for the forecasting of future yields. They

show that forecasts obtained from this procedure are competitive with forecasts obtained
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from other standard prediction methods. Diebold, Rudebusch, and Aruoba (2006) integrate

the two-step approach into a single dynamic factor model by specifying the Nelson-Siegel

weights as an unobserved vector autoregressive process. Koopman, Mallee, and Van der Wel

(2010) consider a generalization of the state space approach by allowing for a time-varying

parameter that governs the shape of the Nelson-Siegel function and by including conditional

heteroskedasticity for the innovations in the model. Due to its popularity amongst prac-

titioners, central bankers and academic researchers, the Nelson-Siegel model serves as our

benchmark term structure model. The dynamic Nelson-Siegel model can also be regarded

as a special case of the dynamic factor model and we compare it with our smooth dynamic

factor model in the empirical study. The second alternative model is recently discussed by

Bowsher and Meeks (2008) and represents the term structure as a cubic spline function that

is observed with measurement noise. The parameters controlling the shape of the spline

are time-varying and modelled as a cointegrated vector autoregressive process with different

numbers of lags. We consider a basic version of this model and compare it with the other

models in our empirical study that focuses both on in-sample and out-of-sample results.

Our empirical study is based on a newly constructed monthly time series panel of un-

smoothed Fama-Bliss zero yields for U.S. treasuries of different maturities between 1970 and

2009. The data set is used to empirically validate the aforementioned models. From the

smooth dynamic factor model we obtain the usual level, slope and curvature factors. The

panel of 110 macroeconomic series provides factor estimates corresponding to the real econ-

omy, price indices, and labor and housing market conditions. Our joint framework yields

latent factors which generally carry a similar interpretation as the individual factor models,

but highlights interactions between the yield and macro factors and shows a large correlation

between the yield series and macro factors. Our main empirical finding is that the macroe-

conomic smooth dynamic factor model produces forecasts that are more accurate than those

for the model without macroeconomic variables, for most maturities and for most forecasting

horizons. When we compare our forecasts with those of the dynamic Nelson-Siegel and the

functional plus signal models, the accuracy of our forecasts are generally higher.

The structure of the paper is as follows. The macroeconomic smooth dynamic factor

model is presented and discussed in section 2. In this section we discuss the methodology

to construct dynamic factor models with and without smooth factor loadings, and how

to incorporate a high-dimensional panel of macroeconomic time series variables. Section

3 presents and discusses the results of our empirical forecasting study for the U.S. term

structure of interest rates with many economic variables. Section 4 concludes and provides

suggestions for future research.
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2 The macroeconomic smooth dynamic factor model

We introduce the macroeconomic smooth dynamic factor model in four steps. First, section

2.1 discusses the general set-up of the dynamic factor model. Section 2.2 discusses the

dynamic factor model with smooth loadings, which is labelled as the smooth dynamic factor

model and was introduced by Jungbacker, Koopman, and van der Wel (2010). Section 2.3

introduces the macroeconomic smooth dynamic factor model which adds macroeconomic

factors from a large panel of macroeconomic factors to the smooth dynamic factor model.

Finally, section 2.4 turns to parameter estimation and signal extraction for our class of

dynamic factor models.

2.1 The dynamic factor model

We consider a time series panel of N variables with the observation at time t given by the

N × 1 vector

yt = (y1t, . . . , yNt)
′, t = 1, . . . , n,

where yit is the observation for the ith variable in the panel, at time t. The vector of all

observations in the panel is denoted by y = (y′1, . . . , y
′

n)
′. The general dynamic factor model

is given by

yt = µy + Λft + εt, εt ∼ NID(0, H), t = 1, . . . , n, (1)

where µy is an N × 1 vector of constants, Λ is the N × r factor loading matrix, ft is an

r-dimensional dynamic stochastic process, εt is the N × 1 disturbance vector and H is the

N × N disturbance variance matrix. The Gaussian disturbance vector series εt is serially

uncorrelated as NID refers to normally and independently distributed. We further assume

that the variance matrix of the observation disturbances H is diagonal. It implies that the

covariance between the variables in yt depends solely on the latent factor ft. The factor ft

is treated as a signal generated from a linear dynamic process and it can be specified as

ft = Uαt, (2)

where the fixed r× p matrix U relates ft with the p-dimensional unobserved state vector αt

which is modelled by the dynamic stochastic process

αt+1 = µα + Tαt +Rηt, ηt ∼ NID(0, Q), t = 1, . . . , n, (3)
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with p × 1 vector of constants µα, p × p transition matrix T and p × q selection matrix R

(consists typically of ones and zeros). The q × 1 disturbance vector ηt has q × q variance

matrix Q and is uncorrelated with εs for all s, t = 1, . . . , n. Although dimensions N , p, q

and r can be chosen freely, here we consider models which typically have r ≤ p, p ≥ q and

N >> r. The vectors µy and µα and the matrices Λ, H , U , T and Q are referred to as

system matrices. The general dynamic factor model (1) – (3) can be regarded as a specific

case of a linear Gaussian state space model. Its statistical treatment is based on the Kalman

filter and maximum likelihood in which the initial state conditions are treated properly; see,

among others, Durbin and Koopman (2001). The typical dynamic specification for ft is

the vector autoregressive process which can be represented in the form of (2)–(3); see, for

example, Box, Jenkins, and Reinsel (1994, Section 14.2). The inclusion of lagged factors in

the observation equation (1) can also be established in this form.

The elements of the system matrices may depend on unknown parameters that need to

be estimated. To ensure identification we need to impose restrictions on the parameters in

the mean vectors µy and µα together with those in Λ, T and Q that govern the covariance

structure of the model (1) – (3). We set µα = 0 and estimate µy as this is the more

general specification. Restrictions on Λ are needed because only its column space can be

identified uniquely. Several restrictions on Λ can be considered. For example, we can impose

the normalizing restriction Λ′Λ = Ir or we can select r rows of Λ and set these equal to

subsequent rows of the r × r identity matrix Ir. When the first r rows are set equal to Ir,

we interpret the elements of ft as being the first three variables in yt subject to observation

noise in εt. Such restrictions for Λ allow us to leave the parameters in T and Q unrestricted.

Alternatively, one can set Q equal to the unity factor and impose r(r−1)/2 restrictions in Λ

(for example, by setting the top right triangle of the matrix to zero). Many other restrictions

can be considered as well.

2.2 The smooth dynamic factor model

The main assumption of the Jungbacker, Koopman, and van der Wel (2010) version of the

smooth dynamic factor model is that the loading coefficients in Λ of the dynamic factor

model (1) are subject to smoothing restrictions. It is assumed that the jth column of Λ

can be represented by a smooth interpolating function. Different smoothness functions can

be considered. Many classes of interpolating functions rely on a selection of knots in the

range of some variable z that is associated with the vector variable yt. Then, the scalar zi

represents a particular characteristic of the ith variable in yt, for i = 1, . . . , N . For example,

zi can be a measure of size, location or maturity associated with variable yit. We can enforce
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the restrictions that the same loading coefficients for variables with zi in a particular range

of values; for example, small, medium and large sizes, when zi represents the size of the ith

variable. Alternatively, we can linearly interpolate the loading coefficient between, say, three

knot values that are placed at the smallest possible z-value (small size), an intermediate z-

value (medium size) and the largest possible z-value (large size). In both case we reduce the

estimation of N coefficients in a column of Λ to a small number of coefficients that equals the

number of groups or the number of knots (in the example, three). For the interpolation of

the loading coefficients in each column of Λ, we adopt the cubic spline function as discussed

by Poirier (1976) and Monahan (2001). The cubic spline function is a third-order polynomial

between the knots and it is twice continuously differentiable at the knots. We assume that

for each column in Λ, a z variable is selected and its values are known or observed for each

ith variable in yt, with i = 1, . . . , N . The z variable can be different for different columns

of Λ. We also assume that the variable xi does not change with time-index t although this

assumption is not necessary for the implementation of our method. The number and location

of knots for the z variable determine the smoothness of the spline function. In our empirical

study of section 3, we have yit as the interest rate of an U.S. bond and zi as the time to

maturity of the bond, for all columns in Λ.

For our smooth loading functions, we consider the cubic spline representation of Poirier

(1976). In our case, it allows expressing the loading coefficients as linear functions of a small

set of knot coefficients. For the jth column of Λ, we assume that a particular z variable

is chosen and that the number of knots is set to kj. The variable zi characterizes the ith

variable in yt. For example, it can be age, distance or size. Different columns of Λ can

adopt a different variable z but it is not necessary. The cubic spline interpolation for the

coefficients in the jth column of Λ is then given by

Λij = w′

ijλ̄j , wij = w(zi, z̄1, . . . , z̄kj ), (4)

where Λij is the (i, j) element of loading matrix Λ in (1), the kj × 1 vector wij contains

the spline weights and the kj × 1 vector of knot coefficients λ̄j are associated with the knot

positions z̄1, . . . , z̄kj . The spline weights in vector wij are determined by the actual value of zi

and the kj knot positions. The spline weight function w() is defined through the restrictions

associated with the cubic spline, being a third-order polynomial and being twice continuously

differentiable at the knots; see Monahan (2001, Chapter 7). When zi = z̄m, the weight vector

wi is typically equal to the mth column of the identity matrix Ikj , for any m = 1, . . . , kj.

The first and last knot positions, z̄1 and z̄kj , represent the minimum and maximum of all
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possible z values, respectively. In vector notation, we can represent the smooth loadings by

Λj = W ′

jλ̄j, (5)

where Λj is the jth column of Λ and kj×N matrix of spline weights Wj = (w1j, . . . , wNj) and

with wij defined as in (4). Instead of estimating the individual coefficients in the jth column

Λj, we estimate the smaller set of coefficients in λ̄j . For each column Λj, we can determine

a different z variable, a different number of knots kj, a different set of knots z̄1, . . . , x̄k and

a different coefficient vector λ̄j.

When a small number of knots kj is chosen, the factor loadings in the jth column of

Λ exhibit a highly smooth pattern. In our approach it is not necessary that all columns Λ

are smooth. When the number of knots is equal to N , we have kj = N and wij reduces to

the ith column of the identity matrix IN such that N × 1 vector λ̄j contains all coefficients

for the jth column of Λ. As a result, no smoothness restrictions are imposed on the factor

loadings in Λj.

2.3 Inclusion of macroeconomic variables

The smooth dynamic factor model (SDFM) can be extended with a, possibly large, panel of

macroeconomic time series variables. We denote the k×1 vector of macroeconomic variables

at time t by xt. The SDFM model with the inclusion of the macro panel is given by

(

xt

yt

)

=

(

µx

µy

)

+

[

Γxx 0

Γyx Λ

](

fx
t

ft

)

+ εt, εt ∼ NID(0, H), t = 1, . . . , n, (6)

where µx is a k × 1 vector of constants, Γxx is the k × rx factor loading matrix, Γyx is the

N×rx factor loading matrix, fx
t is an rx-dimensional stochastic process, εt is the (k+N)×1

disturbance vector and H is an (k+N)×(k+N) variance matrix. The vector µy and matrix

Λ are defined as for the SDFM observation equation (1) in section 2.2 while the factors ft are

uniquely associated with the observed yields. The loading matrix Γxx establishes the link

between the macro series in xt and the macro factors fx
t in the same way as for the general

dynamic factor model of section 2.1. The relation between the macroeconomic factors and

the yields is modelled through the full matrix Γyx. The Gaussian disturbance vector series εt

is serially uncorrelated as NID refers to normally and independently distributed. We further

assume that the variance matrix of the observation disturbances H is diagonal. It implies

that the covariance between the variables in yt depends solely on the latent factor ft. The
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signal equation is given by
(

fx
t

ft

)

=

[

Ux

U

]

αt,

where the fixed rx × p matrix Ux relates the dynamic factor fx
t with the p-dimensional

stochastic state vector αt as specified in (3). The interaction between yt and xt in this

dynamic factor model structure may allow the interpretation of xt as a covariate time series

panel for improving the fit and forecast function for yt.

2.4 Parameter estimation and signal extraction

The dynamic factor model (1) – (3) is a special case of the linear state space model. For

given values of the system matrices, we can use the Kalman filter and related methods to

evaluate minimum mean square linear estimates (MMSLE) of the state vector at time t

given the observation sets {y1, . . . , yt−1} (prediction), {y1, . . . , yt} (filtering) and {y1, . . . , yn}

(smoothing). A detailed treatment of state space methods is given by Durbin and Koopman

(2001). The Kalman filter can also be used to evaluate the loglikelihood function via the

prediction error decomposition. The maximum likelihood estimates of the unknown param-

eters are obtained via the numerical optimization of the loglikelihood function. To generate

the results in this paper we used the BFGS algorithm to perform the optimization; see, for

example, Nocedal and Wright (1999). An alternative approach would be to use the EM

algorithm as developed for state space models by Watson and Engle (1983).

Computationally efficient versions of the Kalman filter have been developed for multi-

variate models; see, for example, Koopman and Durbin (2000). Furthermore, we can achieve

considerable computational savings using the methods of Jungbacker and Koopman (2008).

Their method first maps the set of observations yt into a set of vectors which have the same

dimensions as the latent factors ft in (2). We can then apply the Kalman filter to a typically

lower dimensional “observation” vector. We have implemented this approach in our analysis.

These efficient Kalman filter methods are also used to evaluate the closed form expressions

for the score function given in Koopman and Shephard (1992). Despite of the large number

of parameters involved, this combination of efficient Kalman filter methods and analytical

score computations allows us to estimate parameters in a matter of seconds.

The general estimation methods can also be used for the SDFM. The number of knots

and the knot positions are determined using a sequence of estimation and testing steps.

Whether a knot coefficient should remain in the model can be determined by a Wald test

or a likelihood ratio test procedures; see Jungbacker, Koopman, and van der Wel (2010) for

the details of our parameter estimation procedure for the SDFM.
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3 Empirical results

We have constructed a monthly time series panel of unsmoothed Fama-Bliss zero yields for

U.S. treasuries of different maturities between 1970 and 2009. We combine this panel with

a data set of macroeconomic time series for the same sample period. The details of the

data set are provided in section 3.1. The estimation results for the smooth dynamic factor

model for the yield curve, as discussed in section 2.2, are presented in section 3.2. Section

3.3 presents the estimation results for the dynamic factor model of section 2.1 on the macro

data set. In section 3.4, we discuss the estimation results for our macroeconomic smooth

dynamic factor model of section 2.3. Finally, in section 3.5 we present the results of our

forecasting study.

3.1 Data description

Our empirical study is based on a new data set of U.S. interest rates that is constructed

in similar way as the data used in Diebold and Li (2006), and is also used by Jungbacker,

Koopman, and van der Wel (2010). A panel of monthly time series of zero yields from the

CRSP unsmoothed Fama and Bliss (1987) forward rates is constructed. We refer to Diebold

and Li (2006) for a detailed discussion of the method that is used for the creation of this

data set. The resulting balanced panel data set consists of 17 maturities over the period

from January 1970 up to December 2009, we have N = 17 and n = 480. The maturities

we analyze are 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.

Similar but shorter datasets have been considered by Diebold, Rudebusch, and Aruoba

(2006), Christensen, Diebold, and Rudebusch (2010) and Bowsher and Meeks (2008).

In Panel A of Figure 1 we present a three-dimensional plot of the data set. The data

plot suggests the presence of an underlying factor structure. Although the yield series vary

heavily over time for each of the maturities, a strong common pattern in the 17 series over

time is apparent. For most months, the yield curve is an upward sloping function of time to

maturity. The overall level of the yield curve is mostly downward trending over time in our

sample period. These findings are supported by the time series plots in Panel B of Figure 1.

We also observe that volatility tends to be lower for the yields of bonds with a longer time

to maturity.

Table 1 provides summary statistics for our dataset. For each of the 17 time series we

report mean, standard deviation, minimum, maximum and a selection of autocorrelation

and partial autocorrelation coefficients. The summary statistics confirm that the yield curve

tends to be upward sloping and that volatility is lower for rates on the long end of the yield

curve. In addition, there is a very high persistence in the yields: the first order autocorre-
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Figure 1: Yield Curves from January 1970 through December 2009
In this figure we show the U.S. Treasury yields over the period 1970-2009. We examine
monthly data, constructed using the unsmoothed Fama-Bliss method. The maturities we show are
3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months. Panel A presents a 3-dimensional plot,
Panel B provides time-series plots for selected maturities.

(A) 3-Dimensional Term Structure Plot

Time

Maturity (Months)

Y
ie

ld
 (

P
er

ce
nt

)

1980
1990

2000
2010

25

50

75

100

125

5
10

15

(B) Time-Series for Selected Maturities

3 months 

1970 1980 1990 2000 2010

5

10

15
3 months 12 months 

1970 1980 1990 2000 2010

5

10

15
12 months 

36 months 

1970 1980 1990 2000 2010

5

10

15 36 months 120 months 

1970 1980 1990 2000 2010

5

10

15 120 months 

11



Table 1: Summary Statistics of Yield Curve Data
The table reports summary statistics for U.S. Treasury yields over the period 1970-2009. We examine
monthly data, constructed using the unsmoothed Fama-Bliss method. Maturity is measured in months.
In Panel A we show for each maturity mean, standard deviation (Sd), minimum, maximum and two (1
month and 12 month) autocorrelation (Acf, ρ̂(1) and ρ̂(12) respectively) and two (2 month and 12 month)
partial-autocorrelation (Pacf, α̂(2) and α̂(12)) coefficients. In Panel B we show the correlation matrix for
some selected maturities.

Panel A: Summary Statistics

Acf Pacf

Maturity Mean Sd Min Max ρ̂(1) ρ̂(12) α̂(2) α̂(12)
3 5.77 3.07 0.04 16.02 0.98 0.75 -0.11 -0.06
6 5.97 3.09 0.15 16.48 0.98 0.76 -0.13 -0.11
9 6.08 3.09 0.19 16.39 0.98 0.77 -0.14 -0.12
12 6.17 3.05 0.25 16.10 0.98 0.78 -0.15 -0.13
15 6.25 3.03 0.38 16.06 0.98 0.78 -0.15 -0.13
18 6.32 3.01 0.44 16.22 0.98 0.79 -0.15 -0.14
21 6.39 2.99 0.53 16.17 0.98 0.80 -0.14 -0.15
24 6.42 2.94 0.53 15.81 0.98 0.80 -0.16 -0.14
30 6.51 2.88 0.82 15.43 0.98 0.81 -0.13 -0.13
36 6.60 2.83 0.98 15.54 0.98 0.81 -0.13 -0.11
48 6.76 2.75 1.02 15.60 0.98 0.82 -0.11 -0.12
60 6.85 2.67 1.56 15.13 0.99 0.83 -0.10 -0.12
72 6.96 2.64 1.52 15.11 0.99 0.84 -0.11 -0.12
84 7.03 2.57 2.18 15.02 0.99 0.84 -0.12 -0.11
96 7.07 2.53 2.11 15.05 0.99 0.85 -0.12 -0.12
108 7.10 2.52 2.15 15.11 0.99 0.85 -0.14 -0.14
120 7.07 2.46 2.68 15.19 0.99 0.84 -0.12 -0.13

Panel B: Correlation Matrix
for Selected Maturities

Maturity 3 12 36 60 120
3 1.00 0.99 0.96 0.93 0.90
12 1.00 0.98 0.96 0.93
36 1.00 1.00 0.98
60 1.00 0.99
120 1.00
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lation for all maturities is above 0.97 for each maturity. Even the twelfth autocorrelation

coefficient can be as high as 0.85. The partial autocorrelation function suggests that autore-

gressive processes of limited lag order will fit the data well since only the first coefficient

is significant for most maturities while the second lag coefficients are relatively small. (to

preserve space we display a selection of coefficients). In Panel B of the Table 1 we present

the sample correlations between yields of a selected number of maturities. The correlations

are mostly above 0.9, in accordance with the strong common patterns in the movements of

the different yields that we observe in Figure 1.

Table 2: Overview of Macroeconomic Series
The table lists the sectors in our data set on macroeconomic variables, and the number of available series in
each sector. The data is an updated version of the Stock and Watson (2005) data. We focus on series that
are available over our entire sample period of 1970-2009, and list both the original number of series in Stock
and Watson (2005) (column label SW2005 ) and our study (Update).

Overview of macro series

# Series

Description SW2005 Update
A Real Output and Income 18 18
B Employment and Hours 30 30
C Real Retail, Manufacturing and Trade Sales 2 2
D Consumption 1 1
E Housing Starts and Sales 10 10
F Real Inventories and Inventory-Sales Rations 3 3
G Orders and Unfilled Orders 6 6
H Stock Prices 4 2
I Exchange Rates 5 5
J Interest Rates and Spreads 17 0
K Money and Credit Quantity Aggregates 11 9
L Price Indexes 21 20
M Average Hourly Earnings 3 3
N Miscellanea 1 1

TOTAL 132 110

We complement the yield curve data with a panel of macroeconomic time series. This

macroeconomic panel is originally considered by Stock and Watson (2002). It was then

modified and the time span has been extended by Stock and Watson (2005) and Exterkate,

Van Dijk, Heij, and Groenen (2010), we performed a further extension of the sample period

for our empirical study. The data consists of 132 variables that we have grouped in 14

13



different type of variables, following the Stock and Watson (2002) classification that includes

Real Output, Employment, Consumption, Stock Prices, etc. A complete overview of the 14

different groups of variables and the number of variables in each group are presented in

Table 2. Our balanced macroeconomic panel consists of a high variety of variables that

should provide an accurate indication of the U.S. economic climate over the period from

January 1970 up to December 2009. We have taken out all interest rate related variables

because we want to investigate how macroeconomic information can help to improve yield

curve forecasting. For this reason and due to the unavailability of 5 other series, we have in

total 110 series in our macroeconomic panel which gives k = 110 and n = 480. We transform

all macroeconomic variables following Stock and Watson (2005) to obtain stationary series,

and standardize these series by subtracting the mean and dividing by the sample standard

deviation of each series.

3.2 Estimation of smooth dynamic factors without macro series

The models considered in this study belong to the class of dynamic factor models (1)–(3)

and include a total of three latent yield factors, that is r = 3. Here we follow a growing

number of studies that find three factors adequate for explaining most of the variation in the

cross-section of yields; see, for example, Litterman and Scheinkman (1991), Bliss (1997) and

Diebold and Li (2006). Other studies have recommended more factors; see the discussion in

De Pooter (2007).

Our time series panel of U.S. interest rates for 17 maturities is represented by yt and is

modelled as in (1) with a 17 × 1 vector of constants µy, a full 17 × 3 loading matrix Λ as

specified in (5), a 17×17 diagonal variance matrix H . For the identification of all parameters

in the DFM and to keep the VAR(1) coefficient matrices unrestricted, we restrict the three

rows corresponding to maturities of 1 (first row), 30 (ninth row) and 120 months (last row)

in Λ. In particular, this set of three rows is set equal to

λ1,· = (1, 1, 0), λ9,· = (1,
1

2
, 1), λ17,· = (1, 0, 0). (7)

These restrictions facilitate the interpretation of the factors as level, slope and curvature,

in a similar way, to some extent, as those from the Nelson and Siegel (1987) yield curve.

We have noticed that the estimation results are not qualitatively different when we consider

other sets of restrictions (for example, the rows of the identity matrix I3) since we can rotate

the factors such that another set of restrictions is implied. The dynamic specification for the

three factors in ft are modelled jointly by a vector autoregressive process of lag order 1, the
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VAR(1) model, and is given by

ft+1 = Φft + ηt, ηt ∼ NID(0, Q), t = 1, . . . , n, (8)

which can be expressed as in (3) with µα = 0, T = Φ, U = R = Ir and αt = ft. We denote

this model by VAR(1). In our empirical study, we consider the VAR(1) specification for the

factor process in all model specifications. This choice is the same as in related studies such

as Diebold, Rudebusch, and Aruoba (2006); the exception is Bowsher and Meeks (2008)

where a cointegrated VAR system with multiple lags is considered for the factors.

For the smooth dynamic factor model we take the optimal model that is obtained in

Jungbacker, Koopman, and van der Wel (2010); we estimate the parameters for this model

by the method of maximum likelihood. Based on the likelihood ratio test procedure, our

established model consists of a total of 20 knots in the Λ matrix. The estimated loadings

associated with the first factor are very close to unity and therefore we can interpret the

first factor as the level. The loading estimates for the second factor are smoothly descending

from one to zero for interest rates of ascending maturity. This is the typical Nelson and

Siegel (1987) shape for their second factor which they associate with the slope of the yield

curve. The third Nelson-Siegel factor is designed as the curvature of the yield curve with the

associated loading pattern given by an asymmetric, reverse U-shape. Our loading estimates

for the third factor also admit to this pattern and therefore we can interpret the third factor in

ft as the curvature of the yield curve. In case of the DFM, the loading restrictions in (7) have

facilitated the level-slope-curvature (LSC) interpretation of the three factors. When other

loading restrictions were considered, the estimation results are not different since appropriate

factor rotations can be carried out to obtain the same loadings. Jungbacker, Koopman, and

van der Wel (2010) show favorable performance of the smooth dynamic factor model over

Nelson and Siegel (1987) and Bowsher and Meeks (2008) models. This latter model can be

seen as a restricted version of the smooth dynamic factor model in which the number of

knots is equal to the number of factors and the knot coefficients become the time-varying

factors; see Harvey and Koopman (1993) for a detailed description and an electricity load

forecasting application.

The autoregressive coefficient matrix Φ and the variance matrix Q in (8) are estimated

jointly with µy, Λ and H in (1) by the method of maximum likelihood. The estimates for Φ

are presented in Panel A of Table 3. The leading diagonal of the estimated Φ contains values

close to unity while the off-diagonal elements are all smaller than 0.1 in absolute value. It

indicates that the factors are highly persistent over time.

Next we analyze the factor loadings of the SDFM model together with the estimated
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Table 3: Estimated Transition Matrices
In this table we present the estimated transition matrices for the dynamic factor models for the yield curve,
macroeconomic series, and the dynamic factor model with both yield and macro factors. In Panel A we
report results for the SDFM for the yield curve, in Panel B for the DFM for the macroeconomic series, and
Panel C for the macroeconomic SDFM.

Panel A: Transition Matrix
of SDFM for Yield Curve

f1,t−1 f2,t−1 f3,t−1

f1,t 1.005 0.017 -0.062
f2,t -0.004 0.968 0.206
f3,t 0.013 -0.007 0.819

Panel B: Transition Matrix
of DFM for Macro Series

f1,t−1 f2,t−1 f3,t−1

f1,t 0.157 0.363 -0.098
f2,t 0.209 0.026 -0.019
f3,t -0.167 -0.247 0.954

Panel C: Transition Matrix of Macroeconomic SDFM

f1,t−1 f2,t−1 f3,t−1 f4,t−1 f5,t−1 f6,t−1

f1,t 0.997 0.026 -0.127 -0.004 0.118 0.003
f2,t -0.004 0.962 0.073 0.055 0.049 -0.003
f3,t 0.008 -0.003 0.883 0.009 -0.022 0.000
f4,t 0.022 -0.133 0.094 0.119 0.344 -0.103
f5,t -0.019 -0.071 0.263 0.195 0.016 -0.026
f6,t 0.021 0.176 -0.442 -0.085 -0.216 0.976
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Figure 2: Smooth Dynamic Factor Model for Yield Curve
In this figure we present the latent factors obtained from the Smooth Dynamic Factor Model (SDFM) for
the yield curve. Panel A presents the time series from the 3 obtained latent factors. Panel B shows the
correlation between each of these latent factors and the maturity.

(A) Latent Factors in SDFM for Yield Curve
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factors. The imposed restrictions lead to a factor loading structure that is very similar to the

Nelson and Siegel (1987) loading structure with the level, slope and curvature interpretations

of the factors. The three factor estimates are presented in Panel A of Figure 2. The first

graph is for the level and it shows the general evolution of the interest rates through the

time period 1970 – 2009. The estimated slope factor in the second graph of Panel A is a

relatively smooth time process with characteristics that can be associated with the business

cycle. The curvature factor is more noisy process although it clearly picks up some dynamic

features in the data.

To emphasize the smooth loading structure between the data and the factors, we present

correlation statistics with the interest rates of the 17 different maturities and the three factors

in Panel B of Figure 2. It confirms the interpretation of the factors and the smooth nature

of the (cross-sectional) factor loadings. The level factor is almost equally correlated with

the interest rates for all maturities while the slope factor is increasingly correlated with the

interest rates as the associating maturity is increasing. The third factor has loadings that

typically represent the curvature factor of the Nelson-Siegel yield curve.

3.3 A dynamic factor analysis for the macro series

In Table 2 we have grouped the 110 macroeconomic variables of our time series panel into

14 groups. To provide some insight in the information content of the panel, we have carried

out a dynamic factor analysis for these series. We consider three factors for the 110 variables

and we have estimated the parameters in the model by the method of maximum likelihood.

The resulting estimated factors from the analysis are obtained from the Kalman filter and

smoother. We have presented the three factor estimates in Panel A of Figure 3. The first and

second factors are somewhat noisy indicators while the third factor is much more persistent

and appears to show some business cycle features. For example, the third factor has some

pronounced positive deviations from zero which are clearly associated with recession years in

the U.S. Most pronounced is the positive deviations from 2007 onwards which may represent

the recent financial crisis.

It is of interest to investigate which macroeconomic variables are associated with the

estimated factors. For this purpose, we present the correlations of the estimated factors

with the macroeconomic variables in Panel B of Figure 3. From these graphs we can learn

that the first factor is related to many economic variables but most pronouncedly with the

first groups that particularly represent the real economy. The second factor is also correlated

with the real economy variables but most prominently with price indices. The third factor (or

the recession indicator) is mostly correlated with the variables working hours and housing
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Figure 3: Dynamic Factor Model for Macroeconomic Series
In this figure we present the latent factors obtained from the Dynamic Factor Model (DFM) for the macroe-
conomic series. Panel A presents the time series from the 3 obtained latent factors. Panel B shows the
correlation between each of these latent factors and the maturity.

(A) Latent Factors in DFM for Macroeconomic Series

Factor 1 

1970 1975 1980 1985 1990 1995 2000 2005 2010

−5

0

5 Factor 1 

Factor 2 

1970 1975 1980 1985 1990 1995 2000 2005 2010

−2.5

0.0

2.5

5.0
Factor 2 

Factor 3 

1970 1975 1980 1985 1990 1995 2000 2005 2010

−10

0

10

20
Factor 3 

(B) Correlation between Latent Factors and Individual Macroeconomic Series

Factor 1 

0 10 20 30 40 50 60 70 80 90 100 110

−0.5

0.0

0.5

1.0 A B C
D

E F G H I K L M N
Series category

Factor 1 

Factor 2 

0 10 20 30 40 50 60 70 80 90 100 110

0.0

0.5

Factor 2 

Factor 3 

0 10 20 30 40 50 60 70 80 90 100 110

−0.5

0.0

0.5

Factor 3 

19



starts and sales. These variables are especially indicative of the recession years and the

financial crisis.

The persistence of the first two factors is moderate, but high for the third factor. We

report the estimates of the coefficients in the transition matrix Φ of the dynamic factor model

in Panel B of Table 3. The estimates of the leading diagonal of Φ confirm the persistence

levels of the three factors. The off-diagonal elements of Φ are all smaller than 0.25 in absolute

values except the coefficient for the first factor that appears to rely on the lagged second

factor. These relations may not lead to clear interpretations, they may however improve the

forecast precision.

3.4 A macroeconomic smooth dynamic factor analysis

Next we present the estimation results for our macroeconomic smooth dynamic factor model

as specified by (6) and discussed in section 2.3. The factor loading structures are similar

to the presented results for our separate analyses. The loading matrix Λ is subject to the

Nelson-Siegel smooth cross-sectional structure while the factor loadings for Γxx and Γyx are

not subject to restrictions (other than the identifying restrictions in Γxx) and all elements are

estimated by the method of maximum likelihood together with the other unknown param-

eters. We remain to have three factors in ft for the yield curve (level, slope and curvature)

and three macro factors in fx
t . In total we have six factors which we model by a VAR(1)

process. The estimated coefficients in the 6 × 6 matrix Φ are reported in panel C of Table

3. The estimates of the leading diagonal of Φ are all close to one for ft while those for fx
t

have values between 0.02 and 0.98. The estimated off-diagonal elements of Φ range between

0 and 0.44 in absolute values. Interestingly, the largest (in absolute sense) off-diagonal entry

in Φ is the relation between the 3rd macroeconomic variable and the curvature factor. It

highlights the interaction between the variables. It may also imply that the macroeconomic

variables can be useful for the forecasting of the yield curve.

In panel A of Figure 4 we present the estimated factors. The first three factors represent

the estimated ft and the next three factors are for fx
t . The estimated factors appear overall to

be more persistent than the individual estimates for ft and fx
t . However, the same patterns

are apparent. For example, we can recognize the recession periods in the second and sixth

factor estimates. In particular, the sixth factor appears to be strongly affected by the recent

financial crisis.

To obtain a more detailed insight in the associations of the factors with the yields and

the macroeconomic variables, we compute the correlations for the estimated factors on one

side and the yield and macro variables on the other side. The correlations of the factors
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Figure 4: Macroeconomic Smooth Dynamic Factor Model for Yield Curve
In this figure we present the latent factors obtained from the macroeconomic Smooth Dynamic Factor
Model for the yield data that includes the macroeconomic series. Panel A presents the time series from the
6 obtained latent factors (3 yield factors and 3 macro factors). Panels B and C show the correlation between
each of these latent factors and the yield curve (Panel B) and macro series (Panel C).
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(B) Correlation between Latent Factors and Yield per Maturity
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(C) Correlation between Latent Factors and Individual Macroeconomic Series
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with the yield variables are presented in panel B of Figure 4. These graphs show that the

factors in ft still have the level, slope and curvature interpretation for the yield curve. It is

interesting to observe that the macro factors in fx
t are all associated with either the slope

or curvature of the yield curve. We may interpret the slope of the yield as the spread in

interest rates. The spread is often used as a predictor of economic recessions. This analysis

confirms the strong association of the yield slope with macroeconomic variables. We can also

conclude from panel B of Figure 4 that the interest rates associated with short maturities

do not depend heavily on the macro factors. They appear to have a much stronger impact

on medium maturity interest rates.

The correlations of the factors with the macroeconomic variables are presented in panel

C of Figure 4. These correlations can provide insights into the impact of the factors on

macroeconomic variables. The level yield factor is highly sensitive to employment and hours,

and housing starts and sales. The slope yield factor is also related to these two categories

but also to real inventories and inventory-sales rations and orders and unfilled orders. The

curvature of the yield is mostly correlated with variables in the employment and hours, and

housing starts and sales categories, of which the correlation with housing starts is over 40%.

The fourth factor represents the overall real economy. The money volume variables are

particularly affected by the fifth factor while housing starts and sales are captured by the

sixth factor. In essence all factors remain to keep their interpretation when we compare these

results with the earlier results obtained from our earlier separate dynamic factor analyses.

Next we will investigate the forecasting performances of the different dynamic factor analyses.

3.5 Forecasting results

To investigate the out-of-sample fit performance of our macroeconomic SDFM specification

for our panel time series of U.S. interest rates, we carry out a forecasting exercise. We forecast

the full yield curve (the interest rates for 17 times to maturity) up to 24 months ahead. We

forecast the yield curve for the months from January 1994 up to December 2009. To obtain

the 24 month ahead forecast of the yield curve for January 1994, we estimate the parameters

in the four different models using the observations of the time series panel from January 1970

up to January 1992. The 23 month ahead forecast for January 1994 and the 24 month ahead

forecast for February 1994 are obtained by estimating the parameters in the four different

models based on the data from January 1970 up to February 1992. In this way we compute

the forecasts, and the corresponding forecast errors, for h = 1, 6, 12, 18, 24 months ahead.

We record the forecast errors for each forecast horizon, for each maturity and for each model.

Then we compute the root mean square forecast error (RMSFE) for all these cases. The
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highlights of our results for this extensive forecasting study are reported in Table 4. The re-

estimation of the parameters in the different models is an extensive computational task but

it remains feasible when using the methods discussed in section 2.4. For simplicity, we fix the

number of knots for different sample periods and we also keep the knot positions as obtained

from the knot selection procedure for the smooth dynamic factor models. The selection is

based on the full sample. Alternative strategies where we, for example, yearly repeat the knot

selection procedure have yielded similar forecasting results. In our analysis, we compare the

macroeconomic smooth dynamic factor model to a SDFM without macroeconomic factors,

a DFM for the yield curve without the smoothness restrictions, the Nelson and Siegel (1987)

model casted in state space form, and the functional signal plus noise model of Bowsher and

Meeks (2008).

In Panel A of Table 4 we report the forecasting results for the expanding window by means

of the RMSFEs for the times to maturity 3, 12, 36, 60, 120 months. The forecasts produced

by the macroeconomic SDFM, for the 3-, 12- and 36-month interest rate provide the lowest

RMFSE amongst those obtained by other models considered. For the 5-year interest rate,

and only for the forecasting horizon of 24 months, the unrestricted DFM performs best. For

the 10-year interest rate, the RMSFE for the DFM is sometimes best and at a few other

occasions it is best for the Nelson and Siegel (1987) model. The inclusion of macroeconomic

factors in the smooth dynamic factor model appears to bring us lower RMSFEs for most

interest rates and for most forecast horizons. In Panel B we examine the robustness of

the forecasting improvement. We show the RMSFEs for the periods 1994-1998, 1999-2003

and 2004-2009. In the first two subsamples the lowest RMSFEs are produced mostly by

the SDFM and macroeconomic SDFM, while sometimes it is the Nelson and Siegel (1987)

or DFM that has the best performance. In the last subsample the macroeconomic SDFM

performs remarkably well. We can conclude overall that the incorporation of macroeconomic

variables in the SDFM improves the performance for forecasting the U.S. term structure of

interest rates.
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Table 4: Forecasting Performance of Factor Models without macro series
In these tables we present the forecasting performance of the various models. We report the root mean
square forecast error (RMSFE) for the macroeconomic SDFM, SDFM without macroeconomic variables,
general DFM without smoothness restrictions, Nelson-Siegel in SSF (NS-SSF) and Functional Signal plus
Noise (FSN) models. In Panel A we show results for the 1994-2009 sample, in Panel B for three different
subperiods (1994-1998, 1999-2003 and 2004-2009). For each model the RMSFE is reported for 3 month, 1,
3, 5 and 10 year maturities, and h=1, 6, 12, 18 and 24-month ahead forecasts.

Panel A: Forecasting Performance 1994-2009
3 month 1 year 3 year 5 year 10 year

Macroeconomic SDFM
h=1 0.272 0.263 0.311 0.308 0.302
h=6 0.885 0.958 0.920 0.856 0.689
h=12 1.430 1.490 1.361 1.225 0.966
h=18 1.913 1.932 1.709 1.504 1.128
h=24 2.378 2.343 2.023 1.768 1.327

SDFM
h=1 0.316 0.275 0.322 0.316 0.302
h=6 0.969 1.021 0.971 0.881 0.681
h=12 1.639 1.652 1.454 1.272 0.957
h=18 2.127 2.105 1.804 1.557 1.143
h=24 2.477 2.444 2.087 1.803 1.339

DFM
h=1 0.328 0.273 0.320 0.315 0.300
h=6 0.959 1.008 0.958 0.871 0.679

h=12 1.614 1.626 1.426 1.246 0.943

h=18 2.094 2.067 1.759 1.512 1.110

h=24 2.435 2.397 2.028 1.741 1.288

NS-SSF
h=1 0.347 0.271 0.321 0.319 0.293

h=6 0.998 1.004 0.965 0.878 0.696
h=12 1.671 1.622 1.440 1.259 0.981
h=18 2.166 2.064 1.781 1.532 1.169
h=24 2.526 2.400 2.061 1.772 1.367

FSN
h=1 0.379 0.265 0.316 0.310 0.295
h=6 0.969 0.989 0.953 0.886 0.721
h=12 1.665 1.614 1.437 1.281 1.010
h=18 2.183 2.073 1.803 1.581 1.205
h=24 2.553 2.414 2.091 1.827 1.393

26



Panel B: Forecasting Performance for Subperiods
Forecasting Performance 1994-1998 Forecasting Performance 1999-2003 Forecasting Performance 2004-2009

3 month 1 year 3 year 5 year 10 year 3 month 1 year 3 year 5 year 10 year 3 month 1 year 3 year 5 year 10 year
Macroeconomic SDFM
h=1 0.170 0.248 0.280 0.296 0.308 0.267 0.286 0.349 0.339 0.296 0.337 0.256 0.300 0.291 0.303
h=6 0.391 0.649 0.754 0.779 0.748 1.066 1.193 1.094 0.959 0.679 1.007 0.954 0.886 0.824 0.644
h=12 0.664 0.914 1.033 1.064 1.023 1.921 2.052 1.734 1.463 1.022 1.418 1.310 1.244 1.129 0.863
h=18 0.985 1.084 1.110 1.132 1.053 2.541 2.632 2.154 1.789 1.248 1.890 1.789 1.702 1.514 1.083

h=24 1.405 1.303 1.149 1.145 0.998 2.833 2.899 2.373 1.986 1.442 2.597 2.493 2.263 1.990 1.462

SDFM
h=1 0.151 0.252 0.278 0.292 0.307 0.281 0.303 0.354 0.345 0.298 0.425 0.268 0.328 0.309 0.302
h=6 0.488 0.714 0.781 0.800 0.761 1.133 1.239 1.104 0.965 0.682 1.112 1.038 0.995 0.872 0.604

h=12 0.777 0.946 1.018 1.049 1.001 1.970 2.062 1.706 1.436 1.004 1.850 1.729 1.533 1.297 0.876

h=18 0.896 0.981 1.033 1.076 1.015 2.548 2.611 2.121 1.768 1.250 2.447 2.308 2.010 1.701 1.150
h=24 1.020 1.046 1.043 1.085 0.992 2.952 3.015 2.484 2.098 1.558 2.870 2.728 2.360 2.005 1.393

DFM
h=1 0.154 0.252 0.279 0.294 0.303 0.305 0.299 0.350 0.343 0.297 0.435 0.267 0.326 0.309 0.300

h=6 0.477 0.715 0.784 0.801 0.770 1.118 1.214 1.083 0.950 0.674 1.105 1.027 0.978 0.858 0.596
h=12 0.755 0.941 1.015 1.039 1.007 1.931 2.019 1.666 1.403 0.980 1.834 1.708 1.499 1.264 0.852
h=18 0.850 0.951 1.003 1.039 1.007 2.493 2.550 2.060 1.711 1.200 2.431 2.286 1.969 1.660 1.114
h=24 0.942 0.975 0.968 1.004 0.952 2.877 2.935 2.402 2.021 1.486 2.860 2.712 2.320 1.960 1.352

NS-SSF
h=1 0.185 0.244 0.279 0.289 0.275 0.289 0.301 0.354 0.353 0.309 0.472 0.266 0.325 0.313 0.293
h=6 0.559 0.710 0.787 0.799 0.767 1.150 1.217 1.098 0.964 0.717 1.138 1.017 0.980 0.866 0.610
h=12 0.843 0.940 1.021 1.042 1.018 2.004 2.027 1.697 1.428 1.054 1.872 1.689 1.503 1.274 0.882
h=18 0.966 0.968 1.028 1.059 1.049 2.595 2.565 2.105 1.749 1.299 2.474 2.259 1.971 1.665 1.149
h=24 1.127 1.042 1.046 1.069 1.055 3.004 2.958 2.461 2.071 1.600 2.905 2.676 2.317 1.960 1.387

FSN
h=1 0.467 0.266 0.289 0.305 0.284 0.319 0.287 0.334 0.334 0.299 0.341 0.245 0.323 0.294 0.300
h=6 0.730 0.782 0.867 0.903 0.844 1.094 1.169 1.034 0.932 0.688 1.031 0.978 0.952 0.830 0.632
h=12 1.004 1.031 1.133 1.189 1.123 2.026 2.017 1.670 1.432 1.031 1.769 1.633 1.454 1.219 0.886
h=18 1.157 1.083 1.159 1.232 1.168 2.655 2.593 2.134 1.809 1.310 2.393 2.209 1.937 1.636 1.143
h=24 1.325 1.173 1.195 1.256 1.172 3.058 2.980 2.490 2.128 1.610 2.852 2.644 2.302 1.953 1.368
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4 Conclusion

We have developed a maximum likelihood procedure for incorporating many macroeconomic

variables into a yield curve model with the aim of producing more precise forecasts. Our

model falls within the class of dynamic factor models and we have used all recent innovations

for its analysis. We have adopted cubic spline functions to introduce smoothness in factor

loadings. The resulting model is referred to as the smooth dynamic factor model. From a

large panel of macroeconomic series we extracted a smaller number of macroeconomic latent

factors. We add these factors to our smooth dynamic factor model and obtain the macroe-

conomic smooth dynamic factor model. We embed the analysis within a likelihood-based

framework and estimate the yield factors, macro factors and factor dynamics simultaneously.

For a newly updated time series panel of unsmoothed Fama-Bliss zero yields for U.S.

treasuries, we show that adding macroeconomic information is useful for forecasting the

yield curve. The estimated factor dynamics highlight interactions between the yield and

macro factors. The macro factors capture information about the real economy, price indices,

and labor and housing market conditions. In a comprehensive forecasting analysis, we have

showed that the incorporation of macro information can lead to a lower root mean square

forecast error when compared to existing yield curve models.
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