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Abstract 
 

Reductions in transport costs resulting from infrastructure improvements generate benefits that can be 
measured as surplus changes either at an economy-wide scale (social welfare changes) or, as is common 
practice in cost-benefit analysis (CBA), at a transport market level as transport users’ surplus changes. In 
this paper we look at an economy with spatially separated markets embedded in a transport network (a 
spatial price equilibrium model) to study the equivalence between these two benefit measures. Three 
different product market competition arrangements are considered. A similar question and strategy is 
presented in Jara-Díaz (1986) employing a two-node network and extreme competition assumptions on 
the production side: perfect competition and monopolistic production with arbitrage. We extend his work 
by additionally considering perfect collusion (monopoly without resale) and Cournot-Nash oligopoly 
under flow-dependent transport costs (i.e. congestion in transport). Numerical simulations in a three-node 
network with and without transshipment nodes, illustrate our main results. 
 
Keywords: Cost-benefit analysis; Indirect benefits. 
 
 

1. Introduction 
 
In recent years a renewed interest has emerged on the effects arising outside the 

transport market when transport infrastructures are improved (SACTRA, 1999). The 
interest on this issue in economics can be traced back to Tinbergen (1956) where, for a 
three-region economy under monopolistic production, a comparison is made between 
transport users’ cost savings and economy-wide effects (e.g. aggregate production 
changes) after a reduction in the cost of transportation for a pair of regions. In a related 
vein of research Jara-Díaz and Friesz (1982) employed a spatial price equilibrium (SPE) 
model to study the equivalence between the economy-wide changes in trade surplus and 
the transport users’ benefits for a two-region economy under perfect competition in 
production. Their paper initiated the use of SPE models to investigate the properties of 
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an implicitly derived transport demand.1 Jara-Díaz (1986) returned to this topic 
considering perfect competition and monopolistic production, the latter with the 
possibility of resale (i.e. arbitrage), within a two-node one-link transport network.  

In this paper we further develop the analysis in Jara-Díaz (1986) and Jara-Díaz and 
Friesz (1982), (hereafter referred as JD and JD-F, respectively) considering different 
competition arrangements in production and more complex transport networks. In JD-F 
the equivalence between users’ benefits measured on a derived transport demand and 
those benefits measured as economic (trade) surplus is analyzed under perfect 
competition. Their network equilibrium model comprises a two-region economy within 
a two-links (transport modes or routes) network, given that their main interest is on 
mode interaction when a uni-modal improvement is in place. This comparison is dubbed 
the surplus equivalence problem in JD, where more analytical detail is provided using 
an SPE model with two regions embedded in a single link network, under both perfect 
competition and monopolistic production with resale.2 We will be employing similar 
SPE models with elastic derived transport demands and in addition to the perfect 
competition case will consider imperfect competition in the form of monopoly over all 
production sites without arbitrage (i.e. perfect collusion) and Cournot-Nash oligopoly.  

Our work differs from JD-F in that we allow only for one link per pair of nodes, but 
we are still able to discuss route choice for the three node case network. Additionally, in 
contrast with JD, we study the case of more than two nodes relying on numerical 
simulations. A network increasing in complexity is considered aiming at disentangling 
the effects of alternative assumptions on both the type of competition in the product 
market and the shape of the transport network. Finally, our approach for addressing 
economy-wide welfare differs from both JD-F and JD, as we look at the entire 
magnitude of social welfare and not only at the surplus from trade. 

The network equilibrium models employed in this paper correspond to a partial 
equilibrium concept and are especially suited for situations were price and output 
changes in the transportation sector do not significantly affect capital and labor markets. 
Income effects, intermediate goods and inventory issues are also ruled out. 3 Moreover, 
the focus here is on steady-state network equilibrium models featuring interregional 
one-commodity trade, as opposed to network models emphasizing passenger flows 
(Beckman et al 1956) or those investigating freight transportation in a dynamic context 
(Friesz et al. 2001).4 Additionally, we allow for more than two nodes and the existence 
of transshipment nodes, in the simulation exercise, in order to be able to discuss the 
interaction of congestion effects, Wardrop equilibria and the possible presence of 
Braess’s paradox type of phenomena. 

The rest of the paper consists of three main sections. Firstly, in the next section a 
review of what has been discussed in the literature up to now is presented and put it in 
the perspective of our approach. The discussion in this section is conducted mainly 
through graphical analysis. Additionally to the usual spatial perfect competition case, 
                                                 
1 See also Galvez and Jara-Díaz (1975). This related literature is summarized in Freisz (1985). 
2 The conditions characterizing equilibrium for the monopolistic production case in JD are quite different 
from those used here, but also from the literature on SPE under imperfect competition (see Harker, 1986). 
As will be discussed later in the paper, Jara-Díaz (1986) assumes a spatial monopoly with arbitrage, as 
defined in Takayama and Judge (1971). 
3 Waquil and Cox (1995) consider intermediate production within SPE models.  
4 The generalization to multi-commodity economies is made possible through a multi-copy network 
formulation which in the case of non-separable functions implies no loss of generality when using a 
single-commodity formulation (Freisz et al. 1998).  
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both the spatial monopoly without resale and Cournot-Nash oligopoly cases are 
discussed in detail. In section three we use numerical simulations to evaluate the surplus 
equivalence in a three region economy embedded in two different transport networks. 
Finally, the last section concludes and discusses future work. 

 
 

2. Surplus change equivalence in a two-region economy  
 
In this section a graphical exposition is employed to review what has been already 

pointed out in JD-F with respect to benefits measures comparison using a SPE model 
under perfect competition. More important, based on this review we extend their 
analysis to the cases of perfect collusion without resale across regions and to Cournot-
Nash oligopoly. A two-region economy is assumed and transport costs are taken 
initially as a constant (i.e. independent of the flows). 5 Before going to the main issue in 
this section, more detail on the surplus change equivalence problem will be given. In 
particular, we discuss how users’ benefits in the transport market itself are usually 
measured, both for the case with and without congestion effects. 6 Additionally, we 
discuss the composition of total welfare in a SPE model. 

 
 

Surplus change equivalence  
 
The main concern in this paper is the comparison between users’ benefits arising in 

the transport market itself as a change in transport consumers’ surplus (TCS), with those 
benefits arising at an aggregate level as changes in total social welfare. This research 
question can be said to start formally with Tinbergen (1957). After this work, as far as 
we know, no further contributions were seemed to be cast in a similar or related manner 
until Kanemoto and Mera (1982), which explicitly recognized his work in the context of 
a first-best general equilibrium economy subject to non-marginal transport cost 
reductions. JD-F and JD adopted a related approach and the latter called the comparison 
the surplus equivalence problem. As analyzed in JD, the comparison is between the 
“trade” surplus at an economy-wide scale and the TCS, from an equilibrium without 
trade to one with positive trade.7 This is in contrast with the previous and more recent 
literature on this issue where the comparison is usually reported as the ratio of the 
economy-wide welfare change over the transport market measure when both the initial 
and final equilibriums are characterized by positive trade flows. Under the assumptions 
taken in JD-F (i.e. perfect competition in production) there is no difference between 
both approaches but when the consequences of intermediate competition arrangements 
are to be analyzed the correct comparison corresponds to the last interpretation. In this 
respect, our work departs from JD but employs the second interpretation; consequently 
we refer to the surplus change equivalence, instead of the (trade) surplus equivalence, 
and compute the economy-wide welfare considering both the traded and non-traded 
                                                 
5 At the end of the section the extension to transport cost depending on the flows is discussed briefly.  
6 This discussion is referred later in the paper when the numerical simulations are presented. 
7 As discussed in Jara-Díaz and Freisz (1982) the equivalence holds as well for a comparison between two 
equilibriums with positive trade. In this case the change in surpluses also holds, but in their paper the 
economy-wide surplus still refers only to the trade surplus. 
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quantities. The common practice for this second approach is to report results as a ratio 
of economy-wide benefits to the change in TCS. The benchmark for this ratio is a level 
of one when distortions exist neither in the transport market nor in the rest of the 
economy.  

The main components of the surplus change equivalence are two users’ benefit 
measures. One is for the entire economy and can take as many possibilities as there are 
available according to welfare economics, but in general will be restricted by the 
background economic equilibrium trade model employed. For instance, in Meléndez-
Hidalgo et. al (2003) both the equivalent and compensated variations are used to 
compute total welfare changes and in Kanemoto and Mera (1982) more sophisticated 
total welfare measures are proposed. In both of these papers a general equilibrium 
approach is employed to model trade across space complicating the issue of measuring 
total welfare. In a partial equilibrium framework, as is the case in this paper, total 
welfare or the social welfare (SW) function is simply composed of net surplus to 
consumers plus producers’ profits (including transportation costs). Only if there are 
available instruments for the government to influence the allocation of resources, the 
government surplus would be added to this two. 8  

The second component of the surplus change equivalence problem is a measure of 
direct benefits based on a derived demand for these services and captured in the change 
in TCS. As for the previous welfare measure, the TCS change can be computed based in 
as many ways available within welfare economics with respect to consumers’ benefits. 
These options are again restricted by the chosen economic model. For the case of SPE 
models, due to the unknown functional form of the transport services demand and the 
absence of income effects, there are only two possible ways of measuring the TCS. One 
may compute it as the integral over an implicit expression for the derived demand or as 
an approximation using the rule of a half. 9 

In Figures 1 and 2 we show as shaded areas the users’ benefits arising in the transport 
market as a result of a decrease in the equilibrium transport cost. These benefits are 
measured on a (inverse) derived transport demand, Dt(·), which in the case of a two-
region SPE model corresponds, as it will be shown later, to the amount of production 
(consumption) in the exporting (importing) region that is traded due to a positive gap in 
the willingness to pay between the importing and exporting regions -at a given transport 
cost level. 

 
 

                                                 
8 In Cremer et al (2003), a related paper, the social planner welfare function or SW is decomposed into 
the sum of consumers’ (net) surplus, the transport network operator income (or merchandizing surplus) 
and the producer surplus (excluding transport costs). This is equivalent to the approach followed here but 
since we are not considering social planner decisions we prefer to exclude the distinction they made.  
9 If it is the case that the “derived transport demand” curve moves from an initial equilibrium to the final 
one, after an infrastructure improvement, then the consumer’s surplus might be path dependent if certain 
conditions do not hold (Jara-Díaz and Friesz (1982)). In this case we employ a linear path from the initial 
to the final equilibrium, which is the same as assuming that the final effect is the sum of marginal 
consecutive effects from changes in the direction assumed. 
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Figure 1: Users’ Benefits in the Transport           Figure 2: Users’ Benefits in the Transport               

Market without congestion charging.           Market with congestion charging. 
 
A reduction in the transport cost from t to t' is shown in both Figures. The traditional 

Marshallian consumers’ surplus variation gives the users’ benefits as the change in 
TCS: 

 
 

 
 
These benefits result both from cost savings in transporting the previous level of trade 

but also from increased trade induced by the decrease in the transport cost. This latter 
component has been interpreted previously in the literature as the average of the 
maximum and minimum possible benefits for the induced trade when the rule of a half 
is applied to approximate the users’ benefits (Neuberger (1971)).10 

The case of no congestion charging is shown in Fig.1. As discussed in Mohring 
(1976), among others, the benefits are measured with respect to the marginal private 
costs (MPC) of transportation when this is a function of the flow.11 In this case the 
transport benefits measured as a change in TCS will include a transport market welfare 
loss associated with the congestion externality.12 In Fig.2 the case of congestion 
charging is shown. To the traditional rule of a half components (the triangle and the 
horizontal rectangle in light-colour) has to be added the vertical rectangle representing 
the net increase in congestion charging revenue resulting from the exogenous decrease 
in transport costs.  

                                                 
10 A first difference arises here with respect to JD-F as they consider modal choice leading to a linear 
(Hoteling type) integral of the demand function. To go around the path dependency problem under linear 
integration they assume that Green’s condition holds.  
11 The MPC is equivalent to the average cost of transportation, used in other contexts.  
12 This is not shown in the Figure but it would be clear if, as in Fig.2, both the marginal private and social 
costs are drawn. In that case the equilibrium at the intersection of the marginal private costs with the 
derived demand will correspond (at the equilibrium level of flow) with a level of marginal social cost 
above the private level. The area under the marginal social cost and above the transport demand from the 
point of intersection of this curve with the transport demand, to the equilibrium defined as in Fig. 1, will 
correspond to the deadweight loss due to the congestion externality. 
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In the rest of this section we will discuss the equivalence between users’ benefits 
measures under three different assumptions for the industrial organization in production. 
The first case analyzed is the one originally addressed in JD-F for perfect competition 
without congestion effects.  It would be argued later in the paper that the case with 
congestion is equivalent to the one without congestion with the only qualification that 
the users’ benefits in the transport market must be computed as shown in Fig.2. The 
second case analyzed is the perfect collusion assumption which has not been discussed 
before in the literature. JD considers monopolistic competition in production but 
employs different conditions to characterize the equilibrium (i.e. resale is possible). 
Again the case without congestion is the one discussed in detail but the same discussion 
applies to the case with congestion effects applying the same qualification as in the 
perfect competition case. Finally, we also contribute to the literature on the surplus 
equivalence problem by analysing the Cournot-Nash competition case. To simplify the 
exposition this latter case is presented for a situation were only one of the firms in 
exporting to the other region meaning that both firms compete in the importing market 
but the exporting firm behaves as a monopolist in its own market. In what follows the 
exposition will be mainly based on graphs. In section three we formalize the models 
before discussing numerical simulations for a three regions economy embedded in two 
different networks. 

 
 

Perfect competition 
 
Our final aim is to compare changes in SW with the change in TCS -measured as the 

area to the left of the derived transportation demand- both arising after an initial 
equilibrium with trade is disturbed by an improvement in the capacity of a transport link 
between a pair of regions. In Fig. 3 and 4 this exercise is presented as in JD-F for a two-
node-one-link network and the resulting (inverse) derived transport demand, Dt(⋅), is 
shown in Fig.5. In contrast with their paper we assume the homogeneous good is 
transported from region 1 to region 2, with direct and inverse demand and supply 
functions per region respectively given by: 

 
)( ii pDD = ;  )( ii Dp θ=  
)( ii pSS = ;  )( ii Sp ψ=  

 
with  i={1,2} and excess demand and supply functions given by: 

 
)()()( 222222 pSpDpED −=   

 
)()()( 111111 pSpDpES −=  

 
In Fig.3 the equilibrium prices arising with positive trade, p1 and p2, are shown. A 

different pair of prices is associated with both an initial and final level of the transport 
cost, t and t', respectively. In Fig. 4 the corresponding equilibrium excess supply and 
excess demand quantities are derived based on the difference in quantity demanded and 
supplied in a particular region for each transport cost level.  
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In contrast to JD-F when computing the economy-wide surpluses in each region we 
use a quantity formulation of the SPE instead of a price formulation13. This is reflected 
in the figures when measuring the economy-wide welfare (shaded areas), as we consider 
not only the net surplus from trade (the triangles shown in JD-F and JD) but the entire 
surplus in consumption and production for both regions. As discussed before, this 
distinction is central when considering competition arrangements others than perfect 
competition in production, as we do when analyzing Cournot-Nash competition and 
Perfect Collusion.  

Figure 3 shows that the result given in JD-F concerning the trade surplus equivalence 
when perfect competition is assumed in both the transport-using and transport sectors, 
has a parallel in the quantity formulation.14 From a quantity formulation perspective we 
can re-state their finding as follows: the change in total social welfare from a situation 
with trade across regions, as compared to one without trade, will correspond to the 
entire TCS arising for the final transported quantity, T. The change in social welfare is 
precisely the net trade surplus that JD-F emphasize. Their focus is on the benefits of 
trade and consequently they use the excess supply and demand to characterize these 
benefits and to link them with the derived transport demand15. In contrast, in Fig.3 and 
Fig 4 our emphasis is different. In those figures it is shown that in a quantity 
formulation the equivalence that holds is that of the users’ benefits (change in TCS) 
with the change in SW when comparing two decentralized equilibriums. This approach 
is more general as those equilibriums can include one without trade as in JD and JD-F 
(and as discussed above), but also the more general case we are interested in where we 
compare two equilibriums with positive trade (i.e. positive and not prohibited trade 
costs). The change in TCS is also captured by the excess supply and demand curves net 
surpluses as shown in Fig. 4, but again, this result applies only to perfect competition 
conditions meaning that is of no use in our more general approach.  

In Fig. 3 we show two decentralized equilibriums arising from two different levels of 
the transport costs. In both equilibriums region 1 is exporting the homogeneous good to 
region 2. In the original equilibrium, region 1 produces S1 and consumes D1 (less than 
S1) at a price p1 while region 2 produces at S2 and consumes D2 units of the good (> S2) 
at a price p2. At those prices there would be an interest in trade from region 1 to region 2 
and assuming that the transport cost is initially a constant this trade will be conducted 
until the point where the difference in prices (p1-p2) equals the transport cost level, t.16 
The total social welfare for this (initial) equilibrium will correspond to the sum of both 
light-shaded regions in Fig. 3, which is the sum of consumers’ (net) surplus in both 

                                                 
13 The domain for integration when computing the SW refers to quantities in the quantity formulation and 
to prices, as in JD-F, for the price formulation. 
14 This is not a surprising result in the light of the isomorphism of both formulations already discussed in 
Takayama and Woodland (1970). 
15 JD-F also argues that the change in TCS when comparing two equilibria with positive transport cost is 
also equivalent to the change in SW. This is basically the same approach to look at the equivalency in 
surpluses as the one taken in our paper.  
16 The transport cost level represents the willingness-to-pay to move the units from region 1 to region 2 
and under perfect equilibrium is equal to the difference in prices between the importing and exporting 
region. Jara-Díaz (1986) shows that this latter condition together with the conservation flow condition 
stating the equality between excess demand and excess supply, can be used to construct an inverse 
derived transportation demand in terms of the inverse excess demand and supply functions. Based on this 
latter result, the TCS can be shown to be equal to the change in SW from autarky to the equilibrium with 
trade. See Jara-Díaz (1986), pag. 383. 
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regions and the firms’ profits including transport costs. 17 After this equilibrium is 
disturbed by a decrease in the cost of transportation from t to t', the new equilibrium will 
correspond to more trade from region 1 to 2 and new prices at p1' and p2'. The gains 
arising from the infrastructure improvement will be shared by producers of the 
exporting region and consumers of the importing one according to the elasticities of 
demand and supply in both regions. 18 Total welfare in the new equilibrium will include 
not only the light-shaded areas but also the dark-shaded ones, which correspond to the 
increase in welfare due to increased trade. The change in social welfare is composed of 
saved costs of transporting the previous traded quantity –transferred in part both to 
producers and consumers- and extra benefits arising from induced trade after the 
reduced transport cost opens a gap between initial equilibrium prices across regions that 
is subsequently reduced to zero with more trade.   

At this point it should be easier to see the parallel with JD-F. Since in their analysis 
distortions in the economy are ruled-out, their focus is on the benefits from trade at an 
economy-wide level. Ignoring the surplus arising in autarky is innocuous under their 
assumptions. As a consequence the sum of surpluses arising on an excess supply and 
excess demand will completely capture this extra surplus as shown in Fig.4. While 
assuming perfect competition there is no serious implication from this approach since 
there are no distortions in production and the whole extra benefit arising from a 
reduction in transport costs comes entirely from the new trade flows. If we want to look 
at other types of industrial organization in production the price formulation is no longer 
illustrative of what is happening at the level of total welfare, then our emphasis on the 
entire surplus (e.g. total social welfare). 19 

The surplus (change) equivalence under perfect competition is illustrated in Fig. 3 and 
Fig. 5. As a result of a decrease in transport costs from t (= p1-p2) to t' (= p1'-p2'), the 
change in total welfare as shown in Fig.3 is completely captured by the users’ benefits 
measured in the transport market itself, as a change in the transport consumers’ surplus 
(TCS). This is shown in Fig. 5 where the derived transport demand, Dt, arising from this 
simple model is depicted. The TCS change corresponds to the dark-shaded area in Fig.5 
which exactly matches the sum of dark-shaded areas in Fig.3 (and Fig.4).20 The new 
transport cost will match the difference in prices at the new equilibrium and is 
associated with a level of trade given by T′ (= D1' – S1' = S2' – D2'), which is greater 
than the level of trade associated with the previous equilibrium, T (= D1 – S1 = S2 – D2). 
The sharing of benefits across regions depends on their elasticities of the excess demand 
and supply, as discussed before. 

                                                 
17 Besides we are in a competitive economy, there are non-zero profits (e.g. normal profits) for the non-
marginal firms. These are measured as the difference between the total sales minus the integral of the 
supply curve up to the equilibrium quantity.  
18 See Jenkins and Kuo (2006) for more on the sharing of benefits and for an application of this 
framework to the actual evaluation of infrastructure improvements across countries. 
19 The price formulation is still indicative of what is happening with the benefits of trading even in the 
case of imperfect competition, but drawing a parallel to the discussion in perfect competition we can 
carried out all the analysis based on the quantity formulation. 
20 This is the main result in relation to the surplus equivalence issue shown in Jara-Díaz and Friesz (1982) 
and Jara-Díaz (1986) for the SPE model in price formulation. 
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   Figure 3.       Figure 4. 
            

     
     Figure 5. 
 
 

Perfect collusion (spatial monopoly without resale) 
 
The competitive SPE model makes a strong assumption concerning the market 

structure. It supposes that markets are perfectly competitive within a region; that is, 
price will always equal marginal cost in every region since there are infinite number of 
both consumers and producers per region. Analyzing spatial markets with a perfect 
competition assumption has been criticized in the literature (Scotchmer and Thisse, 
1992; Sheppard and Curry, 1982). The existence of spatial monopolies is well 
recognized and the very existence of a spatial structure put to question the use of the 
perfect competition assumption if one recognizes that a firm closer to a market will have 
an advantage over a firm farther away when transportation is not costless (Harker, 
1986). In this sub-section we relax the assumption of perfect competition in production, 
initially considering a spatial monopoly in production or as we prefer to interpret it here, 
perfect collusion among regional producers. This competition arrangement is different 
to the monopolistic competition considered in JD, as he allows for resale among regions 
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meaning that prices between a pair of regions cannot differ more than the magnitude of 
the transport cost between them.21 

A first attempt to consider imperfect competition within SPE was taken by Takayama 
and Judge (1971). In their setting production is undertaken by a monopolist operating in 
all regions. If resale among regions is not possible, the monopolist discriminates prices 
across regions. They showed that when there is trade from a region i to another region j, 
the marginal revenue of the firm in market j equals the marginal costs of the firm in 
region i plus the transportation cost from i to j. In the monopoly case prices are higher 
and production levels lower as compared to the competitive case. Takayama and Judge 
(1971) also explored monopoly pricing when resale among regions is possible, that is, 
arbitrage is allowed across regions. This impose additional constraints for the 
monopoly, namely prices among regions can not differ more than the transportation cost 
between them. The latter approach is the one followed in JD when he refers to 
monopolistic competition. The former interpretation, allowing for price discrimination, 
is the one we use in this paper. 

It was shown in the previous sub-section that under perfect competition the change in 
SW corresponds exactly with the change in TCS, when a reduction in transport costs is 
in place. For the perfect collusion case this result does not hold anymore. The main 
difference concerns the measuring of TCS changes. For the perfect competition case 
and at a given transport cost level, the demand together with the supply curves (sum of 
marginal costs across active firms in a region) define in every region an equilibrium 
price level such that the traded quantity is a positive gap between the amount demanded 
and supplied at the importing region particular price, which in turn matches a positive 
gap between the supplied and demanded quantity in the exporting region at a lower 
price. This latter price differs from the price of the importing region by the level of the 
transport cost. J-D shows (pgs 380-82) that for a two region economy a derived 
transportation demand can be constructed from the equilibrium relation between prices 
across regions and the excess demand and supply. It follows from this that the 
willingness to pay for the movement of the traded units (e.g. derived transport demand) 
is in fact constructed based on the final demand and supply functions.  

The equilibrium condition in the perfect collusion case corresponds to an equalization 
of marginal costs and marginal revenues in each region and not in prices as the perfect 
competition case. This equalization define the equilibrium demanded and supplied 
quantities which in turn fulfil a conservation of flow condition implying an equalization 
of “desired” trade flows across regions. 22 Consequently it is the marginal revenue 
instead of the final demand which defines, together with the marginal cost functions, the 
willingness to pay for trading goods in the perfect collusion case. The equilibrium 
condition across regions in the perfect collusion case says that the exporting region 
marginal cost plus the transportation cost must be equal to the importing region 
marginal revenue. Then the benefits from trade are captured in a derived transportation 
demand constructed from these curves. This is in parallel to the procedure employed in 
J-D for the perfect competition case but with the marginal revenue curve replacing the 
total demand and the total supply being replaced by the marginal cost function in each 

                                                 
21 See Takayama and Judge, (1971). 
22 More formally, a conservation flow condition is behind the equalization of “desired” and “realized” 
trade flows. 
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region.23 Since the SW is measured in the same way irrespective of the competition 
arrangement in production, it follows that the users’ benefits will in general differ from 
the change in SW, after an infrastructure improvement.  

In Figures 6 and 7 the equilibrium before and after the transport cost reduction is 
shown for the perfect collusion case. In Fig. 6 the equilibrium is, as before, one where 
region 2 imports from region 1 before and after the improvement in infrastructure. The 
SW will correspond to the sum of all grey areas. In contrast to the case of perfect 
competition, the transported quantity is defined as a gap between the marginal cost and 
marginal revenue curves at the equilibrium across regions. This equilibrium results from 
the equalization of marginal revenue and costs in each region and the equalization of the 
marginal revenue for the importing region with the sum of the marginal and transport 
cost from the exporting region. The traded quantity is not anymore defined based on the 
market demand as in perfect competition. The benefits from trade (e.g trade surplus) are 
shown as in JD as the triangular grey areas forming from the crossing of the marginal 
revenue and marginal cost curves. The two-firm “cartel” decides on how to allocate 
production as to maximize total profits and in equilibrium discriminate prices across 
regions. 

Figure 7 shows the consequences of a reduction in the transport cost level. After the 
reduction had defined a new equilibrium, characterized by a lower price in region 2 but 
a higher one in region 1 (not shown in the price scale to keep the figure clear enough), 
the change in SW is no longer the sum of the horizontal dark-grey areas as in the 
previous case (Fig.3). In addition to the trade surplus (horizontal dark areas) there is a 
net effect related to mark-up trade-off across regions which is exercised by the “cartel” 
in order to maximize total profits. Two vertical dark-grey areas reflect this trade-off. In 
the exporting region (region 1) there is a loss in profits because fewer units are 
consumed locally and instead are now exported. There is also a net loss in consumer 
surplus given by the reduction in demand (= D1'- D1) and reflected by the upper triangle 
in the horizontal dark-shaded bar in the lower set of curves in Fig.7. Additionally, with 
the increase in trade and demand in region 2 (=D2'- D2) there is a net increase in 
consumer surplus and also an increase in profits dictated by the mark-up exercised (e.g. 
profits) by the cartel in the new units imported from region 1. This is reflected by the 
horizontal bar in the upper set of curves in that figure. The net effect defines the extra 
component in the change in SW, as compared to the perfect competition case. The 
difference in users’ benefits measured in the transport market itself and those reflected 
as aggregate welfare changes will correspond in this case precisely to the net sum of the 
integrals between the total demand and marginal revenue curves, from the original 
quantity demanded (D1 and D2) to the new quantities (D1' and D2') in both the importing 
and exporting market. Being that in general one of these areas is negative (for the 
exporter) and one is positive (for the importer), the change in SW will differ from the 
change in TCS. The change in profits is expected to be always positive since the 
monopolist maximizes across all regions. Besides that, the net effect can still be 
negative if the net changes in consumers’ surplus across regions end up being negative. 

                                                 
23 The focus changes here from a market view to a firm view of benefits and costs since we are assuming 
that there is a “cartel” of regional firms behaving as a monopolist over the entire set of regions in the 
economy. The willingness to pay for transporting the good in this case refers to in a direct way to the 
firm, and indirectly to the final consumer.  
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 Figure 6.                                                     Figure 7. 
 
The magnitude of the difference will depend on the elasticity of demand in each 

market. The possibility for the “cartel” of exercising market power and discriminating 
in prices across regions creates a gap between the benefits at an aggregate level and 
those arising in the transport market itself. After a reduction in the transport cost the 
cartel trade-offs profits margins across regions in order to maximize profits, meaning 
that the change in total profits will always be positive. In contrast, the net change in 
consumer’s surplus included in the horizontal bar can be positive or negative and could 
even compensate the net change in profits. 

 
 

Cournot-Nash competition 
 
Hashimoto (1984) has extended the perfect competition SPE model to a spatial Nash 

non-cooperative equilibrium model. He considers one firm per-region competing à la 
Cournot-Nash with firms from other regions. A comparison of the Nash equilibrium 
model with the perfect competition and monopoly cases shows that the differentials in 
interregional prices in the Nash equilibrium are greater than in the perfect equilibrium 
case and lower than in the monopoly case. Harker (1986) and Nagurney (1993) also 
present a spatial oligopoly model where the profit function of each firm considers the 
transportation costs from the production plants to the demand markets. We follow 
closely the formulation by Harker (1986).  

In order to simplify the discussion of the Cournot-Nash competition case, we make 
the extreme assumption that there is only one firm controlling production in each 
region-market. In a more general case we could take the situation where more than one 
firm operates in a particular region. As pointed out by Harker (1986), our assumption is 
not restrictive in the sense that any particular region, in which two or more firms 
operate, can always be decomposed into sub regions in which only one firm operates. 
Then we consider two firms, firm 1 and 2, supplying both its internal market and the 
other’s region market. Each firm distribute its production between the two markets in a 
way that maximizes its total profits and takes transport costs as part of the total costs of 
supplying the markets. 24 In particular, firm 1 and 2 supply the “internal” market up to a 
point where the marginal costs of production equals the marginal revenue based on the 
                                                 
24 This is similar to the segmented market assumption in Brander and Krugman (1983). 
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residual perceived demand in that market. This residual demand results from 
subtracting the amount supplied by other firms from the total demand, in this case, the 
amount supplied by firm 2 and firm 1, respectively. Both firms supply consumers in the 
“competing” region, and they do that until a point where the marginal revenue of 
supplying that region, based on the residual demand in that market, equal the sum of the 
marginal cost of its production (in the region of origin) plus the transport cost incurred 
in the last unit shipped. The residual demand in this case corresponds to the subtraction 
from the total demand in the “foreign” market of the amount supplied by other firms, in 
our framework the amount supplied by the local producer. An important difference 
arises at this point in comparison with previous industrial organizations in production 
because both firms might be supplying both markets and consequently we could be in a 
situation of two-way trade. 25 The implications from this to the surplus equivalence are 
significant since even though an infrastructure improvement might only affect a one-
way link, the final equilibrium will be reflected also in the trade going on an opposite 
direction (as in the two-link model of JD-F). 

The initial equilibrium in this environment can be seen more clearly in Figures 8 to 
10. To further simplify the analysis we are making the extra assumption that in 
equilibrium there is only trade from region 1 to region 2, that is, region 1 producer 
exercise full market power over its own region demand and additionally competes in 
region 2 market with the local producer. Fig.8 is basically equivalent to the bottom part 
of Fig.6 where region 1 producer is the exporter and also behaves monopolistically over 
its own region total demand. The benefits from trade in that region correspond to the 
dark-grey area, that is, the total benefits arising from the amount of goods sent to region 
2, T12 ( = S1 – D1). In Fig.9 and Fig. 10 the equilibrium is shown for regional market 2. 
In this market the situation is different since there is strategic interaction among firms. 
The total market demand, D2(P2), is assumed to take a linear form given by θ2(D2) = ρ2 - 
η2D2; then the perceived inverse residual demand for the local firm, θ22(D2), results 
from subtracting horizontally D21, the demand in region 2 served by region 1 firm. In 
terms of the inverse demand this is equivalent to subtract a constant, η2D21, from θ2(D2), 
which is graphically shown as vertically subtracting this magnitude from the total 
inverse demand. The perceived inverse residual demand is then given by: 

 
θ22(D22) = ρ2 - η2 (D22 + D21) = (ρ2 - η2 D22) - η2 D21 
 

with (D21=T12) in equilibrium. The associated residual marginal revenue faced by firm 2 
is also shown in Fig.9, and the equilibrium production corresponds to a point where 
both marginal revenue and marginal costs for this firm coincide (S2 = D22). The 
equilibrium for firm 1 in region 2 is shown in Fig.10. There, the residual demand faced 
by firm 1 is constructed as the result from vertically subtracting a quantity η2D22 from 
the inverse demand, which is related to the part of total demand in that market which is 
served by the local firm. The equalization of the associated residual marginal revenue 
with the sum of the equilibrium marginal revenue in region 1 plus the transport cost 
incurred in the last unit sent from region 1 to 2, define the amount of firm 1’s total 
production directed to region 2 (D21=T12). More concretely, firm 1 allocate its total 
production between the local and foreign markets based on an equalization of marginal 
costs to marginal revenue which in the case of the foreign market, and due to the 

                                                 
25 Cross-hauling is due to strategic interactions across firms, as discussed in Brander (1981).  
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assumption of full market power in the local market, corresponds to the sum of the 
marginal cost in the region of origin plus the transport cost per unit of good sent. This 
last sum is shown in Fig.9 and Fig.10 as a horizontal line. This line also helps to show 
how the SW level associated with this equilibrium is computed.  

The final demand in region 2, D2, will be composed of the sum of the quantity served 
by each firm ( D2=D22 + D12), and this sum plugged into the total demand defines an 
equilibrium price, p2. Consequently, SW being the sum of welfare in each region will 
corresponds to all shaded areas in Figures 8 and 9. The area in Fig.8 is exactly the same 
as the one discussed for the exporting region in the perfect collusion case, as we are 
assuming that region 2 does not export to region 1. The area in Fig. 9 is quite different 
from the perfect collusion case. It includes the net consumers’ surplus plus the net local 
producer surplus, including a mark-up over the average cost of production incurred in 
all units sold, (p2-mc2), plus a smaller mark-up area defined over all the units sent from 
region 1 and sold in region 2, (p2-mr2-t12). The total amount demanded in equilibrium in 
region 2 is in general bigger than the one obtained under perfect collusion. 

An important difference also arises when computing the users’ benefits based on the 
derived transport demand. In principle, one might then to think that we should be able to 
apply a similar approach as the one employed to derive the users’ benefits in the perfect 
collusion case, that is, instead of using the final demand as in the perfect competition 
case we can refer to the marginal revenue curve to define a derived transportation 
demand. In the particular case that we are dealing with here, we would expect that the 
reference will be to the residual marginal revenue distinguish between the sales in the 
“local” and “foreign” markets. In fact, this approach is no longer valid here due to the 
strategic interaction that characterizes firm’s behaviour. In Fig.10, the benefits from 
trade are valued as the area below the residual marginal revenue curve faced by firm 1 
in region 2 and above the sum of the marginal revenue in the region of origin plus the 
transport cost per unit sent. This is the derived transportation demand in this case, 
defining the willingness to move goods from one region to the other. The total benefits 
from transporting T12 units of the good correspond to the triangular dark-shaded area in 
that figure. In Fig. 8, the benefits from trade are shown, as in the perfect collusion case, 
as the triangular dark-shaded area. For the particular equilibrium shown there the TCS, 
for a given transport cost level, will be the sum of these two areas.  

The main complication with the computation of users’ benefits (i.e. ∆TCS) under 
these circumstances is that due to the Cournot’s expectations at play in the oligopoly 
case, the residual marginal demand and revenue curves do not have a fixed position 
from equilibrium to equilibrium. More specifically, when an original equilibrium is 
disturbed by an improvement in the infrastructure, the distribution of production across 
markets will vary and consequently also the location of the residual demands and 
marginal revenues. This complicates the analysis as we know it until now since we will 
have to incorporate these re-locations in residuals demands when computing the 
benefits in the transport market itself and subsequently when trying to compare them 
with the total social welfare change. Following Mohring (1956), among others, a linear 
path of integration is employed.  

In Fig. 13 it is shown what is at stake when an initial equilibrium is disturbed by a 
decrease in the transport costs. The reduction in this cost increases the profitability for 
region 1 of allocating an extra unit of its production to region 2, as compared to its local 
market. This increase firm 1 exports and in turn weakens the position of region 2 local 
firm; a contraction in the residual demand for firm 2 results from this. This contraction 
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in firm 2 residual demand generate a compensating expansion in region 1 residual 
demand which in turn is reflected in region 1 as an extra increase in production that 
leads to a higher marginal costs, compensating the increase in the residual marginal 
revenue in region 2. The process continues until a new equilibrium is achieved. The 
reduction in transport cost generates a re-composition in market share in region 2 that 
favours the exporting region firm. 

 
 

 
         Figure 8.                Figure 9. 
 

                                   
    Figure 10. 
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        Figure 11.     Figure 12. 

                                     
    Figure 13. 
 
The users’ benefits arising from the transport infrastructure improvement will 

correspond to the sum of extra benefits from trade in region 1 and region 2. As before, 
the net benefits from trade in region 1 correspond to the horizontal (light) grey area in 
Fig. 11. A distinct case occurs in region 2 since the curve used to value the benefits 
from trade moves from the initial to the final equilibrium. To compute the benefits in 
this case we use a linear path of integration from the original to the final equilibrium 
assuming that the total benefits correspond to the sum of consecutive marginal 
movements in the direction of the final equilibrium. The corresponding benefits are the 
light-grey area in Fig.13.  

Now we are ready to compare the users’ benefits with the change in SW under 
Cournot-Nash competition. In general the change in SW will correspond to the change 
in the shaded areas in Fig. 8 and 9. In Fig. 11 and Fig. 12 we show, respectively, the 
change in SW of regions 1 and 2 after the infrastructure improvement defines a new 
equilibrium. As before, the case of region 1 is parallel to the case of perfect collusion, 
being the change in welfare the sum of a positive term defining the benefits from extra 
trade and a negative area defining the losses from consumers and producers of a 
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reallocation of production from the local to the foreign region. There is again a small 
area in which the benefits and dis-benefits associated with the new equilibrium are 
cancelling out. For region 2, where there is competition between firms in supplying the 
market, the situation is significantly different. Increased competition faced by firm 2 
results in a market share loss, S2-S2', for this firm. Consequently its profits are reduced 
in the mark-up that was before applied to these units, and this is reflected as a negative 
vertical area in black. Firm 1, in contrast, increases its mark-up over the previous units 
and also increases its profits applying the new equilibrium mark-up over the extra units 
sell in region 2. Part of the extra profits correspond to a transfer from firm 2 and does 
not appear as welfare increase. The other part appears as a horizontal positive area in 
light grey. A final positive triangular area in light grey at the top corresponds to the 
benefits going to the consumers from extra consumption at a lower price that 
additionally is not translated as extra profits to the producers.  

It is clear from the previous discussion that the change in SW under Cournot-Nash 
competition will in general not coincide with the users’ benefits captured in the 
transport market. Even more, the former could be higher or lower than the latter, with 
the final magnitude defined among other things by the elasticity of demand in each 
market, the number of regions-firms and the shape of the transportation network. There 
is also not possible to derive a clear link between the two measures of benefits as was 
the case for the perfect competition and perfect collusion case. The presence of strategic 
interactions among firms complicates the comparison between benefits measures. 

In the next section we discuss in detail the general case of n regions and formalize the 
equilibrium condition discussed conceptually thus far. Additionally, congestion in 
transport and alternative network configurations are discussed. This is also in 
preparation for the numerical exercises that illustrate and complement the previous 
sections arguments. 

 
 

3. Surplus equivalence in complex networks with congestion effects 
 
In this section we discuss in more detail the main building blocks of SPE models. The 

focus of this paper is on inter-regional (e.g. between cities) freight flows. There are two 
main classes of network models which have been used to analyze inter-region freight 
movements: spatial price equilibrium models and freight network equilibrium models 
(Harker, 1986). The first class focuses on the producer-consumer-shippers interactions 
in the economy without explicitly determining the microeconomics of these activities. 
The transportation sector is represented by a directed graph with nodes and links. The 
transportation costs are not derived from a model of carrier behavior, but are stated as 
fixed values or as functions of the flows on a discrete network. Additionally producers’ 
and consumers’ behavior is incorporated by defining supply and demand functions for 
each region. In the general case -independently of the producer’s industrial 
organization- the shippers are assumed to behave according to the following two 
equilibrium principles26: 

                                                 
26 An important distinction arises in a Cournot-Nash type of competition as compared to perfect 
competition and perfect collusion. In the former the marginal revenues in the origin and destination both 
refers to the same firm whereas in the other two types of industrial organization they refer to the region. 
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• If there is a flow of commodity i from any pair of regions (k,l), then the 

marginal cost of commodity i in k plus the transportation costs from k to l will 
equal the marginal revenue (e.g. equal price under perfect competition) of the 
commodity in l. 

• If the marginal costs of commodity i in k plus the transportation costs from k 
to l is greater than the marginal revenue of commodity i in l, then there will be 
no flow from k to l.  

 
The SPE were originally described qualitatively in Enke (1951), and later formalized 

by Samuelson (1952) and Takayama and Judge (1964, 1970). In our work we use 
formulations and extensions from Florian and Los (1982), Friesz et al (1983) and 
Dafermos and Nagurney (1985), among others.  

The second major class of predictive intercity freight models is the freight network 
equilibrium models, in which the focus is on the shipper-carrier interaction. The 
generation of trips from each region is imposed and assumed to be known in this type of 
models, in contrast with the SPE that solves for the trip (e.g. trade flows) generation via 
the interaction between supply and demand functions embedded in a network. An 
attempt to integrate both types of models is presented in Harker and Friesz (1986a, 
1986b) as a generalized spatial price equilibrium, and can be seen as a possible 
extension of the model used here. In the rest of the paper, the focus will be on SPE. 

Spatial price equilibrium is also one of the two most studied steady-state concepts of 
network equilibrium (Friesz, 1985). The other type is the user equilibrium which is 
mostly employed in urban passenger networks but as pointed out in Florian and Los 
(1981) and Harker (1985), can also be fully consistent with SPE featuring multi-paths 
for a given origin-destination (O-D) pair. This last point will be emphasized in the 
numerical simulations section when considering trans-shipment nodes and average cost 
pricing in the transportation sector. 27 

 
 

Network and industry configuration  
 
In this section we first specify the network topology for a homogeneous one-

commodity economy with single paths between each O-D pairs. 28 The discrete shipper 
network is represented by a finite-directed graph, G[L,W], with L and W denoting the 
full set of nodes and arcs, respectively. The indices i, j, k, and l refer to nodes of the 
network. Define W = {w = (ij); i ∈ L, j ∈ L}, to be the set of all origin-destination pairs 
connecting pairs of regional centroids of trade represented by pairs of nodes in L. All 

                                                                                                                                               
Additionally, it should be notice that the conditions are given in very general terms, for instance, in the 
case of perfect competition the marginal revenue is equal to the equilibrium price.  
27 As will be discussed later in the paper when more than two paths are possible a region can play the role 
of trans-shipment even though it has positive production and consumption itself; a users’ equilibrium 
arise in trade flows going through alternative paths for the same origin-destination pair. For further 
discussion on users’ equilibrium see Fernandez and Friesz (1983). Additionally Dafermos and Nagurney 
(1985) present an alternative view of the incorporation of user equilibrium in spatial price equilibrium 
models.  
28 The case for path choice will be introduced when discussing transshipment nodes in the simulations 
section. Harker (1985a) introduces the concept of path variables. 
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interactions within agents in the same centroid are conducted through the price system 
so an implicit assumption of zero transport cost for trade within each centroid applies. 29  

For each region l ∈ L, Sl is the supplied quantity in this region and Dl is the demanded 
quantity. The flow between O-D pair (ij) ∈ W is denoted by T(ij). Conservation of flow 
in every region implies: 
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for all l ∈ L. The market clearing condition requires that total demand equal total 
supply, which is obtained summing up over all l ∈ L in (1):  
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For each O-D pair, a function c(ij)(T(ij), K(ij)) is defined as the average (marginal 

private) cost incurred in transporting an unit of good between i and j. This is the cost 
that has to be paid when shipping between O-D pair (ij) ∈ W, and depends negatively in 
infrastructure capacity in the relevant link, K(ij), and positively in the transport flow, T(ij), 
in that link. 30 Furthermore c(ij)(·,·) is continuous, monotone and strictly convex in T(ij), 
implying that we are focusing on situations where congestion effects occur in each link. 
There is a cost per-unit of infrastructure provided that will represent the cost side of a 
CBA in our context, but we assumed it null at this point in order to focus on user’s 
benefits. Allowing this cost to be different from zero will made possible to analyze the 
interaction of first and second best policies in infrastructure provision within the surplus 
equivalence question (Meléndez-Hidalgo et. al. 2006).  

Let us define, for each region l ∈ L, ψl(Sl) as the inverse supply function with 
associated long-run supply function Sl(ψl), and θl(Dl) as the inverse demand function 
with associated long-run demand function Dl(θl). These functions are assumed, without 
loss of generality, separable in prices and quantities for simplicity in computation of 
equilibrium and simulations (Friesz et.al. 1983).  

 
 

Perfect competition 
 
The competitive SPE conditions compatible with atomistic behavior in production and 

consumption (Samuelson, 1952) can be written as: 
 
if .)()()()(,0 )()()( WijallforDTcSthenT jjijijliij ∈=+> θψ  

if .)(0),()()( )()()( WijallforTthenDTcS ijjjijijii ∈=>+ θψ  
 
These conditions state that a shipper or trader will purchase the good in a perfectly 

competitive market at node i for the price ψi(Si), and will incur an economic price of 

                                                 
29 Thore (1991) considers transport cost for shipping within a given region. 
30 Following Harker (1985) and Florian and Los (1981), c(ij) is the economic price (freight rate plus value 
of level of service) if a transportation firm offers service between (ij) ∈ W. 
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transportation, c(ij)(T(ij)), for the move of goods from i to j. The shipper takes this 
economic price of transportation as given. If the price he could receive in the perfectly 
competitive market at region j, θj(Dj), exceeds the sum of the purchase price and the 
transportation charges ( = delivered price), then he will continue to ship the good until 
the sale price and the delivered price are equal. If the delivered price is greater than the 
sale price, the shipper will lose money in shipping from i to j and hence he will not ship 
anything between this O-D pair (condition (ii)). 

Conditions (i) and (ii) and (1) can be formulated as a complementarity problem, a 
variational inequality problem or as a simple mathematical programming problem 
depending on the functional forms and network conditions assumed. In our context the 
mathematical program describing the decentralized solution can be written as: 

 

Max   ( ) ( )∑ ∫ ∑ ∫∑ ∫
∈ ∈∈

−−
Ll

D

Wij
ij

T

ij
Ll

S

ll

l ijl

dsKscdssdss
0 )(

0
)(

0
)(

0

),(
)(

ψθ    (3) 

 
subject to  LlallforTTDS

Li Wij Lj Wij
ljilll ∈=−+− ∑ ∑ ∑ ∑

∈ ∈ ∈ ∈)( )(
)()( 0  

 
LlforSD ll ∈≥ 0,  

WijallforT ij ∈≥ )(0)(  

;LlallforUSM S
ll

S
l ∈≤≤  

;LlallforUDM D
ll

D
l ∈≤≤  

.)()( WijallforUTM T
lij

T
l ∈≤≤  

 
where Z

l
Z
l UM , , with Z = {D,S}, corresponding to upper and lower bounds on the 

supplies, demands and O-D flows as discussed in Harker(1986). The formulation in (3) 
reflects a decentralized initial equilibrium before the increase in capacity K(ij), then the 0 
superscript in the capacity index.  

A distinction should be made here between first and second best policies in the 
transport sector depending on if congestion charging is in place or not (Williamson 
et.al., 2001). This will affect the objective function in (3) as well as in subsequent 
formulations with alternative product market industrial organizations. Is not our aim in 
this paper to consider optimal policies per-se. In what follows we will ignore any other 
possible instruments at hand to the social planner for optimizing total welfare, except 
from congestion taxes. The social planner will either choose between implementing 
congestion charging in every link of the network, at a rate τ(ij), and a policy of no-
intervention at all. 31 In the latter case, as shown in the last element of the objective 
function in (3), a Wardropian user optimal equilibrium concept for network flows and 
costs is at stake, i.e. each shipper seeks to minimize its transportation cost. 

                                                 
31 In a latter section when we consider more than one path between origin-destination pairs, these two 
policy options in transportation markets will clearly correspond to Wardropian System and User 
Equilibrium, respectively; see Harker (1985) and Fernandez and Friesz (1983). At this point the first-best 
level of the congestion charge is calculated as is usual in the literature; more explicitly in our context we 
follow van den Bergh and Verhoef (1996).  
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In equilibrium used paths between any O-D pair have the same cost and unused paths 
have costs at least as high (Fisk, 1987). The existence of alternative paths for a given O-
D pair is not explicitly considered in the formulation that we are using here for the SPE, 
and this will be amended later in the path formulation section and incorporated in the 
numerical simulations section of the paper when discussing transshipments nodes for 
better representing transportation infrastructure. Even though, it is important to notice 
that the conservation flow condition in (1) implicitly allows an exporting region to use a 
“third-region” for conducting its shipments to a final importing region. The third region 
in that case will be playing the role of a transshipment node (in this case with its own 
market) and this might lead to more than one shipping paths for a particular O-D pair. 
At this stage of the paper we just need to notice that this possibility exists and 
consequently we introduce the Wadropian equilibrium that applies depending on if there 
is congestion charging in place or not (i.e. user or system equilibrium). 

The average cost function in (3) is replaced by the marginal cost function (Beckmann, 
1967; Yang and Huang, 1998) when first-best congestion charging is applied, leading to 
a Wadropian social optimal equilibrium for network flows and costs. The marginal cost 
function is defined as: 
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Establishing tolls, τ(ij), given by: 
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Consequently the only change in the objective function is to consider an additional 

(negative) term representing a congestion charge, which is assumed to be totally passed 
on to the consumers. 32 The mathematical program describing the decentralized solution 
when congestion charging is practiced will be: 
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subject to the same equalities and inequalities. Observe that whereas the objective 
function in (3) has no economic interpretation, the one in (3b) corresponds to the total 
social welfare for the economy under analysis.  

JD shows that, total welfare changes from a situation with no trade between regions to 
one with positive trade across regions will correspond to the transport consumers’ 
surplus resulting in the decentralized solution with positive trade, measuring this surplus 
based on a derived transport demand. This holds for non-flow dependent transport costs 
and perfect competition both in production and consumption. When transport cost does 
depend on the flow, it is straightforward to show that this relationship will continue to 

                                                 
32 For a discussion on congestion charges incidence under imperfect competition in production see Van 
Dender (2004). 
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hold if the perfect competition assumption is kept for production and consumption and a 
complete CBA is implemented (e.g. including congestion taxes revenue changes). We 
will go into more detail on this relation later in the paper. Before that we discuss how 
the total social welfare is computed in both the before and after transport-cost-change 
equilibriums.  

Social welfare corresponds to the sum of consumer’s surplus and producer’s surplus 
in every region (including transport costs) and in perfect competition (SWc) is computed 
as follows: 
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with LI and LE referring to the set of import and export nodes, respectively. The SWc  
reduces to: 
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which is gross benefits to consumers minus total costs including the cost incurred in 
transportation. 

When there is congestion charging the government surplus will become explicit (non-
zero) in the social welfare function. 33 In perfect competition the difference between 
prices in each node will match the sum of average costs plus the congestion charge, τ(ij), 
then the social surplus for the decentralized solution with congestion charging will be: 
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Expression (5) is equivalent to (4).  
 
 

Perfect collusion (spatial monopoly without resale) 
 
Takayama and Judge (1971) formulated their model in a simple network where the 

monopolist takes as given the transport costs, e.g. transport rate. Harker (1986) shows 
how a different interpretation of the transportation costs leads to two distinct models of 
spatial monopolies.  In the first case, it is recognized that in most situations the 
producing firm will buy the transportation service from a motor carrier, railroad, or 
other carrier. Under these conditions producers will take the economic price of 
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transportation as given when deciding how much to produce and send to each market. 34 
The following mathematical program results: 
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subject to (1),  and Dl, Sl ≥ 0 for all l ∈ L, and T(ij) ≥ 0 for all (ij) ∈ W. 

 
From the Kuhn-Tucker conditions of this problem we can derive the transport market 

equilibrium and consequently compute the transportation consumption surplus. These 
conditions are necessary and sufficient and letting πl denote the dual variable of 
constraint (1) we have: 

 
0)( ' =−+ lllll DD πθθ              for all Ll ∈  

00' ≥≤−+ lllll DD πθθ  
0)( =+− lll Sπψ    for all Ll ∈  

00 ≥≤+− lll Sπψ  
0)( )()( =−+− ijijij Tc ππ              for all Wji ∈),(  

00 )()( ≥≤−+− ijijij Tc ππ  
 

what these conditions imply in terms of trade is that if there is flow between region i 
and j, then the private marginal cost of transporting one unit (c(ij)) plus the marginal 
production cost in i (ψi) equals marginal revenue ( '

jjj D θθ + ). If these conditions do not 
hold for a particular O-D pair, then there is not trade in that particular pair. If there is 
congestion charging in practice, the firm’s profit (or cartel) maximization problem will 
be written as: 
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subject to (1) and non-negativity constraints. In both (8) and (9) we are considering c(ij) 
as the average cost price of transport. The Kuhn-Tucker conditions in this case are:  
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34 Florian and Los (1982) discuss in much detail the different interpretations possible for the industrial 
organization of the transport sector. 
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The only difference here is that instead of the marginal private cost of transportation 
is the marginal “social” cost the one used in the previous conditions.  

Concerning the social welfare, in the first formulation it will correspond to the sum of 
consumer’s surplus and firm’s profits minus transportation costs for each regional 
market, while in the case of congestion charging we will explicitly add the government 
surplus although as before, it will cancel out against toll payments by transporters. The 
social welfare function under monopoly will have the same reduced form as in perfect 
competition (SWm): 
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which is equivalent to (5). For the case where congestion charging is in place a parallel 
case also be drawn with respect to the competitive situation. The addition of the 
government surplus will result in an expression of welfare equal to (6). 

 
 

Cournot-Nash oligopoly 
 
The model we implement here follows closely Harker (1986). If Q denotes the set of 

firms operating in the market and each firm q ∈ Q’s control only one production site (Q 
= L). The total amount demanded in region l ∈ L is given by Dl. Defining Dlq as the 
amount shipped by firm q to region l (or the amount demanded by the consumers in 
region l ∈ L from firm q), and lqD

~
 as the amount supplied by all other firms to region l 

∈ L: 
 

∑
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we can defined a spatial Cournot-Nash equilibrium as the solution, for every firm, of the 
following programming program: 
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subject to an optimal strategy vector xq, followed by all other firms (including supplies, 
demands and transport flows). The amount supplied by all other firms to region l ∈ L, 
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lqD
~

, is taken as given in the perspective of a particular firm. 35 At this point, we also 
assume c(ij)(T(ij)) is given, even in the presence of congestion charging. This last 
assumption could be seen controversial when a more realistic view of the interaction 
shipper-carrier is considered in a Cournot-Nash environment since a partial market 
power should be recognized for either size in this context. If for example, transport 
services are produced under oligopoly conditions then in the presence of congestion a 
partial internalization of the externality created when transporting using a fixed capacity 
should be recognized. This is precisely the point raised recently for airline 
transportation in Brueckner (2004) and Verhoef and Pels (2004).  

For the mathematical program formulation in (13) there are associated Kuhn-Tucker 
conditions similar to the ones obtained for the monopoly case. Important insight can be 
obtained from these conditions: 
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The first two conditions imply that if there is demand in a particular region for the 

product of firm q, πl will equal the marginal revenue for firm q in that region. Similarly 
conditions three and four imply that if there is demand in the region that the firm is 
located, then πq will equal the marginal revenue for firm q in its location. The last four 
conditions concern costs of production and transportation. Conditions six and seven 
imply that if there is production, πq will equal the marginal cost of production whereas 
the last two conditions state that if there is flow between region j and the production site 
of firm q then the cost of transportation plus the marginal cost of production will equal 
the marginal revenue for firm q in region j. An important distinction with respect to the 
perfect collusion case is that the marginal revenue functions here are based on a residual 
demand, instead of the total demand in a particular market. This residual demand is the 
part of total demand that firm q considers it is facing, after subtracting the expectation 
of supply for that market from other firms. 

                                                 
35 Equilibration algorithms for oligopoly models usually employ diagonalization/relaxation algorithms. 
These algorithms applied to oligopoly problems have an interesting interpretation as a Cournot 
expectation dynamic process. This process assumes that each player (firm) establish its strategy 
(production level) by trying to maximize its individual profit, considering that the other players will set 
their own strategies as the same as the last round. After all the firms make their choice, the game moves 
to another state and the firms play again. This process continues until no firm can increase its profits. The 
Cournot expectation process can be interpreted as a Jacoby method.    
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Concerning total welfare computations a similar procedure as the one followed for the 
perfect collusion case applies here. Total social welfare will depend again on the 
congestion pricing policy but in general will consist of the sum of consumer’s surplus 
and firm’s profits (including transport costs) over all regions. 
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which using (11) reduces to: 
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Following a similar path of argumentation as in the cases of perfect competition and 

perfect collusion, a similar expression can be shown to apply for the case where 
congestion pricing is in practice. A final important distinction to notice here is that the 
level of total supply will lie between these two extremes and it can be shown (Haurie 
and Marcotte, 1996) that in the limit, when the number of firms goes to infinity, it will 
coincide with the perfect competition production level. 

 
 

Path formulation: trans-shipment nodes 
 
In this section we discuss how the previous model formulation changes when trans-

shipment nodes are explicitly considered. A variable path formulation explicitly 
considers trans-shipment nodes which better represent certain types of transport 
infrastructure. The network is again a finite-directed graph, G[N,A], with N and A 
denoting the full set of nodes and arcs respectively. The set of centroids L is a subset of 
N. Thus, the network contains nodes that are neither origins nor destinations, but 
represent transportation facilities such as rail yards or ports (Harker, 1986). The indices 
a and p refer respectively to an arc or link and a path in the network. The indices i, j, k, 
and l refer to nodes of the network and Pij denote the set of all paths connecting node i 
to node j, consequently p ∈ Pij is a particular path between regions i and j. For δap = 1 
link a is contained in path p while δap = 0 otherwise. The flow on link a is represented 
by fa while hp is the flow on path p; consequently fa = Σp∈Pij δap hp. The average (unit) 
cost function of transportation on arc a will be denoted by ca(f), while the average cost 
on path p is Cp( h ) = Σa δap ca.  

The equilibrium conditions change according to the product competition assumed. For 
instance, for the perfect competition case πl denote the commodity price at node 
(market) l, Dl(π) is the commodity demand at region l, Sl(π) is the commodity supply at 
region l and f, D, S, c and π are the full row vectors of link flows, demands, supplies,  
unit link costs and prices. In a particular network with m arcs and n nodes (regions) a 
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flow pattern (f , π) satisfying the following conditions is a competitive spatial price 
equilibrium: 
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Conditions (a) and (b) consist of a generalization of the spatial price equilibrium 

conditions discussed in the previous formulation based on Samuelson (1952). Condition 
(a) implies that for utilized paths between a given origin-destination pair delivered 
commodity prices equals local ones. Condition (b) states that paths for which delivered 
price exceeds local price will not be utilized. The flow conservation condition is stated 
in (c); (d) is the definition of flow already given before while (e) corresponds to non-
negativity conditions. Conditions (a) to (e) can also be used to represent multiple-mode 
and multiple-commodity equilibrium problems using the device of a multi-copy 
network originated in Aashtiani (1979). Similar modifications can be performed to cast 
the two other product competition arrangements in a path-formulation. 

This closes the formalization of the SPE previously discussed in a graphical manner. 
In the next section the formalization of the models is employed to conduct two 
simulation exercises which illustrate and complement the previous discussion. The idea 
there is to construct two simple examples where the same conditions (i.e. parameters) 
holds for both cases except for the transportation network employed. Similar trade flow 
paths and magnitudes are obtained but it is shown that the different between 
infrastructure improvements benefits can be quite significant despite the similitude in 
demand and supply primitives. The shape of the transport network drives the results.  
 
 

4. Simulation results 
 
In this section we use numerical simulations to illustrate and complement the main 

conceptual results already provided in the paper. A three region economy embedded in 
two different transport networks is the workhorse employed to study the different 
impacts arising from an infrastructure investment under alternative competition 
arrangements. The two networks differ on the existence of a transhipment node. In both 
network cases the supply-demand nodes are characterized by the same set of parameters 
and the cost link parameters are such that similar patterns of trade are obtained. This is 
in order to capture in our results the distinguish effects arising from the differences in 
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transport network shape. For both types of networks the following functional forms are 
used: 

 
lllll SS βα +=Ψ )(    (Cost function) 

 
lllll DD ηρ −=Θ )(   (Demand function) 

 
2)( aaaaa ffc νκ +=    (Transport Cost function per link) 

 
where aallll and νκηρβα ,,., are constants. The transport cost function is interpreted as 
average private costs (taking into account level of service) and then expressions for the 
total costs and social marginal costs can be obtained from it.  

Table 1a shows the calibration of parameters for the demand and supply in the two 
network cases considered. These values together with the transport network parameters 
generate a certain pattern of trade across regions. 

 
Table 1: Parameters for Production and Consumption Functions per Region. 

 
Region l ∈ L  α β ρ η 
 
1    0.1     0.05     1.9      0.02 
2    0.2     0.04     2.7      0.001 
3    0.15   0.03     3.0      0.03 

 
The first type of network extends the two region economy previously analyzed with a 

third production-consumption node and two related transport links. Again we are here 
considering a one-good economy. This case has not been analyzed in the literature and 
as an extension of the previous case, allows us to study network issues in the simplest 
setting possible. Table 2 shows the parameters for the transport cost function. 

 
First network 
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An important issue raised by this case is that whenever there is a change in the cost of 
transporting through a particular link, the demand on other links will change resembling 
a general equilibrium effect in the transport markets. This interaction has been 
addressed recently in a different framework by Kidokoro (2003) and is included in the 
results shown later in Table 3 when computing the change in TCS in all links. For the 
cases of monopoly and oligopoly “indirect benefits” are present and captured by a level 
of the usual multiplier different that one. Under perfect competition the ratio of social 
welfare changes to user’s benefits (i.e. multiplier) takes always a value of one, both for 
the case of no tolling and optimal tolling. For the latter, the change in congestion 
charges revenue adds up with the usual transport benefits. 

 
Table 2: Parameters for Transportation Functions per Link. 

 
Arc a ∈ A   κ    ν 
 
1    0.1  0.04 
2    0.2  0.04 
3    0.1  0.02 
4    0.3  0.03 
5    0.1  0.01 
6    0.4  0.08 

 
A reduction in 10% on the capacity related parameter (ν) in link 1 is the infrastructure 

improvement scenario considered; starting from the initial level in Table 2. Trade flows 
differ for the different competition arrangements. Under perfect competition trade flows 
are positive in link 1, 2 and 6 for all equilibriums. Region 1 exports to both regions 2 
and 3; region 3 exports to region 2 and imports from region 1. Region 2 imports from 
the other two regions. This structure of trade includes route choice for region 1 exports 
to region 2. Is already established in the literature that a model with this features will 
show uniqueness of equilibrium only at the level of link flow, but multiple equilibria 
will arise at the level of path flow (Fernandez and Friesz, 1982). Taking this into 
account in the computation of changes in TCS implies calculating benefits at the level 
of link flow. For the monopoly case trade goes from regions 1 and 3 to region 2. Finally, 
when producers interact in a Cournot-Nash fashion the trade flows resemble the pattern 
of the perfect competition case, but in addition there is trade from region 3 to region 1. 
This extra flow is implying that there is two-way trade between these two regions. Table 
1 show the results for the three alternative competition assumptions in production.  

Since we assume either optimal or zero toll levels in all links, transport benefits for 
the perfect competition case (CSPE) will match economy-wide welfare changes in both 
cases. For the perfect collusion case the situation is quite different. Without tolls 
transport benefits overestimate the economy-wide effects with the gap explained both 
by profits made on the extra units (both imported and exported) and the net loss in 
consumer surplus for these extra units transferred from the exporting the to importing 
region. As shown in Table.3, as the link 1 capacity expands the overestimation persists 
when optimal tolling is implemented but turns into underestimation when no tolling is 
practised. This is so because even though the presence of congestion externalities 
affects welfare negatively, the fact that there is not toll allows the monopolist to reach 
output levels which bring profit and net consumer surpluses effects that compensate that 
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overall compensate this externality. On the other hand, when congestion is optimal 
charged, the externality is eliminated but the level of output in which the monopolist is 
manoeuvring is such that the net profit effects is compensated by a negative net 
consumers surplus effect, then the multiplier is always below one. The Cournot-Nash 
case also shows overestimation of economy-wide benefits and under the parameter 
values we chose it is more severe than the perfect collusion case. The interesting point 
here is that under the same functional form for supply and demand, the strategic 
interaction among firms can create significant negative indirect effects even when 
congestion is charged. As capacity expands to reach a very small value for ν1, 
eventually the gap between both multipliers shrink but there are still negative indirect 
benefits (i.e. disbenefits). 

 
Table 3: Results from a three node network without transshipment nodes. 

Multipliers
Transport Parameters CSPE CSPE MONOP MONOP OLIGOP OLIGOP
Fixed Variable No Tolling Optimal Tolling No Tolling Optimal Tolling No Tolling Optimal Tolling

0.1 0.04
0.1 0.036 1.000 1.000 0.983 0.946 0.456 0.723
0.1 0.032 1.000 1.000 1.001 0.949 0.490 0.728
0.1 0.029 1.000 1.000 1.017 0.952 0.523 0.734
0.1 0.026 1.000 1.000 1.032 0.955 0.553 0.739
0.1 0.023 1.000 1.000 1.048 0.959 0.587 0.746
0.1 0.021 1.000 1.000 1.061 0.963 0.617 0.751
0.1 0.019 1.000 1.000 1.073 0.966 0.643 0.757
0.1 0.017 1.000 1.000 1.086 0.970 0.671 0.763
0.1 0.015 1.000 1.000 1.099 0.975 0.702 0.770
0.1 0.0135 1.000 1.000 1.112 0.980 0.731 0.776

      
0.1 0.005       
0.1 0.0045 1.000 1.000 1.202 1.044 0.776 0.853

    
 
The previous network was the simplest possible extension from J-D and J-D and F 

when considering congestion. Even in this network there is route choice in the perfect 
competition case when trade goes from region 1 to region 2 directly but also through 
region 3. Route choice is not possible in the case of monopoly or Cournot-Nash 
oligopoly. The next network structure model explicitly a trans-shipment (without route 
choice) in order to compare the magnitude of the multiplier arising simply from a 
different network structure.  

 
Second network 
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The second network corresponds to a case where all trade flows have to arrive first to 
a consolidation point (trans-shipment node), where network resources are shared 
between shippers. Table 4 shows the parameters for the transport cost function in each 
link. The infrastructure improvement is again in link 1. The pattern of trade is similar to 
the one discussed for the previous network. An distinctive situation occurs for the case 
of monopoly and Cournot-Nash because trade goes from regions 3 and 1 to region 2, 
implying that the last link to reach region 2 is shared by these two flows. Once, the 
infrastructure is improved in link 1 this generate negative spillover effects to the flow 
going from 3 to 4. In an extreme situation this can lead to negative social welfare 
changes resembling a Braess paradox type of phenomena at the level of the entire 
economy. 36 The sign of the indirect benefits change for the monopoly case and the 
magnitude of the extra benefits (above the usual transport benefits) is considerable. 
Again, this benefits are higher without tolling because due to the demand and supply 
schedules parameters, the monopolist without congestion charging can reach output 
level where the net consumer surpluses effects turns out to be positive and adds up with 
the profits effect.  

 
Table 4: Parameters for Transportation Functions per Link. 

 
Arc a ∈ A   κ   ν 
 
1    0.05  0.02 
2    0.05  0.01 
3    0.05  0.01 
4    0.07  0.05 
5    0.03  0.01 
6    0.02  0.01 

 
Table 5: Results from a three node network with one transhipment. 

Multipliers
Transport Parameters CSPE CSPE MONOP MONOP OLIGOP OLIGOP
Fixed Variable No Tolling Optimal Tolling No Tolling Optimal Tolling No Tolling Optimal Tolling

0.05 0.02
0.05 0.018 1.000 1.000 4.223 2.090 0.406 0.513
0.05 0.016 1.000 1.000 4.010 2.130 0.442 0.518
0.05 0.014 1.000 1.000 3.805 2.178 0.475 0.523
0.05 0.0126 1.000 1.000 3.637 2.229 0.507 0.528
0.05 0.011 1.000 1.000 3.491 2.220 0.535 0.533
0.05 0.01 1.000 1.000 3.368 2.207 0.560 0.538
0.05 0.009 1.000 1.000 3.273 2.247 0.579 0.542
0.05 0.008 1.000 1.000 3.178 2.294 0.735 0.546

      
 
In the oligopoly case, considerable indirect effects arise. Again, as congestion is 

realised through capacity improvements, the multipliers increases. Under the parameter 
chosen the strategic interaction across firms is such that the re-composition of market 
shares and the net consumer welfare effects compensate the usual transport benefits.  

 
 

                                                 
36 Venables (1999) discuss this possibility for the case of transport market with a similar transport 
network shape. 
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5. Conclusions 
 

Our aim in this paper has been to study in more detail the difference in benefits 
measures arising from an infrastructure improvement employing a spatial price 
equilibrium framework, originating in Samuelson (1952). Previous contributions had 
looked at the topic in a simplified fashion assuming extreme product competition 
arrangements and network environments. We contribute with this literature by 
extending these previous contributions in several ways. First, apart from the usual 
perfect competition assumption we consider monopolistic behaviour across regions 
without the possibility of resale and Cournot-Nash interaction across regions-firms. 
Additionally we employ flow depend transport cost functions and allow for the 
existence of optimal tolling or no tolling at all. Finally, we explain in detail the 
formalization of the models to more than two regions and complex networks and 
illustrate our main points with numerical simulations in a three region network with and 
without transhipment nodes.  
Our main contribution is to disentangle the relationship between economy-wide changes 
and transport users’ benefits under spatial monopoly without resale and spatial Cournot-
Nash firm interaction. For the former case, the relationship is clear and driven by the net 
effect of net consumer surpluses changes and net profit changes. On the contrary, for the 
latter there is no clear connection that we can derive between transport users’ benefits 
and welfare changes because the strategic interaction between firms makes difficult the 
measurement of the transport benefits, as compared with the perfect competition and 
collusion cases. In the last section, some illustrative numerical simulations are shown 
which lead us to conclude that the sign and magnitude of the indirect benefits are 
significantly influenced by the shape of the transportation network.  
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