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Abstract

A simulation study is conducted to evaluate the usefulness of incorporating collateral infor-

mation in the Mixed Rasch model. The results show that the standard errors as well as latent

class membership assignment can benefit substantially from incorporating external variables

that associate with the latent class variable. Especially when the difference in probability

structure between the latent classes becomes smaller, or, when the sample size is relatively

small.
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1 Introduction

Latent variable models are, slowly but surely, finding their way to applied fields. These

models thrived in the sociometric and psychometric community for decades, but, to a large

extend, failed to reach more applied researchers. With the availability of user friendly soft-

ware in combination with a large body of literature, ranging from non-technical guidelines

to the more abstract mathematical foundations of the models, more researchers are consid-

ering the latent variable modeling framework. For an overview see Heinen (1993), Fisher

and Molenaar (1995), Linden and Hambleton (1997), Rost and Langeheine (1997), Wilson,

Engelhard, and Draney (1997), and Wilson, Draney, and Engelhard (1999).

The present paper is concerned with the Mixed Rasch Model. This hybrid model for

analyzing dichotomous data, due to the work of Rost (1990, 1991), contains both latent trait

and latent class variables. The Rasch model is often too strict for social science data. If

the data cannot be summarized well enough (obtain a reasonable model fit) using the Rasch

model, roughly two strategies can be adopted. First, more ’complex’ IRT models could be

fit. Second, one could try to disentangle the sample into Rasch scalable subgroups. We

prefer the second approach from a measurement theoretical viewpoint. The Rasch model

can be build from assumptions that may reasonably be demanded of scientific measurement.

Furthermore, finding Rasch scalable subgroups gives substantial insight in the data. Inter-

preting differences in discrimination parameters or incorporating extra latent trait variables

into the analysis is a rather daunting task if no a priori justification can be given. As an

aside, if substantive knowledge is available about the actual cognitive process involved, in-

ference can be stretched even further with a hybrid variant of the linear logistic test model

(Fisher, 1973), see Mislevy and Verhelst (1990).

A problem with the Mixed Rasch model is that differentiation between latent subgroups

can only be done successfully if the differences are sufficiently large. Here we evaluate the

gain obtained by using external variables in identifying the latent discrete mixing variable.

The main goal is to obtain more stable solutions, or, stated differently, to track more subtle

effects of mixing variables. The ability to track subtle effects is especially important when

dealing with a discrete latent bias variable. A general framework for modeling/assessing DIF

is given in Kelderman and Macready (1990).

As an example, consider an exam where some questions were discussed during the last

lecture. Students who attended that lecture will have a higher probability of giving the

correct response. Furthermore, suppose we do not know who attended the last lecture, we

only know that eighty percent of the female students and thirty percent of the male students

attended the class. The question addressed here is if such extra (collateral) information can

be exploited in the Mixed Rasch model.

Within the latent class analysis framework, the use of extra (typically called concomitant)
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variables was applied by Clogg and Goodman (1984), see also Dayton and Macready (1988),

Gupta and Chintagunta (1994), and Böckenholt (1997). Within the item response theory

framework Mislevy and Sheehan (1989a, 1989b) showed that, using the missing information

principle of Orchard and Woodbury (1972), the incorporation of collateral variables (related

to the latent trait) can reduce the standard errors of the parameter estimates. In what

follows the general idea to use collateral variables in identifying the latent mixing variable

and reducing standard errors is applied to the mixed Rasch model.

2 The Loglinear Mixed Rasch model

Let the random variable Xij, taking values {0, 1}, denote the response of person i to item

j. To make things concrete, assume Xij = 1 if the correct answer is given and Xij = 0 if

the wrong answer is given. Furthermore, let θim denote the latent trait, and δjm denote the

item difficulty (or easiness) for members of latent class m.

We assume that the probability of a correct response, on item j by a person i who is

member of latent class m, follows the Rasch model.

Pij|m ≡ P (Xij = 1 | θim, δjm) =
eθim+δjm

1 + eθim+δjm
(1)

The probability of the response pattern of person i, assuming local stochastic independence,

is

Pi|m =
n∏

j=1

Pij|m =
e
∑

j
xij(θim+δjm)

∏
j (1 + eθim+δjm)

=
etiθim+

∑
j

xijδjm

∏
j (1 + eθim+δjm)

(2)

where ti =
∑

j xij denotes the number of correct responses, or sum score. From the above

formula we see that ti is sufficient for θim within a latent class. In other words, the (nuisance)

parameter θim can be eliminated by conditioning on ti in latent class m.

More explicitly, let St = {x :
∑

j xj = t} denote the set of response patterns with sum

score t. The probability of a response pattern in this set for person i who belongs to class

m, is

Pt|m =
∑

x∈St

Pi|m =
etθim

∏
j (1 + eθim+δjm)

∑

x∈St

e
∑

j
xijδjm

=
etθim

∏
j (1 + eθim+δjm)

γt (δm)

where γt (δm) denotes the symmetric basis function, with the class specific vector of item

difficulty parameters (δm = δm1, · · · , δmn) as argument. Now by conditioning on t and m we

get

Pi|tm =
Pitm

Ptm

=
Pim

Ptm

=
Pi|m
Pt|m

=

∏
j exijδjm

γt (δm)
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Note that this expression is independent of θim. Thus a more general notation can be

adopted where the person index i is replaced by an index denoting a response pattern, say

ν. Furthermore, if the latent class is dichotomous, taking values {0, 1}, then δjm can be

reparameterized as δj + m∆j. Then, the log of the marginal probability is

log Pνm = log Pν|tmPtm

= log
Ptm

γt (δm)
+

∑

j

(xνjδj + xνjm∆j) (3)

The response pattern frequencies have expected values given by the model

log fνm = µ + µT
t + µM

m + µTM
tm +

n∑

j=1

(
µXj

xj
+ µXjM

xjm

)
(4)

where fνm denotes the expected frequencies of response pattern ν in latent class m. the main

parameters µXJ
xj

are the item difficulty parameters, and the interaction parameters µXJM
xjm are

the differences in item difficulties between the latent classes.

We cannot fit a quasi independence model (the items are independent within the sum

score × latent class cells), because class membership is not observed. Note that if m would

be observed we simply have a Rasch Model with an observed grouping variable. Unobserved

variables can be handled with the EM –algorithm. The idea is to make an initial guess of

the complete unobserved table (marginals), estimate the parameters using this table, and

with these parameters we can construct a new complete table (expected table given the

current parameter estimates and the observed incomplete table). We repeat this procedure

until differences become sufficiently small. The algorithm thus splits the observed table into

unobserved subtables that are most likely given the model. It is clear that the amount of

difference in probability structure of these subtables is related to the ability of the algorithm

to disentangle the observed tables in meaningful subtables. Experimenting with these models

reveals that if differences in probability structure become ’too’ small the algorithm is splitting

up the table to incorporate a few outliers. Typically, in these cases, solutions are obtained

with very small class sizes and extreme parameter estimates within these classes. These

solutions are no more than capitalization on chance.

3 Collateral information

Without loss of generality, assume we have one dichotomous collateral variable, say g, that is

associated with the latent class variable. Furthermore, assume that the items are independent

conditionally on the latent class and the sum score. This implies that g is redundant in

describing the probability structure of the response patterns once we conditioned on the

latent class and sum score. So the following decomposition is possible

Pνmg = Pν|tmgPtmg = Pν|tmPtmg
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The final step in the specification of the model is to give a sensible model structure for the

joint distribution Ptmg. The crucial observation is that the sum score should be independent

of the collateral variable conditional on the latent class, otherwise the collateral variable

is itself a bias variable. The association between them is used to identify the latent class

variable by forcing independence conditional on the latent class variable. The probability

can thus be factored further

Pνmg = Pν|tmPt|mPg|mPm

=
(
Pν|tmPt|m

) (
Pm|gPg

)

And, the response pattern frequencies, written in the usual loglinear notation

log fνmg = µ + µT
t + µM

m + µG
g + µTM

tm + µGM
gm +

n∑

j=1

(
µXj

xj
+ µXjM

xjm

)
(5)

A simulation study is conducted to evaluate the use of collateral information in fitting the

Mixed Rasch Model. The expectations are twofold. First, the variation of the parameter

estimates will be smaller. The missing information principle (Orchard & Woodbury, 1972;

Little & Rubin, 1987) decomposes the complete information in observed information and

missing information. By incorporating a variable that associates with the missing variable

(latent class), the missing information is expected to become smaller, which causes the

observed information to become greater, and thus, the variability of the parameter estimates

to shrink. Second, the extra information, related to the latent class, will render the algorithm

less susceptible for converging to local solutions.

4 Simulation design

Data sets with ten items are generated according to the Mixed Rasch model, with a di-

chotomous latent class variable (equal class sizes). The number of subjects and the item

parameter sets are varied, each with two levels. Data sets are generated with four hundred

and with two thousand subjects (with θ ∼ N [0, 1]), using one of the parameter sets in Table

1. In the sequel, the parameter sets are rather cryptically called 2TO6 and EVEN. As can

be seen in table 1, 2TO6 denotes a difference of two between the class specific item difficulty

parameters of items 2 to 6, and EVEN denotes a difference of plus or minus one between

the class specific item difficulties of the even items. The parameter sets are chosen to cre-

ate a condition where the sumscore distribution in each latent class is more or less similar

(EVEN), and a condition where the sumscore distribution differs between the latent classes

(2TO6).
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Item difficulty parameters: set 2TO6

Latent Class 1 0.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Latent Class 2 0.0 0.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

Item difficulty parameter: set EVEN

Latent Class 1 0.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Latent Class 2 0.0 -1.0 -1.5 -2.0 -0.5 1.0 0.5 0.0 1.5 3.0

Table 1: Simulation parameters

For every parameter set × number of subjects combination (2TO6-400, 2TO6-2000,

EVEN-400, and EVEN-2000) one hundred data sets are simulated. Subsequently six collat-

eral variables are appended to each data set. The collateral variables differed in the strength

of association with the latent class variable. Table 2 lists the six levels of association between

the latent class and the collateral variables in terms of bivariate probabilities. Note that the

column ’names’ (50/50,60/40,· · ·) correspond to the conditional probabilities, these will be

used as shorthand for the collateral variables (’equal’ denotes equality between the latent

class and collateral variable).

Association Latent class × Collateral variable

50/50 60/40 70/30 80/20 90/10 equal

LC 1 .25 .25 .30 .20 .35 .15 .40 .10 .45 .05 .50 .00

LC 2 .25 .25 .20 .30 .15 .35 .10 .40 .05 .45 .00 .50

Table 2: Proportions in Latent class × collateral variable cross classification

Each data set is subsequently analyzed without a collateral variable using model equation

(4), and with each of the six collateral variables separately using model equation (5). Both

models can comfortably be specified and analyzed with the LEM program (Vermunt, 1997).

5 Results

First the item parameter estimates are evaluated, by looking at the mean and standard devi-

ation of the deviances, which we define as the difference between the simulation parameters

and the estimated parameters. Next, a few statistics concerning the algorithm are reported,

and finally the possibility to assign response patterns to the latent classes is evaluated. This

is done by assigning response patterns to one of the latent classes using the (log) ratio of

the posterior probabilities.
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5.1 Parameter estimates

To evaluate the quality of item parameter estimates, differences between the simulation

values and the estimated values (deviances) were computed. A difficulty arises because of

the possibility of converging to local solutions. Some extreme deviances were obtained. We

could, of course, have used the simulation parameters as starting values, but then information

about the computational procedure, number of iterations and susceptibility of converging

to local maxima, would be lost. As an alternative, we let the algorithm converge to local

solutions (using random starting values). To not let the extreme deviances distort the

evaluation of the parameter estimates so called trimmed means and standard deviations,

with the highest and lowest fifteen percent cut off, will be presented in the following.

First the means of the deviances are presented in Figure 1 for the main and interaction

parameters, corresponding with δj and ∆j respectively.

Mean main - 2TO6
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-0.
15

-0.
05

0.0
0.0

5
0.1

0
0.1

5

none 60/40 80/20 equal

400 subjects
2000 subjects

Mean main - EVEN

0.0
0.2

0.4
0.6

none 60/40 80/20 equal

400 subjects
2000 subjects

Mean interaction - EVEN
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none 60/40 80/20 equal
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Figure 1: Mean difference of the simulation parameters and estimated parameters. Obtained

by aggregating over all items and replications within every –condition × number of subjects

× data set × parameter type– combination.

Note that the y-axes are not on the same scale. The figure roughly suggests two trends.

The parameters are better estimated when there are more subjects, which is to be expected.
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The bandwidth seems to become smaller when stronger collateral variables are incorporated

in the model, especially when the sample is smaller. This finding was expected because the

variance of the parameter estimates was expected to reduce (the variance of the mean equals

the variance divided by the number of cases).

Next the standard deviations of the deviances are presented in Figure 2 for the main and

interaction parameters, corresponding with δj and ∆j respectively.
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Figure 2: Standard deviation of the difference of the simulation parameters and estimated

parameters. Obtained by aggregating over all items and replications within every –condition

× number of subjects × data set × parameter type– combination.

Note again the difference in scale of the y-axes. The figure shows the expected reduction

in variance when more informative collateral variables are used, or when more subjects are

used. Furthermore, the interaction parameters are less accurately estimated than the main

parameters, and the parameters of data sets in the EVEN condition are less accurately

estimated than the parameters of data sets in the 2TO6 condition. This last finding is
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due to the ’separability’ of the latent classes for the different data sets. Recall that data

sets generated with parameter set 2TO6, as opposed to data sets generated with parameter

set EVEN, have a different sumscore distribution for the latent classes. Stated differently,

members of the two latent classes are further apart (on the sumscore marginal) in the

observed contingency table.

5.2 Convergence

In Figure 3 the 25th, 50th, and 75th percentile of the number of iterations needed to converge

are reported.
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00
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Figure 3: The 25th - 50th - 75th percentiles of the number of iterations. Obtained by ag-

gregating over all replications within every –condition × number of subjects × data set–

combination.

Note that, in the condition where the collateral variable cöıncides with the latent class

variable, the conditional probabilities are (ideally) estimated as either 1 or 0 and the corre-
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sponding interaction parameter would tend to infinity or minus infinity. This condition thus

deviates from the general trend that the number of iterations decreases as the association

between the latent class variable and the collateral variable becomes stronger. The increase

for the condition in which the latent class and the collateral variable are independent is

also not surprising. Since the collateral variable contains no information about the latent

class, the interaction between the collateral variable and the latent class should tend to zero.

This corresponds to the situation where a collateral variable cannot influence the parameters

because it is absent. So an analysis without a collateral variable can be thought of as an

analysis with a collateral variable in which the interaction parameter between the latent

class and the collateral variable is implicitly fixed to zero, the correct value.

The cost of incorporating a collateral variable is that the number of computations per

iteration increases and that more memory is needed to store the necessary values. Fortu-

nately, the number of computations per iteration and the storage requirements increase only

slightly, because the collateral variable can only influence the Mixed Rasch model via the

latent class marginal. In general, it took longer to converge if no collateral variable was used,

except when the latent class and collateral variable were independent.

The expectation that the collateral variable renders the algorithm less susceptible for

converging to ’improper’ solutions is evaluated by simply counting the number of extreme

deviances. An absolute deviance of two or more is counted as extreme. Counts that are

much bigger than expected, indicate convergence to a local solutions. The expected counts

can be computed by integrating the normal distribution with the standard deviations from

Figure 2 over the interval [−2, 2]. Using this criterion all but a few counts have expected

value greater than zero. The counts are reported in Table 3 together with their rounded

expected value if greater than zero.

2TO6 EVEN

Main Interaction Main Interaction

400 2000 400 2000 400 2000 400 2000

none 50 0 88 0 98 39 227 (352) 94 (8)

50/50 45 0 86 0 71 44 191 (240) 85 (2)

60/40 43 0 72 0 46 26 174 (180) 48

70/30 8 0 17 0 66 2 143 (145) 1

80/20 1 0 1 0 32 0 88 (7) 0

90/10 0 0 1 0 13 0 31 0

equal 0 0 0 0 2 0 4 0

Table 3: The number of absolute deviances greater that two. The rounded expected counts

(given the empirical trimmed standard deviations) are in braces when greater then 0.
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From this table we see that the number of extreme parameter values exceeds what can

be expected, for the conditions with weak association between the latent class and collat-

eral variable, indicating convergence to local extremes. The high expected counts for the

interaction parameters in data sets simulated with parameter set EVEN indicates that the

problem with local maxima is such that a thirty percent cutoff still leaves a few outliers

(causing large standard deviations and thus large expected counts).

5.3 Class membership assignment

Finally the ability to assign patterns to latent class membership is evaluated. For every

response pattern posterior probabilities can be computed for the latent classes. We used

the ratio of these probabilities to assign all subjects to one of the latent classes. Note

that the ratio might be very close to one. In practical situations, when the quality of the

classification is critical, an interval might be constructed for this ratio around one, subjects

are not assigned to either of the classes when the ratio falls within this interval (to close to

one). In Figure 4 the percentage rightly classified subjects is reported. The classification is

done using the item pattern only, and using both the item pattern and the collateral variable.

Percentage - Items

0.5
0.6

0.7
0.8
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1.0

none 60/40 80/20 equal

2TO6 - 400
2TO6 - 2000
EVEN - 400
EVEN - 2000

Percentage - Both

0.5
0.6

0.7
0.8

0.9
1.0

none 60/40 80/20 equal

2TO6 - 400
2TO6 - 2000
EVEN - 400
EVEN - 2000

Figure 4: Percentage of correct class assignments, using the item pattern only and using

both the item pattern and the collateral variable. Aggregated over all replications within

every –condition × number of subjects– combination.

The percentage rightly classified is bounded when using the items only. This is because an

item pattern is assigned to one latent class, while it is perfectly feasible for two subjects from

different latent classes to have the same item pattern. The left figure shows that the bound

is approached if the number of subjects increases, or if the association between the latent

class and the collateral variable becomes stronger (due to better parameter estimates and
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less improper solution). The right figure shows that as the collateral information becomes

better the posterior probabilities are dominated by this variable, and thus approach high

percentages of rightly classified subjects.

6 Conclusion

In social science, uni-dimensionality of measurement instruments is hard (if not impossible)

to achieve. In practical psychometric research it is standard procedure to test for bias effects

of sexe, race etc. These observed bias variables can be no more than indicators of the true

underlying variable that causes the differential item functioning. The theoretical elegance

of a Rasch Model within latent classes is hard to deny. A weakness of this model is that

identification can only be achieved when the probability structures are sufficiently different

between latent classes, otherwise sample sizes must become unreasonably large. Here the

incorporation of collateral variables in the Mixed Rasch Model comes into play. External

variables that contain information about the latent class could be incorporated into the

model. For the data sets generated in this simulation the gain of one strongly associated

collateral variable (in terms of standard errors) can be the same, or even exceed, a fivefold

increase in sample size.

As a matter of fact, nothing prevents us from using more than one collateral variable.

The cost in terms of computational procedure is rather small. It might be possible that a

few weakly associated collateral variables can jointly contain enough information to reduce

the variance of the parameter estimates considerably.
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