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Abstract

This paper introduces the Mixed Birnbaum model with collateral information. A simulation

study is conducted to evaluate parameter estimation for this model. More specifically, the

gain of incorporating collateral information into the model is investigated. The results show

that the standard errors as well as latent class assignment can benefit substantially from

incorporating external variables that associate with the latent class variable, especially when

the sample size is relatively large.
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1 Introduction

In the social sciences, sharp definitions of constructs, and therefore clear procedures for

classification or quantification, are often difficult to give. In psychology fuzzy concepts

like extraversion, need for achievement, or, numeric or verbal intelligence constitute the

theoretical building blocks.

To evaluate the validity of psychological theories, we are faced with the problem that for

these fuzzy concepts no single unambiguous measure can be constructed. Instead typically

a set of J items, with fixed discrete response categories, is constructed. These items should

at least elicit some differentiation in responses due to variation in the construct (real valued

trait, or discrete classes) measured.

The observed responses to the J items are postulated to be the outcome of some stochastic

process. The measurement model is the statistical formalization of the process presumed to

underly the response behaviour. If the measurement model adequately summarizes the data,

it can be used to estimate the position of subjects on the trait measured. Depending on the

assumptions underlying the measurement model, these estimates have certain properties.

Stronger assumptions result in measures having stronger measurement properties.

An important class of measurement models consists of the so called item response mod-

els, see Rasch (1960), Birnbaum (1968) and Samejima (1969). This class received a lot of

attention in the psychometric literature, see for instance Heinen (1993), Fisher and Mole-

naar (1995), Linden and Hambleton (1997), Wilson, Engelhard Jr., and Draney (1997), and

Wilson, Draney, and Engelhard (1999). Item response models can be seen as probabilistic

versions of the deterministic model of Guttman (1944).

These probabilistic measurement models provide a framework for inference when using a

set of indirect measures. A problem associated with these procedures is the implicit, due to

the indirect nature of the measures, assumption that the items actually elicit a more or less

comparable response process for all subjects. A straightforward procedure to evaluate this

assumption is to check if the same model holds for different subgroups (f.i. sexe, race, age).

Another, less straightforward, way is to use statistical tools to track unobserved (latent)

groups. A particularly interesting framework is that of Latent Class analysis, see Lazarsfeld

and Henry (1968), or, more recently Langeheine and Rost (1988), or Hagenaars (1993). In

this framework, mostly developed by sociometricians, the goal is to find a partitioning of the

sample such that, conditional on the partitioning, simple (independence) structures result

that adequately describe the data.

In recent years models with both latent traits and latent classes have emerged, see Rost

(1990), Kelderman and Macready (1990), Mislevy and Verhelst (1990), Heinen (1993), and

Rost and Langeheine (1997). The Achilles’ heel of these models are the large standard errors

of the parameter estimates and multi-modality of the likelihood. Smit, Kelderman, and van
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der Flier (1999) found, with the Mixed Rasch model, that the use of collateral information

substantially reduces the standard errors.This paper introduces the Mixed Birnbaum model

with a collateral variable associated with the latent class. It investigates the usefullness of

incorporating collateral information into the Mixed Birnbaum model, thereby enabling the

application of this model to practical situations.

2 The Mixed Birnbaum Model

with Collateral Information

Let the random variable Xij ∈ {0, 1} denote the score of person i on item j, with realization

xij = 1 if the correct response is given, and xij = 0 otherwise. Furthermore, let the random

variable Yi ∈ {0, 1} denote an unobserved indicator for the model describing the response

behaviour of person i. We assume the sample to be a mixture of two latent groups, whose

observed responses are realizations from two distinct Birnbaum models. Finally, let Zi ∈
{0, 1} denote an observed variable that associates with Yi (collateral or concomitant variable).

The probability of response vector xi = {xi1, · · · , xiJ} for subject i with ability parameter

θi, responding according to the Birnbaum model of subpopulation yi (using the assumption

of local stochastic independence, is

Pxi|yi,θiy

def
= P

(
X i = xi|Yi = yi, θiy,βy,αy

)
=

J∏
j=1

exijαjy(θiy−βjy)

1 + eαjy(θiy−βjy)
(1)

where βy = {β1y, · · · , βJy} and αy = {α1y, · · · , αJy} denote the subsample specific item

difficulty and item discrimination parameters respectively. It is assumed that θy ∼ N [µy, σy].

Now reparameterize using θ∗ = θy−µy

σy
, then

Pxi|yi,θ∗i =
J∏

j=1

exijα∗jy(θ∗i−β∗jy)

1 + eα∗jy(θ∗i−β∗jy)

where α∗jy = αjy/σy, β∗jy = µy + βjyσy, and θ∗ ∼ N [0, 1] independent of Y . Next the

collateral variable Z is incorporated into the model. Using standard probability calculus,

the joint probability can be factored as follows

Pxi,zi,yi,θ∗i = Pxi|yi,zi,θ∗i Pθ∗i |yi,zi
Pyi,zi

Assume that all associations between items are explained by the latent trait and the latent

class, so Pxi|yi,zi,θ∗i = Pxi|yi,θ∗i . Furthermore, Z and θ∗ are associated through Y , or more

formally, Pθ∗|yi,zi
= Pθ∗|yi

. Finally, from the reparametrization we have Pθ∗i |yi
= Pθ∗i . From

this it follows

Pxi,yi,zi,θ∗i = Pxi|yi,zi,θ∗i Pθ∗i |yi,zi
Pyi,zi

= Pxi|yi,θ∗i Pθ∗i Pyi,zi
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The model is estimated by maximizing the marginal log-likelihood, where θ∗ is integrated

out over its assumed standard normal distribution (Pθ∗i = φ (θ∗)). The marginal distribution

can be approximated using Gauss-Hermite quadrature

Px,y,z = Pz,y

∫ ∞

−∞
Px|y,θ∗ φ (θ∗) dθ∗ ≈ Py,z

K∑

k=1

Px|y,Tk
A (Tk)

where the Tk and A (Tk) denote the abscissas and weights. The likelihood of the sample,

assuming Y is known, is multinomial

L =
I∏

x
∏

y

∏
z exyz!

∏
x

∏
y

∏
z

(Px,y,z)
exyz ∝

∏
x

∏
y

∏
z

(Px,y,z)
exyz

where exyz denotes the frequency of the response vector {x, y, z}, and I denotes the sample

size. For the log-likelihood, say ` = log (L), we have

` ∝
∑

y

∑
z

e+yz log (Pz,y) +
∑

y

∑
x

exy+ log

(
K∑

k=1

Px|yTk
A (Tk)

)
(2)

A practical computational procedure for the Birnbaum model, using the EM-algorithm of

Dempster, Laird, and Rubin (1977) , was provided by Bock and Aitkin (1981). Apart from

the fact that here a logit is used rather than a probit, the likelihood within a latent class is

the same. The main difference is the sum over the values of the latent class in the second part

of equation 2, and the first part of the likelihood, for which we specify a saturated loglinear

model. The model can be estimated by slightly adapting the procedure as proposed by

Bock and Aitkin. In the M-step of the algorithm, the first part of the log likelihood is also

maximized. Furthermore, in the E-step, the computation of the expected table (as if the

latent variables were observed) given the observed data and the current parameter estimates,

has an extra component where we expand over the latent class

enew
xyz = fxz

eold
xyz

eold
x+z

where enew
xyz and eold

xyz denotes the new and old expected frequencies for the complete table

respectively, and, fxz denotes the observed frequency. Maximum likelihood estimates can be

obtained by repeated application of the E–step and M–step until convergence.

3 Simulation

In order to evaluate the effect of incorporating collateral information into the model, a

simulation study is conducted. Data sets with four hundred and two thousand subjects are

generated according to the Mixed Birnbaum model, with two equal size classes, using two

different parameter sets, as reported in Table 1.
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item

UNEQUAL 1 2 3 4 5 6 7 8 9 10

βj1 0.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

βj2 0.0 -1.0 -1.5 -2.0 -0.5 1.0 0.5 0.0 1.5 3.0

αj1 0.9 0.7 1.1 0.7 1.3 0.9 0.5 1.3 0.5 1.1

αj2 0.9 1.1 0.7 1.1 0.5 0.9 1.3 0.5 1.3 0.7

EQUAL 1 2 3 4 5 6 7 8 9 10

βj1 0.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

βj2 0.0 -1.0 -1.5 -2.0 -0.5 1.0 0.5 0.0 1.5 3.0

αj1 0.9 0.7 1.1 0.7 1.3 0.9 0.5 1.3 0.5 1.1

αj2 0.9 0.7 1.1 0.7 1.3 0.9 0.5 1.3 0.5 1.1

Table 1: Parameter values used in simulation

The parameter sets are called EQUAL and UNEQUAL, referring to the equality of the

discrimination parameters αjy for the classes. The values of the item difficulty and item

discrimination parameters are chosen in the range often encountered with real data. Fur-

thermore, the correlation between the α and β parameters is minimized (0.03). For every

sample size × parameter set combination, one hundred data sets are generated. Thus four

hundred data sets are generated. Next, six extra variables are appended to each data set.

These collateral variables differ in the degree of overlap with the latent class variable. The

bivariate probabilities of the –collateral information × latent class– cross classification are

given in Table 2. The strength of association ranges from independence to equality. The

labels of the six collateral variables (50/50,60/40,· · · ) refer to the corresponding conditional

probabilities.

Association Latent class × Collateral variable

50/50 60/40 70/30 80/20 90/10 equal

LC 1 .25 .25 .30 .20 .35 .15 .40 .10 .45 .05 .50 .00

LC 2 .25 .25 .20 .30 .15 .35 .10 .40 .05 .45 .00 .50

Table 2: Proportions in Latent class × collateral variable cross classification

Every data set is analyzed without a collateral variable, in which case we omit the first

term from the likelihood of model equation 2, and with each of the appended collateral

variables with model. The LEM program, (Vermunt, 1997) , is used to run the analysis.

Additionally, data sets generated with the EQUAL parameter set are analyzed with an

equality restriction on the discrimination parameters (equal over the latent classes).
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4 Results

In the next sections some statistics about the precision of the parameter estimates are re-

ported. These statistics are reported in terms of the difference between the true and es-

timated parameter values, the deviance. Because of the possibility of converging to local

solutions, the fifteen percent highest and lowest deviances are not used. We could, of course,

have used the true values as starting values for the analysis, but then we would have lost in-

formation about the computational procedure. First, the mean of the deviances is reported.

Second, the standard deviations of the deviances are given. Next, some statistics concerning

the convergence are given. And finally, the possibility of assigning subjects to one of the

latent classes is evaluated.

4.1 Mean of the deviances

The mean of the deviances is computed for the item main and item × latent class interaction

parameters aggregated over all items and all replications. First the results for the difficulty

parameters are given in Figure 1.
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Figure 1: Mean deviances of the difficulty parameters. Obtained by aggregating over all items

and replications for every –association × number of subjects × parameter set– combination.
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The absolute value of the mean deviance is plotted against the strength of association

between the collateral variable and the latent class. The absolute value is plotted to facilitate

comparisons. Figure 1 shows that with four hundred subjects, the deviances, on average,

don’t systematically become smaller as stronger collateral information is incorporated. On

the other hand, for data sets with two thousand subjects, the deviances seem to reduce as

stronger collateral variables are incorporated, and the mean is close to zero from roughly the

”60/40” condition onwards.

For the discrimination parameters the results are plotted in Figure 2.
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Figure 2: Mean deviances of discrimination parameters. Obtained by aggregating over

all items and replications for every –association × number of subjects × parameter set–

combination.

From this figure it can be seen that on average the estimated parameters are closer to

their true values when the collateral information becomes stronger. However the difference

in item discrimination in both latent classes (the item × latent class interaction) does not

seem to improve systematically. Moreover, both the discrimination and difficulty parameters

have smaller mean deviances in data sets with two thousand than four hundred subjects.
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4.2 Standard deviation of the deviances

Next we evaluate the variability of the estimated item parameters. It is expected that

the deviances reduce as stronger collateral information is incorporated into the analysis.

From the missing information principle ((Orchard & Woodbury, 1972)) we know that the

complete information is composed of the observed information plus the missing information.

By incorporating a variable that associates with the missing variable (latent class), the

observed information increases, thus reducing the variability of the parameter estimates.

First, the standard deviation of the deviances of the difficulty parameters is plotted in

Figure 3.

strength of association

0.2
0.4

0.6
0.8

1.0
1.2

none 60/40 80/20 equal

400
2000

UNEQUAL: main standard deviation

strength of association

0.2
0.4

0.6
0.8

1.0
1.2

none 60/40 80/20 equal

400
2000

UNEQUAL: interaction standard deviation

strength of association

0.2
0.4

0.6
0.8

1.0
1.2

none 60/40 80/20 equal

400
2000

EQUAL: main standard deviation

strength of association

0.2
0.4

0.6
0.8

1.0
1.2

none 60/40 80/20 equal

400
2000

EQUAL: interaction standard deviation

strength of association

0.2
0.4

0.6
0.8

1.0
1.2

none 60/40 80/20 equal

400
2000

EQUAL: main standard deviation 
with equality restiction

strength of association

0.2
0.4

0.6
0.8

1.0
1.2

none 60/40 80/20 equal

400
2000

EQUAL: interaction standard deviation 
with equality restiction

Figure 3: Standard deviations of deviances of the difficulty parameters. Obtained by ag-

gregating over all items and replications for every –association × number of subjects ×
parameter set– combination.

The standard deviations reduce systematically as the association between the latent class

and the collateral variable becomes stronger. In an earlier paper (Smit et al., 1999) the Mixed

Rasch model (estimated via CML) was evaluated with a similar simulation study. For data

sets with two thousand subjects, the standard errors of the deviances found were very similar

with the standard errors reported in Figure 3. In Figure 4 the standard deviations of the

discrimination parameters are plotted.
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Figure 4: Standard deviation of deviances of the discrimination parameters. Obtained by

aggregating over all items and replications for every –association × number of subjects ×
parameter set– combination.

Again, the main trend is that standard deviations reduce as collateral information is

more strongly associated with the latent class. Furthermore, the equality restriction on the

discrimination parameters more or less halves the standard deviations.
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4.3 Iterations

In Figure 5 the 25th, 50th, and 75th percentile of the number of iterations needed to converge

are reported.
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Figure 5: 25th, 50th and 75th percentile of iterations needed to converge, aggregating over

all items and replications within every –association × number of subjects × parameter set–

combination.

With two thousand subjects, the equality restriction on the discrimination parameters is

very effective when little collateral information is used. At the ”70/30” condition the number

of iterations sharply decreases when no restriction is used. With four hundred subjects, on

the other hand, the equality restriction seems to be the only factor to seriously speed up

convergence, the strength of the collateral variable doesn’t seem to have a strong effect.

4.4 Latent class assignment

Finally the potential to assign subjects to the latent classes is evaluated. For every response

pattern, posterior probabilities can be computed for the latent classes. The ratio of these

probabilities can be used to assign all subjects to one of the latent classes. The classification

is done using the item pattern only, and using both the item pattern and the collateral

variable.
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Figure 6: Percentage correctly assigned subjects.

The percentage correctly classified subjects is bounded when using the items only. This

is because each item pattern is assigned to one latent class, while it is perfectly feasible for

two subjects from different latent classes to have the same item pattern. The left figure

shows that the bound is approached if the number of subjects increases, or if the association

between the latent class and the collateral variable becomes stronger (due to better parameter

estimates). The right figure shows that as the collateral information becomes better the

posterior probabilities get dominated by this variable, and thus approach high percentages

of correctly classified subjects.

5 Conclusion

The incorporation of collateral information into the model, reduces the standard errors in

the item parameter estimates considerably. Fitting a Birnbaum model in small samples can

in itself be problematic. So, fitting a Mixed Birnbaum model with four hundred cases is

bound to be troublesome, unless the classes are expected to answer according to widely

different models (large differences in item parameters between the latent classes). In most

practical situations it seems advisable to obtain as much collateral information as possible

before applying the Mixed Birnbaum model.
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We would like to note that the proposed model can easily be extended. For instance,

generalizations to polytomuous collateral variables or more latent classes are trivial. Since

multiple categorical variables can be represented as one joint categorical variable the incorpo-

ration of multiple collateral variables is also trivial. Furthermore, an unsaturated logit model

for the latent class variable on the collateral variables can be specified, enabling continuous

collateral variables.

Finally, the latent class variable itself can be polytomuous. Note however that the number

of item parameters grows rapidly if no restrictions are imposed.

Within the proposed framework, there seems to be ample possibilities to stabilize the

model by incorporating collateral variables. More research into this area is needed to enlarge

the applicability of the Mixed Birnbaum model in practical situations. But the results

obtained in this simulation study seem promising.
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