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Measurement exchangeability and normal one-factor models
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S

The one-factor model restricts the covariance structure of the observed variables on the basis
of assumptions about their relationship with an unobserved variable. It is hard to justify these
assumptions on substantive or empirical grounds. In this paper, alternative measurement models
are proposed that are based on exchangeability of variables after admissible scale transformations.
They provide an alternative interpretation of the model and do not involve unobserved variables.
They also yield a new one-factor model for sum scales.

Some key words: Difference scale; Exchangeability; Factor analysis; Factor indeterminancy; Interchangeability;
Interval scale; Latent trait model; Measurement model; Permutation invariance; Symmetry model.

1. I

Huynh (1978), and more recently Schuster (2001), based a model for raters on de Finetti’s
(1937) notion of exchangeability to determine whether or not ‘it is indifferent as to which of the
raters is used’. The idea that measurements for the same attribute should be exchangeable dates
back to Gulliksen (1968). He proposed that measurements be interchangeable in the sense that
‘it is indifferent as to which of the measures is used’.

Huynh’s idea of exchangeable raters is as follows. Let the random variable X
i
denote the rating

of rater iµM, with realisation x
i
. Let X= (X

i
; iµM) denote the vector of ratings of |M| raters. If

it is completely immaterial which of the raters is used, their ratings should have perfectly identical
statistical properties. In that case, the joint distribution f

X
(x) should be exchangeable, that is

permutation invariant in the x
i
’s:

f
X
(x)= f

X
(x*), (1·1)

where x*=perm (x). Obviously, the idea is also applicable to other instruments that purport to
measure the same attribute.

By symmetry, (1·1) implies that the measures’ associations are all equal and that the marginal
distributions are all the same; that is,

f
X
c

(x
c
)= f
X
c∞
(x
c∞
), (1·2)

for cmc∞=B, |c|=|c∞| and x
c
=x
c∞
. However, because raters may respond on different scales and

with different precision, marginal distributions of ratings need not be identical. Let s
i
be a mono-

tone increasing transformation of the original measure U
i
into rescaled measure X

i
and lift the

restrictions that the marginal distributions be the same. Measurement exchangeability can then be
defined as follows.
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D 1. Measurement exchangeability of U obtains if, for all c5M and monotone increasing
transformations s

i
: U
i
�X
i
,

f
X
d
|X
c

(x
d
|x
c
)= f
X
d
|X
c

(x
d
|x*
c
), (1·3)

where d is defined as Mcc throughout this paper.

It is easily shown that (1·3) together with (1·2) is equivalent to (1·1).
A specific measurement exchangeable model is obtained by specifying the type of distribution f

and an appropriate class of scale transformations. In most applications it suffices to choose the
distribution from the exponential family (Barakin & Maitra, 1963; Brown, 1986, p. 22). The
conditional distribution of X

d
|X
c
belongs to an exponential family if the density has the form

f
X
d
|X
c

(x
d
|x
c
)=c−1 (t

x
c

) expq ∑k
r=0

g
r
(x
d
)w
r
(t
x
c

)r (1·4)

(Andersen, 1980, p. 20), where w0 (tx
c

)=1 and t
x
c

are the model parameters. If the functions
g0 (xd ), . . . , gk (xd ) are linearly independent f

x
c

= (w
1
(t
x
c

), . . . , w
k
(t
x
c

)) are the canonical parameters.
Clearly, (1·4) is permutation invariant in the elements of x

c
if and only if f

x
c

=f
x*
c

. Furthermore,
(1·4) is permutation invariant in the elements of x

c
if and only if t

x
c

=t
x*
c

and w= (w1 , . . . , wk ) is a
one-to-one transformation.

Now consider the case of the normal distribution.

2. M     

The normal distribution remains normal after linear transformations of the variables. There-
fore, admissible transformations are linear, X

i
=a
i
+b
i
U
i
, additive, X

i
=a
i
+U
i
, multiplicative,

X
i
=b
i
U
i
, and identity, X

i
=U
i
, for interval, difference, ratio and absolute scales respectively

(Stevens, 1946). Note that, since the transformations must be monotone increasing, b
i
>0. First,

consider the identity transformation.
In conditional normal distributions, the parameters t

u
c

= (m
d|u
c

, S
dd|c

), are one-to-one trans-
formations of the canonical parameters, where m

d|u
c

is the conditional mean vector given u
c

and
S
dd|c

is the conditional covariance matrix. These conditional parameters are related to the
unconditional parameters t= (m

d
, m
c
, S
dd

, S
dc

, S
cc
) by

m
d|u
c

=m
d
+B
dΩc

(u
c
−m
c
), S

dd|c
=S
dd
−B
dΩc
ST
dc

(Morrison, 1990, p. 92), where B
dΩc
=S
dc
S−1
cc

, is the matrix of regression coefficients; for simplicity,
assume that S

MM
is nonsingular.

Additive transformations of the U
i
’s do not affect t(u

c
)= (m

d|u
c

, S
dd|c

), because they affect neither
covariances nor u

c
−m
c
. Consequently, normal measurement exchangeable models that admit

identity and additive transformations are observationally equivalent.
The following theorem about the (co)variance parameters of the joint distribution f

U
(u) can now

be proven; see the Appendix for the proof.

T 1. If U has a multivariate normal distribution then

s
ij
=n
i
n
j
, (2·1a)

s2
i
=n2
i
+n
i
v, (2·1b)

where iN jµM, for some n
i
, n
j
>0 and v>0, is equivalent to measurement exchangeability allowing

additive transformations s
i
: U
i
�X
i
.
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It is easily seen that (2·1) yields correlations

r
ij
=q n

i
n
j

(n
i
+v)(n

j
+v)rD . (2·2)

Thus, the sizes of the correlations of a particular measure depend positively on its n
i
and the sizes

of all correlations negatively on v.
Next, consider the case of linear transformations. Since (co)variances are bilinear in their

arguments, one has, for X
i
=a
i
+b
i
U
i
,

cov (U
i
, U
j
)=b−1
i

cov (X
i
, X
j
)b−1
j

, var (U
i
)=b−2
i

var (X
i
).

If cov (X
i
, X
j
) and var (X

i
) satisfy the additive measurement exchangeable model, one has the

following theorem for s
ij
=cov (U

i
, U
j
) and s2

i
=var (U

i
).

T 2. If U has a multivariate normal distribution then

s
ij
=l
i
l
j
, (2·3a)

s2
i
=l2
i
+y
i
, (2·3b)

where iN jµM, l
i
=b−1
i
n
i
>0 and y

i
=b−2
i
vn
i
>0, is equivalent to measurement exchangeability

allowing linear transformations s
i
: U
i
�X
i
.

From Theorem 2, it is seen that the linear measurement exchangeable model is formally identical
to the standard one-factor model with positive loadings (Spearman, 1904; Lawley & Maxwell,
1971, p. 7). In the development of the standard one-factor model, l

i
is defined as the factor

loading, i.e. a parameter that describes the dependence of the observed measure U
i
on an unobserved

common factor h, and y
i
is defined as the variance of the residual score m

i
+l
i
h−U

i
. The model

for additive measurement exchangeability is a special case of that for linear measurement exchange-
ability. It is formally identical to, say, an additive one-factor model, of which the distinctive feature
is that the residual variances are assumed to be proportional to the loadings, that is y

i
=vn

i
.

If the orientation, high or low, of the measurements is unknown, one may drop the assumption
that the scale transformation function be increasing. In that case, the scale transformation is only
assumed to be monotone and b

i
may be negative so that l

i
may be negative. The linear measurement

exchangeable model then becomes formally identical to the standard one-factor model and the
additive measurement exchangeable model then becomes equivalent to an additive one-factor model
with b

i
µ{−1, 1}.

All models can be estimated and tested using the standard theory of structural equation models
(Jöreskog, 1970). The Mx program (Neale et al., 2002) is pre-eminently suited to computing the
estimates of the n and v, as well as suitably constrained scale-transformation parameters. One may
also compare the fit of linear and additive measurement exchangeable models.

3. D

In this paper a new type of measurement model is proposed that is based on relaxations of
exchangeability of observed variables. Normal measurement exchangeable models are formally
identical to the corresponding one-factor models. However, the assumptions from which both
models are derived are quite different. Measurement exchangeable models require that transformed
measures of the same attribute should be exchangeable. On the other hand, one-factor models
require that they should uniquely depend on a common factor. Bartholomew (1984; 1987, Ch. 1),
Goldstein (1980) and Ramsay (1996) have noticed methodological problems with assumptions
based on unobserved variables. The upshot of their observation is that, because a factor is com-
pletely unobserved, assumptions about its distribution and its relationships with observed measures
are essentially arbitrary and hard to justify on substantive or empirical grounds. Researchers may
find assumptions about exchangeability, scale types and distributions easier to justify.
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A

Proof of T heorem 1

For all cµM and u
c
µR|c|, one has the equivalences

f
U
d
|U
c

(u
d
|u
c
)= f
U
d
|U
c

(u
d
|u*
c
)um

d
+B
dΩc

(u
c
−m
c
)=m
d
+B
dΩc

(u*
c
−m
c
)u

B
dΩc

u
c
=B
dΩc

u*
c
uB
dΩc

u
c
=B*
dΩc

u
c
uB
dΩc
=B*
dΩc

,

where B* denotes the permutation of the columns of B corresponding to the permutation u* of
the elements of u. From the last equation, one has B

dΩc
=bd
d
1T
c
, where 1

c
is a vector of ones of

length |c|, and where in bp
q
( p�q) the subscript denotes the elements of the vector and the superscript

the equation in which they occur. From this and B
dΩc
=S
dc
S−1
cc

one has S
dc
=bd
d
bcT
c

, where

bc
c
=S
cc
1
c
. (A·1)

The values of the elements of bd
d

and bc
c

vary across different equations c5M, but, because
s
ji
=bd
j
bc
i
=bd∞
j
bc∞
i

for iµcm c∞NB, jµdm d∞NB and c, c∞5M, there exist n
c
, n
d
and scalar ec such

that

n
c
=bc
c
(ec )−1 , n

d
=bd
d
ec , (A·2)

so that S
dc
=n
d
nT
c
. This proves the necessity of (2·1a).

To prove the necessity of (2·1b), first define g
i
=s2
i
−n2
i

and denote the vector by
g
c
= (g
i
; iµc). Post-multiplying S

cc
=n
c
nT
c
+diag (g

c
) by 1

c
, one obtains from (A·1) and (A·2) that

S
cc
1
c
=bc
c
=n
c
ec=n

c
(1T
c
n
c
)+g
c
.

Solving the last equation for g
c
yields

g
c
=vcn

c
, (A·3)

with vc= (ec−1T
c
n
c
). From (A·3) one has that vc is constant, so that vc=v. Since values of n

c
, g
c

and v do not depend on the equation c, the result holds for all c5M, and so for c=M. Thus
the necessity of (2·1b) for measurement exchangeability follows.

To prove the sufficiency of (2·1a) and (2·1b) for measurement exchangeability note that

B
dΩc
=S
dc
S−1
cc
=n
d
nT
c
{n
c
nT
c
+v diag (n

c
)}−1=n

d
1T
c

diag (n
c
){n
c
1T
c

diag (n
c
)+v diag (n

c
)}−1

=n
d
1T
c
(n
c
1T
c
+vI

c
)−1=n

d
1T
c
{−n
c
1T
c
v−1 (v+nT

c
1
c
)−1+I

c
v−1}

=n
d
1T
c
v−1{−n

c
1T
c
(v+nT

c
1
c
)−1+I

c
}=n

d
v−1{1T

c
−1T
c
n
c
1T
c
(ec )−1}

=n
d
1T
c
v−1{1−1T

c
n
c
(ec )−1}=n

d
1T
c
v−1 (ec )−1 (ec−1T

c
n
c
)=n
d
1T
c
(ec )−1=bd

d
1T
c
,

where I
c
is a |c|×|c| identity matrix. This proves that the matrix of regression weights has identical

columns. Thus (2·1a) and (2·1b) are sufficient for measurement exchangeability.
To prove that n

i
>0 and v>0, note first that, under the constraints (1·1), by symmetry, all

covariances have the same sign. Note further that, from (1·3), all possible conditional distributions
can be obtained by integrating out zero or more u

j
’s ( jµd). By repeated application of the product

rule of conditional probabilities, the joint distribution in (1·1) can be written as products of con-
ditional distributions from (1·3) and a one-variable marginal distribution, so that, under (1·1), all
one-variable marginal distributions must be the same. Therefore, the difference between (1·1) and
(1·3) is the restriction on the one-variable marginal distributions. Since one-variable marginal
distributions do not influence the sign of the covariances, the covariances under (1·1) have the
same sign as those under (1·3). Furthermore, because under (1·1) the covariances all have the same
sign, the covariances under measurement exchangeability (1·3) all have the same sign. The only
way to obtain this from the additive measurement exchangeable model (2·1) is to have n

i
>0.

Furthermore, from (2·2) with v<0 and n
i
>0, one has r

ij
>1, which is impossible, so that v�0.

For f (U) to satisfy the usual regularity conditions, the parameter space should be open so that
v>0. This completes the proof.
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D F, B. (1937). La prévision: ses lois logiques, ses resources subjectives.Ann. Inst. Henri Poincaré 7, 1–68.
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