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Using Factor Scores to Detect G x E 
Interactive Origin of “Pure” Genetic or 
Environmental Factors Obtained in 
Genetic Covariance Structure Analysis 
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Department of Psychology, University of Amsterdam (P.C. M. M., C. V. D.), 
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The Netherlands 

Moment expressions for individual factor scores can serve as simple tests for the 
presence of a particular class of interaction factors that are disguised as pure genetic 
and/or environmental factors. That is, individual genetic and environmental factor 
scores may be used to construct fourth-order moments of these factors in order to 
test whether a common genetic or environmental factor in the multivariate genetic 
factor model is in fact of the interactive origin concerned. Expected fourth-order 
moments are derived for cases with and without interaction. Application of fourth- 
order moments of factor scores to detect interactive origin of common factors is 
illustrated with simulated twin data. 
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INTRODUCTION 

The statistical analysis of genotype-environment (G X E) interaction can be con- 
ducted by means of various approaches, including analysis of variance and regression 
analysis, often in combination with the use of definite measures to assess the environ- 
ment [e.g., Jinks and Fulker, 1970; Fulker et al., 1972; Freeman, 19731 or the geno- 
type [Martin et al., 19871. In human genetics the presence of G X E interaction can in 
some cases affect estimates of genetic and environmental influences as determined in 
twin and family studies [Lathrope et al., 19841. Molenaar and Boomsma [1987] con- 
sidered the application of nonlinear factor analysis [McDonald, 19671 to the study of 
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G X E interaction underlying multivariate continuous measures. The latter approach is 
based on a special rotation of multiple within-families environmental factors that 
maximizes third-order moments of factor scores in order to determine whether a second 
factor that behaves like a within-families environmental factor really is G X E. 

In this paper we discuss a general test of G X E interaction underlying multivariate 
observations that can be applied to covariance structure models with singular genetic, 
within- and between-families environmental factors, or a subset of these factors. The 
test we propose can be applied to covariance models where the factors that make up 
the interaction term are not both present as separate factors in the model. The finding 
of at most a single factor of each type (a common finding in applied genetic covari- 
ance structure analysis) obviates the need to invoke special rotation techniques, but 
requires a test of fourth-order moments of factor scores, as the presence of G X E inter- 
action does not show up in first-, second-, or third-order statistics or, alternatively, in 
a general test of the model (e.g., Rao and Morton [1974]: “Gene-environment inter- 
action has little chance of being recognized by goodness-of-fit tests, even in an unreal- 
istically large body of data”). G X E interaction may be suggested, however, by the 
presence of kurtosis in the raw data. 

The test we propose enables detection of G X E interaction disguised as pure genetic 
and/or environmental factors. Specifically, it will be shown that regular genetic co- 
variance structure analysis cannot distinguish between a genetic factor G and a G X C 
(genotype x between-families environment) interaction factor, or a within-families en- 
vironmental factor E and a G x E or a C x E interaction factor. The use of factor scores 
requires the availability of raw data and implies that the test is only reliably applicable 
to the communal part of the factor model. 

MOMENT EXPRESSIONS UNDER INTERACTION 

Given the assumptions that gene action is additive and mating is random, the 
standard multivariate genetic model for vector-valued phenotypes can be written in 
matrix notation as [e.g., Martin and Eaves, 19771: 

P = A,G + A,E + A,C(l) + E (1) 

where P = (PI, . . . , Pp)’ denotes a random p-dimensional column vector of cen- 
tered phenotypes and ‘ denotes transposition. The random univariate latent variables 
G, E, and C represent genetic, within-families (nonshared) environmental, and between- 
families (shared) environmental factors with p-dimensional loadings A,, A, and A,, 
respectively. E is a random p-dimensional vector composed of influences unique to 
each phenotype Pi, i = 1, . . . , p. For the moment, we will concentrate on the com- 
mon factors G, E and C, which are taken to be mutually uncorrelated Gaussian vari- 
ables with mean zero and unit variance: 

uii = 1 and u,, = 0, i # j ,  i,j c {G, E, C}, 

where uii denotes variance and uij denotes covariance. On an individual basis, G,  E, 
and C in equation 1 represent individual factor scores, i.e., a person’s genetic, nonshared 
environmental. and shared environmental deviations. 
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We first consider the case in which G in equation 1 is replaced by the product G* 
= G x C.  The interaction factor G* will still have unit variance, u ~ * ~ *  = UGG ucc 
= 1, and will be uncorrelated with C (and E): cov[G*, C] = cov[G X C, C] = ~ G U C C  

= 0, where pG denotes the (zero) mean of G. Moreover, the interaction factor G* will 
behave exactly like a genetic factor in that it will have unit correlation in MZ twin 
pairs and an average correlation of 0.5 in DZ twin pairs. Consequently, G* is indistin- 
guishable from G in a genetic analysis based on second-order moments. 

Next, consider the replacement of E in equation 1 by the product E* = E x G (sim- 
ilar remarks apply to the replacement of E by E* = E X C). Again, the interaction fac- 
tor E* will have unit variance and will be uncorrelated with G (and C). Also, the 
interaction factor E* will behave exactly like a within-families environmental factor in 
that it is uncorrelated within and between MZ and DZ twin pairs. Consequently, E* is 
indistinguishable from E in an analysis of seccond-order moments associated with the 
standard genetic model. 

Reasoning along similar lines, it can be seen that the remaining alternatives do 
not lead to an exact correspondence with equation 1. Specifically, replacement of G 
by G* = G X E or C by C* = C x E gives rise to a model with two within-families 
environmental factors, as has been discussed in Molenaar and Boomsma [ 19871. Replace- 
ment of C by C* = C x G gives rise to an additional factor resembling a second genetic 
factor. In this paper we consider the case in which the genetic model given by equa- 
tion l (or a submodel including either G and E, G and C, or E and C) yields a satisfac- 
tory fit to the data. The possibility then exists that G really is an interaction factor G* 
= G x C, or that E is an interaction factor E* = E X G or E* = E X C. 

Simple tests for the presence of interaction can be based on a consideration of 
higher-order moments of the factors. As G, E, and C are taken to be zero mean Gaussian 
variables, it is clear that, irrespective of the eventual presence of interaction factors, 
third-order moments will always be zero. Hence, we will have to take recourse to a 
consideration of fourth-order moments. For instance, if G is a genuine genetic factor, 
then E[G4] = 3uGG*uGG = 3 .  Furthermore, E[G2C2] = uGGuCC = 1. In con- 
trast, if G is an interaction factor G* = G X C, then E[G*4] = ~UGG*UGG*~UCC*UCC 
= 9, whereas, E[G*2C2] = uGG3ucc*ucc = 3. Similar fourth-moment expres- 
sions can be obtained in order to distinguish between a genuine within-families envi- 
ronmental factor E and an interaction factor E* = E x G or E* = E X C (see Table I). 

The moment expressions in Table I have been derived for pure cases only. That 
is, G is either a pure genetic factor or a pure G X C interaction factor. We could, on the 
other hand, consider h brid cases in which G in equation 1 is replaced by G* = aG + 
3 - 2a2. Similar expressions are obtained for hybrid E* factors. Clearly, the expected 
values of these fourth-order moments of hybrid factors can vary smoothly between the 
associated values for the pure cases. Consequently, the proper null hypothesis for test- 

bG X C, where b = /- 1 - a2. It then follows that E[G*4] = 9 - 6a4, while E[G*2C2] = 

TABLE I. Fourth-Order Moments in the Standard Genetic Model With and Without Interaction 

X = G  Y = C  X = E  Y = G  X = E  Y = C  
G = G  G = G x C  E = E  E = E x G  E = E  E = E X C  

UX41 3 9 3 9 3 9 
EIX2YZ1 1 3 1 3 1 3 
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ing against these alternatives is given by the expected values obtained for the genetic 
model without interaction. 

Studies of G X E interaction in plant and animal genetics have shown that genes 
that control sensitivity to environment are often different from genes that control aver- 
age response [Eaves, 19841. This could be modeled by decomposing the genotype into 
G = aG, + bG2, where b = m, while GI  and G2 are mutually uncorrelated, zero 
mean Gaussian variables with unit variance. Accordingly, G X E interaction then can be 
defined as E* = G2E. It now turns out that E[E*4] is not affected, but E[E*2G2] = 
3 - 2a2. Of course, this sharp differential prediction could again be tempered by 
allowing E* to be a hybrid factor. 

In a nutshell, these moment expressions can serve as simple tests for the presence 
of various forms of interaction. Their application requires the availability of the factor 
scores concerned. Estimation of these factor scores is discussed in a companion paper 
[Boomsma et al., 19901 and therefore will not be considered here. Instead we will 
now turn to a simulation study in order to illustrate the validity of the proposed approach. 

AN ILLUSTRATIVE APPLICATION 

The standard genetic model given by equation 1 can be applied to MZ and DZ 
twin data. For the expected matrices of mean cross-products between and within MZ 
and DZ twin pairs we have [e.g., Martin and Eaves, 19771: 

Z M Z B  = 2hgA', + ReR', + 2h,h', + U2 
Z M Z w  = R,R', + U2 
C D z B  = 1.5Rgh', + Reh', + 2h,h', + U2 
CDzw = 0.5hgA', + A,R', + U2 

where U2 is a p x p diagonal matrix of unique variances. This constrained multigroup 
model can be fitted to the data by means of LISREL [Joreskog and Sorbom, 1988; 
Boomsma and Molenaar, 19861. Next, the parameter estimates thus obtained are used 
to estimate the associated factor scores by means of the regression method [Boomsma 
et al., 19901. In the final step, estimates of fourth-order moments of factor scores men- 
tioned in Table I are tested for the presence of interaction. 

To illustrate the validity of our approach we will first consider applications to 
simulated data according to the following models: Model I is the standard factor model 
without interaction; in Model I1 the genetic factor is an interaction factor: G* = G X C; 
in Model I11 the within-family environmental factor is an interaction factor: E* = 
G x E; and in Model IV, E* = C x E. With each model 5-dimensional vectors of observed 
phenotypic values have been simulated for 100 MZ and 100 DZ twin pairs, where the 
factor loadings and unique variances are the same across the four models. True param- 
eter values and maximum-likelihood estimates of the parameters as obtained from the 
simulated data under each model are presented in Table I1 (standard errors are given 
within parentheses). 

All parameter estimates are close to their true values and have correspondingly 
small estimated standard errors. The chi-squared goodness-of-fit statistics of the inter- 
action models II-IV, however, turn out to be higher than expected (remember that in 
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TABLE 11. True and Estimated Factor Loadings (p = 5) 

- E C Unique 

Model I1 

Model I11 

Model IV 

G 

True 5 
6 
7 
8 
9 

Model I 4.72 (.50) 
5.67 (.47) 
6.77 (.40) 
7.62 (.51) 
8.69 (.57) 

x& = 49.38 
4.76 ( . SO)  
5.81 (.48) 
7.28 (.42) 
7.88 (.52) 
8.91 (.58) 

xf = 61.03 
5.74 (.49) 
6.69 (.48) 
7.20(.41) 
8.64 ( .53)  
9.69 (.58) 
x&, = 63.04 
4.54 ( . S O )  
5.48 (.46) 
6.73 (.40) 
7.44(.51) 
8.52 (.57) 

7 
7 
3 
7 
7 
6.85 (.27) 
6.99 (.27) 
2.92(.17) 
6.86 (.29) 
6.90 ( .30) 
(P = ,147) 
6.87 (.27) 
7.04 (.27) 
2.99 (. 17) 
6.92 (.29) 
6.96 (.29) 
(P = ,018) 
6.83 (.27) 
6.80 (.28) 
2.92(.17) 
6.71 (.29) 
6.75 (.30) 
(P = ,012) 
7.07 (.28) 
6.92 (.27) 
2.95 (.17) 
6.99 (.29) 
6.92 (.29) 

x& = 67.04 (P = .005) 

5 
3 
5 
3 
5 
5.47 (.61) 
3.44 (.63) 
5.34 (.64) 
3.64 (.76) 
5.63 (.86) 

5.52 (.61) 
3.50 (.64) 
5.42 (.68) 
3.72 (.78) 
5.72 (.88) 

4.61 (.65) 
2.59 (.68) 
5.00 (.67) 
2.80 (.82) 
4.79 (.92) 

5. I9 (.60) 
3.16(.61) 
5.20 (.64) 
3.35 (.75) 
5.33 (.85) 

1 
1 
1 
1 
1 

1.15 (.08) 
0.96 (.06) 
1.11 (.07) 
1.04 (-06) 
1 .OO (.06) 

1. I6 (.08) 
0.95 (.06) 
1.10 (.07) 
1.04(.06) 
l.00(.06) 

1.16 (.08) 
0.96 (.06) 
1.11 (.07) 
1.03 (.06) 
1 .OO (.06) 

1. I6 (.08) 
0.96 (.06) 
1.10 (.07) 
1.04(.06) 
1.00 (.06) 

Model I: no interaction; Model 11: G = G X (1; Model 111: E = G X E; Model IV: E = C X E. 

each case the true model has been fitted). Apparently the non-normality of the data 
simulated according to these models has a deteriorating effect on this statistic. 

Table 111 presents for each model the estimated fourth-order moments mentioned 
in Table I. Expected deviations from standard values for each model have been under- 
lined. Notice that to distinguish Model 111 (E* = G X E) from Model IV (E* = E X  C) 
one needs to compare E(G2E2), which is 2.899 for Model 111 and 0.764 for Model IV, 
with E(E2C2), which is 0.987 for Model 111 and 4.012 for Model IV. Table 111 shows 
that each model is identified by the expected pattern of fourth-order moments. 

As a further illustration of the power of the present approach we consider an appli- 
cation to simulated bivariate phenotypic values for 100 MZ and 100 DZ twins pairs. In 
this case, four observations are available for each pair, whereas the complete genetic 
model given by equation 1 involves five factor scores for each DZ twin pair. Hence, 
the required estimates of these factor scores can no longer be reliably obtained. Instead, 
we will consider bivariate phenotypic values simulated according to a submodel of 
equation I ,  which only includes genetic (G), within-family environmental (E), and 
unique (E) factors. In particular, we consider applications to simulated data according 
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TABLE 111. Fourth-Order Moments (D = 5 )  

E(G4) WE4) W4) E(G*E*) E(GZC2) E(E2C2) 

Model I 2.989 3.175 3.514 1.066 1.016 I .065 
Model I1 8.746 3.102 3.566 1.016 3.501 1.121 
Model 111 2.975 8.283 3.51 I 2.899 1.012 0.987 
Model IV 2.942 10.677 3.531 0.764 0.996 4.012 

~ - 
- 

- 

Model I: no interaction; Model 11: G = G x C; Model 111: E = G X E; Model IV: E = C X E. 

TABLE IV. True and Estimated Factor Loadings (p = 2) 

G E Unique 

True 5 
7 

Model A 4.63 (.40) 
6.77 (.37) 

,y$ = 13.01 

Model B 5.54(.41) 
7.37 (.39) 
x: = 20.77 

Model A: no interaction; Model 9: E = G X E. 
“Error variances constrained to be equal. 

6 1 

4 1 

6.02 (.25) 0.97 (.07) 
4.11 (.23) 0.97 (.07)a 
( P  = .072) 
5.99 (.26) 0.98 (.07) 
4.00 (.23) 0.98 (.07)” 

( P  = ,004) 

TABLE V. Fourth-Order Moments (p = 2) 

E G 4 )  WE4) E ( G ~ E ~ )  

Model A 3.075 3.249 1.044 
Model B 3.085 8.315 2.727 

Model A: no interaction; Model 9: E = G X E. 

- - 

to a standard model (A) and a second model (B) involving E* = G X E interaction. 
Again, both models have the same factor loadings and unique variances (Table IV). 
For both models, maximum likelihood estimates, etc., are given in Table IV. The 
estimated fourth-order moments of factor scores under scrutiny are presented in Table 
V. It can be seen that even with bivariate data the interaction of G X E is reliably detected. 

DISCUSSION 

The present approach to the detection of G X E interaction is based on the estima- 
tion of fourth-order moments of factor scores and hence pertains to the communal part 
of the factor model [cf., Boomsma et a]., 19901. The factor scores concerned are esti- 
mated according to the regression method involving the use of estimated loadings and 
unique variances. Consequently, this approach involves the use of a threefold compo- 
sition of estimators and therefore can be expected to yield a threefold accumulation of 
estimation errors. In addition, estimates of fourth-order moments in themselves appear 
to be unreliable [Ratcliff, 19791. In spite of all this, the results of our applications to 
simulated data involving 100 MZ and 100 DZ twin pairs and 5-variate or 2-variate 
observations turn out to be quite comforting. It appears, then, that the power of the 
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present approach may not be too small to detect the presence of interaction in realistic 
situations. Moreover, the regression method for the estimation of factor scores can be 
improved by correcting fo the uncertainty inherent in the estimated factor loadings and 
unlque variances. These issues require extensive elaboration, however, and will be 
considered in a forthcoming paper. 

The obtained maximum likelihood solutions appear to be reliable in spite of the 
non-normality of phenotypic observations due to factor interaction. In contrast, 
unweighted least-squares estimates of these parameters obtained with the same data 
turn out to be entirely inferior. The reason for the good performance of maximum 
likelihood estimators has been indicated by Gourieroux, Monford, and Trognon [ 19841 
who show that these estimators keep their desirable qualities under quite general con- 
ditions, i.e., if the data follow a distribution of arbitrary exponential type [see also 
Browne and Shapiro, 19881. Our simulation results indicate, however, that the chi- 
squared goodness-of-fit statistic is sensitive to departures from normality. To assess 
the fit of a model, then, one should also consider the magnitudes of normalized residu- 
als, for example. 

In our illustrative applications we did not consider the sometimes intricate issue 
of model selection. Instead, we only fitted the true model to the data in order to show 
the validity of our approach to the detection of factor interaction. It remains to be seen 
how much the presence of interaction, implying non-normality of the observations, 
affects the course of model selection. One intriguing development, based on artificial 
intelligence techniques [Glymour et al., 19871, may become of use in this respect. 

In conclusion, a consideration of fourth-order moments of factor scores in the 
standard genetic model seems to be a promising way to detect the presence of factor 
interactions. The restriction to multiplicative factor interactions is defensible because 
it involves the most important term in a Taylor expansion of any nonlinear function 
describing the exact form of interaction at stake. The proposed method may be of ser- 
vice to detect factor interaction disguised as pure genetic and/or environmental factors 
and is easy to apply. That is, whatever nonlinear functional dependency between G 
and E may exist, it will be generically described tu an important degree by a multipli- 
cative interaction described in this paper. At present we do not know whether failure 
to find evidence for this multiplicative interaction precludes G X E interaction of any type. 
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