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Observed differences in phenotypic means between groups such as par- 
ents and their offspring or male and female twins can be decomposed 
into genetic and environmental components. The decomposition is based 
on the assumption that the difference in phenotypic means is due to a 
difference in the location of the normal genetic and environmental dis- 
tributions underlying the phenotypic individual differences. Differences 
between the groups in variance can be accommodated insofar as they 
are due to differences in unique variance or can be modeled using a 
scale parameter. The decomposition may be carried out in the standard 
analysis of  genetic covariance structure using, for instance, LISREL. 
Illustrations are given using simulated data and twin data relating to 
blood pressure. Other possible applications are mentioned. 

KEY WORDS: group differences in phenotypic means; genetic means; environmental 
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I N T R O D U C T I O N  

Behavior  genetics is concerned with the relationship between genotypic  
and environmental  differences and phenotypic  differences in behavior .  
Where  control  can be exercised over  the genetic and environmental  in- 
fluences on the subjects,  differences in means  and var iances  between 
groups (e .g . ,  true breeding lines and their crosses) m a y  be studied. Where  
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this is not the case, as in human populations, behavioral genetic analyses 
are usually limited to individual differences (Mather and Jinks, 1977). 

Nonetheless, attempts to obtain a biometric decomposition of phe- 
notypic means in human samples have been undertaken. Notably, McArdle 
(1986) has fit individual growth curves to repeatedly measured twins and 
simultaneously obtained estimates of genetic and environmental contri- 
butions to individual differences in the shape and level parameters. A 
similar approach was taken by Vandenberg and Falkner (1965), using 
less sophisticated methods, and is well-ktiown in livestock research (e.g., 
Grossman and Bohren, 1985). In two papers Dolan et al. (1989, 1991) 
have considered the analysis of means and individual differences by 
expressing the phenotypic means as linear combinations of genetic and 
environmental (i.e., latent) means. Their approach can be conveyed sim- 
ply as m = An, where m is a vector of phenotypic means, A can be 
seen as a weight matrix, and n is the vector of latent means. The matrix 
A and the vector m are known, so that n can be estimated given that A 
is full column rank. The information in A is obtained from the standard 
genetic covariance structure analysis, be it based on the common factor 
model (Martin and Eaves, 1977; Heath et al . ,  1989) or some variation 
of the simplex model (Eaves et al . ,  1986; Boomsma and Molenaar, 1987; 
Hewitt, 1990). 

There are two points to be made about this approach. First, one 
requires multiple indicators of the common latent variables for purposes 
of identification. Second, one has to take into account the arbitrariness 
of measurement scale and the possibility that the phenotypic means are 
only in part due to the latent variables in the analysis. The latter point 
implies that n should contain parameters to take into account the mea- 
surement origin. In repeated-measures designs, one naturally has multiple 
indicators measured on a commensurate scale so that, given certain test- 
able assumption, these requirements can be met (see Dolan et al . ,  1991). 
In the cross-sectional designs, on the other hand, one may have multiple 
indicators, but these will generally not have commensurate scales. This 
makes it difficult to take into account the possible difference in mea- 
surement origin. In Dolan et al. (1989) this point is ignored, prompting 
Hewitt et al. (1989) to remark that this approach "implies a strong 
hypothesis about the action of the genes and/or the environment and about 
the scale of measurement. This strong hypothesis is unlikely to be con- 
firmed in practice for psychological data" (p. 763). 

In the present paper we apply a method due to S6rbom (1974) to 
multivariate data collected in a cross-sectional twin study. S6rbom's ap- 
proach takes into account the arbitrariness of the measurement scales by 



Decomposition of Multivariate Phenotypic Means 321 

estimating differences in means between groups instead of absolute latent 
means within a group (as by Dolan et al., 1989). 

The S6rbom method allows a decomposition of multivariate phe- 
notypic differences in means into genetic and environmental components 
based on the following model concerning the constitution of the pheno- 
typic means. A phenotypic mean is modeled as a linear combination of 
(1) a contribution due to those genetic and environmental factors that 
also contribute to the individual differences and (2) a contribution of 
unknown origins which may include the contribution of those genetic 
and environmental factors which contribute to the overall level but not 
to the individual differences. The former are referred to as species-var- 
iable influences; the latter, as species-constant influences. The differ- 
ences in phenotypic means are assumed in the present approach to be 
due to differences between the groups in the contributions to the phe- 
notypic means of the species variable genetic and environmental factors. 

The decomposition of the phenotypic means observed in human 
samples is carried out under the following conditions: (1) the species- 
constant influences are assumed to be identical in both groups, and (2) 
the latent environmental and genetic variables have either identical var- 
iances across the groups or differences in variances which can be modeled 
by means of a scalar parameter (see below) or as differences in unique 
variance. The latter condition is necessary because it is not possible to 
identify both differences between groups in the common-factor variances 
(other than those attributable to a scalar effect; see below) and differences 
in location parameters of the common latent distribution; the former, 
because it is not possible to identify mean differences originating from 
differences in species-constant influences. The assumptions mentioned 
here are shown to be testable in the analysis of covariance structure 
(Martin and Eaves, 1977). 

The S6rbom method is explained for twin data, where group mem- 
bership is determined by gender, and applied to simulated and real twins. 
Other possibilities, including parent-offspring comparison and repeatedly 
measured twins, are mentioned. 

SORBOM'S  M E T H O D  APPLIED TO M U L T I V A R I A T E  TWIN 
DATA 

Consider the multigroup biometfical common-factor model (cf. Martin 
and Eaves, 1977): 

Yzk = V + A'q~, + ~k (1) 
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where the subscript z denotes the zygosity (dizygotic or monozygotic) 
and k denotes the group membership (subject subscripts are dropped to 
ease presentation). Let p indicate the number of observed variables mea- 
sured obtained from each individual and q the number of common factors 
underlying the covariance structure of the p variables. Then Yzk (2p • 
1) is a vector of observed variables of the first, Yzk~ (/9 x 1), and second 
Yz~2 (t9 x 1), member of a twin pair: Yzd = [Yz~/, Yzk2t]- The 2p- 
dimensional vector r = [1, *t, v ' t ] ,  where v* (p x 1) contains the 
measurement origins of the observed variables. The measurement origins 
consist of an arbitrary scale constant and the contribution of species 
constant genetic and environmental factors. These parameters are pooled 
because they are indistinguishable in the present model. The matrix A 
(2p x 2q) contains the factor loadings of the observed variables on the 
common latent genetic and environmental variables. The parameters in 
A are invariant across groups in accordance with the assumption that the 
latent variances are identical across the groups. The 2q-dimensional vec- 
tor "q~k contains the common latent genetic and environmental variables 
of each member of a twin pair of zygosity z in group k and the 2p- 
dimensional vector ~k contains unique factors in group k and zygosity 
Z. 

The covariance matrix of group zk can be written as 

= A%,,A' + (2) 

where ~zk is the (2q • 2q) covariance matrix of the common factors in 
group zk, and Ozk (2p • 2 p)  the covariance matrix of the unique factors 
in group ~k" The matrix Ozk is taken to be diagonal, although this is not 
necessary. 

The phenotypic averages are a linear combination of the measure- 
ment origins and the common-factor means. The unique factors are as- 
sumed not to contribute to the observed means. 

E[V~] = 1 ,  + ~ [ n  d (3) 

We have now dropped the subscript denoting the zygosity, as the phe- 
notypic means are taken to be equal across the zygosities but not across 
the groups. Equation (3) clarifies the necessity of invariant (across groups) 
factor loadings. If the factor loadings were not invariant, a difference in 
phenotypic mean vectors could not be interpreted unambigously as being 
due to differences in the means of factors. It could be due to either a 
difference in factor loading or a difference in mean or both. This re- 
quirement is reminiscent of the requirement of homogeneity of (co-)var- 
iances in the multivariate analysis of variance (MANOVA) model. In 
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the present case, however, unequal variances can be accommodated to 
a degree. First, differences across the groups in unique variances (Oa) 
can be modeled. Second, differences in the dispersion in the common 
factor space can be accommodated insofar as they are attributable to a 
simple scalar effect. In this case Eq. (2) is replaced by 

Z~k = A k r k ~ k r ~  t + Ozk (4) 

where the diagonal matrix Fk (2q x 2q) equals ~/e/and ~& represents the 
scale parameter in group k. This device, which is applied below, allows 
one to retain an equal ratio of the common additive genetic variance to 
the common (in the sense of the common factor) environmental variance 
across the groups, while the absolute values of these variance terms may 
differ. The introduction of unequal unique variances and the introduction 
of a scalar effect leave the equation for the means [Eq. (3)] unaffected. 

Let us assume that the group membership is determined by gender 
(m for male, f for female). Given three (p = 3) observed variables for 
each subject and common additive genetic and unshared environmental 
factors (q = 2), Eqs. (2) and (3) imply the following equations for the 
phenotypic means: 

[&rnzf/ = Vi "~ X~E[Gf] + )teiE[Ef] 

[&mzm/ = l"i -1" hg/E[Gm] -b ~ke/E[Em] (5)  

~dzfi = 1)l q- )tgiE[Gf] -f- XeiE[Ef] 

O.azr~ = v,  + herE[Gin] + he/NEm] 

Here IX~zn is the observed phenotypic mean of the monozygotic female 
(mzf) twins on variable i (i = 1,3). Each factor loading, X, has two sub- 
scripts which denote, respectively, whether it is a genetic or an environ- 
mental factor loading (g or e) and the variable to which the loading 
belongs (i = 1 to 3). Considering only the nonredundant equations of the 
phenotypic means (redundancy arising from the assumption that means 
differ across the sexes but not across the zygosities), we have the fol- 
lowing linear equations: 

= + Xof [Ef ]  + x etGd, i = 1, 3 (6) 
txim = ve + h~eE[Em] + kg/E[Gm], i = 1, 3 

Assuming that the factor loadings are known, there are six equations and 
seven unknown parameters (E[Ef], E[Ge] , E[Em] , E[Gm] , vl, v2, v3) so 
that, given three phenotypic variables, the parameters are not identified. 
The addition of phenotypic indicators may render the number of equa- 
tions greater than the number of unknowns, but even then the equations 
can be shown to be inconsistent due to the equality of the factor loadings. 
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Following SOrbom (1974), this problem is solved by fixing either the 
female or the male latent means to equal zero, so that the parameters are 
reduced to z [C] = E[Cm] - E [C , ] ,  z [E] = E[Em] - E[Ef] ,  
and v3. In this way the differences in latent means are modeled as con- 
trasts, yielding the following equations: 

p~f = v, + haAE[E ] + k.g~E[G], i = 1, 3 (7) 

~im = vi i = 1, 3 

By equating the parameters v~ with the phenotypic means in group m, 
these parameters now consist of three components. Two components are 
indistinguishable: the contributions of species constant factors and the 
contribution of an arbitrary measurement origin. The third component 
consists of the contribution of the species variable factor in group m. 
The parameters AE[E] and AE[G], as mentioned above, now represent 
the differences in the contributions of the species variable factors between 
the groups. 

The hypothesis is tested that the common factors (E and G) account 
for the differences in phenotypic means between the sexes. It is possible 
to specify biometric models for those components of variance which are 
not explained by the common factors (Martin and Eaves, 1977). Such 
unique submodels may contain group-related differences in parameters 
because we are concerned only with the contribution of the communal 
part of the model to the difference in the mean vectors. However, the 
introduction of additional parameters to model the contribution of unique 
terms to the phenotypic means would quickly render the model for the 
means void in the sense that the parameters would outnumber the equa- 
tions. 

The model has been discussed for the situation in which the com- 
munal part of the model consists of an additive genetic factor and an 
unshared environmental factor. The inclusion of additional common la- 
tent variables (e.g., a shared environmental factor) would require addi- 
t ional  observed var iables .  However ,  if one is sat isf ied with the 
decomposition into G and E components without estimating the respec- 
tive contributions of unshared and common environmental influences, 
the introduction of a shared environmental factor can be avoided by 
estimating the correlation between the environmental factors of the twins. 
This is demonstrated below. 

Generally one will minimally require one phenotypic variable in 
addition to the number of distinct latent common variables which con- 
tribute to the means. In the case of a bivariate phenotypic vector, one 
can, of course, still test the hypothesis that a group-related difference in 
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the phenotypic  means  vectors  is due to any one of  the communa l  latent 
factors.  

Having  set out the principle of  the S6rbom method of  the decom- 
posing phenotypic  means ,  we  now give a number  of  applications. First, 
the model  is illustrated using simulated twin data. 

I L L U S T R A T I O N  U S I N G  S I M U L A T E D  T W I N  D A T A  

In the present illustration using simulated data, we  again assume 
that gender  determines group membersh ip .  Four samples  were  generated 
consisting of  a trivariate phenotype in 50 monozygot ic  (MZ) female  twin 
pairs,  50 M Z  male  twin pairs,  50 dizygotic (DZ) female  twin pairs,  and 
50 D Z  male  twin pairs.  The c o m m o n  part o f  the biometr ical  factor model  
contains an additive genetic factor and a specific environmental  factor 
which are uncorrelated.  The additive genetic correlations between the 
genetic factors are .5 for the D Z  twins and 1.0 for the M Z  twins. Unique 
var iances ,  which are uncorrelated between the phenotypes  of  the twin 
pairs,  were  chosen to equal 6 for each variable.  

True parameter  values  are given in Table 1. The fol lowing latent 
mean values were  chosen: E[Em] = 1, E[Gm] = 3, E[Ef] = 2, E[Gf] 
= 2. The contrasts then equal AE[E]  = - 1  and AE[G] = 1. These 

Table I. True and Recovered Parameters (ML Estimates) for the Analysis of 
Simulated Twin Data" 

Covariance 

Parameter True No means With means 

kgl 3 3.262 (.27) 3.248 (.27) 
Xg2 4 4.602 (.48) 4.495 (.48) 
Xg3 2 2.407 (.34) 2.494 (.30) 
Xel 2 1.985 (.24) 1.975 (.24) 
,ke2 5 5.002 (.41) 5.155 (.37) 
he3 3 3.246 (.32) 3.019 (.23) 
vl 10 9.584 (.37) 
v2 18 18.229 (.57) 
va 10 10.059 (.36) 
AE[G] 1 1.063 (.32) 
AE[E l - 1  - 1.219 (.32) 
• 86.25 (75) 109.86 (94) 
p .17 .13 

a Standard errors are given in parentheses. Error variances are not shown, hgl denotes 
the factor loading of the first phenotypic variable of the genetic factor, vl denotes the 
measurement origin of the first phenotypic variable. AE[G] denotes the contrast E[GI) 
-- E[G~]. 
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parameters give rise to male phenotypic means equaling 11, 17, and 9. 
The female phenotypic means are 10, 18, and 10. 

First, the covariance structure is analyzed using the program LIS- 
REL VII (J6reskog and S6rbom, 1988). The estimation in this and all 
subsequent analyses is by normal-theory maximum likelihood (ML). When 
the assumption of multivariate normality proves untenable, Browne's 
(1984) asymptotically distribution free (ADF) estimator can be used to 
obtain asymptotically correct results (Browne, 1984) (in LISREL VII 
this loss function is referred to as weighted least squares). Muth6n (1989, 
Eqs. 6 and Eq. 16) has extended this estimator for multigroup analyses 
including structured means, so that it can be applied readily in the present 
context. The ADF estimator does, however, require large sample sizes. 

The results are shown in Table I. The overall goodness of fit is 
acceptable [• = 86.25, p = .17]. The parameter estimates of the 
factor loadings and the unique variances do not, judging by their standard 
errors, differ significantly from their true values. Having established the 
simple genetic model as providing a good explanation of the covariance 
structure, the means are introduced. The results are again shown in Table 
1. First, the overall goodness of fit is acceptable [• = 109.86, p 
= .13]. The factor loadings are again close to the true values and similar 
to those obtained in the previous analysis. The true differences in latent 
means equal AE[G] = 1 and AE[E] = - 1  and are estimated as 1.063(SE 
= .322) and - 1.219(SE =.321) .  

It was mentioned in the Introduction that the decomposition of the 
phenotypic means into measurement origins and contrasts is based on 
the assumption that those (species constant) factors that contribute to the 
means, but not to the variances, are identical in the groups. It is important 
that the model be rejected when these factors differ between the groups 
in their contributions to the means. If the model cannot be rejected in 
these circumstances, any estimated difference in the latent means cannot 
unequivocally be attributed to those genetic and environmental factors 
which also contribute to the individual differences. To test this aspect of 
the model, the female data were transformed adding a constant to the 
first and third phenotypic means and subtracting it from the second (l~ae 
+ c, Ixzf + c, Iz3f + c). Three values for c were chosen to equal 1, 2, 
and 3 so that we may see the effect of an inceasingly greater departure 
of the assumption of identical species constant influences. In the male 
samples, the original phenotypic means were retained. The analysis of 
the augmented moment matrices were repeated after each transformation. 
The following X2(94) were obtained: 109.86 (c = 0, p = .13), 114.48 
(c = 1, p = .07), and 123.72 (c = 2, p < .01). When c was set to 
equal 3, it was not possible to obtain estimates because the estimation 
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procedure consistently failed to converge. As such the model is rejected 
only when c = 2. The failure to reject the model when c = 1 is attrib- 
utable partly to the fact that minor changes in the factor loadings may 
partly compensate for the difference in means. The analyses were there- 
fore repeated with the factor loadings fixed to the~values obtained from 
the analysis of covariance structure without the means. We do subtract 
degrees of freedom for these fixed factor loadings so that the number of 
degrees of freedom remains the same. The • values thus obtained 
equaled 113.67 (c = O , p  = .08), 127.84 (c = 1 , p  = .01), and 215.74 
(c = 2 , p  < 0.001). 

A P P L I C A T I O N  T O  R E A L  T W I N  D A T A :  B L O O D  PRESSURE 

To illustrate the S6rbom method using real data, data relating to 
blood pressure are analyzed. As a part of a larger experiment three var- 
iables relating to blood pressure were recorded in a sample of twins under 
a number of  experimental conditions [see Boomsma et al.  (1990) for 
details of this experiment]. These variables are systolic (SYST), diastolic 
(DIAST), and mean arterial pressure (MAP) recorded in a rest condition. 
This condition followed a choice reaction time task and preceded a mental 
arithmetic task. The sample sizes were 35 MZM pairs, 31 DZM pairs, 
35 MZF pairs, 30 DZF pairs and 29 DZOS pairs. Summary statistics are 
given in Table II. 

Again, LISREL is used to obtain normal-theory ML estimates. In 
view of the requirement of multivariate normality, marginal and multi- 
variate skewness and kurtosis were calculated for each group. These 
statistics are presented in Table II. Multivariate skewness and kurtosis 
(Mardia, 1980) are tested using asymptotic sample distributions. Let ri 2 
= (X i " E[xi])tS -1 (x i - E[xi] ) and r 0 = (xi -E[xi]tS -1 (Xj- E[Xj]). Here xi  
is the q-variate phenotype of case i and S is the sample covariance matrix. 
Multivariate kurtosis is calculated as 1In ~ri  4, and multivariate skewness 
as 1/n 2 EErij  3 (n is sample size). The asymptotic sample distributions are 
given by Mardia (1980, pp. 310-311). Mardia's measure of relative 
multivariate kurtosis, ,q, which is derived from the multivariate kurtosis 
statistic, is also given in Table II. This measure often appears in articles 
using ML estimation, as an informal criterion of peakedness: "q is the 
ratio of the observed multivariate kurtosis to the expected multivariate 
kurtosis. Under multivariate normality ~q thus equals one. The PRELIS 
program (J6reskog and S6rbom, 1986) includes an option to calculate 
this statistic. 

There is no evidence of a departure of multivariate normality judging 
by the univariate skewnesses and kurtoses except perhaps in the MZF 
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Table II. Blood Pressure Data Summary Statistics a 

Monozygotie males (n pair = 35) 

Covariance matrix 
t lsyst  105.19 
tldiast 43.73 55.85 
t lmap 62.85 45.56 58.95 
t2syst 73.18 27.85 42.45 
t2diast 32.70 23.69 28.88 
t2map 42.88 20.53 31.15 

Mean 129.69 72.94 90.90 
Skew .35 - .08 .22 
Kurtosis .37 - .57 .19 

Multivariate 
skewness 11.8 

Multivariate 
kurtosis 48.7 

150.00 
55.99 43.80 
74.00 43.52 

131.63 73.60 
.13 .07 

- . 3 4  .81 

-q -- 48.7/48.0 = 1.01 

Dizygotic males (n pair = 31) 

Covariance matrix 
t lsyst  139.01 
tldiast 86.36 84.76 
t lmap 98.53 75.26 85.23 
t2syst 47.87 24.52 27.56 
t2diast 46.39 33.27 28.67 
t2map 42.90 27.21 27.64 

Mean 129.61 73.84 90.80 
Skew .01 - .30 .30 
Kurtosis - .  11 .72 .33 

Multivariate 
skewness 8.8 

Multivarate 
kurtosis 44.2 

Monozygotie females (n pair = 35) 

Covariance matrix 
t lsyst  93.27 
tldiast 23.28 21.07 
t lmap 49.02 23.85 
t2syst 65.37 12.89 
t2diast 20.29 11.37 
t2map 35.41 16.24 

Mean 124.27 75.13 
Skew .94* .51 
Kurtosis .40 .74 

Multivariate 
skewness 10.1 

Multivarate 
kurtosis 47.0 

171.89 
87.83 81.17 

105.66 75.24 

129.65 74.17 
.65 - . 4 4  

1.36" - . 0 7  

-q = 44.2/48.0 = 0.92 

42.73 
27.46 104.13 
14.97 38.32 36.09 
26.17 54.12 35.33 

90.24 125.46 73.81 
1.03" .21 .73* 
1.40" - .50 .59 

"q ----- 47.0/48.0 = 0.98 
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Table II. Blood Pressure Data Summary Statistics" (Continued) 

Dizygotie females (n pair = 30) 

Covariance matrix 
tlsyst 196.51 
tldiast 69.78 
tlmap 93.46 
t2syst 73.26 
t2diast 31.87 
t2map 43.96 

Mean 126.29 
Skew .88* 
Kurtosis .44 

Multivariate 
skewness 

Multivarate 
kurtosis 

43.89 
45.76 66.32 
23.81 30.42 183.33 

9.65 9.68 76.10 47.45 
12.61 18.22 109.73 53.66 80.32 

77.18 91.86 125.69 75.85 90.51 
- .20 .28 .63 .31 .52 
- . 2 9  . 7 9  - . 4 3  - . 8 5  - . 2 9  

13.4 

48.0 "q = 48.0/48.00 = 1.00 

Dizygotie Opposite Sex (n pair = 29) 

Covariance matrix 
tmsyst 177.16 
tmdiast 106.86 87.47 
tmmap 104.35 79.10 82.48 
tfsyst - .74 - 2.56 7.00 
tfdiast 4.40 1.56 3.70 
tfmap - 5.38 -- 5.47 - 2.53 

Mean 130.07 73.65 91.54 
Skew .52 .09 .40 
Kurtosis - .57 - .46 - .43 

Multivariate 
skewness 10.5 

Multivarate 
kur*osis 44.8 

122.89 
54.51 44.97 
68.55 44.86 60.67 

123.50 74.03 89.33 
.55 .57 .38 

- -  . 6 1  - -  . 5 0  - .64 

rl = 44.8/48.0 = 0.93 

tlsyst denotes systolic blood pressure in twin 1. Diast stands for diastolic blood 
pressure, and map for mean arterial pressure. Significance of univariate skew- 
nesses and kurtoses established using Royston (1985); significance of multivar- 
iate skewness and kurtoses tested against theoretical sample distribution (see 
Mardia, 1980). 

* p < .05. 

sample .  Cau t ion  should  be taken in d r awing  hard and fast conc lus ions ,  

h o w e v e r ,  in v i e w  of  the fact  that the present  s ample  s izes  do not  j u s t i fy  

the use o f  a symp to t i c  s ample  d is t r ibut ions  o f  e i ther  the mu l t i va r i a t e  or  

the un iva r i a t e  s tat is t ics .  The  A D F  es t ima to r  ( B r o w n e ,  1984;  Muth6n ,  

1989) m e n t i o n e d  a b o v e  is not  cons ide red  here  in v i e w  o f  the smal l  s ample  

s izes.  

W e  obse rve  the f o l l o w i n g  m e a n s  in the total  f ema le  sample  (N = 
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159, i.e., 35 * 2 MZF twins + 30 * 2 DZF twins + 29 DZOS female 
twins): 124.9 (SYST). 75.1 (DIAST), and 90.2 (MAP). In the total male 
sample (N = 161, derived analogously), we find 130.1 (SYST), 73.6 
(DIAST), and 91.0 (MAP). 

Table III contains the X 2 statistics for the models that were fit to the 
5 (6 x 6) covariance matrices. We started with the following simple 
model: common E1 and G factors and unique variances (as in the analysis 
of simulated twin data above). This model is denoted model 1 in Table 
III. All estimated parameters are constrained to be equal across the sam- 
ples. This model gave a • equal to 122.5 (p = .03). Introducing a 
scale parameter [see Eq. (4)] resulted in a significant (Table III) im- 
provement in fit: X2(95) equal to 108.95 (p = .15). Subsequently the 
unique variances were free to vary across the sexes. The improvement 
in fit was again found to be significant: X2(92) equal to 98.5 (p = .30). 
Finally, the correlation between the environmental factors was estimating 
allowing for shared environmental influences. The improvement in fit 
was significant at the .05 level: • equal to 94.05 (p = .40). The 
correlation between the twin environments was estimated as, .274 (SE 
= .11), indicating that about 8% of the environmental variance is shared. 

Table III Model Selection R.esults a 

df X 2 p 

Model (means unconstrained) 
1: E l ,  G, and constrained | 
2: E l ,  G, constrained 19, and 

scale parameter 
3: E l ,  G, unconstrained 19, and 

scale parameter 
4: E l ,  G, unconstrained 19, 

scale parameter, and r(E1,E2) 

1 vs 2: sex difference in scale 
2 vs 3: sex difference in | 
4 vs 3: shared environment 

Model (structured means in model 4) 
5 ,:~:[E] 
6 ~[a] 
7 AxE[El and AE[G] 

5 vs 7: AE[G] = 0 
6 vs 7: AxE[E] = 0 

96 122.5 .035 
95 108.9 .155 

92 98.52 .302 

91 94.05 .400 

1 13.6 <.001 
3 10 <.02 
1 4.5 .032 

117 165.5 .002 
117 120.9 .38 
116 116.3 .47 

1 49.2 <.001 
1 4.6 .030 

" Model 1 has a common unshared environmental (El)  and additive genetic factor (G) 
and a diagonal matrix containing unique variances (19). All estimated parameters are 
constrained to be equal across the sexes in model 1. 
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The parameter estimates for this model (model 4 in Table III) are given 
in Table IV. Figure la depicts the path diagram for the DZOS sample. 
Using model 4 as a point of departure, the structured means were in- 
cluded. The results are given in Table III. First a model was fit in which 
both E and G contributed to the difference in phenotypic means between 
the males and females (model 7). The path diagram for the DZOS sample 
is given in Fig. lb. The • goodness of fit equaled 116.3 (df = 116, p 
= .47). The parameter estimates are given in Table IV. AE[G] equals 
1.147(SE, .23), and AE[E] equals - . 6 5 2  (SE, .23). The correlation 
between the estimates of the parameters zXE[G] and AE[E] was obtained 
by requesting the standardized inverse of the information matrix in the 
LISREL output. The correlation equals r(AE[G], AE[E]) = .240, in- 
dicating that given the avilable information, the two parameter estimates 
are fairly independent. 

Fixing the factor loadings to those obtained from the analysis with- 
out means did not seriously alter the results: • equal to 120.37 (p 
= .37), AE[G] = 1.09 (SE, .164), and z3d~[E] = - . 6 3  (SE, .14). 

Table IV. ML Estimates for the Analysis of Blood Pressure with (Model 7) and 
without (Model 4) Structured Means a 

Covariance 

Parameter No means With means 

kg syst 9.523 (1.13) 8.974 (1.14) 
kg diast 2.940 (.75) 2.609 (.90) 
kg map 4.822 (.96) 4.829 (.94) 
he syst 6.939 (1.16) 7.184 (1.31) 
he diast 6.323 (.57) 6.592 (.54) 
he map 6.920 (.68) 6.781 (.68) 
Of 1 unique 23.52 (5.21) 26.98 (5.22) 
0f2 5.97 (1.85) 4.81 (1.87) 
0f3 7.10 (1.39) 7.49 (1.76) 
0ml unique 26.38 (5.71) 26.65 (5.46) 
0m2 13.25 (2.67) 11.12 (2.52) 
0m3 2.01 (1.97) 3.55 (1.77) 
r(Etl,Et2) .274 (.111) .286 (.106) 
7 scale .891 (.072) .885 (.071) 
vl 124.63 (1.05) 
v z  75.02 (.59) 
v3 89.88 (.71) 
AxE[G] 1.147 (.23) 
zXe[E] - .652 (.23) 
• 94.05 (91) 116.28 (116) 
p .40 .47 

" Standard errors are given in parentheses. 
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r(Gf,Gm) 

a (~(~'-----r~ECE~---~'~~.y ~.~ 

b r(Gf,Gm) 

Fig. 1. (a) Twin model for DZOS twin covariance structure including a scale parameter 
(~). Factor loadings are not shown. The latent variables Ge*, El*, etc., are dummy 
variables with zero variance. (b) Twin model for DZOS twin covariance structure and 
structured means including a scale parameter (~), scale constants (u~, v2, v3), and dif- 
ferences in genetic and environmental mean (z32~[G] and AE[E]). Factor loadings are 
not shown. The latent variables Gf*, El*, etc., are dummy variables with zero variance. 

Note that, again, we do subtract degrees of  f reedom for these fixed 
parameters.  

Fitting the model  with AE[E]  fixed to equal zero (model 5), yielded 
a xZ( l l7)  equal to 120.9 (t7 = .38). The difference is X2(1) equals 4.6 
(/9 = .04), but the genetic factor loadings were found to deviate wildly 
from the values obtained in the analysis without structured means: 4.9,  
- . 6 ,  and 1.4, compared to 9.523, 2.940,  and 4.822 (as shown in Table 
IV). Regardless of  the significance of  the AE[E] ,  instability of  this mag- 
nitude should rouse suspicion regarding the adequacy of  the model.  

Fixing AE[G] to equal zero (model 6) resulted in • -- 165.5 
(p = .002). Again,  the environmental factor loadings deviated consid- 
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erably from the previously reported values: 10.4, 4.2, and 6.5, compared 
to 6.939, 6.323, and 6.920 (as shown in Table IV). 

These illustrative results suggest that compared to the female sample 
the genetic distribution underlying the three measures of blood pressure 
in the male sample is characterized by a larger mean and the environ- 
mental distribution by a lower mean. 

DISCUSSION 

In the present paper we have used S6rbom's method (1974) to study 
differences in latent means in multivariate twin data. By restricting the 
analysis to a comparison between groups, the results pertain only to the 
additive contributions of common genetic and environmental factors to 
the deviation of the group means from what can be considered a vector- 
valued grand mean. 

Assumptions made in the decomposition of the phenotypic means 
relate to the constitution of the phenotypic means and to the equality of 
the variances in each group. The latter assumption is testable in the 
standard analysis of covariance structure by means of equality constraints 
on the relevant parameters across the groups; the former has been shown 
to be testable in the illustration involving simulated data. 

It may be noted that these assumptions mentioned are in fact com- 
monly made in the standard MANOVA models for the analyses of dif- 
ferences in means. However, no distinction is made in the MANOVA 
approach between within-group true score and error variance so that both 
contribute to the within sums of squares (error) matrix. Generally, an 
important aspect of S6rbom's (1974) models incorporating structured 
means is the increase in statistical power afforded by the ability to dis- 
tinguish between true score variance and (possibly heterogeneous) error 
variance. A failure to reject the null hypothesis of equal means by means 
of MANOVA cannot therefore be taken to be proof positive for the 
absence of differences in means as modelled by means of S6rbom's 
approach. 

Although we have considered gender effects in twin data, other 
group comparisons are feasible. For instance, a parent-offspring com- 
parison may be carried out. It is then necessary to estimate the latent 
contrasts in the offspring group, because of the regressions of the parent 
additive genetic factors on the offspring additive genetic factors. An 
estimated additive genetic contrast in the parent groups would contribute 
to the offspring means via the genetic path, thus spoiling the contrast 
between the latent parent and the latent offspring means. Another pos- 



334 Dolan, Molenaar, and Boomsma 

sibility is the comparison of a genetically informative sample (e.g., twins) 
over time by defining group membership by measurement occasion. 

The requirement of suitable multivariate data may hamper the ap- 
plication of this approach to the decomposition of phenotypic means. 
However, in any situation where there are multiple indicators of a latent 
(phenotypic) construct (e.g., questionnaire items), multivariate data can 
be created by judicious combination of the indicators. Simulations in 
which three subscores were created from a pool of six items has shown 
that this approach is feasible. On the other hand, one might consider 
modeling the indicators themselves instead of their aggregates. In this 
case the psychometric model proposed by McArdle and Goldsmith (1984) 
could be used (for an application see Heath et al.,  1989) 
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