
QTL’s) and sources due to background genetic vari-
ance (Fulker, Cherny, & Cardon, 1995; Fulker, Cherny,
Sham, et al.,1999; Nance and Neale, 1989; Boomsma
and Dolan, 1998). A necessary first step in mapping
complex traits to QTL’s is to establish the amount of
genetic variation that underlies the phenotypic varia-
tion of the trait. If phenotypic variation in a trait is
found to be caused in part by genetic sources, linkage
and/or association studies can be conducted in order
to characterize the effects of specific genetic loci on
the phenotypic variation. If phenotypic variation is not
found to be heritable, the search for effects of specific
genetic loci will not be initiated. However, in some
cases it may be concluded that phenotypic variance in
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The power to detect sources of genetic and environmental variance varies with sample size,
study design, effect size and the statistical significance level chosen. We explored whether the
power of the classical twin study may be increased by adding non-twin siblings to the classical
twin design. Sample sizes to detect genetic and shared environmental variation were compared
for kinships with only twins, kinships consisting of twins and one additional sibling, and kin-
ships with twins and two additional siblings. The effect of adding siblings to the classical twin
design was considered for univariate and bivariate analyses.

For the univariate case, adding one non-twin sibling resulted in a decrease in sample size
needed to detect additive genetic influences in the presence of environmental influences. How-
ever, adding two additional siblings did not decrease the number of subjects as compared to the
classical twin design. The sample size required to detect common environmental factors was
also greatly decreased by adding one non-twin sibling. Adding two non-twin siblings resulted
in a small additional decrease. In models including additive genetic, dominant genetic, and unique
environmental effects, adding one sibling to a twin family decreased the required sample size
to detect dominant genetic influences. Adding two siblings to a twin family resulted in only a
slight additional decrease in sample size.

In the bivariate case a similar pattern of results was found, in addition to the observation
that the overall required sample size, as expected, was lower than in the univariate case. The
decrease in sample size from bivariate testing was more pronounced in a design with one or two
additional siblings, as compared to a design with twins only. It is concluded that a well con-
sidered choice of family design, i.e. including families with twins and one or two additional sib-
lings increases the statistical power to detect sources of variance due to additive and non-additive
genetic influences, and common environment.
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a trait can not be ascribed to genes because the statis-
tical power to detect sources of genetic variation is in-
sufficient (Svikis, Velz & Pickens, 1994; Pickens,
Svikis, McGue, Lykken, et al., 1991). This will pre-
clude further searching for effects of QTL’s on that par-
ticular trait, even though such QTL’s may be present.

The statistical power of quantitative genetic stud-
ies is influenced by the size of the effect (e.g. heri-
tability), the sample size, the probability level (α)
chosen, and the homogeneity of the sample (Neale and
Cardon, 1992; Cohen, 1992; Tanaka, 1987). Increasing
the sample size is the most common way to increase the
statistical power of a study, but is often limited by re-
sources of time and money. Another means to increase
statistical power is the use of multivariate testing. In the
context of structural equation modeling the statistical
power to detect genetic effects rises as a (non-linear)
function of multivariate testing under the condition that
the measures are correlated (Schmitz, Cherny, and
Fulker, 1998). In the context of partitioned twin analy-
ses it has been shown that choosing a different (e.g.
other than 1 to 1) MZ to DZ ratio influences statistical
power such that an MZ to DZ ratio of 1 to 4 is optimal
for partitioned twin analyses (Nance & Neale, 1989).

In the present paper we focus on increasing the sta-
tistical power of the classical twin study by adding non-
twin siblings to MZ and DZ twin pairs. Since non-twin
siblings share on average half of their segregating genes,
just like DZ twins, adding non-twin siblings to the clas-
sical twin design may provide an efficient way to in-
crease the power to detect sources of genetic and shared
environmental variance. Adding two more siblings to a
twin kinship provides five additional observed covari-
ances, whereas adding a whole new family consisting of
two siblings provides only one additional observed co-
variance. In the present paper we examine the effects of
adding non-twin siblings to twin families on the esti-
mated sample size needed to detect additive genetic (A)
variance (Va), dominant genetic (D) variance (Vd), and
common environmental (C) variance (Vc), with a power
of 80% in the context of structural equation modeling.

METHOD

We calculated covariance matrices for three ex-
perimental designs, which differed in family constitu-
tion. Design 1 included only MZ twins and DZ twins.
Design 2 included families with MZ and DZ twins and
one additional sibling. Design 3 included families with
MZ and DZ twins and two additional siblings. For all
three designs we calculated the sample size needed to
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detect an effect of interest with a power of 80%. The
MZ twins to DZ twins ratio was 1 to 1 for all three de-
signs (thus, the ratio MZ to ‘non MZ sibpairs’, is not
1 to 1 for all designs). It should be noted that we re-
port sample size in subjects and not in twin pairs. The
same number of subjects refers to different numbers
of twin pairs and a different number of families for all
three designs. We will use the terms ‘highest power’
and ‘fewest subjects needed’ to refer to an optimal de-
sign to detect sources of phenotypic variance.

All analyses were carried out using the statistical
software package Mx (Neale, 1997). Estimation of pa-
rameters was obtained by normal theory maximum like-
lihood. Goodness of fit testing was based on the
likelihood ratio tests. First univariate models were con-
sidered. In order to obtain the sample size needed to
detect varying levels of additive genetic variance with
a fixed power level of (1 − β) = .80, covariance matri-
ces were calculated with sources of additive genetic
variance (Va) accounting for 10% to 90% of the phe-
notypic variance in the presence of sources of common
environmental variance (Vc) accounting for 00%, 10%,
and 20% of the variance. Remaining variance was at-
tributed to unique environmental (E) sources of vari-
ance (Ve). To detect sources of Vc covariance matrices
were calculated with Vc accounting for 10% to 90% of
the phenotypic variance in the context of sources of Va

accounting for 00%, 10%, and 20% of the phenotypic
variance. In addition, covariance matrices were calcu-
lated with sources of variation due to A, D (dominant
genetic variance) and E. Only the situation in which
dominance was ‘complete’ (Va to Vd = 2 to 1; see ap-
pendix I) was considered. In the ADE-models the total
genetic variance, i.e. Va and Vd together accounted for
30% to 90% of the total phenotypic variance. For all
situations, remaining variance was attributed to Ve.

Since non-twin siblings, like DZ twins, share on
average half of their genes, expectations for non-twin
sibling covariances were modeled similarly to expec-
tations for DZ covariances.

In the ACE-models the expected phenotypic vari-
ance (σ2) of twins and siblings is Va + Vc + Ve, the ex-
pected MZ covariance Va + Vc, and the expected DZ
and sibling covariance .5 Va + Vc. In ADE-models, the
expected phenotypic variance is Va + Vd + Ve, the ex-
pected MZ covariance Va + Vd, and the expected DZ
and sibling covariance .5 Va + .25 Vd.

It is known that the use of a multivariate pheno-
type, as opposed to a univariate phenotype, results in
a gain of statistical power if the multivariate traits are
correlated (Schmitz et al.1998). To find out how much



adding siblings andusing a multivariate phenotype af-
fects statistical power we also looked at several bi-
variate designs. We calculated covariance matrices for
two traits with a phenotypic correlation of .50. Both
traits could be influenced by A, C, and E or by A, D,
and E. Total influences of sources of A, C or D, and E
were uniform for each trait. The phenotypic correlation
between the two traits could be due to additive genetic
correlation (rA), dominant genetic correlation (rD),
common environmental correlation (rC), or to unique
environmental correlation (rE), depending on the spe-
cific situation that was considered. Figure 1 depicts the
construction of covariance matrices for kinships con-
sisting of twins and one additional sibling for a bi-
variate ADE-model (Cholesky decomposition) in which
rE is absent and all phenotypic correlation is due to rA
and rD. All latent variables have unit variance.

Power calculations were carried out by fitting the
known model to the exact (population) covariance ma-
trices as described in Neale and Cardon (1992). In mod-
els which contain a parameter which is known to be zero,
the zero parameter can either be fixed at zero or freed
(estimated) while computing the power to detect one of
the other non-zero parameters. For example, when treat-
ing the ACE-model in which Vc is zero as an AE-model,
the power to detect sources of variation due to A is sig-
nificantly higher than when the ACE-model is treated as
an ACE-model, i.e. with Vc estimated as a free param-
eter. In the power calculations the zero-parameter was
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estimated as a free parameter because we are interested
in computing the power to detect Va, in ACE-models,
regardless of the value of Vc (and vice versa). The same
reasoning applies to the bivariate calculations.

Constraining a certain set of parameters to zero and
refitting the model provides the non-centrality parame-
ter. From this non-centrality parameter the sample size
required to reject the false model with a power of 80%
and a significance level α of .05 can be calculated (Mar-
tin et al.,1978; Hewitt and Heath, 1988) and is conve-
niently supplied by Mx.

RESULTS

Univariate Models

ACE-models

We fitted full univariate models with sources of
variation due to additive genetic (A), common environ-
mental (C) and unique environmental influences (E).
Dropping either genetic or common environmental 
parameters and refitting the model provides the non-cen-
trality parameter. With Mx (Neale, 1997) the cor-
responding number of subjects required to detect the
parameter that was dropped with a power of 80% and α
of 5% was calculated for 1 degree of freedom. Results
concerning the estimated sample size (in subjects)
needed to detect Va in ACE-models for the three designs
are depicted in Figure 2 (and appendix II). Figure 2a con-

Fig. 1. Pathdiagram for the bivariate ADE-model, cholesky decomposition. Example for twins and one additional sibling, no unique environ-
mental correlation (rE). The covariance between trait 1 and trait 2 is (a11*a21) + (d11*d21) and the correlation between trait 1 and trait 2 is
(a11*a21) + (d11*d21)/√(σ2

1*σ2
2).



cerns low values of Va (10% − 20%), Figure 2b concerns
intermediate values of Va (30%–50%), and Figure 2c
concerns high values of Va (60%–90%) accounting for
the total phenotypic variance. All values of Va are re-
ported three times, i.e. in the context of values of Vc of
0%, 10%, and 20%.

As can be seen in Figure 2a, 2b, and 2c, for vari-
ous values of Va and Vc, design 2 (families consisting
of MZ and DZ twins and one non-twin sibling) is the
most optimal design to detect sources of variation due
to A, i.e. with design 2 fewer subjects are required to
achieve a power of 80% (see appendix II). The number
of subjects needed to detect a fixed value of Va is on
average 9.3% more in the classical twin design (design
1) compared with a design with twins and one additional
sibling. This can result in 2849 fewer subjects that are
needed with design 2 to detect an additive genetic in-
fluence of 10% compared with the classical twin design.

Including families with twins and two additional
sibs, is lesspowerful than including families with twins
and one additional sibling, and also less powerful than
including families with twins only for the detection of
Va; adding two siblings at the cost of the total number
of MZ twins is disadvantageous, but adding one sib-
ling is ideal.

Results for detecting common environmental in-
fluences are given in Figures 3a, 3b, and 3c, for low,
moderate, and high values of Vc respectively (see also
Appendix III).
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Under various values of Vc and Va, the power to
detect sources of variation due to C rises substantially
when one sibling is added to the classical twin design;
on average 50.4% fewer subjects are needed as com-
pared to the classical twin design (design 1). Adding
two siblings decreases sample size even more, but not
as dramatically as the decrease from no additional sib-
lings to one additional sibling.

Many empirical studies suggest models in which
sources of variation due to C are of less importance
than sources of variation due to A (Plomin, DeFries, &
McClearn, 1990). Therefore, we also calculated the sam-
ple size required to detect small values of Vc in the con-
text of higher values of Va. Figure 4 depicts the number
of subjects needed to detect values of Vc of 10% and
20% in the context of values of Va of 20% , 30%, 40%
or 50% (Appendix IV).

As expected, sample size required to detect Vc with
a power of 80% decreases as a result of higher values
of Vc and higher values of Va. Comparing the sample
size required to detect sources of variation due to A
(Figure 2b) with the sample size required to detect
sources of variation due to C, shows that in the realis-
tic situation where Va > Vc sources of variation due to
C are very difficult to detect. Even if the sample size is
large enough to detect sources of variation due to A, the
small value of Vc may still go undetected. If for exam-
ple the true model is an ACE-model with Va = 50%, Vc

= 20%, and Ve = 30%, and the total sample size 328

Fig. 2 a,b,c.Required sample size to detect sources of variance due to additive genetic effects in ACE models for three different family de-
signs with a power of 80%. Design 1 = MZ and DZ twins only, Design 2 = MZ and DZ twins and one additional sibling, Design 3 = MZ and
DZ twins and two additional siblings.



(just enough for design 1 to detect Va of 50%, with
power of 80%), Vc will not be detected and the AE-
model will be proposed as the most parsimonious model.
This results in a biased estimate of Va (in this case Va
is estimated to be 70%).

Adding siblings to the classical twin design de-
creases the sample size required to detect both Va and
Vc and has the largest effect on the sample size required
to detect Vc (i.e. 50.4% fewer subjects needed for Vc,
9.3% fewer subjects needed for Va). Therefore, the bias
towards overestimating values of Va as a result of not
detecting Vc in situations where Va > Vc, is less likely
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to be present in designs where siblings are added to the
classical twin design.

ADE-Models

We also fitted full univariate models with sources
of variation due to additive genetic (A), dominance (D)
and unique environmental influences (E). Since a DE-
model is unrealistic we report the sample size required
to detect sources of variation due to A andD (2 df test)
and to detect sources of variation due to D (1 df test)
with a power of 80%. Results for detecting Va and Vd,
or Vd are given in Figures 5a and 5b (and appendix V).

Fig. 3 a,b,c.Required sample size to detect sources of variance due to common environmental influences in ACE models for three different
family designs with a power of 80%.

Fig. 4. Required sample size to detect sources of variance due to common environmental influences in ACE models where Va > Vc, for three
different family designs with a power of 80%.



Under various values of Va and Vd, with fixed ratio
of Va to Vd is 2 to 1, adding one sibling to a twin family
decreases the sample size required to detect Vd. Adding
two siblings decreases sample size even more but less
than the decrease due to adding one sibling. Absolute ef-
fects are slightly higher with increasing values of Va and
Vd. Figure 5a also emphasizes the very large sample size
that is required to detect dominant genetic influences.
Even the largest possible value of Vd under complete
dominance with the most optimal design will go unde-
tected if the sample is smaller than 1776 subjects.

Sample sizes required to detect both Va and Vd si-
multaneously are considerably smaller as compared to
sample sizes required to detect Vd. In contrast, how-
ever, adding siblings does not decrease sample size
needed to detect Va and Vd simultaneously. In fact, a
design with one or two siblings requires somewhat
more subjects to detect Va and Vd with a power of 80%,
as can be seen in Figure 5b. It should be noted how-
ever that the number of subjects needed to detect Va

and Vd at the same time is considerably less than the
number of subjects needed to detect Vd only. This im-
plies that if the sample size is large enough to detect
Vd it will also be sufficient to detect Va and Vd.
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In conclusion, to optimize the power to detect Vd,
a design with additional siblings, as compared to a de-
sign with twins only, is preferred.

Bivariate Models

ACE-Models

To detect sources of variance due to additive ge-
netic influence (A), we calculated both the sample size
required to detect all sources of Va (df = 3; paths a11,
a21, and a22 in Figure 1) and the required sample size to
detect the common genetic pathway (df = 1; path a21).
We considered the test for the detection of the common
pathway to be a test for the presence of a genetic cor-
relation (rA). The following situations to detect sources
of variance due to A were considered: a) The genetic
correlation (rA) is ‘moderate’ and equal to the common
environmental correlation (rC) and to the unique envi-
ronmental correlation (rE). Variances due to A, C and
E (uniform for both traits) are 40%, 10%, and 50% re-
spectively of the phenotypic variance. b) rC is absent,
rA is high (.80), and rE is small (.36), variances due
to A, C and E are 40%, 10%, and 50% respectively.

Fig. 5 a,b.Required sample size to detect sources of variance due to dominant genetic influences (a) and total genetic (dominant & additive
influences)(b) influences in ADE models, for three different family designs with a power of 80%.



c) Variances due to C are absent. rA is .60, rE is .27,
variances due to A and E are 70% and 30% respec-
tively. As mentioned before, all parameters were es-
timated, as opposed to constraining these parameters,
which were zero in the full model. It should also be
noted that considering the tests for total Va, total Vc, and
total Vd to be 3 df-tests is a conservative approach, as it
could be argued these are actually 2 df-tests, or tests
with df’s somewhere between 2 and 3. Testing, for ex-
ample, whether either or both univariate genetic vari-
ances equal zero, implies that the genetic covariance is
zero. If variances due to additive genetic influences for
both traits equal zero, a correlation between these
sources of variance is not possible. In other words, if
the sample size required to detect each of the univa-
riate variances due to additive genetic influences is
insufficient, a correlation due to additive genetic in-
fluences can also not be detected. Therefore, consider-
ing the test for the power to detect ‘total Va’ (i.e. both
univariate variances due to additive genetic influences
and the correlation due to additive genetic influences in
the bivariate case) a 3 df test will provide an overesti-
mation of the sample size needed for a power of 80%.
Results of situation a, b, and c for the three different
kinships, are given in Table I.

As can be seen in Table I the same pattern of re-
sults is found in the bivariate case as in the univariate
case; a design with one additional sibling is optimal for
the detection of Va in ACE-models. In addition, sig-
nificantly fewer subjects are needed in the bivariate
case as compared to the univariate case. Depending on
whether the phenotypic correlation is due to rA, rC, or
rE, the sample size required to detect Va may decrease
and is lowest in cases where there is no influence of
common environmental sources (i.e. statistical power

Power and Sibship Size 153

is highest in these cases). However, when there are uni-
variate common environmental influences but no com-
mon environmental correlation, the sample size required
to detect variance due to additive genetic influences in-
creases. Comparing situations a, b, and c leads to the
conclusion that the power to detect sources of variance
and covariance due to A (df 3) is highest (and the re-
quired sample size is smallest) when there is no uni-
variate common environmental source of variation.
However, if there are common environmental sources
of variation, sources of variance due to A are easier to
detect when there is also a correlation between these
two univariate common environmental sources of vari-
ation, and again a design with one additional sibling is
optimal.

To detect sources of common environmental
sources of variation, we calculated both the power to
detect all sources of variation due to C (df = 3) and the
power to detect the common pathway (df = 1), which
is a test to detect the environmental correlation (rC).
We considered situations analogous to the situations in
which power was calculated to detect sources of vari-
ation due to A; a) The common environmental corre-
lation is ‘moderate’ and equal to the genetic correlation
and to the unique environmental correlation, i.e. rC =
rA = rE = .50. Uniform univariate variances due to A,
C and E are 10%, 40%, and 50% respectively. b) rA is
absent. rC is high (.80), and rE is small (.36), variances
due to A, C and E are 10%, 40%, and 50% respectively,
c) Variances due to A and rA are absent. rC is .60, rE
is .27, variances due to C and E are 70% and 30% re-
spectively. Again, for all situations the phenotypic cor-
relation was .50. Results are given in Table II.

Although the results in the bivariate case resem-
ble those in the univariate case (i.e. a design with two

Table I. Total samplesize (in number of subjects) needed to detect additive genetic influences in full bivariate ACE models under three dif-
ferent sibship sizes with power (1 − β) = .80 and α = .05

Va = 40% rA = .50 Va = 40% rA = .80 Va = 70% rA = .60
Vc = 10% rC = .50 Vc = 10% rC = .00 Vc = 00% rC = .00
Ve = 50% rE = .50 Ve = 50% rE = .36 Vc = 30% rE = .27

all Va (df = 3) rA (df = 1) all Va (df = 3) rA (df = 1) all Va (df = 3) rA (df = 1)
design 1 660 2392 782 884 156 270
design 2 564 1917 678 735 147 237
design 3 680 2260 820 876 180 284

Note: MZ/DZ ratio = 1/1; design 1 = twins only, design 2 = twins and one additional sibling, design 3 = twins and two additional siblings.
‘All V a’ refers to both univariate variances and the genetic correlation.
In order to calculate the total number of families needed, all cells concerning design 1 need to be divided by 2, all cells concerning design 2
need to be divided by 3, and all cells concerning design 3 need to be divided by 4.



additional siblings is optimal for the detection of Vc),
the difference between design 2 and design 3 (i.e.
adding one or two siblings) in the bivariate case is more
substantial. Whereas in the univariate case only a small
additional effect was found, in the bivariate case 4 to
5 times less subjects are needed with two additional
siblings as compared to one additional sibling.

ADE-Models

We calculated covariance matrices for two traits
that were influenced by A, D, and E in the context of
complete dominance. Sources of variance due to A and
D accounted for 40% and 20% respectively of the total
phenotypic variance. We assumed that the ratio Va to
Vd remained equal over the two traits. This implies that
rA = rD (see appendix I). Three situations were con-
sidered: a) rA = rD = .80,; b) rA = rD =.50; c) rA = rD
= .30. For all three situations the phenotypic correla-
tion was fixed at .50 by attributing all remaining co-
variance to rE. We report the total number of individual
subjects needed to detect sources of total Va and Vd due
to A and D (df = 6), rA & rD (df = 2), total D (df = 3),
and rD (df = 1) for a power of 80%. Results are given
in Table III.

Analogous to the univariate case a design with two
additional siblings is optimal for the detection of Vd

and a design with twins only is optimal for the detec-
tion of Va and Vd simultaneously. Comparison with the
univariate results shows that in a design with twins
only, fewer subjects are needed to detect sources of
variance due to D as a result from bivariate testing. This
effect, however, is stronger when a design consisting
of twins and two additional siblings is used, suggest-
ing that in addition to the decrease in sample size as a
result from bivariate testing, adding siblings will de-
crease the sample size required to detect sources of
variance due to D even further.
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Designs Where Only Sibs of mz Twins are Included

In the previous analyses all families were of the
same structure; consisting of MZ and DZ twins only,
or with one or two additional siblings. For several rea-
sons this may not always be realistic. For illustrative
purposes, we included two other designs in which one
(design 4) or two siblings (design 5) were added to MZ
twin families, but not to DZ families. Analyses were
run for a few ‘standard’ situations of the ACE-models
and ADE-models for univariate testing only. Results
for ACE and ADE models are given in Table IV.

Comparison of the results of designs 4 and 5 and
the results of designs 2 and 3 shows that in ACE-mod-
els a design consisting of MZ twins and one additional
sibling and DZ twins only (design 4) is optimal for the
detection of Va, and performs even better than design 2.
For the detection of Vc in ACE-models design 3 and 5
are both optimal.

In the context of ADE-models, design 3 (MZ/DZ
twins with two additional siblings), requires the smallest
sample size and is more optimal than design 4 or 5 for
the detection of sources of variation due to dominance.

CONCLUSION

We demonstrated that with a fixed power of 80%,
a probablity level of 5% and under varying levels of
heritability and common environmental influences,
adding one sibling to the classical twin design signifi-
cantly decreases the number of subjects that are needed
to detect each of these sources of variation. Adding two
siblings to a twin pair yields an additional decrease of
sample size to detect sources of variation due to the
common environment but is not optimal for the detec-
tion of additive genetic influences. If the trait is influ-
enced by additive and non-additive genetic factors,
adding one sibling to the classical twin design decreases
the sample size needed to detect sources of variation

Table II. Total samplesize (in number of subjects) needed to detect common environmental influences in full bivariate ACE models under
three different sibship sizes with power (1 − β) = .80 and α = .05

Va = 10% rA = .50 Va = 10% rA = .00 Va = 0% rA = .00
Vc = 40% rC = .50 Vc = 40% rC = .80 Vc = 70% rC = .60
Ve = 50% rE = .50 Ve = 50% rE = .36 Ve = 30% rE = .27

all Vc (df = 3) r C (df = 1) all Vc (df = 3) r C (df = 1) all Vc (df = 3) rC (df = 1)
design 1 444 1498 518 560 100 156
design 2 213 774 249 279 48 96
design 3 48 760 44 268 16 108

Note: see table 1 for definitions.
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due to dominance. Adding two siblings decreases the
number of required subjects somewhat more but the de-
crease is relatively small (compared to the decrease due
to adding one sibling). These effects are more pro-
nounced in the bivariate case than in the univariate
case. An additional benefit of adding siblings is that
these designs, as compared to the classical twin design,
are less likely to result in an overestimation of additive
genetic influences as a result of not detecting small
sources of common environmental influences.

We modeled the sibling covariances under the as-
sumption that age differences in heritability are not im-
portant. A more complex model would take into
account age differences between non-twin siblings. It
is known that for some measures heritability increases
with age as a result of amplification of genetic effects
across ages (e.g. intelligence; Boomsma, 1993),
whereas for other measures heritability estimates may
decrease with age (e.g. problem behaviour; Van der
Valk et al., 1998). Assuming that the same genes op-
erate across the age span, adding siblings who are older
than the twins will increase power when heritability in-
crease with age, and will decrease power when heri-
tability estimates decrease with age. Similarly, adding
parents will increase power to detect genetic factors if
heritability increases with age.

Schork (1993) noted the dramatic improvement in
statistical power resulting from the use of larger sibships
for the detection of QTL effects. In addition, Dolan,
Boomsma and Neale (1999) demonstrated the value of
adding non-twin siblings to two-sibling- (or DZ twin-)
families for the detection of codominant QTL effects.
Our aim was to determine whether the use of an ex-
tended twin design, as needed for the detection of QTL-
effects, would also be useful for the detection of overall

T
ab

le
 I

II
. 

T
o

ta
l 

sa
m

p
le

 s
iz

e
 (

in
 s

u
b

je
ct

s)
 n

e
e

d
e

d
 t

o
 d

e
te

ct
 a

d
d

iti
ve

 g
e

n
e

tic
 i

n
flu

e
n

ce
s 

a
n

d
 d

o
m

in
a

n
ce

 i
n

 b
iv

a
ri

a
te

 A
D

E
 m

o
d

e
ls

 u
n

d
e

r 
u

n
d

e
r 

t
h

re
e

 d
iff

e
re

n
t 

si
b

sh
ip

 s
iz

e
s 

w
ith

p
o

w
e

r 
(1

 −
β)

 =
.8

0
 a

n
d

 α
=

.0
5

V
a

=
4

0
%

 r
A

 =
.8

0
V

a
=

4
0

%
 r

A
 =

.5
0

V
a

=
4

0
%

 r
A

 =
.3

0
V

d
=

2
0

%
 r

D
 =

.8
0

V
d

=
2

0
%

 r
D

 =
.5

0
V

d
=

2
0

%
 r

D
 =

.3
0

V
e

=
4

0
%

 r
E

 =
.0

5
V

e
=

4
0

%
 r

E
 =

.5
0

V
e

=
4

0
%

 r
E

 =
.8

0

a
ll 

V
a

+
a

ll 
V

d
rA

&
rD

a
ll 

V
d

rD
a

ll 
V

a
+

a
ll 

V
d

rA
&

rD
a

ll 
V

d
rD

a
ll 

V
a

+
a

ll 
V

d
rA

&
rD

a
ll 

V
d

rD
(d

f 
=

6
)

(d
f =

2
)

(d
f =

3
)

(d
f =

1
)

(d
f =

6
)

(d
f =

2
)

(d
f =

3
)

(d
f =

1
)

(d
f =

6
)

(d
f =

2
)

(d
f =

3
)

(d
f =

1
)

d
e

si
g

n
 1

6
2

6
4

8
6

7
2

1
0

0
4

2
5

4
1

8
4

7
6

6
2

2
8

0
5

4
3

2
5

4
8

4
7

0
2

8
2

3
5

6
d

e
si

g
n

 2
6

9
7

8
4

4
6

4
5

1
2

1
6

0
2

2
8

3
9

0
9

1
4

0
7

3
3

9
6

8
1

2
4

9
0

4
1

5
4

4
d

e
si

g
n

 3
7

2
8

8
4

0
7

6
4

6
6

0
6

0
2

6
4

3
6

3
6

1
2

8
7

2
4

0
7

8
4

2
2

7
2

3
8

4
3

6

N
o

te
: 

se
e

 t
a

b
le

 1
 f

o
r 

d
e

fin
iti

o
n

s.

Table IV. Total sample size (in number of subjects) needed to de-
tect additive genetic, dominance and common environmental influ-
ences in univariate ACE-models and ADE-models for designs with

including MZ and DZ twins and siblings added to MZ families
only, a power of (1 − β) = .80, and significance level α = .05

Va = 40% Vc = 40% Va = 40% Va = 40%
Vc = 10% Va = 10% Vd = 20% Vd = 20%

effect  
detected→ Va Vc Va + Vd Vd

design 4 705 338 83 6313
design 5 744 285 84 5313

Note: MZ/DZ ratio = 1/1: design 4 = Mz twins and one additional
sibling, DZ twins only, design 5 = MZ twins and two additional sib-
lings and DZ twins onl.



sources of variance (i.e. A, C, and D). Our calculations
showed that without the need to increase total sample
size, adding one sibling to the classical twin design im-
proves the statistical power by a large extent to detect
sources of variation due to common environmental in-
fluences, additive genetic influences and dominance.
Adding siblings and using a bivariate phenotype results
in gain of statistical power which can not only be as-
cribed to bivariate testing but also to the use of an ex-
tended twin design.

In conclusion, adding at least one sibling to the
classical twin design, as opposed to a design with twins
only, will provide a significant gain in statistical power
to detects sources of variation due to A, C, and D. An
attractive side-effect of a design with additional sib-
lings is that it is also beneficial for the detection of
QTL-effects.

APPENDIX I

Consider a biallelic trait with alleles B and b. Let
a be the effect of genotype BB on the phenotypic mean,
−a the effect of bb, and d the effect of Bb on the phe-
notypic mean. Assuming equal allele frequencies of B
and b, the mean genotypic effect on the phenotypic
mean is 1/2 d.The total genetic variance (σ2g) equals
1/2 a2 + 1/4 d2, = Va + Vd

For complete dominance d = a. Substituting d for
a in the formulae for the genetic variances, gives: Va =
1/2 a2 and Vd 1/4 a2, thus Va = 2 Vd
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Now consider a bivariate model with latent vari-
ances scaled to unity, (see figure 1) and

• uniform genetic influences over traits: Va 1 =
Va 2 and Vd 1 = Vd 2

• assumption of uniform d to a ratio over traits
(a11)

2/(d11)
2 = (a21)

2/(d21)
2 = (a22)

2/(d22)
2

• rA = a11 * a21/√{(a11)
2* [(a21)

2 + [(a22)
2]} which

simplifies to rA = a21/a11

• rD = d11 * d21/√{(d11)
2* [(d21)

2 + [(d22)
2]} which

simplifies to rD = d21/d11

This implies that the additive genetic correlation
equals the dominant genetic correlation.
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APPENDIX V

Samplesize (in subjects) needed to detect additive genetic and dominance influences in ADE-models.
See Appendix II for definitions

Va = 20% Va = 30% Va = 40% Va = 50% Va = 60%
Vd = 10% Vd = 15% Vd = 20% Vd = 25% Vd = 30%

Va & V d Vd Va & V d Vd Va & V d Vd Va & V d Vd Va & V d Vd

design 1 148 22808 76 11036 42 5958 42 5958 22 3518
design 2 156 11790 84 5631 48 3081 48 3081 27 1950
design 3 148 11328 84 5236 48 2784 48 2784 28 1776


