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The power to detect sources of genetic and environmental variance varies with sample size,
study design, effect size and the statistical significance level chosen. We explored whether the
power of the classical twin study may be increased by adding non-twin siblings to the classical
twin design. Sample sizes to detect genetic and shared environmental variation were compared
for kinships with only twins, kinships consisting of twins and one additional sibling, and kin-
ships with twins and two additional siblings. The effect of adding siblings to the classical twin
design was considered for univariate and bivariate analyses.

For the univariate case, adding one non-twin sibling resulted in a decrease in sample size
needed to detect additive genetic influences in the presence of environmental influences. How-
ever, adding two additional siblings did not decrease the number of subjects as compared to the
classical twin design. The sample size required to detect common environmental factors was
also greatly decreased by adding one non-twin sibling. Adding two non-twin siblings resulted
in a small additional decrease. In models including additive genetic, dominant genetic, and unique
environmental effects, adding one sibling to a twin family decreased the required sample size
to detect dominant genetic influences. Adding two siblings to a twin family resulted in only a
slight additional decrease in sample size.

In the bivariate case a similar pattern of results was found, in addition to the observation
that the overall required sample size, as expected, was lower than in the univariate case. The
decrease in sample size from bivariate testing was more pronounced in a design with one or two
additional siblings, as compared to a design with twins only. It is concluded that a well con-
sidered choice of family design, i.e. including families with twins and one or two additional sib-
lings increases the statistical power to detect sources of variance due to additive and non-additive
genetic influences, and common environment.
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complex traits to QTL’s is to establish the amount of
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Recent advances in molecular genetics have made it
possible to partition genetic variance into sources due
to particular genetic loci (quantitative trait loci's;
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a trait can not be ascribed to genes because the statiddetect an effect of interest with a power of 80%. The
tical power to detect sources of genetic variation is in- MZ twins to DZ twins ratio was 1 to 1 for all three de-
sufficient (Svikis, Velz & Pickens, 1994; Pickens, signs (thus, the ratio MZ to ‘non MZ sibpairs’, is not
Svikis, McGue, Lykkenget al.,1991). This will pre- 1 to 1 for all designs). It should be noted that we re-
clude further searching for effects of QTL’s on that par- port sample size in subjects and not in twin pairs. The
ticular trait, even though such QTL’s may be present. same number of subjects refers to different numbers
The statistical power of quantitative genetic stud- of twin pairs and a different number of families for all
ies is influenced by the size of the effect (e.g. heri- three designs. We will use the terms ‘highest power’
tability), the sample size, the probability level)( and ‘fewest subjects needed’ to refer to an optimal de-
chosen, and the homogeneity of the sample (Neale andsign to detect sources of phenotypic variance.
Cardon, 1992; Cohen, 1992; Tanaka, 1987). Increasing All analyses were carried out using the statistical
the sample size is the most common way to increase thesoftware package Mx (Neale, 1997). Estimation of pa-
statistical power of a study, but is often limited by re- rameters was obtained by normal theory maximum like-
sources of time and money. Another means to increasdihood. Goodness of fit testing was based on the
statistical power is the use of multivariate testing. In the likelihood ratio tests. First univariate models were con-
context of structural equation modeling the statistical sidered. In order to obtain the sample size needed to
power to detect genetic effects rises as a (non-linear)detect varying levels of additive genetic variance with
function of multivariate testing under the condition that a fixed power level of (+ ) = .80, covariance matri-
the measures are correlated (Schmitz, Cherny, andces were calculated with sources of additive genetic
Fulker, 1998). In the context of partitioned twin analy- variance (\{) accounting for 10% to 90% of the phe-
ses it has been shown that choosing a different (e.g.notypic variance in the presence of sources of common
other than 1 to 1) MZ to DZ ratio influences statistical environmental variance ¢(Yaccounting for 00%, 10%,
power such that an MZ to DZ ratio of 1 to 4 is optimal and 20% of the variance. Remaining variance was at-
for partitioned twin analyses (Nance & Neale, 1989). tributed to unique environmental (E) sources of vari-
In the present paper we focus on increasing the sta-ance (\f). To detect sources of.\éovariance matrices
tistical power of the classical twin study by adding non- were calculated with Vaccounting for 10% to 90% of
twin siblings to MZ and DZ twin pairs. Since non-twin the phenotypic variance in the context of sourcesof V
siblings share on average half of their segregating genesaccounting for 00%, 10%, and 20% of the phenotypic
just like DZ twins, adding non-twin siblings to the clas- variance. In addition, covariance matrices were calcu-
sical twin design may provide an efficient way to in- lated with sources of variation due to A, D (dominant
crease the power to detect sources of genetic and sharegenetic variance) and E. Only the situation in which
environmental variance. Adding two more siblings to a dominance was ‘complete’ (Mo V4 =2 to 1; see ap-
twin kinship provides five additional observed covari- pendix I) was considered. In the ADE-models the total
ances, whereas adding a whole new family consisting ofgenetic variance, i.e. Mand V; together accounted for
two siblings provides only one additional observed co- 30% to 90% of the total phenotypic variance. For all
variance. In the present paper we examine the effects ofkituations, remaining variance was attributed to V
adding non-twin siblings to twin families on the esti- Since non-twin siblings, like DZ twins, share on
mated sample size needed to detect additive genetic (Aaverage half of their genes, expectations for non-twin
variance (\), dominant genetic (D) variance {V and sibling covariances were modeled similarly to expec-
common environmental (C) varianceMvith a power tations for DZ covariances.
of 80% in the context of structural equation modeling. In the ACE-models the expected phenotypic vari-
ance ¢2) of twins and siblings is ¥+ V. + V,, the ex-
pected MZ covariance M+ V., and the expected DZ
and sibling covariance .5+ V.. In ADE-models, the
We calculated covariance matrices for three ex- expected phenotypic variance ig ¥Vq4 + V,, the ex-
perimental designs, which differed in family constitu- pected MZ covariance 3+ Vg, and the expected DZ
tion. Design 1 included only MZ twins and DZ twins. and sibling covariance .5, .25 V.
Design 2 included families with MZ and DZ twins and It is known that the use of a multivariate pheno-
one additional sibling. Design 3 included families with type, as opposed to a univariate phenotype, results in
MZ and DZ twins and two additional siblings. For all a gain of statistical power if the multivariate traits are
three designs we calculated the sample size needed toorrelated (Schmitet al.1998). To find out how much

METHOD
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Fig. 1. Pathdiagram for the bivariate ADE-model, cholesky decomposition. Example for twins and one additional sibling, no unique enviro
mental correlation (rE). The covariance between trait 1 and trait 2,/®4a + (d;;*d,;) and the correlation between trait 1 and trait 2 is

(ag1*@z1) + (dir*do))/V(0%* 02).

adding siblingsaand using a multivariate phenotype af- estimated as a free parameter because we are interested
fects statistical power we also looked at several bi- in computing the power to detect,Mn ACE-models,
variate designs. We calculated covariance matrices forregardless of the value of,\and vice versa). The same
two traits with a phenotypic correlation of .50. Both reasoning applies to the bivariate calculations.

traits could be influenced by A, C, and E or by A, D, Constraining a certain set of parameters to zero and
and E. Total influences of sources of A, C or D, and E refitting the model provides the non-centrality parame-
were uniform for each trait. The phenotypic correlation ter. From this non-centrality parameter the sample size
between the two traits could be due to additive geneticrequired to reject the false model with a power of 80%
correlation (rA), dominant genetic correlation (rD), and a significance level of .05 can be calculated (Mar-
common environmental correlation (rC), or to unique tin et al.,1978; Hewitt and Heath, 1988) and is conve-
environmental correlation (rE), depending on the spe- niently supplied by Mx.

cific situation that was considered. Figure 1 depicts the
construction of covariance matrices for kinships con-
sisting of twins and one additional sibling for a bi-
variate ADE-model (Cholesky decomposition) in which Univariate Models

rE is absent and all p.henotyplc corrglatloh is due to rA ACE-models

and rD. All latent variables have unit variance.

Power calculations were carried out by fitting the We fitted full univariate models with sources of
known model to the exact (population) covariance ma- variation due to additive genetic (A), common environ-
trices as described in Neale and Cardon (1992). In mod-mental (C) and unique environmental influences (E).
els which contain a parameter which is known to be zero,Dropping either genetic or common environmental
the zero parameter can either be fixed at zero or freedparameters and refitting the model provides the non-cen-
(estimated) while computing the power to detect one of trality parameter. With Mx (Neale, 1997) the cor-
the other non-zero parameters. For example, when treatresponding number of subjects required to detect the
ing the ACE-model in which Ms zero as an AE-model, parameter that was dropped with a power of 80%cand
the power to detect sources of variation due to A is sig- of 5% was calculated for 1 degree of freedom. Results
nificantly higher than when the ACE-model is treated as concerning the estimated sample size (in subjects)
an ACE-model, i.e. with Yestimated as a free param- needed to detect,\h ACE-models for the three designs
eter. In the power calculations the zero-parameter wasare depicted in Figure 2 (and appendix Il). Figure 2a con-

RESULTS
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Fig. 2 a,b,c.Required sample size to detect sources of variance due to additive genetic effects in ACE models for three different family de-
signs with a power of 80%. Desigrn=IMZ and DZ twins only, Design 2 MZ and DZ twins and one additional sibling, Desigr 81Z and
DZ twins and two additional siblings.

cerns low values of M(10%- 20%), Figure 2b concerns Under various values of Mand V,, the power to
intermediate values of M30%-50%), and Figure 2c  detect sources of variation due to C rises substantially
concerns high values of \(60%—-90%) accounting for ~when one sibling is added to the classical twin design;

the total phenotypic variance. All values of &fe re- on average 50.4% fewer subjects are needed as com-
ported three times, i.e. in the context of values obV pared to the classical twin design (design 1). Adding
0%, 10%, and 20%. two siblings decreases sample size even more, but not

As can be seen in Figure 2a, 2b, and 2c, for vari- as dramatically as the decrease from no additional sib-
ous values of Yand V,, design 2 (families consisting lings to one additional sibling.
of MZ and DZ twins and one non-twin sibling) is the Many empirical studies suggest models in which
most optimal design to detect sources of variation duesources of variation due to C are of less importance
to A, i.e. with design 2 fewer subjects are required to than sources of variation due to A (Plomin, DeFries, &
achieve a power of 80% (see appendix IlI). The numberMcClearn, 1990). Therefore, we also calculated the sam-
of subjects needed to detect a fixed value gfsvon ple size required to detect small values gfnthe con-
average 9.3% more in the classical twin design (designtext of higher values of ) Figure 4 depicts the number
1) compared with a design with twins and one additional of subjects needed to detect values @fo¥/10% and
sibling. This can result in 2849 fewer subjects that are 20% in the context of values of,\6f 20% , 30%, 40%
needed with design 2 to detect an additive genetic in-or 50% (Appendix V).
fluence of 10% compared with the classical twin design. As expected, sample size required to deteetith

Including families with twins and two additional a power of 80% decreases as a result of higher values
sibs, islesspowerful than including families with twins  of V. and higher values of ¥ Comparing the sample
and one additional sibling, and also less powerful than size required to detect sources of variation due to A
including families with twins only for the detection of (Figure 2b) with the sample size required to detect
V. adding two siblings at the cost of the total number sources of variation due to C, shows that in the realis-
of MZ twins is disadvantageous, but adding one sib- tic situation where Y> V. sources of variation due to
ling is ideal. C are very difficult to detect. Even if the sample size is

Results for detecting common environmental in- large enough to detect sources of variation due to A, the
fluences are given in Figures 3a, 3b, and 3c, for low, small value of \{ may still go undetected. If for exam-
moderate, and high values of késpectively (see also ple the true model is an ACE-model with ¥50%, V,
Appendix I11). = 20%, and V¥ = 30%, and the total sample size 328
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Fig. 3 a,b,c.Required sample size to detect sources of variance due to common environmental influences in ACE models for three different
family designs with a power of 80%.
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Fig. 4. Required sample size to detect sources of variance due to common environmental influences in ACE models>wherfeihree
different family designs with a power of 80%.

(just enough for design 1 to detecf ®f 50%, with to be present in designs where siblings are added to the
power of 80%), VY will not be detected and the AE- classical twin design.

model will be proposed as the most parsimonious model.

This results in a biased estimate of (ih this case Y ADE-Models

is estimated to be 70%). We also fitted full univariate models with sources
Adding siblings to the classical twin design de- of variation due to additive genetic (A), dominance (D)
creases the sample size required to detect betmy and unique environmental influences (E). Since a DE-
V. and has the largest effect on the sample size requirednodel is unrealistic we report the sample size required
to detect V (i.e. 50.4% fewer subjects needed fq; V  to detect sources of variation due t@AdD (2 df test)
9.3% fewer subjects needed foy)VTherefore, the bias  and to detect sources of variation due to D (1 df test)
towards overestimating values of, ¥s a result of not  with a power of 80%. Results for detectingand Vj,
detecting \ in situations where y> V,, is less likely or V4 are given in Figures 5a and 5b (and appendix V).
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Under various values of Jand V;, with fixed ratio In conclusion, to optimize the power to detegt V
of V,to Vyis 2 to 1, adding one sibling to a twin family a design with additional siblings, as compared to a de-
decreases the sample size required to detgcAdbing sign with twins only, is preferred.

two siblings decreases sample size even more but less

than the decrease due to adding one sibling. Absolute ef-

fects are slightly higher with increasing values givid Bivariate Models
Vg F.|gure 5{;\ also emphasizes _the very Iarge .sample SIZ€ ~E_Models
that is required to detect dominant genetic influences.

Even the largest possible value of ¥hder complete To detect sources of variance due to additive ge-

dominance with the most optimal design will go unde- netic influence (A), we calculated both the sample size

tected if the sample is smaller than 1776 subjects. required to detect all sources of {f = 3; paths a,
Sample sizes required to detect bothavd \ si- a1, and @, in Figure 1) and the required sample size to

multaneously are considerably smaller as compared todetect the common genetic pathway £df; path a,).
sample sizes required to detect. Vh contrast, how-  We considered the test for the detection of the common
ever, adding siblings does not decrease sample sizgpathway to be a test for the presence of a genetic cor-
needed to detect Mand \j simultaneously. In fact, a relation (rA). The following situations to detect sources
design with one or two siblings requires somewhat of variance due to A were considered: a) The genetic
more subjects to detect,¥{nd \j; with a power of 80%, correlation (rA) is ‘moderate’ and equal to the common
as can be seen in Figure 5b. It should be noted how-environmental correlation (rC) and tioe unique envi-
ever that the number of subjects needed to detgct V ronmental correlation (rE). Variances due to A, C and
and \; at the same time is considerably less than the E (uniform for both traits) are 40%, 10%, and 50% re-

number of subjects needed to detegtovily. This im- spectively of the phenotypic variance. b) rC is absent,

plies that if the sample size is large enough to detectrA is high (.80), and rE is small (.36), variances due

V4 it will also be sufficient to detect Mand V. to A, C and E are 40%, 10%, and 50% respectively.
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¢) Variances due to C are absent. rA is .60, rE is .27,is highest in these cases). However, when there are uni-
variances due to A and E are 70% and 30% respec~ariate common environmental influences but no com-
tively. As mentioned before, all parameters were es- mon environmental correlation, the sample size required
timated, as opposed to constraining these parametersto detect variance due to additive genetic influences in-
which werezero in the full model. It should also be creases. Comparing situations a, b, and c leads to the
noted that considering the tests for totgltdtal V,, and conclusion that the power to detect sources of variance
total V; to be 3 df-tests is a conservative approach, as itand covariance due to A (df 3) is highest (and the re-
could be argued these are actually 2 df-tests, or testgjuired sample size is smallest) when there is no uni-
with df’'s somewhere between 2 and 3. Testing, for ex- variate common environmental source of variation.
ample, whether either or both univariate genetic vari- However, if there are common environmental sources
ances equal zero, implies that the genetic covariance iof variation, sources of variance due to A are easier to
zero. If variances due to additive genetic influences for detect when there is also a correlation between these
both traits equal zero, a correlation between thesetwo univariate common environmental sources of vari-
sources of variance is not possible. In other words, if ation, and again a design with one additional sibling is
the sample size required to detect each of the univa-optimal.
riate variances due to additive genetic influences is To detect sources of common environmental
insufficient, a correlation due to additive genetic in- sources of variation, we calculated both the power to
fluences can also not be detected. Therefore, considerdetect all sources of variation due to C £d3) and the
ing the test for the power to detect ‘total \f.e. both power to detect the common pathway €dt), which
univariate variances due to additive genetic influencesis a test to detect the environmental correlation (rC).
and the correlation due to additive genetic influences in We considered situations analogous to the situations in
the bivariate case) a 3 df test will provide an overesti- which power was calculated to detect sources of vari-
mation of the sample size needed for a power of 80%.ation due to A; a) The common environmental corre-
Results of situation a, b, and c for the three different lation is ‘moderate’ and equal to the genetic correlation
kinships, are given in Table I. and to the unique environmental correlation, i.e~rC
As can be seen in Table | the same pattern of re-rA = rE = .50. Uniform univariate variances due to A,
sults is found in the bivariate case as in the univariateC and E are 10%, 40%, and 50% respectively. b) rA is
case; a design with one additional sibling is optimal for absent. rC is high (.80), and rE is small (.36), variances
the detection of Yin ACE-models. In addition, sig- dueto A, C and E are 10%, 40%, and 50% respectively,
nificantly fewer subjects are needed in the bivariate ¢) Variances due to A and rA are absent. rC is .60, rE
case as compared to the univariate case. Depending ois .27, variances due to C and E are 70% and 30% re-
whether the phenotypic correlation is due to rA, rC, or spectively. Again, for all situations the phenotypic cor-
rE, the sample size required to detegiméay decrease relation was .50. Results are given in Table II.
and is lowest in cases where there is no influence of Although the results in the bivariate case resem-
common environmental sources (i.e. statistical power ble those in the univariate case (i.e. a design with two

Table I. Total samplesize (in number of subjects) needed to detect additive genetic influences in full bivariate ACE models unider three d
ferent sibship sizes with power {1p) = .80 anda = .05

V,=40% rA= .50 V. = 40% rA= .80 V.= 70% rA= .60
V. =10% rC=.50 V, = 10% rC=.00 V, = 00% rC=.00
Ve = 50% rE= .50 V, = 50% rE= .36 V, = 30% rE= .27
all V, (df = 3) rA (df = 1) all V, (df = 3) rA (df = 1) all V, (df = 3) rA (df = 1)
design 1 660 2392 782 884 156 270
design 2 564 1917 678 735 147 237
design 3 680 2260 820 876 180 284

Note MZ/DZ ratio = 1/1; design 1= twins only, design 2 twins and one additional sibling, design-3wins and two additional siblings.
‘All V ;' refers to both univariate variances and the genetic correlation.

In order to calculate the total number of families needed, all cells concerning design 1 need to be divided by 2, akemlisgcdesign 2
need to be divided by 3, and all cells concerning design 3 need to be divided by 4.
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Table II. Total samplesize (in number of subjects) needed to detect common environmental influences in full bivariate ACE models under
three different sibship sizes with power<$) = .80 anda = .05

V,=10% rA= .50 V,=10% rA= .00 Vo= 0% rA=.00

V¢ = 40% rC= .50 V, = 40% rC= .80 V, = 70% rC= .60

Ve =50% rE= .50 V, = 50% rE=.36 V, = 30% rE= .27
all V, (df = 3) rC (df=1) all V, (df = 3) rC (df=1) all V, (df = 3) rC (df=1)
design 1 444 1498 518 560 100 156
design 2 213 774 249 279 48 96
design 3 48 760 44 268 16 108

Note see table 1 for definitions.

additional siblings is optimal for the detection of)V  Designs Where Only Sibs of mz Twins are Included
the difference between design 2 and design 3 (i.e.
adding one or two siblings) in the bivariate case is more
substantial. Whereas in the univariate case only a small
additional effect was found, in the bivariate case 4 to
5 times less subjects are needed with two additional
siblings as compared to one additional sibling.

In the previous analyses all families were of the
same structure; consisting of MZ and DZ twins only,
or with one or two additional siblings. For several rea-
sons this may not always be realistic. For illustrative
purposes, we included two other designs in which one
(design 4) or two siblings (design 5) were added to MZ
twin families, but not to DZ families. Analyses were
ADE-Models run for a few ‘standard’ situations of the ACE-models

. ) _and ADE-models for univariate testing only. Results
We calculated covariance matrices for two traits 5, ACE and ADE models are given in Table IV.

that were influenced by A, D, and E in the context of Comparison of the results of designs 4 and 5 and
complete dominance. Sources of variance due to A antihe results of designs 2 and 3 shows that in ACE-mod-
D accounted for 40% and 20% respectively of the total g|5 5 design consisting of MZ twins and one additional
phenotypic variance. We assumed that the raiooV  gipling and DZ twins only (design 4) is optimal for the
V4remained equal over the two traits. This implies that yetection of \,, and performs even better than design 2.
rA =D (see appendix I). Three situations were con- o the detection of Vin ACE-models design 3 and 5
sidered: a) rA=rD =.80,; b) rA=rD =.50; c) rA=rD are both optimal.

= .30. For all three situations the phenotypic correla- In the context of ADE-models, design 3 (MZ/DZ
tion was fixed at .50 by attributing all remaining co- ins with two additional siblings), requires the smallest
variance to rE. We report the total number of individual sample size and is more optimal than design 4 or 5 for
subjects needed to detect sources of togand \; due the detection of sources of variation due to dominance.
to A and D (df=6), rA & rD (df = 2), total D (df=3),
and rD (df=1) for a power of 80%. Results are given
in Table IIl.

Analogous to the univariate case a design with two We demonstrated that with a fixed power of 80%,
additional siblings is optimal for the detection of V a probablity level of 5% and under varying levels of
and a design with twins only is optimal for the detec- heritability and common environmental influences,
tion of V,and V; simultaneously. Comparison with the adding one sibling to the classical twin design signifi-
univariate results shows that in a design with twins cantly decreases the number of subjects that are needed
only, fewer subjects are needed to detect sources ofto detect each of these sources of variation. Adding two
variance due to D as a result from bivariate testing. This siblings to a twin pair yields an additional decrease of
effect, however, is stronger when a design consistingsample size to detect sources of variation due to the
of twins and two additional siblings is used, suggest- common environment but is not optimal for the detec-
ing that in addition to the decrease in sample size as aion of additive genetic influences. If the trait is influ-
result from bivariate testing, adding siblings will de- enced by additive and non-additive genetic factors,
crease the sample size required to detect sources o&dding one sibling to the classical twin design decreases
variance due to D even further. the sample size needed to detect sources of variation

CONCLUSION
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.30
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= 40% rA
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.50
=.50
.50

40% rA
V= 20% rD
40% rE

power (1- ) = .80 anda = .05
Va
Ve

.80
80

.05

40% rA
40% rE

Vg4 =20% rD
Ve =

Table Ill. Total sample size (in subjects) needed to detect additive genetic influences and dominance in bivariate ADE models uidee ufiffie@rent sibship sizes with
Va

all Vg4
(df=3)

rA&rD
(df=2)

all V, + all Vy

D

all Vg4
(df=1)

(df=3)

all V, +all Vg rA&rD

D
(df=1)

all Vg4

(df = 3)

rA&rD

all V, +all Vy

(df=1)

(df = 6)

(df=2)

(df = 6)

(df=2)

(df = 6)

82356
41544
38436

4702
2490
2272

548
681
784

32
39
40

28054
14073
12872

7662
3909

184
228
264

54
60
60

10042
5121

8672

64
78

62
69
72

design 1

4464

design 2

3636

4660

4076

design 3

Note see table 1 for definitions.
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Table IV. Total sample size (in number of subjects) needed to de-

tect additive genetic, dominance and common environmental influ-

ences in univariate ACE-models and ADE-models for designs with
including MZ and DZ twins and siblings added to MZ families
only, a power of (+ B) =.80, and significance level = .05

V,=40% Vc=40% V,=40% V,=40%
Ve=10% V,=10% V4=20%  V4=20%
effect
detected» Va, V. Va+Vy Vg4
design 4 705 338 83 6313
design 5 744 285 84 5313

Note MZ/DZ ratio = 1/1: design 4 Mz twins and one additional
sibling, DZ twins only, design § MZ twins and two additional sib-
lings and DZ twins onl.

due to dominance. Adding two siblings decreases the
number of required subjects somewhat more but the de-
crease is relatively small (compared to the decrease due
to adding one sibling). These effects are more pro-
nounced in the bivariate case than in the univariate
case. An additional benefit of adding siblings is that
these designs, as compared to the classical twin design,
are less likely to result in an overestimation of additive
genetic influences as a result of not detecting small
sources of common environmental influences.

We modeled the sibling covariances under the as-
sumption that age differences in heritability are not im-
portant. A more complex model would take into
account age differences between non-twin siblings. It
is known that for some measures heritability increases
with age as a result of amplification of genetic effects
across ages (e.g. intelligence; Boomsma, 1993),
whereas for other measures heritability estimates may
decrease with age (e.g. problem behaviour; Van der
Valk et al.,1998). Assuming that the same genes op-
erate across the age span, adding siblings who are older
than the twins will increase power when heritability in-
crease with age, and will decrease power when heri-
tability estimates decrease with age. Similarly, adding
parents will increase power to detect genetic factors if
heritability increases with age.

Schork (1993) noted the dramatic improvement in
statistical power resulting from the use of larger sibships
for the detection of QTL effects. In addition, Dolan,
Boomsma and Neale (1999) demonstrated the value of
adding non-twin siblings to two-sibling- (or DZ twin-)
families for the detection of codominant QTL effects.
Our aim was to determine whether the use of an ex-
tended twin design, as needed for the detection of QTL-
effects, would also be useful for the detection of overall
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o i 0
< 0 ©

0%

sources of variance (i.e. A, C, and D). Our calculations
showed that without the need to increase total sample
size, adding one sibling to the classical twin design im-

proves the statistical power by a large extent to detect
sources of variation due to common environmental in-

fluences, additive genetic influences and dominance.
Adding siblings and using a bivariate phenotype results
in gain of statistical power which can not only be as-

cribed to bivariate testing but also to the use of an ex-
tended twin design.

In conclusion, adding at least one sibling to the
classical twin design, as opposed to a design with twins
only, will provide a significant gain in statistical power
to detects sources of variation due to A, C, and D. An
attractive side-effect of a design with additional sib-
lings is that it is also beneficial for the detection of
QTL-effects.

=80%  V,=90%
0% 10%
104 52
105 57
132 72

Va
10% 20%
198 124 60
186 120 63
228 148 80

V, = 70%
20% 0%

10%
324 228 144
396 280 176

360 248 150

=60%
0%

Va

APPENDIX |

10% 20%

Consider a biallelic trait with alleles B and b. Let
a be the effect of genotype BB on the phenotypic mean,
-a the effect of bb, and the effect of Bb on the phe-
notypic mean. Assuming equal allele frequencies of B
and b, the mean genotypic effect on the phenotypic
mean isl/2 d.The total genetic variance?g) equals
12 &+ 1/4 &, =Vva+ Ve

For complete dominance=da. Substituting d for
a in the formulae for the genetic variances, givessV
1/2 & and \! 1/4 &, thus \# =2 V¢

V, = 50%
0%
644 482 328
567 426 294
688 512 356

10% 20%

40%
1192 950 700

1032 813 600
1252 976 716

0%

Va
20%

30%
10%

2406 2026 1588
2079 1707 1320
2520 2048 1572

Va
0%

20%

20%
10%

Now consider éivariate model with latent vari-
ances scaled to unity, (see figure 1) and

5151 4395 3540
6256 5280 4208

5908 5230 4332

Va
0%

e uniform genetic influences over traits, Y=
Vazand Vd1:Vd2

e assumption of uniform d to a ratio over traits
(24)?/(d12)? = (820)%/(d21) = (822)%/(d22)?

o A =ay;* ap/V{(a10)* [(a21)? + [(a22)?} which
simplifies to rA= a,q/aq;

¢ 1D =dy; * dyyV{(d1)** [(d22)? +[(d22)°]} which
simplifies to rD= d,,/d;,

20%

1/1, significance level = .05, power (1- B) = .80, design X twins only, design 2 twins and one additional sibling, desigr3
10%

V,=10%

0%
design 1 24896 23084 20110

This implies that the additive genetic correlation
equals the dominant genetic correlation.

Sample size (in subjects) needed to detect additive genetic influences in full univariate ACE models under varying levai®mfdue to

common environmental sources for three different sibshipsizes.

MZ/DZ ratio
In order to calculate the total number of families needed, all cells from design 1 need to be divided by 2, all cellsgrothriesd to be di-

vided by 3, and all cells from design 3 need to be divided by 4.

twins and two additional siblings.

design 2 22047 19557 16365
design 3 26836 23560 19460

APPENDIX I

Ve -
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APPENDIX V

Posthuma and Boomsma

Samplesize (in subjects) needed to detect additive genetic and dominance influences in ADE-models.

See Appendix Il for definitions

V,=20% V, = 30% V, = 40% V, =50% V, = 60%
Vg =10% V, = 15% V, = 20% V, = 25% V, = 30%
V.& Vg Vq V.& Vg Vg Va&Vy Vg Va&Vy4 Vg Va& Vg Vg
design 1 148 22808 76 11036 42 5958 42 5958 22 3518
design 2 156 11790 84 5631 48 3081 48 3081 27 1950
design 3 148 11328 84 5236 48 2784 48 2784 28 1776
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