© Kamla-Raj 2001

IJHG 1(1): 41-53 (2001)

Developmental Genetics of Red Cell Indices During Puberty:
A Longitudinal Twin Study

David M. Evanst, lan H. Frazer?, Dorret |. Boomsma2 and Nicholas G. Martin?

1Queensland I nstitute of Medical Research and Joint Genetics Program, University of Queensland,
Brisbane, Australia
2Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital,
Brisbane, Australia
SDepartment of Experimental Psychology, Free University, Amsterdam, The Netherlands

KEY WORDS Haemoglobin; red cell count; mean cor-
puscular volume; twins; genetics.

ABSTRACT Red cell number and size increase during
puberty, particularly in males. The aim of the present study
was to determine whether expression of genes affecting red
cell indices varied with age and sex. Haemoglobin, red cell
count, and mean cellular volume were measured longitudi-
nally on 578 pairs of twins at twelve, fourteen and sixteen
years of age. Data were analysed using a structural equa-
tion modeling approach, in which a variety of univariate
and longitudinal simplex models were fitted to the data.
Significant heritability was demonstrated for all variables
across all ages. The genes involved did not differ between
the sexes, although there was evidence for sex limitation in
the case of haemoglobin at age twelve. Longitudinal analy-
sesindicated that new genes affecting red cell indices were
expressed at different stages of puberty. Some of these genes
affected the different red cell indices pleiotropically, while
others had effects specific to one variable only.

INTRODUCTION

In healthy adults, haemoglobin, red cell
count, haematocrit and mean cell volume change
little over time (Costongs et al. 1985; Dot et al.
1992; Fraser et al. 1989; Ross et al. 1988;
Statland et al. 1978). From childhood to adult-
hood, however, thereis an increase in these and
other indices of erythrocyte number and size.
This increase is greater in males than females
and is probably due to the combined action of
several hormonesincluding testosteroneand in-
sulin-like growth factor (IGF-1) that are secreted
inincreased amounts during adol escence (Anttila
et a. 1994; Thomsen et al. 1986).

Several twin studies have demonstrated that
part of the variation in red cell indices between
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individualsisdueto genetic factors (Dal Colletto
etal. 1993; Evanset al. 1999; Garner et al. 2000;
Lindemann et al. 1977; Whitfield and Martin
1985; Y okoyamaand Akiyama 1995). No study
to date, however, has examined whether differ-
ent genes influence red cell indices at different
ages. For example, one set of genes might affect
erythrocyte numbers before puberty, while an-
other set of genes may be responsible for varia-
tion during adulthood. Thomsen et al. (1986)
found that a steep rise in haemoglobin concen-
tration in pubescent boys took place during a
short period in adolescence, soon after an in-
crease in testosterone production. In contrast,
Anttilaet a. (1994) in astudy of younger boys,
failed to find an association between serum tes-
tosterone and haemoglobin levels, but did find
an association between serum IGF-1 and hae-
moglobin. Theseresultsimply that different sys-
tems and consequently different sets of genes
may regulate red cell indices at different stages
of puberty.

The aim of the present study was to investi-
gate whether expression of genes affecting red
cell indicesvaried with age. Changesin the mag-
nitude of genetic and environmental effectsover
time can be addressed by cross-sectional stud-
iesthat measure subjects of different ages. How-
ever, in order to assess whether the same genes
affect the trait over time, longitudinal data are
required. Twins were therefore measured on
haemoglobin (HB), red cell count (RBC), and
mean corpuscular volume (MCV) over three
occasions- at twelve, fourteen and sixteen years
of age, corresponding roughly to early, middle
and late stages of puberty. It was hypothesised
that genes responsible for variation between in-
dividuasinthe early stagesof puberty (ie. twelve
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years) would differ from the genes operating at
later stages of puberty (ie. fourteen and sixteen
years).

MATERIALSAND METHODS

Subjectsand Measures

Datawere collected as part of ongoing stud-
ies into the development of melanocytic naevi
(moles) at ages twelve and fourteen, and cogni-
tion at age sixteen, the clinica protocolsof which
have been described in detail el sewhere (Aitken
et al. 1996; Evans et a. 1999; McGregor et al.
1999; Wright et al. Submitted; Zhu et a. 1999).
Twinswere enlisted by contacting the principals
of primary schoolsin the greater Brisbane area,
media appeals and by word of mouth. Informed
consent was obtained from all participants and
parents prior to testing. Theresultsreported here
concern data collected from May 1992 to June
1999. Twins were tested as closely as possible
to their twelfth, fourteenth and sixteenth birth-
days. Datawere obtained from 578 pairsof twins
comprising 108 monozygotic female(MZF), 111
monozygotic male (MZM), 91 dizygotic female
(DZF), 96 male (DZM) and 172 opposite sex
(DZOS) twin pairs (including 85 pairswherethe
femalewasbornfirst and 87 pairswherethemale
was born first). Not all twins were tested across
all three measurement occasions (see Table 1 for
a breakdown of these data). No attempt was
made to exclude subjects suffering fromillness,
although a few such cases were subsequently
excluded as outliers (see below). Venous blood
was collected intoa5ml EDTA tube. Total blood
haemoglobin g/L (HB), red blood cell count x
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10%/L (RBC), and mean corpuscular volume fL
(MCV) were measured using a Coulter Model
STKSblood counter. Zygosity in same sex pairs
was determined by typing 8 highly polymorphic
DNA microsatellite markers and three blood
groups (ABO, MNS, Rh). In 50 pairs of twins
where DNA was not available, zygosity was
judged by similarity of appearance.

Statistical Analyses

Inorder to allow use of al available dataand
avoid listwise deletion of cases, structural equa-
tion modeling using maximum-likelihood analy-
sis of individual observations was performed
using the computer package Mx (Neale 1997).
The structural eguation model comprised two
parts: (1) a model for the expected values of
observations in terms of fixed effects such as
age and sex (the “model for the means’), and
(2) amodel for the covariance matrix of residu-
als after removal of these fixed effects. Signifi-
cant twin correlations establish the presence of
familial aggregation for the measure of interest,
but do not distinguish between the possible
mechani smsthrough which thissimilarity arises.
Phenotypic variation may be conceptualised as
the net result of four sources of variation: addi-
tive genetic (A), non-additive genetic (D), and
common environmental (C) sourcesof variation
which make siblings more alike, and random
environmental variation (E) which makesiblings
different. The goal of structural equation mod-
eling is to determine which combination of A,
C, D and E provides the most parsimonious fit
to the observed data. The task is further com-
plicated by the fact that C and D are negatively

Table 1: Breakdown of participation data showing number of twin pairswho weretested at each age

Measurement Occasion Zygosity
12 14 16 MZF MzZM DzF DzZM DzZ0Os Total
(o] B 20 23 23 30 50 146
0] ) 7 7 4 5 9 32
) . O 17 22 18 9 25 91
o) 0] ) 19 18 23 24 42 126
O . 0] 3 4 2 1 5 15
o) o) 8 8 5 6 8 35
0] O 34 29 16 21 33 133
Total in simple model 108 111 91 96 172 578
Total at 12 76 74 64 76 130 420
Total at 14 68 62 48 56 92 326
Total at 16 62 63 41 37 71 274
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confounded so that they cannot be estimated
concurrently in a study of MZ and DZ twins
reared together. Thisdoes not imply that C and
D cannot both contribute to the phenotypic vari-
ance of atrait, rather they cannot be estimated
simultaneously with data from twins reared to-
gether.

Univariate Analyses

We began by fitting ageneral sex-limitation
model to each variable at each age (see Fig. 1).
The model for the means consisted of a sex de-
viation, as well as regression terms for age and
for thetime of day which the blood was sampled.
It iswell known that blood cell number is sub-
ject to circadian influences and follows a sinu-
soidal pattern over the 24-hour period. Within
thenarrow range of sampling timesin the present
study, therelationship between time of sampling
and blood cell number seemed to be approxi-
mated adequately by alinear function, and this
wasincluded inthe means model along with age
and sex. Themodel for the covariances consisted
of different variance components for males and
females (ie. different estimatesfor A, C and E),
aswell asan unconstrained additive genetic cor-
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relation between opposite sex twin pairs (Neae
and Cardon 1992). This model was compared
against more simplified sub-models. First the
additive genetic correl ation between opposite sex
twin pairs was constrained to 0.5 (equivalent to
testing whether different sets of genes affected
the trait in males and females i.e. “non-scalar
sex-limitation™), and then male and femal e vari-
ance components were equated (equivaent to
testing whether the magnitude of genetic and
environmental effects differed between males
and females). Finally, the significance of each
variance component was tested by dropping it
fromthemodel. All comparisons between mod-
elswere assessed by differenceinlog-likelihood
Dc?- twice the difference in log-likelihood be-
ing distributed as c? with the degrees of free-
dom (df) for this test equal to the differencein
df between the full and sub-models.

Longitudinal Analyses

A cholesky decomposition was performed on
the time series data from each variable (Neale
and Cardon 1992). In the cholesky model the
expected variance-covariance matrix is
parameterised in terms of n factors (wherenis

P
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Fig. 1. Path diagram for a univariate general sex-limitation model for opposite sex twin pairs. Note that the
additive genetic correlation between these pairsis unconstrained, and that males and females have different path
coefficients
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thenumber of variables), whereall variablesload
onthefirst factor, n-1 variablesload on the sec-
ond factor and so on, until thefina variableloads
on the nth factor only. Each source of pheno-
typic variation (ie. A, C or D, and E) is
parameterised in such a way (see Fig. 2). The
model for the meansfor these analyses consisted
of eight parameters. age deviations at fourteen
and sixteen years of age, sex deviationsfor ages
twelve, fourteen and sixteen and finally regres-
sion terms for the time of day at which blood
was sampled on each of the three measurement
occasions.
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Fig. 2. A Cholesky decomposition. The observed
variance-covariance matrix is decomposed into
additive genetic, common environmental (or non-
additive genetic) and unique environmental sour ces of
variation and covariation. Each of these sourcesis
parameterised in terms of n factors (where n isthe
number of variables) where all variables load on the
first factor, n-1 variables load on the second factor
and so on, until the final variable loads on the nth
factor only

As pointed out by Boomsma et al. (1989),
the problem with using a cholesky design to
analyselongitudinal dataisthat acholesky struc-
ture does not take full advantage of the time se-
ries nature of the data (ie. that causation is uni-
directional throughout time). We therefore fit-
ted a simplex model - a model that explicitly

takesinto account the longitudinal nature of the
data - to each of the red cell variables (Fig. 3).
Simplex models are autoregressive models
where the latent variable at time (i) is causally
related to theimmediately preceding latent vari-
able (i — 1) through alinear relation ie.

hi=bh,_ +z

whereh, isthelatent variableat time (i), b, isthe
linear regression of the latent factor on the pre-
viouslatent variable, and z; representsanew in-
put (innovation) at time (i) which isuncorrelated
with h_,. When using datafrom MZ and DZ twin
pairs, structural equations of this type can be
expressed for additive genetic sources of varia-
tion (A), common environmental (C) (or non-
additive genetic sources of variation (D)) and
unique environmental sources of variation (E).
Also part of the model is a structural equation
relating the observed phenotypes to the latent
factors:

yi=lhi+g

where |, is the factor loading of the observed
phenotype on the latent variable at time (i), and
& isameasurement error term which affectsthe
phenotype, but is uncorrelated with h,. In order
for the model to be identified, either the factor
|oadings of the observed on latent variables must
be set to unity and the variance of the innova
tions estimated, or alternatively, the variance of
theinnovation terms standardised to oneand the
factor loadings estimated. In the present study,
the factor loadings of the observed variables on
the latent factors (ie. the | s) were set to one and
the variance of the innovation terms was esti-
mated.

A final point concerns the distinction be-
tween innovations of latent factors (z)) and the
measurement errors of observed variables (e).
Theinnovations are that part of the latent factor
at time (i) that is not caused by the latent factor
at time (i-1), but are part of every subsequent
time point. In contrast, measurement errors are
terms that do not influence observed variables
at subsequent time points. As such, the simplex
design allows discrimination of transient factors
that affect measurement at one time point only,
and factors that are continuously present or ex-
ert a long term influence throughout the time
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series (Boomsmaet al. 1989; Neale and Cardon
1992). Note also that the variance of the mea-
surement error terms affecting the first and last
measurement occasions must be constrained
equal inorder for themodel to beidentified. This
is because error variance at these occasions
would otherwise be indistinguishable from in-
novation variance. I n the present study, the vari-
ance of all measurement error terms was con-
strained equal .

The simplex model in the present study con-
sisted of sixteen parameters: the variances of the
three innovations for each of the three sources
of variation (ie. A, C and E sources for HB and
RBC; A, D and E sources for MCV), two trans-
mission coefficientsfor each source of variation,
and finally the variance of the measurement er-
ror term that affected phenotypes at each age
but was not transmitted to subsequent ages. The
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model for the means was the same as that used
for the cholesky analysis.

RESULTS

Of the 578 pairs of twins tested, data were
not available (eg. blood specimen unsuitablefor
analysis, insufficient amount of blood taken etc.)
from nineteen individuals at age twelve, twelve
individuals at age fourteen, and six individuals
at age sixteen. Asthis study was concerned with
the causes of variation within the normal range
(as opposed to pathological causes of extreme
values) one twin's data were excluded from all
analyses because of aplastic anaemia. Scores
greater than 3.5 standard deviations from the
mean would be excluded from further analyses.
Two subjects’ scoreswere excluded from HB at
fourteen (166 g/L) and sixteen (98 g/L) years of
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Fig. 3. Genetic simplex model for a single variable measured across three time points. The loadings of the observed
variables (Y) on the latent factors are set to unity, and the variance of the innovation terms (z) are estimated. A
measurement error term (€) also influences the observed phenotype at each occasion. The variance of this error

term is equated across twins and measurement occasions. For MZ twins, a = 1, for DZ twinsa = 0.5. Only additive

genetic (A) and environmental sources (E) of variation areincluded in this path diagram. Similar structures may
be written for common environmental sources (C) or non-additive genetic (D) sour ces of variation
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age. Two individualswere excluded from analy-
sesinvolving RBC (12yrs:. 6.30, 6.25 cells/L x
1072, 14yrs. 6.22, 6.12 cells/L x 10%?; 16 yrs.
6.60, 6.38 cellg/L x 10?) and MCV (12yrs: 62,
64 fL; 14yrs: 66, 68 fL; 16 yrs: 65.9, 68.8fL) at
all ages, and afurther two subjectswere excluded
fromanalysesinvolving MCV at fourteen (75fL)
and sixteen (71 fL) years respectively.

Multivariate outliers were identified by fit-
ting an empirical model to the datawhere males
and females had separate means and variances.
The square root of the Mahalanobis distance for
each pedigree (i) was then calculated using the
formula

Q = (X - My'S*x - m)

where S:* is the maximum likelihood esti-
mated covariance matrix, m the estimated mean
and x; the observed trait value of the pedigree
(). Q wasthen transformed to approximate the
standard normal distribution using the function:

Z, = ((Q/n)¥ - 1+ 2/(9n))(9n/2)2
where n; is the number of individuals in pedi-

gree(i) (Hopper and Matthews 1982). Pedigrees
with Z scores in excess of 3.5 were excluded
from further analyses for that variable. Thisin-
cluded apair of twinsfor MCV at twelve (86.3,
80 fL), a pair at fourteen (83, 78 fL) and one
pair who was excluded from analysesinvolving
MCV because of extremevalues at sixteen years
of age (78, 79 fL).

The means and standard deviations of all
blood measurements for males and females are
listed in table 2. In females, there was little
changein HB from twelveto sixteen years, while
RBC decreased and MCV increased. In males,
all red cell indicesincreased with age.

Correlations between twin pairsare presented
in table 3 for the different zygosity groups. The
correlation between MZ twin pairswasvery high
for al variables at all ages, particularly in the
case of MCV. The corresponding DZ correla
tionswere substantial, but lower, suggesting that
genetic factors contributed to variationin al in-
dices at al ages. The correlation between DZ

Table 2: Red cell means and standard deviations for male and female subjectsignoring their twin relatedness

Females Males
Variable Age Range N Mean D N Mean D
HB (glL)
107 - 164 404 133.61 8.81 416 134.74 7.76
14 109 - 166 318 133.87 7.96 320 140.70 8.55
16 113- 172 272 133.91 8.32 268 149.92 9.03
RBC
(CellsL x 103 12 3.56 - 5.84 404 4.66 .32 414 4.72 .32
14 3.73-572 319 4.57 .30 318 4.87 .32
16 3.78-5.84 273 4.49 .29 266 5.01 .32
MCV (fL)
12 74 - 97 404 85.37 3.37 412 84.50 3.32
14 78-98 316 87.56 331 318 85.65 3.33
16 71-99 269 89.17 3.32 266 88.73 3.44
Table 3: Correlations between twin pairsat 12, 14 and 16 years for HB, RBC and MCV?
HB RBC MCV
Age 12 14 16 12 14 16 12 14 16
Zygosity
MZF .86 74 .81 .87 .84 .87 .96 .94 .88
MZM .82 74 .84 .90 .81 .86 .94 .96 .96
DZF .62 .59 .33 .63 .62 .50 41 .18 45
DZM .58 47 .64 .65 .60 .64 .56 49 .57
DZOSs .48 .35 27 49 .46 A7 43 37 .38
Pooled
Mz .84 a7 91 .88 .86 91 .95 .95 .92
DZ .53 .46 42 .57 .51 42 .45 .32 44

aNumber of pairs for each age and zygosity is approximately as shown at the foot of table 1
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male twins remained fairly constant across all
ages. In contrast, the correl ation between female
DZ twin pairs decreased noticeably at age four-
teen in the case of MCV and at age sixteen for
HB and RBC. The correlation between opposite
sex twin pairs decreased from age twelveto six-
teen across all variables, most noticeably for HB
and RBC suggesting that gene expression may
differ between the sexes.

Univariate Analyses

Table 4 displays the standardised variance
components for the best fitting univariate mod-
els, the-2log-likelihood of the general sex limi-
tation models, and the difference in c2 between
the general sex limitation models and the best
fitting models. Genetic factors contributed sig-
nificantly to all variables at all ages accounting
for between 31 and 96 percent of the total vari-
ance. Heritability increased from age twelve to
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sixteen in the case of HB, but stayed relatively
constant for RBC and MCV. Non-additive ge-
netic factors were significant for MCV at age
fourteen. Common environmental factors were
only significant at age twelve for HB. The re-
maining variables were best explained by AE
models at all ages. Sex-limitation was signifi-
cant in the case of HB at twelve, and for MCV
at sixteen years of age. The additive genetic cor-
relation between opposite sex twin pairs could
not be constrained to 0.5 in twelve year oldsfor
HB (Dc,2 = 3.866, p = .049), suggesting that dif-
ferent sets of genes affected the trait in males
and females. Maleshad higher heritabilitiesthan
femalesfor MCV.

Longitudinal Analyses
Cholesky Model
Standardised results of the cholesky analyses

Table 4: Univariate genetic modeling for red cell indices at each age. Parameter estimates for the best fitting model
only are shown. The general model specifies regression terms for sex, age, time of blood sampling, has
different variance components for males and females, and an unconstrained additive genetic correlation

between opposite sex twins (a)

Source of Variation General Model Best Model
Males Females
Variable  Age A C E A C E a 2L df 2 df
HB 12 .63 .19 .18 .63 19 .18 .16 5497.426 809 6.567 4
HB 14 .73 - 27 .73 - .27 5 4329536 627 6.023 5
HB 16 .81 - .19 .81 - .19 5 3697.125 529 6.718 5
RBC 12 .86 - A4 .86 - 14 5 101.709 807  8.995 5
RBC 14 .80 - .20 .80 - .20 5 62.031 626 8.070 5
RBC 16 .83 - 17 .83 - 17 5 50.333 528 9.155 4
MCV 12 .96 - .04 .96 - .04 .5 3828.078 805 4.572 5
MCV 14 42 532 .05 42 532 .05 5 2979.060 623 2.377 4
MCV 16 .95 - .05 .88 - 12 5 2550.165 524 2.641 3

refers to a non-additive genetic variance component

Table 5: Cholesky decompositions of covariance between measures at ages twelve, fourteen and sixteen® Resultsare
standardised to unit variance at each age. The non-additive genetic part of the model could be dropped for
MCV without significantly affecting the model’s fit (Dc? = 8.009, p = .237)

AL A2 A3 c1 c2 c3 El E2 E3
HB,, 80 44 41

HB 1, 60 52 -.26 18 .05 52

HB o 61 30 57 -.01 13 .00 03 .06 44
RBC,, 80 47 38

RBC, 61 44 10 46 02 46

RBCiq 59 32 45 33 28 .00 .05 .08 40
MCV, 98 - 21

MCV, 85 47 - - 01 23

MCVg 78 30 46 - - - 03 11 27

3 HB: -2LL = 13324.822, df = 1971; RBC: -2LL =-115.558, df = 1967, MCV: -2LL = 8583.612, df = 1958
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arepresented intable 5. Note especially thelarge
loadings of all variables on the second and third
genetic factors. If the same set of genes were
responsible for variation across al three mea-
surement occasions, all the measurementswould
have loaded highly on the first genetic factor,
and the factor loadings on the second and third
genetic factorswould have been zero. Thiswas
clearly not the casefor any of thevariables, sug-
gesting that new genetic input was affecting the
red cell indices at measurement occasions two
and three.

Univariate Smplex Models

Results of fitting the simplex models to the
threetime pointsfor each variable are presented
in figure 4. Comparison of the log-likelihoods
between the full cholesky and simplex models
revealed that in all cases the simplex models
provided an adequate fit to the observed data
(HB: Dc,2=1.019, p=.601; RBC: Dc,2=5.339,
p=.069; MCV: Dc,?=5.537, p=.063). Drop-
ping the common environmental part of thesim-
plex model resulted in a significant deteriora-
tioninfitfor HB (HB: Dc.2=28.591, p =.000)
and RBC (Dc? = 30.441, p = .000). However,
the unique environmental simplex structures
could be dropped without significantly affect-

ing thefit of themodels (HB: Dc.2=9.742, p=
.083; RBC: Dc.?=6.182, p =.289). For MCV,
the non-additive genetic simplex structure (D)
could be dropped without significantly affect-
ing the model (Dc.? = 8.613, p = .126), but not
the unique environmental part of themodel (Dc 2
=37.109, p = .000), implying that stable unique
environmental influences influenced the trait
throughout puberty.

Examination of the maximum likelihood pa
rameter estimates revealed that the most impor-
tant variance component of each model wasthe
large genetic innovation influencing the first
measurement occasion (Fig. 4). Note also the
large additive genetic transmission coefficients
whichindicatethat most of thisgenetic variance
wastransmitted to subsequent ages. Smaller ge-
netic innovations were also present at fourteen
and sixteen years. At agefourteen, 14.6%, 14.6%
and 21.9% of the total variance for HB, RBC,
and MCV respectively were due to genetic in-
novation, whereas at the same age 53.0%, 57.0%,
and 72.3% of the total variance were dueto ge-
netic influencestransmitted from agetwelve. At
age sixteen, 29.1%, 15.4%, and 21.7% of the
total variance for HB, RBC, and MCV respec-
tively were due to genetic innovation, whereas
at the same age, 51.4%, 67.9%, and 70.3% of

MCV
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Fig. 4. Maximum likelihood parameter estimatesfor HB, RBC and MCV simplex models. Some of the
environmental components could be dropped without significantly affecting the fit of the models. The variance
components for the RBC model have been multiplied by 100



GENETICS OF RED CELL INDICES

thetotal variance were dueto geneticinfluences
transmitted from previous ages.

If genetic variance at the second and third
measurement occasionswasdue solely to theam-
plification of existing genetic variance then we
should be able to drop the genetic innovations
at the second and third measurement occasions
without significantly affecting the fit of the
model. Dropping the genetic innovation at four-
teen yearsresulted in asignificant deterioration
infit for RBC and MCV, but not HB (HB: Dc?
=2.214,p=.137; RBC: Dc 2= 5.313, p=.021;
MCV: Dc2=107.111, p=.000). However, drop-
ping the genetic innovation at sixteen resulted
inasignificant deteriorationinfit for al thevari-
ables(HB: Dc,?=13.325, p=.000; RBC: Dc,?
= 7.186, p = .007; MCV: Dc,?=83.888,p =
.000). These resultsindicate that part of the ge-
netic variance at these ages is due to new genes
being expressed over and above amplification
of existing genetic variance.

Bivariate Analyses
The previous results suggested that the cor-
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relations between successive red cell measure-
mentswere explained adequately by underlying
simplex processes. As the different red cell in-
diceswere correlated, the same simplex process
might underlie the covariance between differ-
ent indices across measurement occasions. In
particular, the correl ation between HB and RBC
was high across al time points, while RBC and
MCV had amoderate negative correlation (Table
6). To investigate this possibility we first fitted
two cholesky models - one to the HB and RBC
data, and the other to the RBC and MCV data,
incorporating the same means model to each
variable as described previously. RBC was
rescaled to cellg/L x 10 to aid optimisation of
the maximum likelihood function.

The pattern of factors obtained wasvery simi-
lar for both the HB-RBC (-2LL = 19932.794, df
=3911) and RBC-MCV (-2LL =17371.622, df
=3898) analyses(Table 7). All variablesloaded
highly on the first genetic factor suggesting the
existence of a common set of genes affecting
both variables across measurement occasions.
However, for both analyses, the variables

Table 6: Pearson correlations between the different red cell indices at ages 12, 14 and 16

Females
HB,, HBy, HBg RBC;, RBC,4 RBC5 MCV;, MCV,, MCV;4

HB,, 1.00 .36 .52 .80 .24 .35 .09 13 13
HB,4 .35 1.00 .50 31 a7 .34 .01 .03 .08
HB g M 40 .66 1.00 45 .50 77 .01 -.06 13
RBC;, A .80 .28 37 1.00 51 .61 -.46 -.38 -.35
RBC,, L 27 .79 .59 .56 1.00 .67 -.45 -.53 -.46
RBC,;, E 37 A7 .80 .63 74 1.00 -.45 -.50 -42
MCV,, S -.03 -.05 -17 -57 -.55 -.58 1.00 .80 .75
MCV, .07 A1 .07 -.46 -.46 -45 .86 1.00 .81
MCV 4 -.06 .16 15 -.54 -.35 -41 .86 .85 1.00
Table 7: Cholesky decompositions of HB-RBC data and of RBC-MCV data (standardised results)

Al A2 A3 A4 A5 A6 Cl1 C2 C3 C4 C5 C6 E1 E2 E3 E4 E5 E6
HB,» a7 .48 42
HB 4 .56 .48 -12 0 42 .06 .52
HBg 56 .28 .53 10 .35 .00 .02 .06 .44
RBC,, 58 -09 .05 .54 40 15 11 .17 .33 -03 .06 .18
RBC,4 36 .26 .18 .53 .17 -05 49 .00 .00 .00 .00 42 .00 .03 .18
RBC;g 41 -02 48 45 02 19 14 39 .08 .11 .00 .00 .00 .07 .34 .02 .09 .20
RBC;, .80 47 .38
RBC,4 62 .42 .09 .47 .02 .46
RBC 63 24 44 28 .32 .00 .04 .09 .39
MCV,, -48 -08 -.09 .78 -15 -24 13 .07 -03 -01 -01 .23
Mcv,, -47 -23 -12 .71 .37 -07 -11 -05 .03 .00 .00 -01 -.04 .00 .23
MCV, -37 -12 -12 62 .37 36 -20 -13 .16 .08 .00 .00 .00 -03 -05 .03 .09 .27
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Fig. 5. Bivariate models for the covariation between red cell indices across measurement occasions. In Model (A),
genetic covariance isthe result of a common simplex process and two variable specific processes that begin at the
second measurement occasion. In Model (B) genetic covariance between the two variablesis again the result of a
common simplex process. A cholesky type structure also permits genetic covariance acr 0ss measurement occasions
within the second variable only. Both models also include full cholesky structures for common and unique
environmental sources of variation (not shown)

measured on occasion two loaded on a second
genetic factor, and the variables measured on oc-
casion three loaded on a third genetic factor,
suggesting that new sets of genes which affect
both traits became operational at fourteen and
sixteen years of age. Finally, therewasafourth,
fifth and a sixth genetic factor on which the sec-
ond variable loaded, indicating the expression
of variable specific genesacross all measurement
occasions.

Wethenfitted ahybrid model, similar to that
used in Boomsma et a. (1989), to the HB and

RBC data, andtotheRBC and MCV data. These
models contained a genetic simplex process
common to both variables (Fig. 5A), and
cholesky type structures for C and E. In order
for the model to be identified, the factor load-
ings of one of the variables on the common ge-
netic process were fixed to unity and the factor
loadings of the other variable were estimated.
Themodel a so contained genetic simplex struc-
tures unique to each variable. These variable
specific structures began at the second measure-
ment occasion in order to separate their effects

Fig. 6. Bivariate modelsfor (A) HB and RBC (-2LL = 19949.111, df = 3918), and for (B) RBC and MCV (-2LL =
17377.771, df = 3905). For simplicity, common environmental and unique environmental cholesky structures are
not shown



GENETICS OF RED CELL INDICES

from the structure common to both variables, and
thusfor the model to be identified (Boomsmaet
al. 1989).

Both model sfitted the data poorly compared
with the full cholesky model (HB-RBC model:
Dc 2 = 85.910, p = .000; RBC-MCV: Dc 2 =
57.654, p=.000), suggesting that additional pro-
cesses contributed to genetic covariation across
measurement occasions. The inadequacy of the
model was presumably because genetic covari-
ance between thefirst measurement occasion and
subsequent occasions independent of the com-
mon simplex process (ie. as indicated by the
fourth genetic factor in the cholesky analysis)
could not be accounted for by the model. We
therefore replaced both variabl e specific simplex
structures with a single genetic cholesky struc-
ture in each of the models (see Fig. 5B). Both
these models were not significantly different in
fit fromthe bivariate cholesky models (HB-RBC
model: Dc2=12.223, p=.093; RBC-MCV: Dc 2
=6.149, p=.522). Figure 6 displaysthe signifi-
cant maximum likelihood parameter estimates
for these models. Notethe significant factor load-
ings on the common simplex process for both
models, indicating that the same simplex pro-
cess underlay much of the genetic covariance
between the variables. Note al so the significant
factor loadings on the variabl e specific cholesky
structures suggesting that genes which are vari-
able specifi