
Atransmission disequilibrium test for quantitative
traits which combines association and linkage

analyses is currently available in several dedicated
software packages. We describe how to implement
such models in linear mixed model procedures that
are available in widely used statistical packages such
as SPSS. We also briefly mention a few extensions
of the model that become naturally available once
the model is implemented in such procedures.

Genotyping of many microsatellite markers or single
nucleotide polymorphisms (SNPs) over the entire
genome is becoming increasingly common in human
genetics. In those high-resolution maps the average
distance between microsatellite markers may be as
small as 5 cM and between SNPs one half cM or less.
At those small distances it becomes fairly likely that
some markers in the set are in linkage disequilibrium
(LD) with a gene affecting the trait (a so-called quan-
titative trait locus or QTL if the trait or the
vulnerability distribution is quantitative). Different
alleles or combinations of alleles of the markers or
SNPs can then be associated with different trait
means. Association studies are conducted to discover
such allelic effects.

Abecasis et al. (2000) generalized the model
proposed by Fulker et al. (1999) for combined
linkage and association tests, within and between
families. The Fulker-Abecasis or F-A model is
implemented in the program QTDT (http://www.
sph.umich.edu/csg/abecasis/QTDT/index.html) and
provides a transmission disequilibrium test (TDT)
statistic for quantitative traits, with tests of linkage
in the presence of association and tests of associa-
tion that are robust to population stratification.
Here we will describe a method to implement the
model in the SPSS procedure for the analyses of
data by linear mixed models. The method can also
be used with other statistical packages such as SAS,
STATA, S-Plus or R, which have similar or more
extended capabilities for mixed model analyses.

There are several reasons for wanting to perform
such analyses with a procedure available in widely used
statistical packages. First, the data do not need to be
written to a file for subsequent reading and analysis by
for example QTDT. This step can be a source of error,
both in the writing and reading step, but such external
programs usually have only limited options for check-
ing that the data analyzed have been transported
correctly to the program. Second, repeating analyses on
subsets of the data requires only some simple state-
ments for selection of the subsets. Third, general
statistical packages make it fairly easy to perform
various checks, such as checks on model assumptions.
Residuals, expected values under the model, and the
so-called best linear unbiased predictors or BLUPs (see,
for example, Robinson, 1991), among others, can be
useful in this regard. SAS has extensive (though still
experimental) capabilities for model diagnostics.
Finally, the models can be extended in several ways as
long as the model fits into the general linear mixed
model framework implemented in the programs.

We will first briefly describe the F-A model. Next
we give a short introduction to linear mixed models
and in particular describe the way they are presently
implemented in statistical packages using what has
become a common representation of mixed models.
We then describe how the F-A model can be imple-
mented in mixed model procedures that rely on such
representations of the mixed model. SPSS code for
implementation of several models and documentation
are available from http://www.psy.vu.nl/mxbib.

The Combined Linkage-Association Model
The basis of this model is a regression of a quantitative
dependent variable y on (a function of) the number of
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alleles of a particular type. Effects of stratification are
accounted for by assuming that each family in the
sample comes from a different subpopulation with dif-
ferent allele frequencies. A separate regression
equation is defined for each family. The regression
weights corresponding to the additive and dominance
effects, if included, are assumed to be the same for each
family, but the intercepts are possibly different across
families. For subject j in family i, define gij as the
number of alleles of a particular type minus 1.
Including only the additive effect, the regression for this
family then becomes yij = µi + βgij + εij. If the regression
is now formulated for the entire population as yij = µ +
γ gi + εij, the regression weight γ for the entire popula-
tion will usually be different from β. The model is
therefore formulated as yij = µ + βb bi + βw wij + εij

for wij = gij – bi and bi the expected family mean of gij.
The coefficients βb and βw are called the between and
within-family regression coefficients and βw = β, the
additive effects in the subpopulations. If the father and
mother genotypes giF and giM are available, then bi = (giF

+ giM) / 2. Otherwise, bi is estimated as the average of
the offspring values gij. A dominance effect can be
included by adding a quadratic term to the model,
which then has the form yij = µi + βa gij + βd gij

2 + εij. If
parental genotypes are available, the expected value of
gij

2 can be computed as (giF giM + 1) / 2 (see Appendix
A). Otherwise it can be estimated as the average of
gij

2. The addition of a quadratic term to account for
deviations from linearity (or additivity) is a standard
method in (polynomial) regression. For a variable
with only three values, as is the case for two allele
markers (i.e., three genotypes), the linear and qua-
dratic term account for all possible deviations from
linearity. The biometrical model (e.g., Falconer &
Mackay, 1996) uses 1 – gij

2 instead of gij
2. The

expected value for known parental genotypes is
1 – (giF giM + 1) / 2 = (1 – giF giM) / 2. Families can only
be informative for the within-family effect if at least
one offspring has a genotype score different from the
expected value or its estimate.

Association effects are often studied after linkage
has been observed at one or more loci. An important
purpose of association studies is to investigate whether
an association effect can partly or wholly account for
the observed linkage. If it does, the covariance among
offspring due to linkage is reduced or disappears.

Linear Mixed Models
A standard regression or linear model contains an
intercept, regressors and their associated regression
parameters, and a residual to account for deviations
from the model. A factor in an analysis of variance
(ANOVA) is often modeled by a set of regressors with
values zero or one, where the value one represents a
particular factor level. The intercept and parameters
associated with the regressors are called fixed effects,
because they are assumed to describe properties of the
regression in the population. For different random

samples from the same population, the parameters
associated with the regressors remain the same (their
estimates will of course generally differ in different
samples). This often means in practice, that the effects
of the regressors or factor levels are of particular inter-
est in the study. The residual is the difference between
the value of the dependent variable of a given observa-
tion and the expected value (i.e., the mean) of the
dependent variable in the population for a given com-
bination of values of the regressors. Since the
observations are different in different random
samples, the residuals are called random effects. They
are considered a random sample from a population of
residuals. Individual residuals are usually not of inter-
est. Instead, properties of their distribution in the
population, such as their variance, are estimated. This
distinction between fixed and random effects is one
among several and need not cover all possible and
sometimes conflicting meanings given to those terms
(cf. Gelman, 2005).

A model that contains the residual as the only
random effect is called a fixed effects model. A model
with the intercept as the only fixed effect and with
random effects beside the residual is called a random
effects model. Such additional random effects often
correspond to levels of factors, which are regarded as
a random sample from a population of factor levels.
The effect of the factor is then often associated with
the variance of the level effects. Mixed models contain
fixed effects in addition to the intercept and random
effects in addition to the residual. The elementary
mixed model is an ANOVA model with a fixed experi-
mental factor β and a random sample of units (e.g.,
subjects), observed once for each level of the experi-
mental factor. Such a model can be used for a repeated
measures design where the units are measured at dif-
ferent levels of the factor. The model for unit i
observed at level j of the fixed effect can be written as
yij = µ + ui + βj + εij, where εij is the residual. Each unit is
associated with a random effect ui. The expectation E ui

(i.e., the mean in the population) of the random effects
can always be defined as zero if µ is included in the
model. The variance of the effects is then E ui

2 = σu
2.

Because the units are sampled independently, the effects
ui are independent and their covariances are zero. The
effects ui may be regarded as a general effect on the
response level of unit i. All residuals are also assumed
independent with zero mean and variance σe

2 and are
independent of ui. The random effects induce covari-
ances among the observations of the same unit for
different levels βj: cov (yij, yij) = cov (ui + εij , ui + εij) = σu

2.
One purpose of such a model is that it can serve as a
heuristic device to generate a covariance structure for
the observations. This can be especially useful for
complicated designs including several random effects,
as it may then be quite difficult to specify the covari-
ance structure without the benefit of a model. The
above model implies the same variance σu

2 + σe
2 for
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each level j of the fixed effect and the same covariance
σu

2 among levels of the fixed effect.

Mixed Models Applied to Family Data
In the association model yij = µ + βb bi + βw wij + εij the
residual εij is the only random effect. The covariance
structure conditional on fixed effects is usually formu-
lated to include expected covariances among
observations due to several sources, which are then
represented by additional random effects. Those
sources may include a family effect and an effect due
to linkage, in order to test whether the association
effect can account for an observed linkage effect at the
locus. If monozygotic (MZ) twin pairs are available,
the family effect can be separated into a polygenic
effect and a common environment effect. In this
covariance structure, the phenotypic variance condi-
tional on the general mean and regressors (the fixed
effects) is modeled as σa

2 + σg
2 + σc

2+ σe
2, where the

subscript a refers to the additive effect of a gene linked
to the marker but not necessarily in linkage disequilib-
rium, and the subscripts g, c and e refer to
background polygenic, common environment and
residual or unique environment effects. For a family
with nf offspring (nf ≥ 2), the within-family expected
phenotypic covariances of any two offspring j and k in
family i are modeled as πijk σa

2 + δ σg
2 + σc

2, where π ijk

is the proportion of alleles shared identical by descent
(IBD) by the pair and δ is 1 for MZ twins and .5 for
other offspring pairs. Dominance effects due to back-
ground polygenic sources and linkage can also be
included. The estimate of σa

2 in the model without bi

and wij included provides a baseline of the amount of
linkage. After including bi and wij the estimate of σa

2

should be close to zero or at least be substantially less
than the baseline estimate.

In this situation, random effects are not needed as
a heuristic device for generating covariances among
observations. Instead, the variances and covariances
are known from the underlying genetic model and the
random effects must be specified so that they corre-
spond to this covariance structure. In order to do that,
we need to know how mixed models are represented
in mixed model procedures.

Representation of Mixed Models
Software packages currently often use the following
matrix representation of mixed models:

y = Xβ + Zb + ε.

The vector y and the columns of X and Z correspond
to the variable columns in a dataset. Here y is a vector
of observations on the dependent variable (the pheno-
type of interest). Its length n is the total number of
offspring over all families. The number of rows of X
and Z is n. The nβ columns of X contain regressors or
zero-one dummy variables for encoding levels of
factors; the vector β contains nβ fixed effect parame-
ters associated with the columns of X, which usually
also contains one column of 1s for the general mean
or intercept. The matrix Z has a similar form as the
matrix X, but its nb columns are associated with the nb

random effects collected in the vector b. The vector ε
of length n contains the residuals.

Table 1 gives an example of a dataset for two fami-
lies with four offspring in the first family and three
offspring in the second family. The variable Y is the
dependent variable. The variables G, B, and W can be
columns of X. G is the genotype score, B is the family
average of G, and W is the difference G – B. Offspring
1 and 2 are two MZ twins; only one of the two geno-
types of this twin pair is used to compute B. The levels
of the factor F can become coded as zero-one dummy
variables in the matrix Z. This factor and the other
variables are discussed below.

In order to explicitly separate different sets of
random effects, the matrix Z can be partitioned into
matrices Zs whose columns are associated with differ-
ent sets of random effects collected in vectors bs. The
total number of columns over all the matrices Zs is
equal to the number of columns of Z. The model can
then be written as

y = Xβ + Σs Zs bs + ε.

This representation of the mixed model is due to
Hartley and Rao (1967). They formulated the model
as a classical variance components model, for which

327Twin Research and Human Genetics June 2006

Association-Linkage Analyses in Statistical Packages

Table 1

Example of Data Set

Y FAM OFFS G B W F P1 P2 P3 P4 C1 C2 C3 C4

8 1 1 0 .33 –.33 1 1 1 .69 .59 1 0 0 0
4 1 2 0 .33 –.33 1 1 1 .69 .59 1 0 0 0
9 1 4 1 .33 .67 2 .69 .69 1 .44 .69 0 .72 0
18 1 7 0 .33 –.33 3 .59 .59 .44 1 .59 0 .05 .81
3 2 1 –1 –.67 –.33 1 1 .50 0 — 1 0 0 0
2 2 2 –1 –.67 –.33 2 .50 1 .50 — .50 .87 0 0
14 2 11 0 –.67 .67 3 0 .50 1 — 0 .58 .82 0

Note: Rows are subjects; columns are variables.

Y is the dependent variable; FAM indexes families; OFFSPRING indexes offspring within families; G is the genotype score; B is the average within-family genotype score; 
W = G – B; F codes factor levels; P1-P4: columns of Πi matrices; C1-C4: columns of Cholesky decomposition of Πi matrices.



all random effects are uncorrelated. In the present for-
mulation in statistical packages, various types of
covariance structures can be specified for the random
effects bs and for ε. Searle et al. (1992) and McCulloch
and Searle (2001) provide mathematically quite
detailed presentations of mixed models. Fitzmaurice et
al. (2004), Verbeke and Molenberghs (2001) and
Pinheiro and Bates (2000) discuss mixed models with
various degrees of emphasis on applications.

As a small example, consider a model with two
crossed random factors (i.e., a design in which each
level of a factor S is combined with all levels of the
other factor R). The levels of the factor S may corre-
spond to subjects and the levels of the factor R may
correspond to raters, who rate the subjects’ behavior in
a certain situation. The subjects and raters are randomly
sampled from a population of subjects and raters. Let yij

be the rating of subject i by rater j. Since each subject is
observed only once by each rater, the subject by rater
interaction cannot be separated from the residual and
the linear model for the effect of subject si and rater rj

becomes yij = µ + si + rj + εij. The variances of the random
effects are σs

2 and σr
2. Assume that, unrealistically, each

factor has only two levels in the sample. The effects are
collected in the vector b1’ = [s1, s2] and b2’ = [r1, r2]. For a
dataset with four observations, Figure 1 contains the
values of the dependent variable Y and the variables S
and R, which encode the levels of the factors S and R.
The first row contains the score for Subject 1 as
obtained from Rater 1. For the four observations in
the four cells of the design the matrices Z1 and Z2,
which represent the levels of S and R, are presented in
Figure 1. The zero-one columns in those matrices are
called dummy variables. The model can now be
written in matrix notation as y = µ + Z1b1 + Z2b2 + ε.
The products Z1b1 and Z2b2 multiply the elements in
the first and second columns of these matrices by s1

and s2, and r1 and r2. This gives the model equations
presented in Figure 1.

In order to implement a mixed model in statistical
packages, the mixed model procedure needs informa-
tion corresponding to the elements in the mixed model
representation y = Xβ + Σs Zs bs + ε. The user must
specify whether a variable is regarded as numerical or
as a factor, in which case its values indicate the levels
of the factor. Second, the user must specify whether
the effects associated with the variable or with the
factor levels are regarded as fixed or as random. In
some models, both fixed and random effects may be

associated with the same variable. Third, the covari-
ance structure of the random effects must be specified.

The dummy variables corresponding to factor
levels in the matrices Zs (or X) can be coded explicitly
as variables in the dataset, but it is more efficient to let
the program (e.g., SPSS) generate them. If the user has
specified that a variable encodes levels of a factor, the
matrix corresponding to the factor is generated by the
program as in Figure 1, without becoming a perma-
nent part of the dataset. For a factor with k levels, k
columns are generated for the matrix. The column k
of the matrix is set to 1 if y is observed at level k of the
factor and is zero elsewhere. If a variable is not
defined as a factor, the original values are stored in a
column of Z. The fixed effect parameters or (co)vari-
ances of the random effects are usually estimated by
maximum likelihood or restricted maximum likeli-
hood under multivariate normality.

For each factor, set of factors or set of variables, a
different covariance structure can be specified for the
random effects associated with the levels of the factors
or with the variables. For each different level the
program implicitly generates a random effect (implic-
itly, because programs usually work only with the
variances and covariances of the effects). If for the
example above, the effects are specified as indepen-
dent with variances σs

2 and σr
2, the covariance matrices

of the random effects become two by two diagonal
matrices with σs

2 and σr
2 on the diagonal.

If the effects of a variable or of the levels of a factor
are assumed to be family specific (i.e., the effect of level
k of a factor is different for different families), those
effects can then be modeled as random effects whose
values vary independently over families. This can be
modeled if in the model the random effect correspond-
ing to a level k is different in different families. Mixed
model procedures can be informed that different values
of a variable define a partitioning of the data into dif-
ferent groups or units of observations. For example, the
different values of the variable FAM in Table 1 define
groups of offspring in the same family. For each such a
group g, different sets of random effect parameters for
variables or factor levels are generated. Then if bs con-
tains the effects of the levels of a given factor, it has the
form [bs1’ | bs2’ | … | bsg’]’. The covariance structure of
the random effects is the same for each group. The
matrix Zs associated with the effect bs can be partitioned
accordingly as [Zs1 | Zs2 | … | Zsg]. Zsg contains zeros only
for observations in groups other than group g. For group
g its rows encode the random effect part of the model for
the observations in the group, as the Z matrices in
Figure 1. If a factor level is not observed in a particular
group g, the corresponding column of Zsg is zero.
Programs may actually store the model in another way.

If the expected covariance matrix for the random
effects bs is Vs, then the contribution to the expected
covariance matrix for all random effects combined
(i.e., for the dependent variable) becomes Σs Zs Vs Zs’.
Suppose that the observations within each group are
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Y S R  Zs Zr Model Equations
9 1 1 1   0 1    0 y11 = µ +  s1 +  r1 + ε11

6 1 2 1   0 0    1 y12 = µ +  s1 +  r2 + ε12

1 2 1 0   1 1    0 y21 = µ +  s2 +  r1 + ε21

7 2 2 0   1 0    1 y22 = µ +  s2 +  r2 + ε22

Figure 1
Example of Z matrices and model equations for a two-way crossed
random effects model.



stored consecutively in the vector y as in Table 1. The
matrices Vs then have the simple form of a so-called
block diagonal matrix. They contain along the diago-
nal the expected covariance matrices Vsi for each
family i and are zero elsewhere, since the families are
sampled independently. Let now for convenience Zsi

contain only factor level encodings or variables for a
family i after deleting the zero rows for observations
in the other families. The contribution to the expected
covariance matrix can then be written as Σi Zsi Vsi Zsi’
for each family separately. The number of offspring
may vary over families and is equal to the number of
rows of Zsi.

The specification of the fixed effects of the model
is straightforward and similar to specifications of
fixed effects in standard ANOVA and regression pro-
grams. We will therefore first describe the
specification of the within-family covariance structure.

Generating the Model Covariance Matrix
We will explain here how the covariance matrix for
data from dizygotic (DZ) twins, sibs and possibly
MZ twin pairs can be specified. We assume that
only the phenotypes of one or more offspring from
nuclear families are included in the analysis.
Inclusion of MZ twin pairs allows for the possibility
to also estimate a common environment effect. The
expected covariance matrix for a family of size n
(i.e., n offspring) is a matrix with n rows and n
columns. The diagonal elements contain the
expected variances σa

2 + σg
2 + σc

2+ σe
2, and the off-

diagonal elements contain the expected covariances
πijk σa

2 + δ σg
2 + σc

2, for δ as specified previously. The
residual or unique environmental variance σe

2 is
automatically estimated by the program and need
not be specified explicitly. The common environ-
ment effect contributes the variance component σc

2

to the variance and covariance. For a family of size
n, the contribution to the expected family covari-
ance matrix is therefore σc

2 1n1n’, where 1n is a
vector with n 1s. We present two alternatives to
generate this structure. For the first alternative, a
variable should be created that is equal to one for
all observations in the dataset. Then this variable is
declared as a random effect with separate random
effects for each family using the grouping option
(e.g., using the variable FAM in Table 1 to group
the observations). The effects are specified as having
the same variance and zero covariance. Then for
family i Zsi = 1n, Vsi = σc

2 and the expected covari-
ance matrix is σc

2 Zsi Zsi’ = σc
2 1n1n’ (i.e., a matrix

with all elements equal to σc
2). For the second alter-

native, a variable should be available in the dataset
which has the same value for each family and differ-
ent values for different families, such as FAM in
Table 1. If this variable is declared as a random
effects factor, the model contains a separate random
effect for each level of this factor (i.e., for each
family). The matrix Zc for this factor has a similar

form as Z1 in Figure 1 with offspring within families
as subjects. For nf families the matrix has nf columns
and column k contains 1s for the observations from
offspring in family k and 0s for other families. The
random effects are specified as having the same vari-
ance and zero covariance. The expected covariance
matrix for the random effects is then an nf × nf diagonal
matrix with σc

2 on the diagonal. The matrix σc
2 ZcZc’

contains matrices of the form σc
2 1n1n’ for families of

size n on the diagonal and is zero elsewhere.
The additive polygenic genetic effect contributes a

variance component σ2 to the variance and δ σ2 to the
covariance, where δ is 1 for MZ twins and .5 for full
first degree offspring pairs. Thus for siblings or DZ
twins the variance is σ2 and their covariance is .5 σ2.
The variance for MZ twins is also σ2, their covariance
is σ2, and the covariance of MZ twins with additional
siblings is .5 σ2. We will demonstrate how to imple-
ment an equivalent but slightly different structure by
specifying 2 σg

2 for the variance, σg
2 for the covariance

of siblings including DZ twins and for the covariance
of an MZ twin and siblings, and 2 σg

2 for the covari-
ance of MZ twin pairs. This specification fits the same
structure but with σg

2 = .5 σ2.
Suppose that for family i scores yij are available for

a pair of MZ twins and for two additional siblings.
For example, in Family 1 in Table 1 Offspring 1 and 2
are MZ twins and Offspring 3 and 4 are additional
siblings. A fairly simple way to let the program gener-
ate the required covariance structure is as follows.
First, specify a variable according to the first alterna-
tive for the common environment effect. Second,
specify a factor which has the same value (i.e., level)
for the MZ twin pair and different values for each of
the other offspring, such as the factor F for the Family
1 in Table 1. For a family i with one MZ twin pair
with observed scores yi1 and yi2 and two sibs with
observed scores yi3 and yi4, this specification generates
the matrices Z1 and Z2 in Figure 2, where the first
two rows are associated with the observations yi1 and
yi2 for the MZ twins. The matrix Z1 corresponds to
the variable and Z2 to the factor. The grouping option
is used to assign different matrices and different
random effects corresponding to the matrices’
columns to different families. The variances of those
effects are specified to be the same with no covariance
among the effects.

Figure 2 also contains the contributions to the
model equations for the effect g1 corresponding to
the column of Z1 and g21, g22, g23 corresponding to
the columns of Z2. These equations are generated by
Z1 g1 + Z2 g2 for g2 = [g21, g22, g23]’. Because the
covariance of different effects is zero, the expected
variance of each observation is the sum of the
expected variances of the effects in the equation.
Hence the expected variance is 2 σg

2. The expected
covariance for the two siblings is cov (g1 + g22, g1 + g23)
= cov (g1, g1) = σg

2 and similarly for the covariance of a
MZ twin and a sibling. For the two MZ twins the

329Twin Research and Human Genetics June 2006

Association-Linkage Analyses in Statistical Packages



expected covariance is cov (g1 + g21, g1 + g21) =
cov (g1, g1)+ cov (g21, g21) = 2 σg

2. It is easily verified that
the expected covariance matrix σg

2 Z1 Z1’ + σg
2 Z2 Z2’

(because Z2 [σg
2 I] Z2’ = σg

2 Z2 Z2’) has the desired struc-
ture for the family in Figure 2.

If a family, as the second family in Table 1, con-
tains no MZ twin pair but only other offspring, all
levels of a factor such as F in Table 1 are different,
also if one MZ twin is included. Then the matrix Z2

becomes a matrix with 1s on the diagonal and 0s else-
where. As g1 is then the only effect shared by the
offspring, the expected covariance among the off-
spring is σg

2.
If a dominance component is to be included, the

same trick can be used, but with the factor corre-
sponding to Z2 replicated three times by creating
three separate factors identical to F in Table 1.
However, an alternative specification is more memory
efficient. If the 1s of Z2 in Figure 2 are replaced by
√
__
3 , the covariance structure due to dominance is

generated. This can be achieved by creating variables,
which should not be specified as factors, with the
same variance associated with the random effects and
zero covariance among them (the desired matrix can
be generated efficiently by nesting the variable within
the factor used for generating Z2). As √

__
3 cannot be

exactly represented digitally, this specification is
slightly less accurate.

Finally, the covariance due to the IBD status
among the offspring must be specified. The IBD
status is estimated from IBD probabilities, which
must be estimated using other software such as
Merlin (Abecasis et al., 2002). For each pair of off-
spring in the family the estimated proportion of
alleles shared IBD is computed. For family i the pro-
portions are collected in the matrix Πi, which has n
rows and n columns for a family with n offspring.
The elements j, k and k, j of this symmetric matrix
equal πijk, the proportion IBD for offspring j and k.
The diagonal elements of the matrix are equal to 1,
which is the proportion IBD of an offspring with
itself. Table 1 contains examples of those matrices,
where the variables P1 to P4 are the matrix columns
and the records of the subjects are the matrix rows.
For Family 2, the variable P4 contains missing values,
as this family consists of three subjects.

The contribution to the expected family covari-
ance matrix is σa

2 Πi. Now we must specify random
effects such that σa

2 Πi = Zsi Vsi Zsi’. Set Vsi = σa
2 I, so

that all random effects associated with the columns

of Zsi are uncorrelated and have the same variance.
Then Zsi Vsi Zsi’ = σa

2 Zsi Zsi’. Therefore a matrix Zsi

must be specified such that Zsi Zsi’ = Πi. There are
various ways to do this. For example, the eigen-
value-eigenvector decomposition KDK’ of Πi can be
calculated and Zsi can be set to KD1/2. Here D is a
diagonal matrix with the eigenvalues on the diagonal
and D1/2 contains the square roots of the diagonal
elements. A simpler way is to compute the Cholesky
decomposition of Πi. The Cholesky decomposition
of a symmetric nonnegative definite (i.e., positive
definite or positive semidefinite) matrix A is defined
as A = TT’ for T a lower triangular matrix (the
Cholesky decomposition is sometimes defined only
for positive definite matrices; we follow Harville,
1997, and Rao & Rao, 1998). Statistical packages
usually have a matrix algebra library with routines
that compute eigenvalue-eigenvector and Cholesky
decompositions. Some of these routines may be suit-
able only for positive definite matrices and then may
return nonsensical results if the matrix Πi is positive
semidefinite (i.e., Πi ≠ TT’ for the T or T’ that the
routine returns). The matrix Πi can become positive
semidefinite, for example if MZ pairs are included
or if πijk is equal to 1 for all sib pairs. We have imple-
mented a routine in SPSS that is suitable for
nonnegative definite matrices and is described for
example by Harville (1997). The routine uses the lag
function to compute the decomposition. No matrix
algebra routine is needed. The routine computes T
for each family separately and stores the columns of
T as new SPSS variables. The maximum number of
new variables is the maximum number of offspring
over all families. For families that contain less than
the maximum number of offspring, the columns cor-
responding to the superfluous variables are set to
zero. Table 1 contains examples of those matrices
encoded in the variables C1 to C4 for the Families 1
and 2. The variables C1 to C4 are the matrix
columns, the records of the subjects are the matrix
rows. In the mixed model procedure the new vari-
ables (i.e., the columns of T) have to be defined as
variables (in contrast to factors) with associated
uncorrelated random effects with the same variance.
The grouping option is used to create separate
random effects for each family. The covariance struc-
ture specification given here can of course also be
used in other packages than SPSS. In SAS a covari-
ance structure is available that can use Πi directly.

It is not inconceivable that in rare cases the πijk

that are computed from a program’s estimated IBD
probabilities may generate a Πi matrix that is not
nonnegative definite. Thus it seems good practice to
check that, within some defined error level, TT’ is
indeed equal to Πi. Finally, we note that the decom-
position is not unique if Πi is positive semidefinite.
Therefore a substantive interpretation of the BLUPs
of the random effects is probably quite useless.
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Z1 Z2 Contribution to Model Equations
1 1 0 0 for yi1: p1 + p21

1 1 0 0 for yi2: p1 + p21

1 0 1 0 for yi3: p1 + p22

1 0 0 1 for yi4: p1 + p23

Figure 2
Example of Z matrices encoding for the additive polygenic effect.



Specification and Testing of the Fixed Part 
of the Model
The fixed part of the model as formulated earlier con-
tains as regressors the mean bi and the deviation
wij = gij – bi as defined earlier. These variables must be
included in the model as covariates. Other covariates
or factors can also be included. The specification of
these variables follows the same logic as in standard
ANOVA or regression procedures.

The QTDT program employs a likelihood ratio
test for the null hypothesis βw = 0 against the alterna-
tive βw ≠ 0. Rejection of the null hypothesis is
interpreted as evidence for an association effect. The
same test can be performed in SPSS by running the
model once with and once without the variable wij

included in the model. The output of each analysis
provides a value of – 2 Log L, where L is the likeli-
hood. The difference between those values for the two
models can then be used to perform a chi-squared test
on 1 degree of freedom. For likelihood ratio tests of
fixed effects the maximum likelihood estimation
option should be used instead of the restricted
maximum likelihood estimation option. Alternatively,
the approximate F test for the estimate of βw in the
output can be used. Such tests are recommended by
Pinheiro and Bates (2000).

A contrast βb – βw can be specified to obtain an
approximate F test for the hypothesis βb = βw. If the
hypothesis βb = βw is not rejected, a more powerful test
for association can be obtained using only gij as pre-
dictor. Alternatively, the model can be fitted using
only the original variable gij and the value of 2 Log L
for this model can be subtracted from 2 Log L for the
model containing wij and bi to perform a 1 degree of
freedom chi-squared test.

Some Alternative Modeling Options
If a marker or gene contains multiple alleles, the
effects of the alleles can be tested simultaneously. The
variables gij, bi and wij can be computed for each allele.
The variables corresponding to each allele can then be
specified as covariates. Using all alleles creates linear
dependence among the columns of X. The dependence
is automatically detected by the program, which then
sets the parameters corresponding to the redundant
columns to zero. The effect of the alleles can be tested
simultaneously by the likelihood ratio test or by speci-
fying contrast among the parameters.

Multiple SNPs or markers can be included in the
model as multiple fixed effects covariates or factors.
One possible advantage of the inclusion of multiple
SNPs is that their contribution can be tested simulta-
neously, which may lead to a more powerful test. The
inclusion of multiple SNPs may also entail little loss of
information as compared to the use of haplotypes
(Chapman et al., 2003; Clayton et al., 2004).

If genotypes of both parents are available bi can be
computed as the average of the parental genotypes. In

the absence of parental genotypes from both parents bi

is estimated as the average of the offspring genotypes.
When all offspring are included or offspring within
families can be regarded as a random sample the esti-
mates of βb and βw should be similar whether or not
both parental genotypes are available. If the dataset
contains families with and without both parental
genotypes, this may be tested by dividing the sample
into groups of families with and without parental
genotypes, fitting the model with the regressors as
group specific covariates and testing the equality of
the regression weights of the corresponding covariates
in the groups. Of course, families can be divided into
other groups based on other criteria.

Finally, the original family specific model can be
fitted as a so-called random-coefficient regression
model (see, for example, Longford, 1993). In those
models the intercepts and regressions weights vary
randomly over families. Thus the assumption that the
within-family regression weights are the same for
each family is relaxed in those models. Since such
models are a special case of linear mixed models,
they can be implemented with the same procedures.
The average and variance of the regression weights
can then be estimated and tested for deviation from
zero. A zero variance implies that the within-family
regression weights are the same for each family. Such
models are often motivated by the argument that it is
unlikely that the model can be sufficiently completely
specified for each family (e.g., interaction effects can
produce varying coefficients).

Discussion
We have shown here how the F-A model can be imple-
mented in the procedure for linear mixed models in
SPSS or other statistical packages. The model compo-
nent of primary interest, which describes the regression
of the phenotype on the genotype, is specified in the
fixed part of the model in a way familiar from standard
regression or ANOVA models. The specification of the
within-family covariance structure is somewhat more
involved, because the model is not used as a basis for
deriving the covariance structure, but must be formu-
lated to satisfy a structure that derives from the
underlying genetics. We have presented some ways to
specify this structure, but others are also possible.
Except for the covariance structure due to the IBD
status, which does require some extra calculations, the
required structure is fairly easy to specify using stan-
dard options available in the procedure.

Mx (Neale, 1999) has become a very popular
program for performing statistical analyses that involve
the specification of covariance structures. The program
is more flexible regarding the covariance structures that
can be specified than programs for linear mixed
models. This is partly a programmer’s choice and partly
due to the traditions out of which the programs devel-
oped (the experimental design tradition for linear
mixed models and a merger of the psychometric factor
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analytic tradition with the econometric tradition of
simultaneous or structural equations modeling for Mx).
Programs for linear mixed models offer a set of prede-
fined covariance structures for the random effects.
Specification of other structures is either not possible or
requires programming by the users themselves. Mx
allows users to choose their own structure in a fairly
simple way, but it handles families of unequal size less
elegantly. Unequally sized families can be handled in
Mx in the same way as in linear mixed models using
Mx’s definition variables, but then the columns of Z
matrices and the covariance structure of the random
effects are not automatically generated.

The F-A model is one way to investigate associa-
tion. Advantages of the model are that it belongs to a
quite general and familiar class of models with well
understood properties and that it can be implemented
in widely available software. The model is less appro-
priate for selected samples, although the selection will
often be such that the estimate of βw is not or hardly
affected. However, for selected samples other models
(e.g., Lange et al., 2004) can be more appropriate.
Other approaches are discussed in a quite general
context by Terwilliger and Göring (2000).

Acknowledgments
We thank the reviewers for their comments. This
work was supported by the Centre for Neuro-
genomics and Cognition Research (CNCR) of the
Vrije Universiteit, Amsterdam.

References
Abecasis, G. R., Cardon, L. R., & Cookson, W. O. (2000).

A general test of association for quantitative traits in
nuclear families. American Journal of Human Genetics,
66, 279–292.

Abecasis, G. R., Cherny, S. S., Cookson, W. O., & Cardon,
L. R. (2002). Merlin: Rapid analysis of dense genetic
maps using sparse gene flow trees. Nature Genetics, 30,
97–101.

Chapman, J. M., Cooper, J. D., Todd, J. A., & Clayton,
D. G. (2003). Detecting disease associations due to
linkage disequilibrium using haplotype tags: A class of
tests and the determinants of statistical power. Human
Heredity, 56, 18–31.

Clayton, D., Chapman, J., & Cooper, J. (2004). Use of
unphased multilocus genotype data in indirect associa-
tion studies. Genetic Epidemiology, 27, 415–428.

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to
quantitative genetics (4th ed.). Harlow: Prentice Hall.

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004).
Applied longitudinal analysis. New York: Wiley.

Fulker D. W., Cherny S. S., Sham P. C., & Hewitt, J. K.
(1999). Combined linkage and association analysis for
quantitative traits. American Journal of Human
Genetics, 64, 259–267.

Gelman, A. (2005). Analysis of variance: Why it is more
important than ever (with discussion). The Annals of
Statistics, 33, 1–53.

Hartley, H. O., & Rao, J. N. K. (1967). Maximum likeli-
hood estimation for the mixed analysis of variance
model. Biometrika, 54, 93–108.

Harville, D. A. (1997). Matrix algebra from a statistician’s
perspective. New York: Springer.

Lange, C., DeMeo, D., Silverman, E. K., Weiss, S. T., &
Laird, N. M. (2004). PBAT: Tools for family-based asso-
ciation studies. American Journal of Human Genetics,
74, 367–369.

Longford, N. T. (1993). Random coefficient models.
Oxford: Clarendon Press.

McCulloch, C. E., & Searle, S. R. (2001). Generalized,
linear, and mixed models. New York: Wiley.

Neale, M. C. (1999). Mx: Statistical modeling (5th ed.).
Richmond, VA: Department of Psychiatry.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-Effects
Models in S and S-Plus. New York: Springer-Verlag.

Rao, C. R., & Rao, M. B. (1998). Matrix algebra and its
applications to statistics and econometrics. Singapore:
World Scientific.

Robinson, G. K. (1991). That BLUP is a good thing: The
estimation of random effects (with discussion). Statistical
Science, 6, 15–51.

Searle, S. R., Casella, G., & McCulloch, C. E. (1992).
Variance components. New York: Wiley.

Terwilliger, J. D., & Göring, H. H. H. (2000). Gene
mapping in the 20th and 21st centuries: Methods, data
analysis, and experimental design. Human Biology, 72,
63–132.

Verbeke, G., & Molenberghs, G. (2001). Linear mixed
models for longitudinal data. New York: Springer-
Verlag.

332 Twin Research and Human Genetics June 2006

A. Leo Beem and Dorret I. Boomsma



333

Appendix A

We demonstrate here the calculation of the expected value of gij
2 if parental genotypes are available (this calculation

is no doubt available somewhere). 

Let the parental alleles miF and mjM for i, j = 1, 2 be coded as zero or one for a given allele absent or present.

Then the expected value of gij
2 becomes

Σi Σj (miF + mjM – 1)2 / 4 = Σi Σj [(miF + mjM)2 + 1 – 2 (miF + mjM)] / 4.

Because miF and mjM are zero or one, miF
2 = miF and mjM

2 = mjM.

Therefore this expression can be written as
Σi Σj [(miF + mjM + 2 miF mjM + 1 – 2 (miF + mjM)] / 4 = Σi Σj [(2 miF mjM + 1 – (miF + mjM)] / 4.

Now Σi Σj miF mjM = (m1F + m2F) (m1M + m2M) and Σi Σj (miF + mjM) = 2 (m1F + m2F) + 2 (m1M + m2M).

Therefore the expectation becomes
[2(m1F + m2F) (m1M + m2M) – 2 (m1F + m2F) – 2 (m1M + m2M) + 4] / 4
= [(m1F + m2F) (m1M + m2M) – (m1F + m2F) – (m1M + m2M) + 2] / 2
= [(gF + 1) (gM + 1) – (gF + 1) – (gM + 1) + 2] / 2
= (gF gM + gF + gM + 1 – gF – gM] / 2
= (gF gM + 1) / 2.
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