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On Growth Curves and Mixture
Models
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The multilevel model of change and the latent growth model are
flexible means to describe all sorts of population heterogeneity
with respect to growth and development, including the presence
of sub-populations. The growth mixture model is a natural
extension of these models. It comes at hand when information
about sub-populations is missing and researchers nevertheless
want to retrieve developmental trajectories from sub-populations.
We argue that researchers have to make rather strong assumptions
about the sub-populations or latent trajectory classes in order to
retrieve existing population differences. A simulated example is
discussed, showing that a sample of repeated measures drawn
from two sub-populations easily leads to the mistaken inference
of three sub-populations, when assumptions are not met. The
merits of methodological advises on this issue are discussed. It is
concluded that growth mixture models should be used with
understanding, and offer no free way to growth patterns in
unknown sub-populations. Copyright # 2006 John Wiley &
Sons, Ltd.
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GROWTH MODELS

Wohlwill (1973) argued that chronological age is part and parcel of the dependent
variable in developmental psychology. He maintained that developmental
psychology is about identifying developmental functions, about what is now
known as developmental trajectories. Developmental functions describe how
specific characteristics or attributes change with age. Once developmental
functions are identified, researchers should try to explain them and find out how

*Correspondence to: Jan B. Hoeksma, Vrije Universiteit, Developmental Psychology,
van der Boechorststraat1, 1081 BT Amsterdam, The Netherlands.

Copyright # 2006 John Wiley & Sons, Ltd.



they vary. Some years later Baltes and Nesselroade (1979) described the rationales
of longitudinal research. They argued that longitudinal research aims at
describing and explaining individual differences in individual change.

Most notably the methodological proposals of Wohlwill, and Baltes and
Nesselroade appeared in the 1970s, at a time when statisticians were highly
skeptical about measuring and analysing individual change. These doubts
largely disappeared through the work on longitudinal data analyses of Laird and
Ware (1982), Goldstein (1986) and Longford (1987). Although their papers were
highly technical, and therefore hardly accessible to developmentalists, the
proposed statistical models soon found their way in the developmental research.
In the Old and New World, the statistical models became known as the multilevel
model (Goldstein, 1987) and the hierarchical linear model (Bryk & Raudenbush,
1992), respectively.

Today, developmental researchers are more and more inclined to think about
development in terms of developmental trajectories and developmental curves.
The psychological literature offers many fine examples of research adhering to
the methodology of Wohlwill, and Baltes and Nesselroade, by means of the
multilevel model of change. However, as Singer and Willet (2003) argue, that the
number of applications is still small given the generality of the model.

LATENT GROWTH MODELS

Through the work of Meredith and Tisak (1990), it soon became apparent that
individual differences in growth and development could also be analysed by
means of structural equation models (SEM). Other early contributions showing
the flexibility of the structural equations model in analysing change were
McArdle (1986a, b, 1989), McArdle and Epstein (1987) and Muthén (1989, 1991,
1992). When viewed from a SEM perspective the model is called latent growth
model. An excellent explication on how the multilevel model of change translates
into a latent growth model can be found in Singer and Willet (2003).

The multilevel model of change and the latent growth model are equivalent
from a mathematical point-of-view (Willett & Sayer, 1994). Statistically they differ
on how model parameters are estimated. The algorithms used for that purpose
are quite different. The multilevel model of change and the latent growth model
thus require different computer programs, although the results obtained will
hardly differ from one another.

However, the multilevel model of change and the latent growth model differ in
the researchers mind, as models shape the way researcher think about their
phenomenon they study (Hoeksma, 1999). Figure 1(a) shows a population of
growth curves. Only a small number is given, because the picture would
otherwise become cluttered. When looking at Figure 1(a), researchers with a
latent growth model in mind will think of two latent growth factors accounting for
the growth pattern. The factors are thought to refer to underlying constructs.
Researchers familiar with the multilevel model of change would think of
individual growth curves that make up the observed pattern and observe how the
variability increases with time or age (Hoeksma, 2005). As recently shown by
Curran, Bauer, and Willoughby (2004), these differences may have profound
effects on the validity of researcher’s interpretations.

Suppose that the population of growth curves consists of two sub-populations
having different growth patterns (which, by the way, it does). Figure 1(b) displays
the mean growth curves of the two sub-populations underlying the growth
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curves in Figure 1(a). A sample of observation from the two sub-populations,
with measurement error added, is portrayed in Figure 1(c). The histogram shows
the distribution of 1000 observations, consisting of four repeated measurements
of 250 individuals, randomly sampled from the distribution in Figure 1(a). The
distribution is clearly non-normal.

Looking for group differences, researchers using latent growth models will
perform a multigroup analysis and try to find out in what respect the latent
growth factors including their mean structure differ between both groups (Muthén
& Muthén,1998). In addition, they will look for possible differences of the
residuals between both groups. Researchers using the multilevel model of change
will try to find out whether the mean growth patterns differ between both groups
and whether inter-individual differences in intra-individual change are homogeneous
or non-homogeneous across groups. Moreover, they will try to model possible

Figure 1. Population of growth curves (a). Mean growth curves in two sub-populations
making up the population (b). Sample histogram of 4 equidistant observations of N ¼ 250
persons (c). Estimated mean trajectories (mixed growth model) from the sample (1d).
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differences in the residual distributions (Goldstein, 2003). Whether the latent
growth model or the multilevel model of change is used to analyse the data in
Figure 1(c), the population difference displayed in Figure 1(a) and (b) would be
largely retrieved, be it within sampling error. The model found would thus
account for the distribution in Figure 1(c).

Especially, the multilevel model of change (when analysed using MlwinN,
Goldstein et al., 1998) is rather flexible with regard to accommodating non-
homogeneity, including qualitatively different distributions in different groups.
There is thus no ground for the suggestion made by Nagin (1999) and Nagin and
Tremblay (2001), and reiterated by Connel and Frye (2006), that growth models
assume ‘that there is a single underlying distribution with respect to changes
over time about which children are normally distributed’ (Connell & Frye, 2006).
On the contrary, heterogeneity can be studied quite well within a multilevel
framework. But if the data come from a priori unknown sub-populations, growth
mixture models can be very helpful.

GROWTH MIXTURE MODELS

Growth mixture models can be used when the number of groups and group
membership are unknown. That is, when the data are expected to come from
unobserved sub-populations, and dummies indicating group membership are
missing. Growth mixture models (cf. Muthén & Muthén, 2000) and their special
case the semi-parametric groups-based method proposed by Nagin (1999) offer
suitable means to analyse growth trajectories from unobserved sub-populations.
A nice introductory example is given by Connell and Frye (2006). A balanced and
technically more adequate example can be found in Muthén and Muthén (2000).

Growth mixture models can be seen as an advanced cluster method. Persons
with common growth patterns are ‘taken together’ to make up a cluster or group
(Nagin, 1999). Each resulting cluster or group is characterized by a common
growth pattern that differs from the patterns in other groups. An analysis
typically results in two to five groups with different growth patterns (cf. Broidy
et al., 2003; van Lier, & Crijnen 2005). Resulting groups may include increasers,
decreasers, and high and low groups of no change. Akin to other clustering
techniques based on latent mixture distributions (cf. Everitt and Dunn 2001),
growth mixture models maximize homogeneity or similarity of trajectories
within clusters and heterogeneity or dissimilarity of trajectories between clusters
(Bauer & Curran, 2003). Besides the estimates of the common trajectories in each
group, the analysis results in estimates of each person’s probability of belonging
to each of the different groups.

Dedicated software such as Mplus (Muthén & Muthén, 1998) or the SAS
procedure described by Jones, Nagin, and Roeder (2001) do not find group-
trajectories by (re-)distributing growth curves across different groups, but by
using so-called mixture distributions. Mixtures are complex distributions
consisting of a weighted sum of two or more elementary distributions. Mixtures
are generally non-normal. The elementary distributions making up the mixture
may be normal, censored-normal, Poisson or logistic (Muthén & Muthén, 1998;
Nagin, 1999). When a researcher uses Mixed Growth Models, he or she assumes
that the repeated measurements within each group follow a similar known
distribution (e.g. normal distributions with varying means and standard
deviations) which, when mixed together, account for the observed non-normal
distribution.
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The sample distribution Figure 1(c) is non-normal. We analysed the data of
Figure 1(c) by means of a mixed growth model to find (or retrieve) the trajectories
in the sub-populations. We estimated so-called one class, two class, three class,
and four-class models. The respective values of the Bayesian Information
Criterion (BIC) were 5518.8, 5450.5, 5442.3, and 5456.3. The three-class model has
the lowest BIC value, and thus fits better than the two and four-class models. It is
the model to be preferred. Figure 1(d) portrays the mean growth trajectories of
the model found. The results indicate that the sample distribution in Figure 1(b)
can be conceived of as a mixture of three normal distributions, with age- or time-
dependent means as given in Figure 1(d).

It may come as a surprise that the two sub-populations were not retrieved.
Why did the growth mixture model extract three groups (classes), whereas the
data came from only two sub-populations? The main reason is that the growth
mixture model does not search for existing groups in the data (how could it), but
for optimal groups that summarize the data most parsimoniously. In statistical
terms, the model maximizes the homogeneity (similarity) within groups and
heterogeneity (differences) between groups (Bauer & Curran, 2003). The growth
mixtures model explains heterogeneity in a sample of repeated measurements by
creating homogeneous groups. This sample heterogeneity, however, is not
necessarily only caused by the presence of sub-populations. There are many other
potential causes, including heteroscadisticity, sample fluctuations and most
importantly non-normality of the original distribution(s) in the population and
sub-populations (Bauer & Curran, 2003, 2004). In the present sample, the
heterogeneity was the result of both population differences and non-normality in
the sub-populations, whereas the latent growth mixture model only assumes
population differences.

When information on grouping is missing, there will be a price to be paid to
retrieve it. When one uses the growth mixture model, the price is paid by means of
assumptions. First, it is assumed that the observed distribution is non-normal, and
consists of a finite mixture of unobserved non-identical distributions. Second, it
assumed that unobserved distributions have a known distributional form (e.g.
normal) that is similar across the groups to be extracted. If either or both these
assumptions are not met, the number of groups may be over-extracted. The
problem is that non-normality in repeated measures may come about easily and
for various reasons. Non-normality may reflect group differences, and also sample
fluctuations, or a non-normal distribution in the population (e.g. a lognormal,
skewed or peaked population distributions). Also method effects, such as response
tendencies, memory effects, bottom and ceiling effects may produce non-normality.
As was shown by Bauer and Curran (2003), even mild non-normality in an
otherwise homogeneous population results in over-extraction.

VALIDITY OF GROWTH MODELS

If information on group membership has been collected, non-homogeneity can be
modelled using the multilevel model of change and the latent growth model. The
first model is possibly somewhat less restrictive than the latter. Growth mixture
models should be seen as a natural extension of growth models. They are not an
alternative. They allow researchers to derive latent classes from repeated
measurements. Bauer and Curran (2003) showed however, that multiple
trajectory classes can be estimated and appear optimal even if only one group
exists in the population. Following a similar line of thought, our example shows
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that if two groups are present in the populations they do not have to be retrieved.
In other words, researchers looking for existing population heterogeneity by
means of growth mixture models, may easily draw wrong conclusions. This will
happen when the sample data are non-normal for any other reason than existing
population differences. There are thus as many causes for finding group
differences as there are causes for sample non-normality (including the existing
group differences in the population). Even design issues, including sample size
(Nagin & Tremblay, 2001) and the number of measurement occasions may affect
the number of latent classes found (Connell & Frye, 2006). For researchers
looking for sub-populations (not for sub-groups in the sample), this is a rather
annoying problem.

Unfortunately, the problem cannot be solved by means of replication.
Replicating a study in a new sample will give a similar distribution reflecting
the same population characteristics that lead to over-extraction of trajectory classes.
The example discussed is one of many possible replications. The sample was
simulated from given population model. Another replication (simulated sample)
from the same model would (within sampling) error result in a similar outcome,
i.e. three trajectory classes, because the distribution of observations reflects true
non-normality that is not result of differences between sub-populations only.

A better option is to extend the Growth Mixture Model by means of
explanatory variables, as suggested by Muthén and Muthén (2000). If one could
show, for instance, in the present analysis that the three classes found were
related to other well-known phenomenon, this apparently adds validity to the
model. We agree, however, with Bauer and Curran (2003) that this comes down
to ‘affirming the consequence’ and does not correspond to a common empirical
test of a psychological hypothesis.

A final option is to mitigate the problem by saying that the model found is only
a summary of the data and that the trajectory classes found do not have to
correspond to psychological meaningful categories. The categories are not carved
in stone. Although we think this view of models is legitimate from a statistical
point-of-view it disregards both the goal and practices of researchers. Develop-
mental researchers try to understand causal relationships. They think of
categories as real or existent. Once their quantitative analyses are finished, they
will try to make general statements about the categories or classes found. They
will try to generalize their findings and write about these findings as if the
categories exist and refer to existing sub-populations.

Should, given these considerations, mixed growth model be discarded from
the armoury of statistical techniques? Of course not! In our view any method
should be tried to further psychological knowledge (cf. Feyerabend, 1975).
However, one should use these methods with an understanding about the
assumptions they make, because only than they will lead to valid inferences.
Alas, mixed growth models do not offer a free way to growth patterns in
unknown sub-populations.
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