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Control of consolidation in neural networks:

avoiding runaway effects

Martijn Meeter

Department of Psychology, University of Amsterdam, The Netherlands

email: m@meeter.nl

Abstract. Consolidation has been implemented in two ways: as straight rehearsal of patterns or as

pseudorehearsal, in which pseudoitems are created by sampling attractors or input–output combi-

nations from the network. Although both implementations have been investigated by several authors,

few have explored how it is decided which pattern or pseudoitem is consolidated. Controlling

consolidation is not trivial, as it is susceptible to a corruption. In runaway consolidation, one or two

patterns monopolize all consolidation resources and come to dominate the entire network. Runaway

consolidation is analysed, and three solutions are explored. Suppressing transmission in the connections

in which consolidation takes place is shown to work best. Placing bounds on connections or unlearning

attractors also alleviates runaway consolidation, though less effectively so.

Keywords: consolidation, rehearsal, pseudorehearsal, catastrophic interference.

1. Introduction
Consolidation, as a concept, has a century-old history (Lechner et al. 1999). It was ori-
ginally proposed as an explanation for retroactive interference (Muller and Pilzecker
1900). Although interference theory soon came to rely on other constructs (McGeoch
1932), consolidation fanned out to explain a plethora of other phenomena. It is now
used as a label for very different processes that operate on widely varying time-scales
(Squire and Alvarez 1995). Even within the limited domain of the neural networks litera-
ture, consolidation has been the answer to several unrelated problems, though sometimes
under different names (e.g. self-refreshing or synaptic reentry reinforcement). It is
perhaps most often suggested as an explanation for the Ribot curve (Alvarez and
Squire 1994, McClelland et al. 1995, Murre 1996, Meeter and Murre, submitted), but
the same processes have also been proposed as an answer to catastrophic interference
(McClelland et al. 1995, Robins 1996, Ans and Rousset 1997, Robins and McCallum
1998, 1999), and Murre et al. (submitted) have used a method of self-repair akin to con-
solidation to simulate recovery from mild brain damage (Robertson and Murre 1999).

Several researchers have carried out network simulations implementing a form of con-
solidation. Nevertheless, not much attention has been paid to how a consolidation pro-
cess is to be controlled from within a model. In one implementation in which a neural
network itself selected the pattern to consolidate, it was observed that under certain
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conditions the process was susceptible to a curious corruption, runaway consolidation
(Meeter and Murre, submitted). One pattern would, by chance, benefit more from con-
solidation than others, and through that fact start monopolizing all consolidation
resources. In the end, only that pattern would still be an attractor in the network.

This paper will argue that runaway consolidation is a rather general problem of
consolidation if Hebbian learning is used, one that easily appears and is not tied to a
particular implementation. It will start with a short review of the roles that consolidation
has played in computational studies, and how it has been implemented. Then, the
problem of runaway consolidation will be introduced with two simple simulations. In
the third part of the paper, three possible solutions will be proposed and explored.

1.1. Catastrophic interference

One problem for which consolidation has been suggested as the solution is catastrophic
interference (McClelland et al. 1995). Catastrophic interference occurs in several connec-
tionist paradigms—notably in networks using the ‘back-propagation’ algorithm—when a
network is to acquire sequentially two or more pattern sets. In a typical demonstration, one
pattern set is learned to criterion, and the network is then trained on a second set. This
procedure results not in mediocre performance on both sets, but in good performance
on the second set, and a total erasure of all patterns in the first. The second set interferes
with the first one with catastrophic consequences (McCloskey and Cohen 1989, Ratcliff
1990, French 1999).

Many solutions to catastrophic interference have involved interleaved learning, basi-
cally mixing in, during training on the second pattern set, patterns of the first set. This
protects the first set, usually referred to as the base patterns, from interference.
Interleaved learning has been implemented in two ways. The first, straight rehearsal of
patterns, refers to relearning either the whole or part of the base population during
each training session with a new pattern (McClelland et al. 1995, Murre 1992,
Ratcliff 1990, Robins 1995). Although this circumvents the effects of learning new pat-
terns, Robins and McCallum (1999) rightfully point out that it presupposes that the
whole base population is stored in a separate system reinstating patterns for rehearsal.
This set-up would make the original network a little superfluous: one could just as
well use the reinstating system as the memory (although the two memories might per-
form different functions, see McClelland et al. 1995).

The second technique, ‘pseudorehearsal’, does not suffer from this drawback. Instead
of rehearsing with the base population, a population of ‘pseudoitems’ is created from the
network and used for rehearsal purposes. These pseudoitems are patterns generated from
the network after the network has been trained on the base population. As in rehearsal,
these pseudoitems are then inserted into the learning set during each training session with
new patterns. In simulations with a Hopfield network, pseudoitems are generated by let-
ting the network relax from a random initial state to an attractor (Robins and McCallum
1998). This attractor is then inserted in the pseudoitem population. In simulations with
back-propagation models, they consist of random input patterns and the outputs gener-
ated by these patterns (Robins 1995, 1996). These two methods can also be merged, as
was shown by Ans and Rousset (1997, 2000).

Although not as effective as plain rehearsal, pseudorehearsal does protect base patterns
from interference by the new pattern set. This is because pseudoitems can be seen as
samples from the network, identifying the function that the network is calculating—or,
in the Hopfield framework, the attractor landscape in the network. When a pseudoitem
population is created after the network has incorporated the training set, then the pseudo-
items sample the function (or attractor landscape) that the base population amounted to.
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Training the network on a suitably large sample of pseudoitems therefore implies training
it on the same function (or attractor landscape) as with the base population (Robins and
McCallum 1999).

1.2. Cortico–hippocampal interactions

Both rehearsal and pseudorehearsal have cropped up in a very different context, that of
cortico–hippocampal interactions, memory consolidation and retrograde amnesia. After
damage to the hippocampal memory system, patients tend to lose more of their recent
memories than their distant memories (Ribot 1881, Squire 1992), a pattern referred to
as the Ribot gradient. This can be explained by assuming that memories are initially
retrieved via a hippocampal memory system. Through a process of consolidation, mem-
ories gradually become stored in the neocortex, making them independent of the hippo-
campal system (Squire and Alvarez 1995, Squire et al. 1984). If the hippocampal system
is damaged, recent memories are lost because they are still dependent on that system. Old
memories, however, have already been stored in the neocortex through consolidation and
are thus spared.

Three computational models have simulated such cortico–hippocampal interactions
(Alvarez and Squire 1994, McClelland et al. 1995, Murre 1996, Meeter and Murre, in
press). All three share the assumption that representations stored in the hippocampal sys-
tem form the basis of representations gradually built up in a neocortical memory system
during consolidation.

McClelland et al. (1995) did not explicitly simulate a hippocampal system; consolida-
tion consisted of relearning old patterns according to a probability distribution that was
assumed to incorporate the behaviour of the hippocampal system. This comes down to
rehearsal. Both other models of retrograde amnesia implemented forms of pseudorehear-
sal. Meeter and Murre (in press) simulated the neocortical memory system as a large
layer in which only weak connections could be made between nodes belonging to one
pattern. These nodes were indirectly bound via hippocampal nodes with strong connec-
tions to all neocortical nodes in the pattern. Consolidation was simulated by letting the
model, from an initial random state, relax into an attractor, and then updating the weights
with a Hebbian learning rule. In the much smaller model of Alvarez and Squire (1994),
patterns consisted of four neocortical nodes connected to one hippocampal system node
(they used the name medial temporal lobe system). Consolidation consisted of activating
a random hippocampal node and letting the model cycle for three iterations. Weights
were updated while the node activated its associated neocortical pattern. In both models,
the connections between neocortical nodes built up during consolidation eventually
allowed the patterns to be retrieved without the support of the hippocampal system.

Although their goals were different (modelling brain repair and synaptic re-entry,
respectively), both Murre et al. (submitted) and Wittenberg et al. (2002) proposed
forms of pseudorehearsal akin to Alvarez and Squire’s (1994) and Meeter and Murre’s
(in press) tack on consolidation. They stored a number of patterns in a Hopfield-type net-
work, let their model find an attractor and adapted the weights in the network to this
attractor.

1.3. Which pattern is consolidated?

An important question surrounding consolidation is what determines which pattern is to
be consolidated. Pattern choice has often been relegated to structures not explicitly mod-
elled (McClelland et al. 1995, Robins 1996, Robins and McCallum 1998). For example,
McClelland et al. (1995) did not simulate a system that restores an old pattern for an

Runaway consolidation 47

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
3
:
3
3
 
2
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



interleaved learning trial. As this was not the target of their simulations, omission of this
structure was acceptable, but it does leave a gap that must eventually be filled.

It is possible to imagine an indexing system that is able to activate a memory in the
target structure, but to avoid infinite regress of indexing systems activating indices
there must eventually be a structure in which it is determined which pattern is consoli-
dated. It is conceivable that this structure is the outside world (see Anderson and
Schooler 1991). However, consolidation is often assumed to take place during sleep
(Crick and Mitchison 1983, Alvarez and Squire 1994, McClelland et al. 1995, Squire
and Alvarez 1995, Robins 1996, Robins and McCallum 1999, Meeter and Murre, in
press). This would imply that there is a need for a brain mechanism that autonomously,
with no direct outside influence, picks the pattern to be consolidated.

A useful distinction to make here is that between a target memory, the store in which
patterns are consolidated, and the training system, the system that holds patterns or pseu-
doitems used in consolidation (or indices to those patterns) and determines which pattern
is consolidated (see figure 1). Training systems are often assumed but not explicitly
simulated (McClelland et al. 1995, Squire and Alvarez 1995, Robins 1996, Robins
and McCallum 1999). Target memory and training system may be one and the same
(Wittenberg et al. 2002, Murre et al., submitted). They may also be implemented on
top of each other, by having two sets of weights in a network, one for the target memory
and one for the training system (Robins 1997). When consolidation is cast in terms of
hippocampal–neocortical interactions, the target memory is usually identified with the
neocortex and the training system with a hippocampal memory system (Alvarez and
Squire 1994, McClelland et al. 1995, Squire and Alvarez 1995, Robins 1996, Robins
and McCallum 1999, Wittenberg et al. 2002, Meeter and Murre, submitted).

In those simulations where it was implemented, the training system helped the ‘base’
memory system find a pattern to consolidate (Alvarez and Squire 1994, Wittenberg et al.
2002, Meeter and Murre, in press). In these and other cases where pattern choice
was modelled, the pattern to be consolidated was found by letting the model, from a
random initial state, iterate until an attractor was found (Alvarez and Squire 1994,

Figure 1. The target memory is the store in which memories must be consolidated. The

training system stores patterns or pseudoitems that have to be consolidated, and determines

or influences which pattern or pseudoitem is to be consolidated. In rehearsal, patterns are

stored in the training system for consolidation (arrows denoted by 1). In pseudorehearsal,

pseudoitems are formed from the target memory and may be stored in the training system for

consolidation (arrows denoted by 2).
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Wittenberg et al. 2002, Meeter and Murre, submitted, Murre et al., submitted). This
method has functioned reasonably well: usually, the attractors found by the network
were stored patterns. There is, however, a danger with this method: runaway consolida-
tion (Meeter and Murre, submitted).

2. Runaway consolidation
2.1. Demonstration with a Hopfield net

The problem of runaway consolidation can be illustrated with a simple set of simulations,
loosely modelled after those of Robins and McCallum (1998). As in that paper, a base set
was stored in a network, and the goal was to protect the base set against interference by
later patterns. In contrast to Robbins and McCallum, a simple Hopfield network was used
(Hopfield 1982; Robins and McCallum used asymmetric weights and an error-correcting
learning rule). The size of the Hopfield net was 80 nodes. Patterns used in the simulation
consisted of a random 40 nodes with value 1, and 40 with value of �1. By updating the
weights in the network according to a simple Hebbian rule, one can transform such pat-
terns into attractors of the network (Hopfield 1982). Fifteen patterns were stored in the
network in this way, which is above the normal capacity of a network of 80 nodes. The
first five were designated as the base set, the other 10 as interfering items. The network
was tested after it had acquired the base set of five patterns, and again after storage of
each new interference pattern. In these tests the cue consisted of 50% of the target pat-
tern.

Figure 2 shows the performance of the network, based on 30 replications. After storing
the base set, all five patterns of that set could be retrieved perfectly from a 50% cue (see
figure 2(a)). With each additional stored pattern, however, performance dropped, until the
mean Hamming distance at retrieval was around 20 for both patterns in the base set and
the subsequent patterns (the order in which patterns are learned is unimportant in basic
Hopfield networks).

A second simulation was done with the pseudorehearsal method of Robins and
McCallum (1998), again with 30 replications. After the five patterns in the base popula-
tion had been learned for each 50 learning trials (equivalent to updating the weights once
with a learning parameter of 50), a pseudoitem population of 50 attractors was created.
One such attractor was found by inserting a random pattern in the network and then let-
ting it iterate for 2000 steps. It was assumed that after those steps a stable attractor had
been reached, and this attractor was then entered in the pseudoitem population. As in the
simulations of Robins and McCallum (1998), there was no check on whether items
belonged to the base population or not. Unlike in those simulations, there was also no
check on whether pseudoitems were duplicates of one another (in such a simple network,
finding 50 independent attractors could take a prohibitively long time). The number of 50
pseudopatterns was chosen to be large enough to limit the likelihood of one pattern being
repeated often in the pseudopopulation. A higher number of pseudoitems did not
improve performance.

Each new pattern received 50 learning trials as well. Intermingled with those, the 50
pseudoitems were learned for one learning trial each. As can be seen in figure 2(b), this
reduced, though not eliminated, the number of errors when patterns in the base set were
tested. New patterns, however, suffered from this procedure: after 15 patterns had been
learned, performance on the new patterns was barely above its minimum value of 40
(Hamming distances lower than 40 were subtracted from 80 to give the distance to the
mirror image of the pattern). This result was also found by Robins and McCallum
(1998). Pseudorehearsal is thus a good strategy for reducing interference by subsequent
items, though at the cost of a reduced encoding of those subsequent items.
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Figure 2. Demonstration of runaway consolidation in a Hopfield network. After a base

pattern set of five patterns is stored the network is tested, and again as more and more

interfering patterns are stored. The x-axis plots the number of interfering patterns stored,

the y-axis the mean Hamming distance at test for both base patterns and interfering patterns

(under ‘new patterns’) (a) Simulation without consolidation. (b) With consolidation through a

pseudo-item population, base patterns are better resistant to interference from new patterns.

Interfering patterns suffer and are not stored very well. To ease comparison, the base patterns

line from (a) is also plotted (‘without consolidation’). (c) With pseudoitems not taken from a

population but sampled real-time from the network, performance suffers because of runaway

consolidation. (d) A single replication of the simulation in (c) shows that one base pattern

(pattern 4) is retained very well, while other base patterns are lost from the network. Pattern 4

monopolizes all consolidation trials, it ‘runs away’ with the consolidation process.

50 M. Meeter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
3
:
3
3
 
2
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Pseudorehearsal as practised above assumes that a training system holds the popula-
tion of pseudoitems for the duration of the simulation (Robins 1997). If no such system
is assumed, pseudoitems have to be created during the phase of psuedorehearsal. In a
third simulation, this was done. As in the previous ones, the model first learned the
base set and then the interfering patterns. Intermingled with the 50 learning trials for
the new items were, again, 50 pseudorehearsal trials. Unlike in the previous simulation,
however, the pseudoitem to be rehearsed was created anew at each pseudorehearsal trial
by letting the model find an attractor as above. This resulted in a dramatic worsening of
performance (see figure 2(c)); performance was, under this regime, even worse than per-
formance without consolidation (figure 2(a)).

A look at a single replication of the third simulation (figure 2(d)) shows what is going
on. One pattern in the base pattern set, pattern 4 in this replication, is still retrieved per-
fectly. Meanwhile, all other patterns in the base set, as well as new patterns, are retrieved
only at chance level. There is a simple reason for these results: nearly all pseudorehearsal
trials resulted in the consolidation of an attractor equal or similar to one pattern. This
pattern then remained retrievable, while all other patterns in the base set were lost.
Pseudorehearsal thus performs surprisingly badly once a whole pseudoitem population
is no longer stored. Another example of this tendency was given by Wittenberg et al.

(2002), who stored five patterns in a Hopfield network but found that consolidation
left only one of these intact after a few trials.

The deeper cause is that consolidating a pattern increases the likelihood that a pattern
is consolidated in the next run. Consolidated patterns are thus consolidated more often,
which in turn assures that they will receive an even bigger share of future consolidation
trials. This quickly leads to what Meeter and Murre (submitted) have called ‘runaway
consolidation’ one or two patterns ‘run away’ with the consolidation process and mono-
polize all consolidation resources.

2.2. The TraceLink model

Runaway consolidation does not automatically disappear with the addition of a training
system to a model. A ‘daytime’ functioning in which the target memory is strong enough
to be relevant, must be married with a ‘night-time’ functioning in which the training
system is strong enough to determine which memory is consolidated into the target
memory. A training system that is too extensive will take over the function of memory,
thereby making the target memory superfluous. A target memory that is too strong will
dominate consolidation and therewith lead to runaway consolidation.

One model in which the distinction between a training system and a target memory has
been implemented is TraceLink, one of the computational models that has been used to
simulate remote memory and amnesia (Murre 1996, Meeter and Murre, in press, sub-
mitted). The TraceLink model illustrates with connectionist simulations how a process
of consolidating memories in the neocortex with help of the hippocampus may explain
many characteristics of amnesia, including gradients in retrograde amnesia, shrinkage of
retrograde amnesia during recovery and transient global amnesia (Meeter and Murre,
submitted).

TraceLink consists of two layers: a trace system modelled as a layer of 200 nodes and a
link system modelled as a layer of 42 nodes. The trace system corresponds to the neo-
cortex, the link system to a medial temporal lobe temporary storage system. Both layers
have internal connections and are connected with one another. Between every two nodes
an excitatory connection can be formed.

Both layers have binary stochastic nodes. The likelihood of firing of these nodes
depends on the balance between the excitatory input from other nodes and inhibition.
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The excitatory input to a node is the weighted sum of the activation of all nodes con-
nected to it. Inhibition is a sum that is constantly fine-tuned so as to keep the average
number of active cells in a layer as close to a preset target number (k) as possible.
This number is set separately for every layer, and consequently inhibition is regulated
separately in every layer. The weights of connections are modifiable with a variant of
Hebb’s rule (Hebb 1949) that allows for weight increases as well as decreases: weights
are increased with the learning rate m if both pre- and postsynaptic nodes fire, and are
decreased with a value 0.75* m if the postsynaptic node fires but the presynaptic one
does not. Weights are clipped to the interval [0, 1]. For more details, see Meeter and
Murre (in press).

Learning is not equally fast for all connections. The learning rate (m) is much lower for
the within-trace connections (m¼ 0.06) than for the connections within the link layer, or
between the link layer and the trace layer (both m¼ 0.4). This models the fact that the
hippocampus is unusually plastic (Lopes da Silva et al. 1990) and that the regions of
the link system have a higher connectivity than the neocortex (Treves and Rolls 1994).

A pattern in the learning set consists of 10 random trace nodes and 7 random link
nodes, which are activated when a pattern is presented. The number of nodes in the
two layers that belong to a pattern is equal to the target number of active nodes in equili-
brium for that layer (e.g. k¼ 10 in the trace layer). As patterns are chosen randomly,
every two patterns share on average a k/m proportion of their nodes in a layer, where
m is the number of nodes in the layer.

For acquisition, a pattern is presented and then learned for one iteration with the learn-
ing rates given above. Consolidation is implemented by letting the model cycle for 150
iterations and storing the attractor that surfaces. Only trace–trace connections are mod-
ified in consolidation, connections within link and between trace and link are not chan-
ged. Retrieval of a pattern is measured by activating a cue of 30% of the trace portion of
the pattern (three random trace pattern nodes) and letting the model cycle for 80 itera-
tions. The proportion of uncued trace pattern nodes that are active after these 80 itera-
tions is taken as the measure of retrieval. This can thus vary between zero and one.

In a basic TraceLink simulation of remote memory, 15 patterns are stored. After acqui-
sition of each new pattern, there is a consolidation period in which three autonomously
surfacing attractors are strengthened. Only trace–trace connections are modified in con-
solidation, connections within link and between trace and link are not changed. When the
15 patterns are stored, retrieval for each pattern is tested, both in an intact condition and
in a lesioned condition in which the Link system is deactivated. In this second condition
simulating amnesia through medial temporal lobe damage (which will not be discussed
further here), recent patterns are lost, while old consolidated patterns are still retrievable.

2.3. Runaway consolidation in the TraceLink model

The consolidation learning parameter is usually set to a value where the three consolida-
tion trials in one consolidation period cause as much weight change in the trace layer as
initial acquisition of one pattern does (value 0.06). To illustrate runaway consolidation,
we repeated the basic simulation outlined above (without amnesia condition) with differ-
ent strengths of consolidation. The black line in figure 3(a), based as the other lines on
100 replications, shows performance in the intact model without consolidation. Recent
patterns (to the right) are retrieved fairly well, while older patterns (to the left), through
overwriting and interference, are retrieved progressively worse. With consolidation of
standard strength of initial learning, remote patterns are less vulnerable to interference.
This occurs without large costs to the retrievability of recent patterns. However, if
consolidation is too strong compared with acquisition learning (i.e. total weight change
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during consolidation is greater than that during learning), consolidated patterns tend to
‘run away’ in the same way as illustrated above with the Hopfield model. One pattern,
usually the first, becomes so strong through consolidation that it monopolizes all
consolidation resources and is the sole strengthened pattern. The difference between
consolidation and initial learning does not have to be very large for this to occur.
The grey line with open markers in figure 3(a) shows runaway consolidation, with
consolidation weight change being just 50% higher than initial learning. In this setting,
only pattern 1 could be retrieved very well, as this pattern had received all consolidation
strengthening.

Figure 3. Runaway consolidation in TraceLink fifteen patterns are stored, with acquisition of

new patterns intermingled with consolidation trials of a strength varied across simulations.

Consolidation strength is given as multiples of the trace acquisition learning parameter. (a)

Mean retrieval of the 15 individual patterns at three consolidation strengths: no consolidation,

consolidation with a strength equal to one acquisition trial and consolidation of 150% that

strength. The latter line shows the effects of runaway consolidation (b) Mean retrieval at

different consolidation strengths for all patterns, for remote patterns (first five to be acquired),

middle patterns (patterns 6–10) and recent patterns (patterns 11–15). Though with moderate

consolidation strength mean pattern retrieval increases, with higher strengths (>1 time

acquisition strength) it decreases again. Remote patterns still benefit from increases in

consolidation strength, but both middle and recent patterns suffer.
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In figure 3(b), retrieval of all 15 patterns is summed and plotted for different strengths
of consolidation. While at lower strengths consolidation is beneficial, at higher strength
consolidation becomes detrimental. This is not uniformly the case for all patterns, as
figure 3(a) shows. Patterns are therefore grouped, in figure 3(b), into ‘old’ patterns
(first five to be stored), ‘middle’ patterns (patterns 6–10) and ‘recent’ patterns (11–15).
While ‘old’ patterns benefited from stronger consolidation (especially the first pattern),
‘middle’ and ‘recent’ patterns suffered, leading to lower overall performance with
stronger consolidation.

2.4. Discussion

The TraceLink model exemplifies the danger of runaway consolidation that was also
shown to occur in a simple Hopfield network. Runaway consolidation is a general problem
it will occur whenever the pattern to be consolidated is chosen in a competitive process
and when previous consolidation enhances the likelihood that a pattern will win the
competition. It is not even limited to connectionist settings. In the first version of a mathe-
matical model of Nadel et al.’s (2000) theory of multiple traces, trace replication depended
on the number of copies that a memory had already assembled. They too were confronted
with the phenomenon that a pattern that by chance is replicated often has a higher chance
of being replicated later on and in the end swamps the whole memory store (that memory
was ‘running away with the replication process’; Nadel et al. 2000).

3. Solutions to runaway consolidation
To explore possible solutions to this issue, I took the simulations with the TraceLink
model as a starting point. Such solutions should allow the model to function with
stronger consolidation (a higher learning parameter), without falling into the trap of
runaway consolidation. As the middle patterns in figure 3 (patterns 6–10) benefit from
consolidation but not from runaway consolidation, I used average retrieval of these
patterns as a measure of successful consolidation.

Runaway consolidation occurs because the likelihood that a pattern is consolidated
depends on the amount of consolidation that the pattern has already received. A logical
solution would be to attempt to uncouple these two. Another possible solution would be
to limit the strength an individual pattern can gain through consolidation, in that way
ensuring that the likelihood of consolidation would not vary much between patterns.
A third solution would be to try to unlearn too strong attractors, thereby increasing
the likelihood that other patterns would be consolidated.

3.1. Suppressed transmission

Runaway consolidation can be seen as a variant of Hasselmo’s (1994) ‘runaway synaptic
modification’. This is a problem that can plague modellers using unsupervised Hebbian
learning. If one lets the weights on connections between two layers determine which con-
nections will encode a new pattern, connections used by one pattern will grow in
strength, and therefore be more likely to be used in encoding a second pattern.
Ultimately, this tendency will lead to the situation that all patterns are encoded by the
same connections. In runaway consolidation too, the weights to be modified determine
what attractor is consolidated.

Hasselmo (1999) proposed, as a solution to runaway synaptic modification, a selective
suppression of transmission. Transmission in the connections that are modified has to be
suppressed, so that their strength does not determine which pattern is stored. Such selec-
tive suppression can result from the working of acetylcholine, which has been shown to
affect certain inputs more than others in several brain areas.
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Selective suppression of transmission in connections to be modified might also be a
solution for runaway consolidation. If trace–trace connections were dampened during
consolidation, increases in weights resulting from consolidation would not influence
the likelihood of a pattern being consolidated in a subsequent trial.

To investigate whether suppression of connections indeed protects the model from
runaway consolidation, consolidation strength was varied by setting the learning para-
meter during consolidation to different values. As in the demonstration of runaway con-
solidation, total weight change during one consolidation period was set equal to multiples
(from 0.5 to 3.5) of the trace acquisition learning parameter. Moreover, suppression of
trace–trace connections during consolidation was varied. This was done by multiplying
input through trace–trace connections with 17 d, where d was set to 0.9 (strong
suppression), 0.6, 0.3, or 0 (no suppression).

Replicating results from the previous section (figure 3(b)), retrieval of middle patterns
deteriorated with higher consolidation strengths (figure 4, each data point based on 50
replications). With strongly suppressed transmission in trace–trace connections, however,
stronger consolidation was beneficial for retrieval. An elimination of runaway consolida-
tion explains this finding. Figure 5 contrasts performance on individual patterns at high
consolidation strength (weight change per consolidation period equal to 3.5 times the
acquisition learning parameter) for a simulation with no trace–trace connection dampening
during consolidation, and strong suppression of trace–trace connections. While in the
simulation with no suppression runaway consolidation is evident in the peak performance
for the first pattern, no such peak is found in the simulation with strong suppression.

Runaway consolidation is thus eliminated by suppression of transmission in trace–
trace connections during consolidation. This occurs because such suppression weakens
the connection between the strength of a pattern in trace and the likelihood that it is con-
solidated.

3.2. Bounded weights

Another way to tackle runaway consolidation is to ensure that patterns do not differ much
in the likelihood that they receive a consolidation trial, even after many such trials. One
way to do this is to place bounds on trace–trace weights. If the weights subject to

Figure 4. Average retrieval of the middle patterns (patterns 6–10) with different strengths of

consolidation and different amounts of transmission suppression in trace–trace connections.

Stronger consolidation is detrimental without any suppression of transmission, but beneficial

with 60% or 90% suppression of transmission.
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consolidation cannot grow too large, they cannot strongly bias consolidation toward one
pattern. Runaway consolidation is thus made unlikely. This solution was followed by
Murre et al. (submitted), who rigorously kept weights in all patterns close to their maxi-
mal value during the whole simulation.

To investigate this solution, consolidation strength was manipulated as above, but with
a bound on the weight of trace–trace connections. A weight was not increased once it
reached this bound. Weights were already bounded in all simulations, but to a value
of 1 that is typically only reached late in the simulation. Here, the bound on trace–
trace connections was set to 1, 0.7, 0.4 or 0.1. The lowest bound of 0.1 is reached
after acquisition and two consolidation trials.

As shown in figure 6, lower bounds on trace–trace weights did make the model less
sensitive to runaway consolidation; however, it limited strengthening of patterns through
consolidation. This is most clear with the smallest bound, 0.1: although patterns did not
suffer from stronger consolidation, there were also no benefits. A small increase in
performance with higher levels of consolidation was found only with a bound of 0.4.

Figure 5. Retrieval probability of the 15 individual patterns with strong consolidation

(weight change 3.5 times that of one acquisition trial) and with either maximal suppression of

transmission in trace–trace connections (90%), or no suppression of transmission in

consolidation. The latter line shows the effects of runaway consolidation.

Figure 6. Average retrieval of the middle (patterns 6–10) with different strengths of

consolidation and different bounds to trace–trace connections. Higher strengths of

consolidation do not harm performance as much with bounds of 0.1 or 0.4 than with

higher bounds of 0.7 or 1 (a bound of 1 was in place in all other simulations).

56 M. Meeter

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
1
3
:
3
3
 
2
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Bounds on the weights subject to consolidation thus eliminate runaway consolidation,
but at a price of less effective consolidation.

3.3. Unlearning

Another possible solution to runaway consolidation might be to ‘unlearn’ patterns that
gain too much strength in consolidation. Crick and Mitchison (1983, 1995) proposed
that unlearning takes place in the brain during REM sleep, in order to remove spurious
attractors. This could occur, they thought, next to a consolidation phase taking place dur-
ing non-REM sleep (Crick and Mitchison 1995). In Hopfield networks, unlearning has
been shown to increase the number of patterns that can be retrieved from a network
(Hopfield et al. 1983, Christos 1996). Although consolidated patterns are usually not
spurious patterns but stored ones (Meeter and Murre, submitted), unlearning may still
be useful as it weakens too strong attractors, enabling smaller attractors to reemerge.
This may also be partly why unlearning works in the Hopfield setting, where strong
stored patterns are often the ones that are unlearned (Christos 1996).

To investigate the usefulness of unlearning, a set of simulations was done in which
each consolidation trial was followed by an unlearning trial, in which an attractor was
found by letting the model iterate for 100 steps, and ‘unlearning’ the attractor unearthed
by the model (i.e. learn with a negative learning parameter). As with consolidation, the
learning parameter m in unlearning was set to a multiple of the learning parameter with
which a pattern is stored (the trace acquisition learning strength). For example, in one
combination tested (labelled as consolidation 1, unlearning �0.5 in figure 7), weights
were increased during consolidation with a m that was one-third of acquisition learning
strength, so that if one pattern were consolidated in all three consolidation trials of a con-
solidation period, its weights would have increased by the same amount as during its
initial acquisition. In similar vein, weights were decreased during unlearning with a m
that was one-sixth of acquisition learning strength, so that total unlearning weight change
was 50% of acquisition weight change.

Figure 7(a) shows how performance on the middle patterns varies for different conso-
lidation strengths and different levels of unlearning (each data point based on 50 replica-
tions). With higher levels of unlearning, there is a slight increase in performance.
However, the main effect of unlearning is a shift in peak performance to higher levels
of consolidation strength. While without unlearning the maximum performance is at a
consolidation strength 1 (equal to acquisition learning strength), the maximum is at 1.5
with an unlearning of �0.5 times acquisition learning strength, at 2 with an unlearning
of �1 times acquisition strength, etc.

The reason for these results is simple as the procedure for finding attractors is the same
for consolidation and unlearning, the same attractor might first be consolidated and then
unlearned (in Christos’s 1996 simulation, just-stored attractors were often targets of
unlearning). This would be equivalent to consolidating with a lower learning parameter.
Indeed, the difference between learning and unlearning ms explains most of the variance
in figure 7(a). Nevertheless, there is a slight increase in maximal performance with
higher levels of unlearning, as is shown in figure 7(b).

A way to increase the beneficial effect of unlearning would be to reduce the likelihood
that the same attractors are consolidated and unlearned. This can occur, for example, by
suppressing transmission in the connections between trace and link during unlearning. In
this way, unlearning is made more dependent on the weights within trace, while both
trace and link contribute to the attractor search during consolidation. Indeed, suppressing
these connections by 90% led to somewhat better performance with higher levels of
unlearning (see figure 7(b)).
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4. Discussion
4.1. Consolidation in neural networks

Consolidation has been proposed as a solution to several outstanding problems in con-
nectionism and neuroscience. When implemented in neural networks, it has taken the
form of either of two variants of interleaved learning: straight rehearsal (Ratcliff 1990,
Murre 1992, McClelland et al. 1995, Robins 1995) or pseudorehearsal (Alvarez and
Squire 1994, Murre 1996, Robins 1996, Robins and McCallum 1998, 1999, Ans and
Rousset 2000, Wittenberg et al. 2002, Meeter and Murre, submitted, Murre et al., sub-
mitted). Although each implementation has been studied by several researchers, not
many of these have implemented in a network how patterns or pseudoitems are stored
for consolidation, and how it is decided which pattern or pseudoitem receives a conso-
lidation trial.

When these things are implemented, consolidation may be susceptible to runaway con-
solidation (Meeter and Murre, submitted). Runaway consolidation is not limited to the
TraceLink model, it also appears in a Hopfield network (Wittenberg et al. 2002,

Figure 7. (a) Average retrieval of the middle patterns (patterns 6–10) with different strengths

of consolidation and different strengths of unlearning. Strength of consolidation is given in

multiples of the trace acquisition learning parameter, strength of unlearning as negative

multiples of the same parameter. (b) Maximum retrieval of middle patterns at different

strengths of unlearning. Generally, the maximum falls at higher strengths of consolidation for

higher strengths of unlearning. Suppressing transmission in trace–link connections improves

the efficacy of unlearning, in that performance increases more with higher strengths of

unlearning.
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Murre et al., submitted) and even appears in a mathematical formulation of consolidation
(Nadel et al. 2000). The main reason for runaway consolidation is that the likelihood that
an attractor emerges from a network increases when that attractor has been consolidated
previously. It can be seen as a variant of Hasselmo’s (1994) ‘runaway synaptic modifica-
tion’, associated with Hebbian learning. The results may not apply to networks in which
pseudorehearsal or rehearsal are used in combination with error-correcting forms of
learning such as back-propagation, as it is not a priori clear that training such a network
on one input–output combination increases the likelihood that a similar output is elicited
by a different input.

Not all implementations of consolidation have a set-up as shown in figure 1. In some
instantiations the training system and the target memory are one and the same. This does
not preclude runaway consolidation, as the simulation with the Hopfield network
showed. A more elaborate set-up is that of Ans and Rousset (1997, 2000): two coupled
networks function as each other’s training system, in what they called ‘self-refreshing’, a
form of pseudorehearsal. No runaway consolidation was reported in this network.
However, the simulations reported contain only one pass back and forth between the net-
works. If there were several passes in which one network trains the second and vice
versa, old pseudorehearsal trials would have an influence on later pseudorehearsal trials
(by influencing the formation of new pseudoitems), and runaway consolidation could be
expected to occur as Hebbian learning is used to create input patterns.

Three solutions to runaway consolidation have been discussed in this paper, though it
is not implied that other solutions do not exist. The first solution uncoupled the
likelihood of consolidation from previous consolidation trials by suppressing
transmission in the connections to be modified during consolidation. This led to avoid-
ance of runway consolidation and to large increases in performance with higher levels of
consolidation. The second solution involved placing bounds on the connections subject
to consolidation so as to limit the possibility of one pattern garnering enough strength
to start runaway consolidation. Indeed, runaway consolidation was avoided, but at a
cost: patterns did not benefit very much from higher levels of consolidation. The third
method used unlearning to weaken harmfully strong attractors. This increased perfor-
mance with higher levels of consolidation, though not by much. Making the attractor
search in unlearning more dependent on the weights modified in consolidation, however,
improved unlearning. All three solutions are thus to some extent effective in avoiding
runaway consolidation at higher levels of consolidation.

4.2. Consolidation in the brain

One should be cautious about declaring findings from artificial neural networks valid for
natural neural networks, and especially to reason that problems hampering our limited
artificial networks must also hamper our brains. Nevertheless, the conclusions reached
here seem fairly general. If memories are consolidated in the brain, if that involves
rehearsal or pseudorehearsal of memories in a sequential way, and if the likelihood
with which a memory is rehearsed increases with previous consolidation, then runaway
consolidation is a real danger.

If consolidation occurs in the way described just now, it is possible that the brain has
adopted one of the solutions explored here. Not all three solutions are equally biologically
plausible. Unlearning during REM sleep, with or without consolidation in slow-wave
sleep, is often thought of as not very plausible (Robins and McCallum 1999, Vertes
and Eastman 2000, Siegel 2001). It is even doubtful that REM sleep has a role in
memory at all: total elimination of REM sleep, as produced by a widely used class of
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antidepressants—Mono amine oxidase (MAO) inhibitors—does not notably affect mem-
ory function in humans (Siegel 2001). Also, unlearning is not a particularly potent way of
protecting memories against interference. It has been claimed that benefits from unlearn-
ing can also be attained through a simple weight decay (Robins and McCallum 1999).

The other two mechanisms do not involve such large claims on how the brain works.
Suppression by neuromodulators of transmission through specific connections has
already been identified in several brain areas (Hasselmo 1999). That this would occur
in consolidation is therefore not unimaginable. Indeed, it has been suggested that in
slow-wave sleep neuromodulator concentrations are ideal for consolidation of memories
from the hippocampus to the neocortex (Hasselmo 1999). Setting bounds on the weights
is also consistent with what is known about the brain. Long-term potentiation does not
grow unlimitedly. On the contrary, potentiation has been shown to decrease in size when
it approaches certain asymptotes (Levy et al. 1990). Suppression of transmission in
synapses within the neocortex relative to those from the hippocampus, or a maximal
potentiation of those synapses not far from their value after initial acquisition, might
thus both be viable ways in which the brain could avoid runaway consolidation.
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