
Genetic influences on disordered eating
behaviour are largely independent of body
mass index

Introduction

Despite substantial efforts to identify causal path-
ways for anorexia and bulimia nervosa, very little
is known about the aetiology of eating disorders.
In longitudinal and cross-sectional studies, several

risk factors have been identified, including gender,
elevated weight and shape concerns, negative body
image, negative self-evaluation, dieting and child-
hood obesity (1).
Various family and twin studies have been

performed to explore the causes of individual
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Objective: Prior studies suggest eating disorders and related
characteristics are moderately to substantially heritable. We are
interested in identifying the genes underlying disordered eating
behaviour (DEB), and want to know how much of the genetic influence
underlying DEB is attributable to genetic influences on body mass
index (BMI).
Method: Bivariate analyses were performed, in adolescent twins and
siblings, to estimate the genetic and environmental contributions for
DEB, BMI, and their overlap.
Results: Shared genetic risk factors explained the overlap between
BMI and DEB (genetic correlation was 0.43 in women, 0.51 in men).
DEB was highly heritable in women (a2 = 0.65; a2 independent of
BMI = 0.53) and moderately heritable in men (a2 = 0.39;
a2 independent of BMI = 0.29). BMI was highly heritable in both men
(a2 = 0.76) and women (a2 = 0.80).
Conclusion: The entire correlation between DEB and BMI was
explained by shared genetic risk, but the majority of genetic influences
on DEB were due to genetic effects independent of BMI.
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Significant outcomes

• Disordered eating behaviour (DEB) was highly heritable in women and moderately heritable in men,
body mass index (BMI) was highly heritable in both men and women.

• The entire correlation between DEB and BMI was explained by shared genetic risk, but the majority
of genetic influences on DEB were due to genetic effects independent of BMI.

Limitations

• The results for men and women are hard to compare. Because of lack of measurement invariance, the
DEB-scale might not measure the same trait in men and women.

• In the male sample, there was limited statistical power to estimate the size of the genetic correlation.
• A concern with regard to our study is the selection of the eating disorder features, and the

comparability of this phenotype with other studies.
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differences in the development and stability of
eating disorders, a variety of eating disorder
symptoms and related characteristics. In popula-
tion-based twin studies, the heritability estimates
for these different phenotypes in women ranged
from 0 to 0.82, but on average a moderate
heritability of around 0.40 was estimated (2–17).
In men, heritability estimates ranged from 0 to
0.51, with an average heritability estimate of 0.20
(10, 14–17). Only one study focussed on the
overlap between eating attitudes, behaviour and
body weight in adolescent female twins (9). This is
an interesting overlap to investigate, as body
weight might be a risk factor for the development
of eating disorders (1).
We herein report the results of a bivariate twin

study on disordered eating behavior (DEB) and
body mass index (BMI) in a Dutch population
sample of adolescent male and female twins. To
overcome the drawbacks and limitations of the
previous studies (such as small sample sizes,
inadequate power, and the use of categorical data;
e.g. see Ref. (2), review), we used a large sample of
twins and siblings aged 11–18 years. DEB was
measured in a more continuous fashion. Four items
on different eating disorder features were used to
calculate a sum score. Three items used in this study
are based on eating disorder criteria from the DSM-
IV (18). The fourth item, dieting, was added to
assess an important risk factor for the development
of eating disorders (1). Prior work has shown that
these four items could be accounted for by one
underlying latent factor in a confirmatory factor
analysis (Slof-Op ’t Landt MCT, Dolan CV,
Rebollo I, et al, personal communication).
However, the DEB items were not measurement

invariant with respect to sex, indicating that this
scale might not measure the same trait in men and
women (Slof-Op ’t Landt MCT, Dolan CV,
Rebollo I, et al, personal communication). There-
fore, the genetic analyses were performed sepa-
rately in men and women.

Aims of the study

The aim of the current study was to investigate
how much of the heritability in DEB is attributable
to genetic effects on BMI, and how much of it is
independent of these effects. Because we would like
to identify the genes that influence DEB in the
future, investigating the overlap between DEB and
BMI may shed some light on possible biological
pathways involved in DEB. We performed a
bivariate analysis using both traits, to estimate
the overlap between DEB and BMI and to
disentangle the proportion of variance due to

shared and specific genetic and environmental
factors.

Material and methods

Sample

All participants were registered with the Nether-
lands Twin Registry (NTR), kept by the Depart-
ment of Biological Psychology at the VU
University in Amsterdam. Young twins (YNTR)
are registered at birth by their parents, who were
approached through �birth felicitation� services.
During the first years of their lives, the parents
were the primary sources of information on their
development. Twins were categorized by birth
cohort and data collection was cohort driven.
Nationwide data collection of all families was by
mailed surveys. Parents of twins receive question-
naires when their twins were aged 1, 2, 3, 5, 7, 10
and 12 years. At ages 7, 10 and 12 years, teacher
data were also collected, after written permission is
given by the parents. When the twins were 14, 16,
and 18 years they received a self report question-
naire, used in the current study (19, 20). For this
study, data from the 1986–1992 birth cohorts were
used. In January 2005, questionnaires were sent to
14-, 16- and 18-year-old twins and their non-twin
siblings. The twins and siblings were asked to
complete a survey containing items relevant for
eating disorders. Questionnaires were sent to 2000
families. A total of 2131 twins and 517 siblings
from 1121 families returned the questionnaire
(family response rate 56.1%).
Zygosity was determined for 461 same-sex twin

pairs by DNA analysis or blood group polymor-
phisms. For all other same-sex twin pairs, zygosity
was determined by discriminant analysis, using
longitudinal questionnaire items. Agreement
between zygosity assignment by the replies to the
longitudinal questionnaire and zygosity deter-
mined by DNA markers ⁄blood typing was
around 93% (21).
The final sample consisted of 474 monozygotic

twin pairs [194 male (MZM) and 280 female
(MZF) pairs], 310 dizygotic twin pairs [140 male
(DZM) and 170 female (DZF) pairs], and 45
incomplete twin pairs (22 men and 23 women). The
sibling group was comprised of 69 brothers and
115 sisters.

Measures

The Dutch Health Behaviour Questionnaire is a
self-report instrument containing direct measures
of several health and behaviour features, including
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a number of eating disorder characteristics and self
report of height and weight. Based on the self-
reported height and weight, the body mass index
(BMI = weight [kg] ⁄height2 [m]) was used as a
measure of relative body weight in this study.
The eating disorder section included the follow-

ing four items: i) dieting (have you ever gone on a
diet to lose weight or to stop gaining weight?); ii)
fear of weight gain (how afraid are you to gain
weight or become fat?); iii) importance of body
weight or shape on self-evaluation (how important
is body weight and ⁄or shape in how you feel about
yourself?) and iv) eating binges (have you ever had
eating binges?). Responses were given on a five-
point scale. The scores on the four items were
summed to calculate DEB. If one of the four eating
disorder items was missing, then the sum score was
also missing.
Prior work has shown that these four items

could be accounted for by one underlying latent
factor in a confirmatory factor analysis (Slof-Op ’t
Landt MCT, Dolan CV, Rebollo I, et al, personal
communication). In comparing groups or parallel
use of data from different groups, such as men and
women, it is important that an instrument mea-
sures the same underlying latent (unobserved) trait
in these groups. Observed group differences in the
sum scores should accurately reflect group differ-
ences with respect to the latent variable. A neces-
sary condition for this is that the instrument
displays measurement invariance with respect to
the groups under consideration (22, 23). Formally,
measurement invariance requires that the distribu-
tion of the item scores, conditional on only the trait
score equals the distribution of the item scores,
conditional on both the trait score and group
membership. If for example men score lower on
average on one item than women without actually
scoring lower on the total scale (underlying trait),
this item is said to lack measurement invariance. In
that case, observed group differences in sum scores
might not be caused by true differences in the
underlying trait, but by measurement bias. Prior
analyses have shown that the four eating disorder
items were not measurement invariant with respect
to sex. This implies that the sum score based on
these items cannot be taken to present exactly the
same trait in men and women. Therefore, all
analyses were performed separately in men and
women.

Statistical analyses

Age-effects for both DEB and BMI were expected
(9, 24); therefore, we first calculated the correla-
tions between both traits and age in the two sex

groups. For the descriptive statistics, we tested
whether the means and variances for DEB and
BMI were equal between the twins and siblings in
men and women. All analyses were performed
using the software package mx (25). The means
were corrected for age in all genetic analyses.
In the next step, the phenotypic correlation

between DEB and BMI was calculated. Subse-
quently we calculated twin correlations, twin-sib-
ling, and cross-twin ⁄ sib cross-trait correlations.
The correlations provide an initial indication of
genetic and environmental effects on DEB, BMI
and their overlap. By constraining the dizygotic
(DZ) twin correlations and the twin-sib correlation
to be equal, the presence of a specific twin
environment is tested. Monozygotic (MZ) twin
pairs are genetically (nearly) identical, whereas DZ
twin and sibling pairs share on average 50% of
their segregating genes. Therefore, if the MZ twin
correlation is substantially larger than the DZ twin
and twin-sib correlations, genetic influence is
implied. Shared family environmental factors (for
example religion, socioeconomic level and parent-
ing style) will make family members relatively more
similar and will create differences between families.
If the MZ and DZ twin correlation are similar and
both statistically significant, shared environmental
influence is suggested. Finally, the importance of
non-shared environmental influences can be seen
from the extent to which the MZ twin correlations
differ from one. This influence stands for the
impact of all environmental factors influencing
only one of the twin pair (for example illness,
trauma or relationships with peers). In addition,
the pattern of cross-twin cross-trait correlations for
MZ twins and DZ twins and siblings indicates to
what extent the covariance between the traits is
influenced by genetic or environmental compo-
nents. Finally, a twin specific environment is
implied if DZ twin correlations are significantly
higher than twin-sib correlations.
The Cholesky Decomposition or triangular

decomposition, is used for the bivariate genetic
model fitting. The Cholesky decomposition decom-
poses the phenotypic statistics into genetic, shared
environmental and non-shared environmental con-
tributions. In other words, the pattern of the factor
loadings on the latent genetic and environmental
factors reveals a first insight into the aetiology of
covariances between DEB and BMI. As the satu-
rated model is fully parameterized, it yields the best
possible fit to the input matrices.
The bivariate Cholesky decomposition model

contained two latent factors for A, C and E
respectively (per individual), of which the variances
were constrained to be one. In Fig. 1, the path
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diagram of this model is shown. Correlation
coefficients are represented by curved lines with
an arrow at each end. Within a twin- or sibling pair
the C component for a trait is identical for each
member (correlation coefficient of one), the E
component is uncorrelated. A on the other hand, is
identical for MZ twins but the correlation is 0.5 for
DZ twins or sibling pairs. BMI loaded on the
first latent factors A, C and E. The phenotypic
variance for BMI is represented by the sum
of squared estimates of factor loadings
[i.e. ða211Þ þ ðc211Þ þ ðe211Þ]. DEB loaded on both
factors, and the sum of the squared factor loadings
[i.e. ða221 þ a222Þ þ ðc221 þ c222Þ þ ðe221 þ e222Þ] repre-
sented the phenotypic variance for this trait. The
heritability of BMI and DEB will be estimated by:

a2BMI ¼ a211=ða211 þ c211 þ e211Þ

a2DEB¼ða221þa222Þ=ða221þa222þc221þ c222þ e221þ e222Þ

When multiplying the factor loadings on the first
latent factors [i.e.

ða11 � a21Þ þ ðc11 � c21Þ þ ðe11 � e21Þ
], the covariance between BMI and DEB is derived.
Based on the covariance, genetic and environ-
mental correlations between the two traits can be
calculated (see below).

Genetic correlation:

rg ¼ ða11 � a21Þ=ð
p
a211 �

pða221 þ a222ÞÞ

Common environmental correlation:

rc ¼ ðc11 � c21Þ=ð
p
c211 �

pðc221 þ c222ÞÞ

Unique environmental correlation:

re ¼ ðe11 � e21Þ=ð
p
e211 �

pðe221 þ e222ÞÞ

Based on the estimated heritability for DEB and
the genetic correlation, the heritability estimates
for DEB dependent on BMI (a221) and independent
on BMI (a222) can be determined by:

a21 ¼ rg � ða21 þ a22Þ ¼ rg � aDEB

a22 ¼ aDEB � ðrg � aDEBÞ

We fitted models by the method of maximum
likelihood to data from all twins and siblings,
separately in women and men, beginning with a
full bivariate ACE model (a model with additive
genetic, shared environmental, and non-shared
environmental effects). Subsequently, parameters
(a21, c21, e21) were dropped from the model to test

A1 C1 A2 C2

E1 E2

BMITwin1 DEBTwin1

a11 c11 a22 c22

a21

c21

e11 e22e21

A1 C1 A2 C2

E1 E2

BMITwin2 DEBTwin2

a11 c11 a22 c22

a21

c21

e11 e22e21

1/0.5 1/0.51 1

Fig. 1. The bivariate Cholesky model for body mass index (BMI) and disordered eating behaviour (DEB), represented for a twin or
sibling pair. Correlation coefficients are represented by curved lines with an arrow at each end. Variance in each phenotype is
assumed to be determined by the additive combination of three latent factors: additive genetic effects (A), shared environmental
effects (C) and non-shared environmental effects (E). BMI loaded on the first latent factors A, C and E. The additive genetic, shared
environmental and non-shared environmental variance in DEB scores are partitioned into those components attributable to the
genetic and environmental effects on BMI (a21, c21, e21) and residual components that are independent of the genetic and environ-
mental effects of BMI (a22, c22, e22).
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if the covariance between traits can be attributed to
shared genes (a21) or overlapping C or E influences.
Twice the difference in log-likelihood between two
models yields a statistic that is asymptotically
distributed as a chi-square statistic with degrees of
freedom equal to the difference in the number of
estimated parameters in the two models. This
statistic can be used to test the tenability of the
constraints associated with the more constrained
model. According to the principle of parsimony,
models with fewer estimated parameters are pre-
ferred if they do not give a significant deterioration
of the fit (P > 0.05).
Based on the twin and twin-sibling correlations

estimated in this study, we performed power
analyses in mx. We calculated the power to test
for the significance of the different paths of A
(a11, a21, a22) and ⁄or C (c11, c21, c22) in a bivariate
model with a significance level a of 0.05 for the
phenotypes (DEB and BMI). In addition, we
calculated the statistical power to test whether the
genetic correlation between the two phenotypes
was statistically different from one or zero in the
bivariate model. A genetic correlation of one
indicates that identical genes are underlying the
genetic influence on the traits. A genetic correlation
of zero means that genetic influences on the traits
are totally independent from each other. This
analysis was based on the results of the full
bivariate model.

Results

Based on the independent analyses in women and
men, results for women and men are presented
separately.

Women

In the women, both BMI and DEB showed a
significant correlation with age, r = 0.27 (95%
CI = 0.19, 0.34) and r = 0.14 (95% CI = 0.06,
0.21) respectively. BMI and DEB scores increased
with increasing age. The descriptive statistics for

the female sample are presented in the upper part
of Table 1. Means (adjusted for age), and variances
of DEB and BMI were equal in the female twins
and siblings (v2

8 = 5.54; P = 0.70). The pheno-
typic correlation between BMI and DEB was 0.32
(95% CI = 0.25, 0.38) in women. Table 2 displays
the correlations and cross-correlations for BMI
and DEB in MZ twins, and same-sex DZ
twins ⁄ twin-sibling pairs in the women. DZ twin
correlations and twin-sibling correlations could be
constrained to be equal (v218 = 26.72; P = 0.08).
All the MZ correlations, both cross-twin and cross-
twin cross-trait, were substantially higher than the
DZ ⁄ twin-sibling correlations. In other words,
genetic influence is implied in DEB, BMI, and
the overlap between these traits.
In Table 3, the parameter estimates and fit

statistics for the full model and the best-fitting
model, from the bivariate twin analyses, are
presented. The AE model (a model with additive
genetic and non-shared environmental effects),

Table 1. Descriptive statistics for DEB and BMI in women (upper part) and men
(lower part) per zygosity

DEB BMI

N Mean* Var Min Max N Mean* Var Min Max

Women
MZF first born 280 8.0 6.1 4.0 18.0 266 20.1 8.4 14.2 34.6
MZF second born 278 7.7 6.2 4.0 17.0 268 19.7 7.7 14.7 36.4
MZF sister 64 8.2 5.5 4.0 16.0 61 20.9 8.8 14.0 30.8
DZF first born 172 7.9 5.7 4.0 16.0 169 20.3 8.3 14.5 32.7
DZF second born 173 7.9 6.1 4.0 19.0 169 20.2 7.9 15.5 33.2
DZF sister 49 8.1 7.8 4.0 15.0 47 20.5 8.3 13.7 29.9

Men
MZM first born 194 6.3 3.4 4.0 13.0 183 20.0 8.4 13.0 34.0
MZM second born 190 6.3 3.4 4.0 12.0 190 19.7 6.5 14.1 34.0
MZM brother 41 6.6 4.6 4.0 14.0 40 20.9 8.2 16.2 34.6
DZM first born 145 6.5 3.0 4.0 13.0 140 19.7 5.6 15.1 30.3
DZM second born 141 6.3 2.5 4.0 12.0 139 19.3 3.9 13.8 26.2
DZM brother 26 5.7� 2.0 4.0 10.0 26 21.2� 5.9 15.7 28.4

DEB, disordered eating behaviour; BMI, body mass index; MZF, monozygotic
females; DZF, dizygotic females; MZM, monozygotic males; DZM, dizygotic males.
*Unadjusted means, in the analyses means were adjusted for age.
�The mean for both DEB and BMI of the DZM brothers was not equal to the means
in the remaining males.

Table 2. Correlations and cross-correlations for DEB
and BMI in monozygotic twins, and in same-sex
dizygotic twins or twin-sibling pairs

MZ DZ ⁄ same-sex siblings

DEB BMI DEB BMI

Women DEB 0.67 (0.60, 0.72) 0.21 (0.10, 0.32)
BMI 0.29 (0.20, 0.37) 0.80 (0.76, 0.84) 0.15 (0.07, 0.24) 0.30 (0.19, 0.40)

Men DEB 0.38 (0.26, 0.49) 0.25 (0.12, 0.37)
BMI 0.24 (0.15, 0.33) 0.76 (0.70, 0.81) 0.23 (0.13, 0.32) 0.34 (0.21, 0.45)

DEB, disordered eating behaviour; BMI, body mass index; MZ, monozygotic; DZ, dizygotic. Women are presented in
the upper part of the table, men in the lower part. 95% confidence intervals are shown in parentheses.
Bold values: twin and twin-sibling correlations. Italic values: cross-twin ⁄ sib cross-trait correlations.
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with genetic influences explaining the overlap
between BMI and DEB (a21) gave the best fit to
the data. Both BMI and DEB were highly heritable
in women. The total phenotypic correlation
between BMI and DEB was due to shared genetic
influences with an rg of 0.43 (95% CI = 0.34, 0.52)
in women.
For the women, the statistical power to test for

the significance of the different paths of A
(a11, a21, a22) was 1.00 in the bivariate analyses.
In addition, the power to test whether rg was
significantly different from zero or one was also
1.00. This means that we had sufficient power to
decompose the variance and covariance in BMI
and DEB.

Men

In men, the correlation between age and BMI
was 0.35 (95% CI = 0.26, 0.42), and between age
and DEB, a non-significant correlation of 0.08
(95% CI = )0.01, 0.16) was obtained. In the
lower part of Table 1, the descriptive statistics
for the male sample are listed. Not all means of
DEB and BMI were equal between twins and
siblings. The mean of DEB was lower, while the
mean of BMI was higher in the DZM brothers
compared with the other male twins and siblings
(v2

6 = 8.33; P = 0.22). In the subsequent analy-
ses, we therefore used different means for the DZM
brothers.

The phenotypic correlation between BMI and
DEB was 0.28 (95% CI = 0.21, 0.36). The lower
part of Table 2 displays the correlations and cross-
correlations for BMI and DEB in MZ twins, and
same-sex DZ twins or twin-sibling pairs estimated
in the male sample. DZ twin correlations and twin-
sibling correlations could be constrained to be
equal (v218 = 26.52; P = 0.09). The correlations
for BMI and DEB were substantially higher in the
MZ than in the DZ ⁄ twin-sibling pairs in men. The
cross-twin cross-trait correlation, however, was
quite similar in the MZ and DZ ⁄ twin-sibling pairs.
For the bivariate Cholesky decomposition anal-

yses, the AE model with genetic components
explaining the overlap (a21), gave the best fit to
the data. In Table 4, the parameter estimates as
well as the fit statistics are mentioned for the full
and best-fitting models in the male sample. DEB
was moderately heritable in men, whereas BMI
was a highly heritable trait. The total phenotypic
correlation between BMI and DEB was due to
shared genetic influences with an rg of 0.51 (95%
CI = 0.37, 0.64) in men.
The statistical power to test for the significance

of the different paths of A (a11, a21, a22) was 1.00 in
the male sample. However, the power to test
whether rg between BMI and DEB was statistically
different from one was only 0.58, while the power
to test if rg was significantly different from zero was
0.99 in the AE model. This means, that we had
limited power to estimate the size of rg accurately.

Table 3. Parameter estimates and fit statistics of the full and best-fitting model of bivariate Cholesky analysis of BMI and DEB in female same-sex twins and siblings

a2 c2 e2 Fit statistics

BMI DEB BMI DEB BMI DEB )2ll* df Dv2� Ddf�

ACE; a12, c12, e12 0.80 (0.71, 0.84) 0.65 (0.55, 0.71) 0.00 (0, 0.08) 0.00 (0, 0.08) 0.20 (0.16, 0.25) 0.35 (0.29, 0.42) 9034.13 1983 – –
AE; a12 0.80 (0.75, 0.84) 0.65 (0.58, 0.71) – – 0.20 (0.16, 0.25) 0.35 (0.29, 0.42) 9035.54 1987 1.42 4

DEB, disordered eating behaviour; BMI, body mass index.
95% confidence intervals shown in parentheses.
*)2 log likelihood.
�Chi-square test statistic between two models.
�Degrees of freedom for the Chi-square difference test.

Table 4. Parameter estimates and fit statistics of the full and best-fitting model of bivariate Cholesky analysis of BMI and DEB in male same-sex twins and siblings

a2 c2 e2 Fit statistics

BMI DEB BMI DEB BMI DEB )2ll* df Dv2� Ddf�

ACE; a12, c12, e12 0.69 (0.52 0.79) 0.21 (0.00, 0.45) 0.07 (0, 0.23) 0.16 (0, 0.37) 0.24 (0.19, 0.30) 0.35 (0.29, 0.42) 6023.62 1440 – –
AE; a12 0.76 (0.70, 0.81) 0.39 (0.28, 0.49) – – 0.24 (0.19, 0.30) 0.35 (0.29, 0.42) 6026.35 1444 2.72 4

DEB, disordered eating behaviour; BMI, body mass index.
95% confidence intervals shown in parentheses.
*)2ll: )2 log likelihood.
�Chi-square test statistic between two models.
�Degrees of freedom for the chi-square difference test.
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How much of the genetic influence on DEB is
independent of BMI? In both women and men, the
estimated genetic correlations indicated that about
half of the genetic factors that influence BMI also
influence DEB. But what does this mean for the
heritability? How much of the heritability estimate
in DEB is attributable to genetic influences on
BMI, and how much is independent of it? Based on
the genetic correlation, we can calculate the heri-
tability of DEB independent of genetic influences
on BMI. For women, this leads to a heritability
estimate of 0.53 and in the men an independent
heritability of 0.29. These results show that the
majority of genetic influence on DEB is indepen-
dent of genetic influences on BMI.

Discussion

Twin-, cross-twin, and twin-sibling correlations
indicated that a large part of the variance in both
DEB and BMI was explained by genetic factors,
and that genetic components were underlying the
overlap between DEB and BMI in women. The
bivariate analysis showed that DEB is a highly
heritable trait in women (a2 = 0.65) and moder-
ately heritable in men (a2 = 0.39), whereas BMI is
highly heritable in both women (a2 = 0.80) and
men (a2 = 0.76). In addition, additive genetic
factors were responsible for the total overlap
between the two characteristics, yielding a genetic
correlation of 0.43 in women and 0.51 in men.
Despite the overlap between BMI and DEB, the
majority of the genetic influences on DEB were due
to genetic effects that are independent of BMI in
women as well as men.
Klump et al. (9) used a bivariate Cholesky

decomposition analysis to examine the genetic
and environmental contributions to BMI and
several scales from the eating disorder inventory
(EDI) in adolescent female twins. In this study,
heritability estimates ranged from 0.02 to 0.45 in
11-year-old twins and from 0.52 to 0.63 in 17-year-
old twins for the EDI scales, and from 0.78 to 0.84
for BMI in both 11-year and 17-year-old twins.
Genetic correlations between 0.38 and 0.97 in 11-
year-old twins and between 0.33 and 0.60 in 17-
year-old twins were estimated for BMI and the
different scales of the EDI. Despite the difference in
age and the use of different assessment instruments,
our results in the women were comparable with the
estimates in the 17-year-old twins from this study.
In addition, results from the current study are
comparable with adult population-based univariate
twin studies that have investigated genetic and
environmental contributions to BMI (24), and
eating disorder-related characteristics (2–17).

The majority of the variance in DEB was
explained by genetic factors in women, while
unique environmental factors had the largest influ-
ence in men. Because eating disorders are more
common in women, items used to asses symptoms
and features related to these disorders are also
mainly developed for women. The scale we used
might not be measuring the same underlying trait in
men and women (Slof-Op ’t Landt MCT, Dolan
CV, Rebollo I, et al, personal communication), the
differences in heritability estimates between the
sexes in the current study can therefore be indica-
tive of a true difference in DEB, but might also be
due to measurement bias. None of the previously
performed twin studies examining eating disorder-
related characteristics (10, 14–17) in both men and
women, have tested whether the items used to asses
the phenotype measured the same trait in both
sexes. As a consequence, it is not clear if the
reported differences and similarities between male
and female heritability estimates are due to mea-
surement bias or true sex differences in DEB.
The genetic correlation of 0.43 in women and

0.51 in men obtained in this study, indicates that
approximately 50% of the genetic factors that
influence BMI also influence DEB. Because DEB
and BMI are related with each other, it would be
interesting to disentangle the direction of causation
of the overlap between these characteristics.
Genetic influences on for example metabolism
may be causal to weight gain that eventually
leads to disturbed eating behavior. Genetic influ-
ences on DEB may alternatively be causal to a
disturbed eating profile, leading to fluctuations in
weight. Eventually, we would like to identify genes
that are underlying DEB. Therefore, we are plan-
ning to test the causal hypothesis in future studies,
to further clarify the underlying aetiology of the
overlap between BMI and DEB. Several
approaches can be taken to disentangle the direc-
tion of causation, for example phenotypic causa-
tion models (26, 27) and the co-twin control design
(28, 29). The first method is a nested model of the
bivariate Cholesky decomposition, in this
approach the correlated traits need to have differ-
ent modes of inheritance. In the co-twin control
design relative risks for DEB would be compared
between unrelated individuals discordant for BMI,
DZ twins discordant for BMI, and MZ twins
discordant for BMI.
The power analysis revealed that our sample size

was sufficient to detect genetic and shared envi-
ronmental effects on BMI and DEB (both depen-
dent and independent from BMI) in men and
women. Our female sample size also was sufficient
to estimate the genetic correlation between BMI
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and DEB correctly. In men, we had limited
statistical power to estimate this correlation. The
small difference between the cross-twin cross-trait
correlations in the male MZ and DZ ⁄ twin-sib pairs
gave a first indication for this lack of power. As a
consequence, there is a possibility that the overlap
between BMI and DEB is not solely due to genetic
factors in men, but that common environmental
factors also play a role.
A concern with regard to our study is the selection

of the eating disorder features, and the comparabil-
ity of this phenotype with other studies. Three items
used in this study are based onDSM-IV (18) criteria
for eating disorders. The fourth item, dieting, was
added to assess an important risk factor for the
development of eating disorders (1). Within the
eating disorder field, a broad variety of assessment
instruments is used to assess eating disorders and
eating disorder-related phenotypes. A majority of
these assessment instruments is based on DSM-IV
criteria, indicating that our broad phenotype is
probably fairly comparable to these phenotypes.
However, one eating disorder symptom is missing in
our phenotype, namely compensatory behavior.
Heritabilities of 0.50 for compensatory behavior in
17-year-old female twins (9) and 0.70 for self-
induced vomiting in adult female twins (7) have
been found. Based on these findings, the inclusion of
compensatory behaviors in our phenotype might
not influence the results found for the women in
the current study. However, we do not know what
the consequences for the heritability estimates in the
men would be, especially since significant gender
differences have been reported for a variety of
compensatory behaviors like self-induced vomiting,
laxative use and fasting (30).
The current study provides further evidence that

genetic components are underlying DEB in both
men and women. Part of these genetic components
are influencing both BMI and DEB, while the
majority of genetic effects influencing DEB is
independent of the genetic effects that influence
BMI. In future studies, we hope to identify genes
that are involved in this eating disorder phenotype
by performing genetic association studies.
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