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Abstract Relay nodes in an ad hoc network can be modelled as fluid queues, in
which the available service capacity is shared by the input and output. In this paper
such a relay node is considered; jobs arrive according to a Poisson process and bring
along a random amount of work. The total transmission capacity is fairly shared,
meaning that, when n jobs are present, each job transmits traffic into the queue at rate
1/(n + 1) while the queue is drained at the same rate of 1/(n + 1). Where previous
studies mainly concentrated on the case of exponentially distributed job sizes, the
present paper addresses regularly varying jobs. The focus lies on the tail asymptotics of
the sojourn time S. Using sample-path arguments, it is proven that P {S > x} behaves
roughly as the residual job size, i.e., if the job sizes are regularly varying of index
−ν, the tail of S is regularly varying of index 1 − ν. In addition, we address the tail
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358 R. Bekker, M. Mandjes

asymptotics of other performance metrics, such as the workload in the queue, the flow
transfer time and the queueing delay.

Keywords Queueing · Asymptotics · Regular variation · Ad hoc networks

1 Introduction

Ad hoc networks are self-configuring networks of mobile routers, connected by wire-
less links. They enable infrastructure-free communication: no fixed equipment is
needed, but instead each client acts as a hub. When information needs to be trans-
mitted across the network, it is sent from the sender to the receiver by relaying the
packets along intermediate nodes. An excellent survey on ad hoc networks, with spe-
cial emphasis on Quality-of-Service aspects, is Reddy et al. (2006).

On an abstract level one could model nodes in an ad hoc network as queues, see
Van den Berg et al. (2006). Indeed, data packets arrive from source nodes and are
served to be relayed to destination nodes. The complicating property is that the total
transmission capacity is fixed and has to be shared between (i) source nodes sending
information packets into the queue, and (ii) the service process at the queue of trans-
mitting information packets towards ‘successor nodes’ (and eventually the destination
client). Hence, the present model differs from ordinary queueing models by the fact
that the total tranmission rate, which is commonly used completely for serving the
queue, is now shared between the arrival and service processes.

To describe the sharing mechanism of the transmission rate, consider the situation
that at some point in time n stations send traffic through the same relay node. Then
each ‘sending node’ is assigned an equal share 1/(n + 1) of the available medium
capacity (which we may normalize to 1), which is the same fraction as is allocated to
serve the queue. Note that the total input rate is thus n/(n + 1), so that the net rate
of growth of the queue is (n − 1)/(n + 1). We conclude that as soon as n > 1, the
node’s input rate exceeds its output rate, and hence the excess traffic accumulates in
the node’s buffer; only when n = 0 the queue drains (see also Mandjes and Roijers
2007 for an illustration of the model dynamics). Interestingly, this entails that relay
nodes are prone to becoming bottlenecks. We remark that the queue is served on a
First Come First Served (FCFS) basis.

The above assumption of equally sharing the transmission capacity is based on
the mathematical description of an ieee 802.11b protocol that is proposed and being
implemented, see e.g. Reddy et al. (2006). However, one could think of other allocation
policies, for instance, by increasing the transmission share of the relay node (see also
Mandjes and Roijers 2007, Sect. 8). In that instance, the queueing delay will decrease,
but that is at the expense of the time required to put the job into the buffer of the relay
node. We refer to Roijers et al. (2008) for further details.

To study the relay node described above, we consider a flow-level model. Jobs
arrive at the relay node, for instance, according to a Poisson process, and bring along
a random amount of work, say i.i.d. (independent and identically distributed) sam-
ples from a distribution B(·). At the flow level, traffic then arrives as a fluid to the
queue.
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A fluid model for a relay node in an ad hoc network 359

There are several interesting performance measures to consider. In the first place,
one may be interested in the time F before a job is completely ‘pulled out of the
predecessor node’, in that all traffic has reached the queue of the relay node. It then still
takes some time, however, before the job has gone through the relay node: the sojourn
time S equals the sum of F and the delay D of the last particle of the flow. Previous
work by Mandjes and Roijers (2007) focused on the case that B(·) corresponds to an
exponential distribution, and it is a natural question whether other distributions are
amenable for analysis as well.

In this paper we consider the relevant, and technically interesting, case of heavy-
tailed jobs. If the network is used for file transfer purposes it is likely that traffic has
heavy-tailed characteristics. This follows from extensive measurement studies show-
ing that file sizes in the Internet commonly have heavy-tailed features, see e.g. Crovella
and Bestavros (1996). More precisely, we assume that the jobs are i.i.d. samples from
a regularly varying distribution of index −ν, i.e., P {B > x} behaves roughly like x−ν ,
for some ν > 0; we write B(·) ∈ R−ν . For standard queueing models (i.e., models
of M/G/1 or GI/G/1 type) with regularly varying input, a wealth of interesting con-
tributions have appeared; early papers are for instance Cohen (1973); Pakes (1975).
Generally speaking, under FCFS scheduling the sojourn time (just like the workload)
is in R1−ν (that is, the tail is as heavy as a residual job size), whereas under processor-
sharing (Zwart and Boxma 2000) it is in R−ν (and hence the tail is essentially as heavy
as that of the jobs themselves). As is clear from the model description we gave above,
our relay-node has both PS and FCFS elements, and therefore it is an interesting fun-
damental question whether the sojourn time is in R1−ν or R−ν (or perhaps regularly
varying of another index).

In our analysis, we rely on sample-path methods, comparable to those developed in
Bekker et al. (2005). A lower bound is derived by identifying a most likely scenario,
and computing its tail asymptotics. Then, in the upper bound we split the event of our
interest into a number of sub-events, and show that among these, asymptotically, only
the most likely scenario is relevant.

This paper is organized as follows. Section 2 details the model and presents some
preliminaries. Section 3 describes the main results, which are proven in Sect. 4.
Section 5 concludes the paper.

2 Model and preliminaries

In this section, we first give a description of the fluid-flow queueing system that is
used to model a relay node in an ad hoc network. Second, we give some preliminary
results that are mainly used in the proofs of our results.

Model description

Consider a queueing system at which flows arrive according to a Poisson process with
rate λ. Each active flow brings along an amount of work; we assume that the service
requirements are i.i.d. with distribution B(·) and mean β < ∞. The flow transmits
traffic into the queue (according to a procedure detailed below) until it has sent out its
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360 R. Bekker, M. Mandjes

full service requirement; then we say that the flow becomes inactive. Evidently, the
mean amount of work generated per unit time is � := λβ.

The total transmission capacity is, without loss of generality, normalized to 1. This
transmission capacity is fairly shared between all nodes present. This means that when
there are N (u) active flows at time u, each active flow transmits traffic into the queue
at rate 1/(N (u) + 1). The service rate of the queue then also equals 1/(N (u) + 1),
implying that the queue is only drained when there are no active flows (and remains
constant when there is one flow present).

In this paper, particularly in the proofs, we frequently use terminology of fluid-
tandem queues; quantities associated with traffic of active flows that is not yet in the
queue are labelled class 1, while quantities associated with traffic present in the queue
are labelled class 2. The total available transmission capacity for the active flows (that
is, the input rate of the queue) during the time interval [s, t] thus equals

C1(s, t) :=
t∫

s

N (u)

N (u) + 1
du

and the total service rate for the queue equals

C2(s, t) :=
t∫

s

1

N (u) + 1
du.

Since the input into the buffer during the interval [s, t] equals the total transmissions
of active flows, we obtain the following useful representation of the class-2 workload:

V2(t) = sup
s≤t

{C1(s, t) − C2(s, t)} = sup
s≤t

⎧⎨
⎩

t∫

s

N (u) − 1

N (u) + 1
du

⎫⎬
⎭ . (1)

In this paper, we assume that the service requirement distribution is heavy-tailed.
Let B denote a generic service requirement, and let Br be a random variable distributed
as the residual lifetime of B, i.e.,

Br (x) := P
{

Br < x
} = 1

β

x∫

0

(1 − B(y))dy. (2)

More specifically, we assume that the service requirement distribution is regularly
varying of index −ν (denoted as B(·) ∈ R−ν), i.e., 1 − B(x) ∼ L(x)x−ν, ν > 1
(so that β < ∞), with L(x) some slowly varying function. Here, and throughout the
paper, we use the notation f (x) ∼ g(x) to indicate that f (x)/g(x) → 1 as x → ∞.
(A function L(·) is called slowly varying if L(ηx) ∼ L(x) for all η > 1.) It follows
from Karamata’s Theorem, see Bingham et al. 1987 [Thm. 5.1.11], that
xP {B > x} ∼ (ν − 1)β P {Br > x}, and thus Br (·) ∈ R1−ν .
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Preliminaries

Denote by Bi (s, t), i = 1, 2, the amount of service received by class i during the
interval [s, t]. The amounts of service satisfy the following evident inequality

B1(s, t) + B2(s, t) ≤ t − s, (3)

with equality iff V1(u) + V2(u) > 0 for all u ∈ [s, t].
Similarly, define Ai (s, t), i = 1, 2, as the total input for class i during the interval

[s, t]. For the workloads the following obvious identity relation holds, for i = 1, 2
and s < t ,

Vi (t) = Vi (s) + Ai (s, t) − Bi (s, t). (4)

Furthermore, using the fact that A2(s, t) = B1(s, t), we have

V2(t) = V2(s) + B1(s, t) − B2(s, t). (5)

A1(s, t) is distributed as a Poisson number (with mean λ(t − s)) of i.i.d. service
requirements, each with distribution B(·), and the class-1 workload obeys

V1(t) = sup
s≤t

⎧⎨
⎩A1(s, t) −

t∫

s

N (u)

N (u) + 1
du

⎫⎬
⎭ .

We note that the above entails that the workload in the overall system can be directly
related to the stationary workload in an M/G/1 queueing model. This can be seen as
follows. In our tandem-queueing model, arriving flows are essentially served twice,
see Van den Berg et al. (2006); flows that belong to the class-1 workload require two
stages of service, while for work in the class-2 workload (that is, the queue) there
is only a single stage of service left. This entails that the stability constraint of the
model is � < 1

2 . Furthermore, it holds that the total service capacity (at a constant
rate of 1 per unit time) is used as long as there is any work present, which entails
that the system is work-conserving. According to Reich’s formula (Reich 1958), the
steady-state overall-workload representation therefore reads

2V1 + V2 =d sup
t≥0

{2A1(−t, 0) − t}.

The distribution of 2V1 + V2 thus equals the steady-state workload distribution of an
M/G/1 queue with generic service requirement 2B. Applying the well-known asymp-
totic result for the standard M/G/1 queue, see Cohen (1973); Pakes (1975), we directly
obtain the asymptotic tail distribution of the overall workload:

Theorem 2.1 Assume that � < 1/2. Then, B(·) ∈ R−ν iff P {2V1 + V2 < ·} ∈ R1−ν ,
and then

P {2V1 + V2 > x} ∼ 2�

1 − 2�
P

{
Br >

x

2

}
.
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Finally, we focus on the time required to serve an amount of work in the queue. Let
time 0 be an arbitrary instant at which a flow becomes active and let

W0 := arg inf
t≥0

{B2(0, t) = V2(0)}

be the time required to serve the amount of work present in the queue at flow initiation.
Since active flows initiate their transmission immediately upon arrival, W0 also corre-
sponds to the epoch at which the first packet (to be interpreted as infinitesimally small
fluid particle) of the flow leaves the buffer. In queueing terminology, this quantity is
frequently referred to as the waiting time. Because the total transmission capacity is
used during [0, W0], we have the following identity:

W0 = V2(0) + B1(0, W0). (6)

We note that we interchangeably use W and W0 to denote such a generic waiting time.

3 Results

In this section, we present the main results of the paper. In particular, we give exact
asymptotics for the steady-state workload, flow-transfer delay, queueing delay, and
sojourn time. For the former two quantities this section also provides the proofs; the
proofs for the latter two quantities (which are considerably more involved) are given
in the next section. For each quantity, we also provide the underlying heuristics; these
turn out to be extremely useful in understanding the model’s properties (and play an
important role in the proofs of Sect. 4).

3.1 Steady-state workload

We first consider the steady-state class-2 workload distribution V2. For this quantity
we can rely on the main result of Bekker et al. (2005) giving the workload asymptotics
of (in the terminology of Bekker et al. 2005) the streaming traffic, sharing bandwidth
with a second class of elastic flows according to the PS discipline. The result indicates
that the tail of the steady-state workload is as heavy as that of Br , i.e., regularly varying
of index 1 − ν.

Theorem 3.1 If B(·) ∈ R−ν and 0 < � < 1
2 , then

P {V2 > x} ∼ 2�

1 − 2�
P

{
Br >

1 − �

2�
x

}
.

Proof Using (1), we may rewrite the workload representation as

V2(t) = sup
s≤t

⎧⎨
⎩t − s −

t∫

s

2

N (u) + 1
du

⎫⎬
⎭

= 2 sup
s≤t

⎧⎨
⎩

1

2
(t − s) −

t∫

s

1

N (u) + 1
du

⎫⎬
⎭ =: 2V �(t). (7)
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A fluid model for a relay node in an ad hoc network 363

We note that V �(t) equals the workload of the streaming class in case K = 1 and
r = 1/2, using the terminology of the workload representation in Bekker et al. (2005).
In that case, the condition Kr < 1−� < (K +1)r translates into 0 < � < 1/2. Now,
using (7) and applying Bekker et al. (2005) (Thm. 4.1) with K = 1 and r = 1/2 gives
the result. ��
Heuristic arguments

The heuristics behind the workload asymptotics are as follows. Consider the workload
at an arbitrary instant, say, at time 0. The most likely way for V2(0) to become large is
the arrival of one exceptionally large job (also referred to as tagged job) of size Btag
before time −t̃1 (which is defined below). Suppose that this job arrives at time −y.
For any value of y ≥ t̃1 one can determine the minimal size of the tagged job to make
sure that V2(0) > x .

We first observe that y cannot be smaller than

t̃1 := x

�
.

This can be seen as follows. The amount of work stored in the queue by all jobs except
for the tagged one is close to its average amount of work generated, i.e., roughly �y
arrives to the queue due to the other job arrivals during the interval [−y, 0]. Assuming
that the tagged job is still transmitting into the buffer at time 0 (otherwise V2(0) would
even be smaller), it follows from the PS discipline that the tagged job brings along as
much work as is served by the queue; the buffer content at time 0 is then about �y.
For V2(0) > x it is thus required that y > t̃1.

Suppose that the tagged job has size Btag. Over the duration of the transmission
of the tagged job, it equally shares the remaining capacity with the queue at a rate
(1 − �)/2. It then takes 2Btag/(1 − �) time to fully put the tagged job into the buffer,
i.e., at time −y + 2Btag/(1 −�) the tagged job has transmitted its full service request.
Note that for the minimal size of Btag it holds that this time should be before time 0.
When the tagged job has fully arrived at the queue, the buffer drains at a rate 1 − 2�.
Thus, the buffer content at time 0 is

V2(0) = 2Btag

1 − �
� −

(
y − 2Btag

1 − �

)
(1 − 2�) = 2Btag − (1 − 2�)y.

To make sure that V2(0) > x , we have

Btag >
x

2
+ 1 − 2�

2
y.

Integrating with respect to y (and neglecting the asymptotically small probability
of having two or more large job arrivals), it follows that the probability of a large
workload roughly equals

∞∫

y=t̃1

λP

{
Btag >

x

2
+ 1 − 2�

2
y

}
dy.
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After the change of variable z = y − t̃1, dividing and multiplying with β, and using
(2), we obtain the desired expression.

3.2 Flow transfer delay

Here we consider the time F it takes for an arbitrary arriving flow to transmit its
traffic into the buffer. Since the available transmission capacity at time u for each
individual active flow equals 1/(N (u) + 1) it trivially follows that the flow transfer
delay equals the sojourn time of a non-permanent customer in a M/G/1 PS queue with
one permanent customer. Applying Guillemin et al. (2003), Thm. 3, it follows directly
that the flow transfer delay is regularly varying of index −ν:

Proposition 3.2 If B(·) ∈ R−ν and 0 < � < 1, then

P {F > x} ∼ P

{
B >

1 − �

2
x

}
.

Proof The result follows directly from Guillemin et al. (2003), Thm. 3, with the
identification γ f := (1 − �)/2, see also Bekker et al. (2005), Prop. 3.1. ��
Heuristic arguments

Clearly, the heuristics behind the flow-transfer delay asymptotics are the same as the
heuristics for the asymptotic sojourn time in a M/G/1 PS queue with one permanent
customer. That is, a large flow-transfer delay is due to a large service requirement
of the flow itself. The ratio (1 − �)/2 is simply the average service rate received by
the large flow; over the duration of the large flow, the other flows transmission rate
roughly equals their average input rate �. The remaining capacity of 1 − � is equally
shared between the large flow and the relay node (i.e., the buffer).

3.3 Sojourn time and queueing delay

In this part, we consider the queueing delay D and sojourn time S = F + D of an
arbitrary arriving flow. The queueing delay is here defined as the time it takes the last
packet (recall that a packet is to be interpreted as an infinitesimally small fluid particle)
of the flow to go through the queue. The sojourn time is the time between the arrival
of a flow until the last packet leaves the buffer.

In fact, the queueing delay and sojourn time are asymptotically equivalent, as pre-
sented in the following theorem:

Theorem 3.3 Define φmax := max{1 − �, (1 + �)/2} and φmin := min{1 − �, (1 +
�)/2}. If B(·) ∈ R−ν and 0 < � < 1

2 (� 	= 1
3 ), then

P {S > x} ∼ P {D > x} ∼ 2�

1 − 2�
P

{
Br >

(1 − �)2

2�
x

}

+ 2�

|1 − 3�|P
{
φmin

(1 − �)

2�
x < Br < φmax

(1 − �)

2�
x

}
. (8)
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A fluid model for a relay node in an ad hoc network 365

Proof For any flow, the waiting time is evidently less than its sojourn time. Lower
and upper bounds for the sojourn time S that asymptotically coincide are then given
by Propositions 4.2 and 4.3, respectively, providing the asymptotic tail of S.

Since the delay of a flow is bounded by its sojourn time, Proposition 4.3 also gives
an asymptotic upper bound for the tail of D. For the lower bound, write

P {D > x} ≥ P {S > (1 + ε)x; F < εx}
≥ P {S > (1 + ε)x} − P {F > εx} .

Using Proposition 3.2 and the fact that B(·) ∈ R−ν it follows that

P {F > εx} = o
(
P

{
Br > x

})
.

The lower bound of D now follows directly by letting ε ↓ 0 and using the fact that
S ∈ R1−ν , completing the proof. ��

Corollary 3.4 If P {B > x} = L(x)x−ν for some slowly varying L(·) and 0 < � < 1
2 ,

then S and D ∈ R1−ν , and, in particular,

P {S > x} ∼ P {D > x} ∼ 1

(ν − 1)β
L(x)x1−ν · (ξ1(�) + ξ2(�)),

where

ξ1(�) : = 2�

1 − 2�

(
2�

(1 − �)2

)ν−1

;

ξ2(�) : = 2�

|1 − 3�|

((
2�

φmin(1 − �)

)ν−1

−
(

2�

φmax(1 − �)

)ν−1
)

.

Remark 3.5 Notice that the value � = 1
3 plays a special role in Corollary 3.4 (and

Theorem 3.3). First observe that � < 1
3 holds iff 1 − � > (1 + �)/2; for � = 1

3 we
have that φmin and φmax are equal. Elementary calculus shows that this entails that
ξ2(�) can be alternatively written as

ξ2(�) = 2�

1 − 3�

((
4�

1 − �2

)ν−1

−
(

2�

(1 − �)2

)ν−1
)

.

L’Hôptital’s rule yields that

ξ2

(
1

3

)
= 3

4
(ν − 1)

(
3

2

)ν−2

,
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so that for � = 1
3

P {S > x} ∼ P {D > x} ∼ 1

(ν − 1)β
L(x)x1−ν ·

(
2

(
3

2

)ν−1

+ 3

4
(ν − 1)

(
3

2

)ν−2
)

.

Remark 3.6 In Mandjes and Roijers (2007), the (virtual) queueing delay is defined as
the delay experienced by a fluid particle arriving at the buffer at a random point in
time. Using PASTA, it follows that the buffer content and number of flows present at
the Poisson instants of flow arrivals are equal to these quantatities at arbitrary instants
(time averages). Hence, the above definition of the queueing delay distribution is
identical to the ‘waiting time’ distribution of the present paper and thus has the same
asymptotic behavior.

Heuristic arguments

The heuristics of the sojourn time and queueing delay are as follows. Consider the job
that arrives at, say, time 0. This job has an exceptionally long sojourn time if it sees
upon arrival an exceptionally large workload, while the job itself is relatively small.
This large workload is in turn due to a single exceptionally large job (to which we refer
to as the tagged job) that arrived in the past at time, say, −y. Because the job itself
is small, the flow transfer delay can be neglected compared to the queueing delay,
yielding the same asymptotic behavior for the queueing delay, sojourn time, and also
the waiting time. In the heuristics we henceforth focus on the waiting time W0, i.e.,
the time required to serve V2(0).

For any value of y > 0 one can determine the minimal size of the tagged job to
make sure that work arriving at the queue at time 0 does not leave the system before
time x .

We first observe that y cannot be smaller than

t0 := (1 − �)x

2�
.

This can be seen as follows. As long as the tagged job is in the system, the queue grows
at a rate of roughly � (because the tagged job brings along as much work as is served
by the queue, and hence all ‘usual input’, arriving at an average rate of �, is stored
in the queue). In other words, the buffer content at time 0 is about �y. Now consider
a fluid packet arriving at time 0. To maximize the time before this packet leaves the
queue, assume that the tagged job stays in the system; then the buffer drains at a rate
(1 − �)/2. This means that the queue is empty at time 2�y/(1 − �), which cannot be
larger than x if y is smaller than t0. Therefore we assume from now on y ≥ t0.

First we consider the situation that the tagged job has transmitted its full service
requirement into the buffer at time 0. The capacity used by all other customers to store
traffic into the queue roughly equals the amount of work generated, which is close to
average. Hence, after time 0, the buffer is drained at a rate of 1 − �, implying that

W0 ≈ V2(0)

1 − �
.
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A fluid model for a relay node in an ad hoc network 367

Fig. 1 Two realizations of a large waiting time x ; before time 0 (i.e., left of the vertical axis) the total
amount of work in the buffer is depicted, while after time 0 (i.e., right of the vertical axis) the amount of
work in the buffer in front of the fluid particle arriving at time 0 is drawn

For W0 > x it is thus sufficient that V2(0) > x(1 − �). Using the asymptotic results
for V2(0) this directly provides the first term in the rhs of (8). We note that it follows
directly from the heuristics of the workload asymptotics (see Sect. 3.1) that the most
likely scenario for V2(0) > x(1 − �) to occur is the arrival of a large job at time −y,
with

y ≥ t1 := 1 − �

�
x,

and with a service requirement

Btag >
1 − �

2
x + 1 − 2�

2
y.

The heuristic arguments for this scenario are also depicted in the first figure of Fig. 1.
Now consider the situation that the tagged job is still transmitting into the queue

at time 0. The tagged job can send traffic into the queue at a rate of about (1 − �)/2.
Supposing the tagged job has size Btag, then it has been put into the buffer at time
−y + 2Btag/(1 − �) > 0; since there is roughly �y in the buffer at time 0, the amount
of work in front of the job arriving at time 0 left at that particular instant then equals

�y −
(

2Btag

1 − �
− y

) (
1 − �

2

)
= �y − Btag + 1

2
y(1 − �).

In other words, the waiting time W0 (or time to serve the amount of work at time 0) is

−y + 2Btag

1 − �
+

(
�y − Btag + 1

2
y(1 − �)

)/
(1 − �) = Btag

1 − �
+ 3� − 1

2(1 − �)
y;
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368 R. Bekker, M. Mandjes

this time is larger than x if

Btag > (1 − �)x + 1

2
(1 − 3�)y. (9)

See also the second figure of Fig. 1 for a graphical illustration of this scenario. It is
readily verified that these y should lie in the interval [t0, t1].

Now, realizing that the probability that a job arriving in interval dy around y is λdy,
the probability of a long delay (and the probability of a long sojourn time) roughly
equals

t1∫

t0

λP

{
B >(1 − �)x + 1

2
(1 − 3�)y

}
dy +

∞∫

t1

λP

{
B >

1

2
(1 − �)x + 1 − 2�

2
y

}
dy.

After a change of variable, dividing and multiplying with β, and using the definition
of the residual lifetime of B, we obtain the desired expression.

Remark 3.7 The special role of � = 1
3 may become apparent from Equation (9),

indicating the value of the service requirement of the tagged flow arriving at time −y,
y ∈ [t0, t1], needed for the waiting time to be larger than x . Interestingly, the rhs of
Equation (9) is decreasing (increasing) in y for � > 1

3 (� < 1
3 ) and is independent of

the arrival instant −y in case � = 1
3 . To understand the latter, suppose that the tagged

job arrives at time −(y+h) instead of at −y, with h sufficiently small. The waiting time
before the tagged job has been fully put into the buffer then obviously is h time units
smaller. Also, at that instant, the amount of work before the customer arriving at time 0
increases with (�+(1−�)/2)h (the amount of work at time 0 increases with �h and the
second part follows from the fact the tagged job is h time units less present after time
0, during which the service rate roughly equals (1−�)/2)). The time required to serve
this additional amount of work is ((� + (1 −�)/2)/(1 −�))h = (1 +�)/(2(1 −�))h,
which equals h in case � = 1

3 . Hence, this exactly compensates the reduction in
waiting time before the tagged job has been put into the buffer.

4 Proofs

In this section we derive the asymptotics of the sojourn time and queueing delay, i.e.,
we prove the asymptotics of P {S > x} and P {W > x}, as stated in Theorem 3.3. We
consider the system at an arbitrary instant at which a flow becomes active, say at time
0. As indicated earlier, we denote by W ≡ W0 its “waiting time” (defined as the time
until the first packet of the flow leaves the buffer). In Sect. 4.1, we obtain an asymptotic
lower bound for P {W0 > x} and thus for P {S0 > x} (with S0 denoting the sojourn
time of our flow), while in Sect. 4.2 an asymptotic upper bound for P {S0 > x} that
asymptotically coincides is derived.
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4.1 Lower bound

In this subsection, we derive an asymptotic lower bound for P {S > x} and P {W > x}.
First, we sketch two scenarios which enable us to show that these two scenarios provide
sufficient sample-path conditions for the event W0 > x to occur, see Lemma 4.1; it is
instructive to compare these scenarios with those heuristically derived in the previous
section. Next, we convert these sample-path inclusions into a probabilistic lower bound
for P {W0 > x}.

Let δ, ε be sufficiently small positive constants and define two time instants t0 < t1
as

t0 := 1 − � + δ + 5ε

2(� − δ)
x and t1 := 1 − � + δ + 3ε

� − δ
x,

that is, t0 is close to x · (1 − �)/2�, and t1 is close to x · (1 − �)/�. Now, consider the
following events:

1. Either ∃y ∈ [t0, t1] such that at time −y a tagged flow arrives with service require-
ment

Btag ≥ 1 − � + δ + 5ε

2(� − δ)

1 + � − δ

2
x + 1 − 3(� − δ)

2
(y − t0) − εx

= (1 − � + δ + 5ε)x + 1 − 3(� − δ)

2
y − εx, (10)

or ∃y ≥ t1 such that at time −y a tagged flow arrives with service requirement

Btag ≥ 1 − � + δ

2(� − δ)
(1 − � + δ + 3ε)x + 1 − 2(� − δ)

2
(y − t1) + εx

= 1

2
(1 − � + δ + 3ε)x + 1 − 2(� − δ)

2
y + εx . (11)

2. For the amount of arriving traffic it holds that

A1(−y, 0) ≥ (� − δ)y − εx and A1(0, W0) ≥ (� − δ)W0 − εx . (12)

3. The workload of class 1, except from the tagged flow, satisfies

V −
1 (0) ≤ εx and V −

1 (W0) ≤ εx . (13)

The next lemma gives a sample-path relation between the scenarios given above
and the event W0 > x .

Lemma 4.1 If either the events {(10), (12), (13)} or {(11), (12), (13)} occur simul-
taneously, then W0 > x.
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Proof Let us first consider the case that the events (10), (12), and (13) occur simulta-
neously. We now distinguish between two cases: (i) The large tagged flow—as defined
through (10)—is still present at time W0; and (ii) the tagged flow already left before
time W0.

Denote by Btag
1 (s, t) and B−

1 (s, t) the amount of service received by the tagged
flow and by class 1 except for the tagged flow, respectively, during the interval [s, t].

First consider case (i). Because the tagged flow is still present at time 0, it follows
from the PS discipline that Btag

1 (−y, 0) = B2(−y, 0). Combining this with (5) and
(4), yields

V2(0) = V2(−y) + B−
1 (−y, 0) + Btag

1 (−y, 0) − B2(−y, 0)

≥ A1(−y, 0) − V −
1 (0). (14)

From the PS discipline, it follows that Btag
1 (0, W0) = V2(0) since the tagged flow is

still present at time W0. Combining this with (14) and using (6) and (4), we obtain

W0 = V2(0) + Btag
1 (0, W0) + B−

1 (0, W0)

≥ 2A1(−y, 0) + A1(0, W0) − V −
1 (0) − V −

1 (W0).

Rewriting gives

(1 − � + δ)W0 ≥ 2A1(−y, 0) + A1(0, W0) − (� − δ)W0 − V −
1 (0) − V −

1 (W0)

(a)≥ 2(� − δ)y − 5εx

≥ 2(� − δ)t0 − 5εx = (1 − � + δ)x,

where the equality follows from the definition of t0. Notice that in Inequality (a) we
have used (12) and (13), whereas (10) does not need to be invoked in this case.

Next, consider case (ii). Applying (3) and (4), we have

Btag
1 (−y, 0) + B2(−y, 0) ≤ y − B−

1 (−y, 0)

≤ y − A1(−y, 0) + V −
1 (0).

Because of the PS discipline, it holds that Btag
1 (−y, 0) ≤ B2(−y, 0) and, hence,

Btag
1 (−y, 0) ≤ 1

2
(y − A1(−y, 0) + V −

1 (0)).

Observe that

Btag
1 (−y, 0) ≤ (� − δ)y + εx + 1 − 3(� − δ)

2
y

≤ (� − δ)t1 + εx + 1 − 3(� − δ)

2
y

≤ (1 − � + δ)x + 4εx + 1 − 3(� − δ)

2
y ≤ Btag,
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implying that the tagged flow is still active at time 0. The lower bound (14) for V2(0)

thus applies.
Also, because the tagged flow already left at time W0, we have

Btag
1 (0, W0) = Btag − Btag

1 (−y, 0)

≥ Btag − 1

2
(y − A1(−y, 0) + V −

1 (0)).

Thus, using (4),

B1(0, W0) = Btag
1 (0, W0) + B−

1 (0, W0)

≥ Btag − 1

2
(y − A1(−y, 0)) + 1

2
V −

1 (0) + A1(0, W0) − V −
1 (W0). (15)

Hence, upon combining (6), (14), and (15), in addition to some rewriting, we obtain

(1 − � + δ)W0 ≥ Btag + 3

2
A1(−y, 0) − 1

2
y + A1(0, W0)

− (� − δ)W0 − 1

2
V −

1 (0) − V −
1 (W0)

(b)≥ Btag − 1

2
(1 − 3(� − δ))y − 4εx

(c)≥ (1 − � + δ)x,

where step (b) follows from (12) and (13), and step (c) from (10). This completes the
analysis of the first scenario.
We now turn to the case that the events (11), (12), and (13) occur simultaneously.
Again, we distinguish between two cases: (i) The large tagged flow is still present at
time 0; and (ii) the tagged flow already left before time 0.

In case (i) the tagged flow is present at time 0 and the lower bound (14) for V2(0)

thus applies again. Using (4), it follows that

B1(0, W0) ≥ B−
1 (0, W0) = V −

1 (0) + A1(0, W0) − V −
1 (W0). (16)

Hence, combining (6), (14), and (16) gives

(1 − � + δ)W0 ≥ A1(−y, 0) + A1(0, W0) − (� − δ)W0 − V −
1 (W0)

(d)≥ (� − δ)y − 3εx

≥ (� − δ)t1 − 3εx = (1 − � + δ)x,

where (d) follows from (12) and (13).
Next, consider case (ii). From (4) we obtain

B1(−y, 0) = B−
1 (−y, 0) + Btag

1 (−y, 0)

≥ A1(−y, 0) − V −
1 (0) + Btag.
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Applying the above together with (5) and (3), yields

V2(0) ≥ B1(−y, 0) − B2(−y, 0)

≥ 2B1(−y, 0) − y

≥ 2Btag + 2A1(−y, 0) − y − 2V −
1 (0). (17)

Now, it follows from (6), (16), and (17) that

(1 − � + δ)W0 ≥ 2Btag + 2A1(−y, 0) − y + A1(0, W0)

− (� − δ)W0 − V −
1 (0) − V −

1 (W0)

(e)≥ 2Btag − (1 − 2(� − δ))y − 5εx
(f)≥ (1 − � + δ)x;

here (e) follows from (12) and (13), and (f) from (11). This completes the sample-path
analysis of the second scenario and the proof of the lemma. ��

In the next proposition, we convert the sample-path relation of Lemma 4.1 into a
probabilistic lower bound for the tail distribution of W0.

Proposition 4.2 (lower bound) If B(·) ∈ R−ν and 0 < � < 1
2

(
� 	= 1

3

)
, then

P {W > x} ≥ 2�

1 − 2�
P

{
Br >

(1 − �)2

2�
x

}
(1 + o(1))

+ 2�

|1 − 3�|P
{
φmin

1 − �

2�
x < Br < φmax

1 − �

2�
x

}
(1 + o(1)), x → ∞.

Proof For notational convenience, we define

g1(δ, ε) := 1 − � + δ + 5ε

2(� − δ)

1 + � − δ

2
− ε;

g2(δ, ε) := 1 − � + δ

2(� − δ)
(1 − � + δ + 3ε) + ε.

To bound the two probabilities of (13) from below, we apply the M/G/1 PS model
with 2 permanent customers and denote the workload at time t in the latter model by
Vperm(t). We thus have that V −

1 (t) ≤ Vperm(t).
Using Lemma 4.1 and the observations above, we have

P {W0 > x} ≥ P

{
∃y ∈ [t0, t1] : Btag > g1(δ, ε)x

+ 1 − 3(� − δ)

2
(y − t0); (12) ; (13)

}

+ P

{
∃y ≥ t1 : Btag > g2(δ, ε)x + 1 − 2(� − δ)

2
(y − t1); (12) ; (13)

}
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≥
(

P

{
∃y ∈ [t0, t1] : Btag > g1(δ, ε)x + 1 − 3(� − δ)

2
(y − t0)

}

+ P

{
∃y ≥ t1 : Btag > g2(δ, ε)x + 1 − 2(� − δ)

2
(y − t1)

})

× P
{
(12); Vperm(0) ≤ εx; Vperm(W0) ≤ εx

}
. (18)

We now treat the three probabilities on the right-hand side of (18) separately. Start-
ing with the second probability, we obtain, by integrating with respect to y, using the
shorthand notation ḡ(�, δ) := 1

2 − (� − δ),

P

{
∃y ≥ t1 : Btag > g2(δ, ε)x + 1 − 2(� − δ)

2
(y − t1)

}

≥
∞∫

0

λP
{

Btag > g2(δ, ε)x + ḡ(�, δ)y
}

dy

−
∞∫

0

∞∫

y

λ2
P

{
Btag > g2(δ, ε)x + ḡ(�, δ)y; B−z > g2(δ, ε)x + ḡ(�, δ)z

}
dzdy

∼ 2�

1 − 2(� − δ)
P

{
Br > g2(δ, ε)x

}
(1 + o(1)),

where B−z denotes the service requirement of a second large customer arriving at time
−z (see e.g. Boxma et al. 2003 for details on the asymptotically small probability of
having two or more large flow arrivals).

The first probability on the right-hand side of (18) can be treated similarly. Neglect-
ing the asymptotically small probability of two or more large customer arrivals again,
we have

P

{
∃y ∈ [t0, t1] : Btag > g1(δ, ε)x + 1 − 3(� − δ)

2
(y − t0)

}

=
∞∫

0

λP

{
Btag > g1(δ, ε)x + 1 − 3(� − δ)

2
y

}
dy

−
∞∫

t1−t0

λP

{
Btag > g1(δ, ε)x + 1 − 3(� − δ)

2
y

}
dy + o(P

{
Br > x

}
)

∼ 2�

1 − 3(� − δ)

(
P

{
Br > g1(δ, ε)x

} − P
{

Br > g2(δ, ε)x
})

(1 + o(1)),

where we used that g2(δ, ε)x = g1(δ, ε)x + (t1 − t0)(1−3(�− δ))/2 in the final step.
For the third probability on the rhs of (18), we note that A1(−y, 0), A1(0, W0),

Vperm(0), and Vperm(W0) are not independent. We therefore write
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P
{
(12); Vperm(0) ≤ εx; Vperm(W0) ≤ εx

}
≥ P {A1(−y, 0) ≥ (� − δ)y − εx} × P {A1(0, W0) ≥ (� − δ)W0 − εx}

− P
{

Vperm(0) > εx
} − P

{
Vperm(W0) > εx

}
.

Due to the (weak) law of large numbers we have that P {A1(−y, 0) ≥ (� − δ)y − εx}
converges to 1 as x → ∞; similarly P {A1(0, W0) ≥ (� − δ)W0 − εx} → 1 as x →
∞. Since Vperm(0) and Vperm(W0) have proper (that is, non-defective) distribution
functions, it also holds that

lim
x→∞ P

{
Vperm(0) > εx

} = 0, and lim
x→∞ P

{
Vperm(W0) > εx

} = 0.

Finally, combining the above and using the fact that Br (·) ∈ R1−ν , we have, as
x → ∞,

P {W > x} � 2�

1 − 2(� − δ)
P

{
Br > g2(δ, ε)x

}

+ 2�

1 − 3(� − δ)

(
P

{
Br > g1(δ, ε)x

} − P
{

Br > g2(δ, ε)x
})

→ 2�

1 − 2�
P

{
Br > g2(0, 0)x

}

+ 2�

1 − 3�

(
P

{
Br > g1(0, 0)x

} − P
{

Br > g2(0, 0)x
})

, δ, ε ↓ 0;

here f (x) � g(x), x → ∞, indicates that lim inf x→∞ f (x)/g(x) ≥ 1.

The proof is now completed by distinguishing between the cases 0 < � < 1
3 and

1
3 < � < 1

2 . ��

4.2 Upper bound

In this subsection, we let time 0 correspond to an arbitrary flow arrival, and derive an
asymptotic upper bound for P {S0 > x}. In the proofs, we use a representation of the
sojourn time S0 that is similar to the waiting time representation (6). Let F0 correspond
to the flow transfer delay of the flow that arrives at time 0 and note that the events
S0 ≥ x and B2(F0, x) ≤ V2(F0) are equivalent. Since the total service capacity is
then used during (F0, x), the latter event can be rewritten as

x − F0 ≤ V2(F0) + B1(F0, x).

Moreover, we show in Proposition 4.3 that the most likely way for the sojourn time
to become large is due to the arrival of a large tagged flow while the actual flow itself
is small. It may be seen from Proposition 3.2 that the flow transfer delay F0 of the
‘small’ flow is ‘small’ as well. Thus, assuming that S0 > x and F0 ≤ εx , with ε > 0
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sufficiently small, we obtain the following relation:

x(1 − 2ε) ≤ V2(0) + B1(0, x). (19)

This inequality relation will be the starting point for most of the sample-path relations
in the proofs below.

Before turning to the proof of the asymptotic upper bound for P {S0 > x} (i.e.
Proposition 4.3), we first introduce some notation that will be used throughout the
section. Let Nb(s, t) be the number of flows arriving in the interval [s, t] with a
service requirement satisfying b. In particular, we are interested in so-called ‘large’
flows that have a service requirement larger than κx , for some κ > 0 independent of x
(in which case we say that the service requirement is “> κx”). Also, for t > 0, define

W c(0, t) := sup
0≤s≤t

{A1(0, s) − cs}, (20)

and, for u ≤ v < 0,

W c(u, v) := sup
u≤s≤v

{A1(s, v) − c(v − s)}. (21)

In case the input process is modified such that only the flows with service requirements
of at most κx are admitted, we add a subscript “≤ κx”, i.e., we write W c≤κx (0, t) and
W c≤κx (u, v), respectively.

Again, let δ, ε, η be sufficiently small positive constants. Similar to Sect. 4.1, define
two time instants 0 < s0 < s1 as

s0 := 1 − � − δ − 2η − 10ε

2(� + δ)
x and s1 := 1 − � − δ − η − 13

2 ε

� + δ
x;

observe that s0 is close to t0, and s1 to t1. Let s� := inf{0 ≤ t < s1 : V2(−t) = 0}
be the last epoch in (−s1, 0] that the system was empty, and let s� = s1 in case
V2(−t) > 0 for all t ∈ (−s1, 0]. We have thus enforced that the total service capacity
is used during the interval [−s�, 0].

We are now settled for the proofs.

Proposition 4.3 (upper bound) If B(·) ∈ R−ν and 0 < � < 1
2

(
� 	= 1

3

)
, then

P {S > x} ≤ 2�

1 − 2�
P

{
Br >

(1 − �)2

2�
x

}
(1 + o(1))

+ 2�

|1 − 3�|P
{
φmin

1 − �

2�
x < Br < φmax

1 − �

2�
x

}
(1 + o(1)), x → ∞. (22)

Proof First, we note that the premise for a large sojourn time to occur is that the
arriving flow finds a large workload in the buffer, while the actual flow itself is small.
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Using Proposition 3.2, this implies that the flow transfer delay is small as well:

P {S0 > x} ≤ P {S0 > x; F0 ≤ εx} + P {F0 > εx}
= P {S0 > x; F0 ≤ εx} + o

(
P

{
Br > x

})
.

We henceforth assume that F0 ≤ εx .
There are in fact two ‘most likely scenarios’ for the event S0 > x to occur; all the

other scenarios are asymptotically negligible. To identify these most likely scenarios,
decompose

P {S0 > x; F0 ≤ εx}
≤ P {2V1(−s1) + V2(−s1) > (1 − � − δ − 5ε)x + (1 − 2(� + δ))s1}

+ P {2V1(−s1) + V2(−s1) ≤ (1 − � − δ − 5ε)x

+(1 − 2(� + δ))s1; S0 > x; F0 ≤ εx} . (23)

The first probability on the right-hand side of (23) contains the first most likely sce-
nario. Note that the system is in steady state at time −s1. Application of Theorem 2.1,
in conjunction with the definition of s1, then provides

P {2V1(−s1) + V2(−s1) > (1 − � − δ − 5ε)x + (1 − 2(� + δ))s1}

∼ 2�

1 − 2�
P

{
Br >

1 − � − δ − η − 13
2 ε

2(� + δ)
(1 − � − δ)x +

(
η + 3

2
ε

)
x

}
. (24)

We now turn to the second probability on the right-hand side of (23). Distinguishing
between 0, 1, and 2 or more large-flow arrivals during (−s1, x] and the value of
2V1(−s1) + V2(−s1) in case of 1 large-flow arrival during (−s1, x], we obtain

P {2V1(−s1) + V2(−s1) ≤ (1 − � − δ − 5ε)x

+(1 − 2(� + δ))s1; S0 > x; F0 ≤ εx}
= P1(x) + P2(x) + P3(x) + P4(x),

where

P1(x) := P

{
2V1(−s1) + V2(−s1) ≤ (1 − � − δ − 5ε)x + (1 − 2(� + δ))s1;

N>κx (−s1, x) = 0; S0 > x; F0 ≤ εx

}
,

P2(x) := P

{
2V1(−s1) + V2(−s1) ≤ ηx;

N>κx (−s1, x) = 1; S0 > x; F0 ≤ εx

}
,

P3(x) := P

{
ηx <2V1(−s1)+V2(−s1)≤(1 − � − δ − 5ε)x+(1 − 2(� + δ))s1;

N>κx (−s1, x) = 1; S0 > x; F0 ≤ εx

}
,

P4(x) := P

{
2V1(−s1) + V2(−s1) ≤ (1 − � − δ − 5ε)x + (1 − 2(� + δ))s1;

N>κx (−s1, x) ≥ 2; S0 > x; F0 ≤ εx

}
.
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The probability P2(x) contains the second most likely scenario, in that the proba-
bilities P1(x), P3(x), and P4(x) of the other scenarios are negligible relative to P2(x).
The asymptotic behavior of P2(x) can be found in Lemma 4.4. Lemmas 4.7, 4.8, and
4.9 show that the terms P1(x), P3(x), and P4(x), respectively, are negligible compared
to P2(x) (and to the tail of the other most likely scenario).

To complete the proof, we let δ, ε, η ↓ 0 (in (24) and (25)) and use the fact that
Br (·) ∈ R1−ν . The equivalence with (22) may be seen by distinguishing between
� < 1

3 and � > 1
3 and some straightforward rewriting. ��

Lemma 4.4 For δ, ε, η, κ > 0 sufficiently small
(
� + δ 	= 1

3

)
and � < 1

2 , we have,
as x → ∞,

P2(x) � 2�

1−3(�+δ)

(
P

{
Br >

1 − � − δ − 2η − 10ε

2(� + δ)

1 + � + δ

2
x+

(
η+ 7

2
ε

)
x

}

−P

{
Br >

1 − � − δ − η − 13
2 ε

2(� + δ)
(1 − � − δ)x

})
. (25)

Proof As in Sect. 4.1, denote the service requirement of the large tagged flow by Btag
and let −y, y ∈ [−x, s1], be its arrival instant. We bound P2(x) by distinguishing
between y ≥ s0 and y < s0, and by the size of Btag in case y ≥ s0:

P2(x) ≤ P21(x) + P22(x) + P23(x),

where

P21(x) := P

{
2V1(−s1) + V2(−s1) ≤ ηx;

N>κx (−s1,−s0) = 0; N>κx (−s0, x) = 1; S0 > x; F0 ≤ εx

}

P22(x) := P

⎧⎪⎨
⎪⎩

2V1(−s1) + V2(−s1) ≤ ηx;
Btag ≤ (1 − � − δ − η − 13

2 ε)x+ 1
2 (1−3(�+δ))y, y ∈[s0, s1];

N−
>κx (−s1, x) = 0; S0 > x; F0 ≤ εx

⎫⎪⎬
⎪⎭

P23(x) := P
{∃y ∈ [s0, s1] : Btag > (1 − � − δ − η − 13

2 ε)x + 1
2 (1 − 3(� + δ))y

}
.

The probabilities P21(x) and P22(x) can be bounded by Lemmas 4.5 and 4.6, respec-
tively, and are thus negligible compared to the dominant scenarios. For P23(x) we
obtain, by integrating with respect to y,

P23(x) =
∞∫

s0

λP

{
Btag >

(
1 − � − δ − η − 13

2
ε

)
x + 1

2
(1 − 3(� + δ))y

}
dy

−
∞∫

s1

λP

{
Btag >

(
1 − � − δ − η − 13

2
ε

)
x + 1

2
(1 − 3(� + δ))y

}
dy

123



378 R. Bekker, M. Mandjes

= 2�

1 − 3(� + δ)

(
P

{
Br >

1−�−δ−2η−10ε

2(�+δ)

1

2
(1+�+δ)x+

(
η + 7

2
ε

)
x

}

−P

{
Br >

1 − � − δ − η − 13
2 ε

2(� + δ)
(1 − � − δ)x

})
,

where the second equality follows from the definitions of s0 and s1. This completes
the proof. ��
Lemma 4.5 For δ, ε, η, κ > 0 sufficiently small and � < 1

2 , we have

P21(x) = o
(
P

{
Br > x

})
as x → ∞.

Proof Recall that −s� represents the last epoch before time 0 that the system was
empty. In case s� ≥ s0, we obtain from (5), (3), and (4) that

V2(−s0) = V2(−s�) + B1(−s�,−s0) − B2(−s�,−s0)

= V2(−s�) + 2B1(−s�,−s0) − (s� − s0)

= 2V1(−s�) + V2(−s�) + 2

(
A1(−s�,−s0) − 1

2
(s� − s0)

)
− 2V1(−s0).

Hence,

2V1(−s0) + V2(−s0) ≤ 2V1(−s1) + V2(−s1) + 2W
1
2 (−s1,−s0). (26)

Define s′ := min{s�, s0}, such that the full service capacity is used during [−s′, 0].
Due to the PS discipline, it holds that B2(−s′, 0) ≥ Btag

1 (−s′, 0). Combining the
above with (5) and (4) gives

V2(0) = V2(−s′) + B−
1 (−s′, 0) + Btag

1 (−s′, 0) − B2(−s′, 0)

≤ V2(−s′) + V −
1 (−s′) + A−

1 (−s′, 0) − (� + δ)s′ + (� + δ)s′ − V −
1 (0)

≤ 2V1(−s1) + V2(−s1) + 2W
1
2 (−s1,−s0)

+W �+δ
−tag(−s0, 0) + (� + δ)s0 − V −

1 (0), (27)

where W c−tag(u, v) corresponds to W c(u, v) with the modification that the large tagged
flow is excluded from the arrival process (W c−tag(0, t) is defined similarly).

By again applying the properties of the PS discipline we find that Btag
1 (F0, x) ≤

V2(F0) in case S0 > x . Under the condition that F0 ≤ εx , we have Btag
1 (0, x) ≤

V2(0) + εx . Together with (4), this yields

B1(0, x) = B−
1 (0, x) + Btag

1 (0, x)

≤ V −
1 (0) + A−

1 (0, x) + V2(0) + εx . (28)
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Now, by combining (27) and (28), we have

V2(0) + B1(0, x) ≤ 2V2(0) + V −
1 (0) + A−

1 (0, x) − (� + δ)x + (� + δ)x + εx

≤ 2
(

2V1(−s1) + V2(−s1) + 2W
1
2 (−s1,−s0) + W �+δ

−tag(−s0, 0)
)

+2(� + δ)s0 + W �+δ
−tag(0, x) + (� + δ + ε)x .

Using (19) to convert this sample-path relation into a probabilistic bound gives

P21(x)

≤ P

⎧⎪⎪⎨
⎪⎪⎩

2
(

2V1(−s1) + V2(−s1) + 2W
1
2 (−s1,−s0) + W �+δ

−tag(−s0, 0)
)

+ 2(� + δ)s0 + W �+δ
−tag(0, x) + (� + δ + ε)x ≥ x(1 − 2ε);

2V1(−s1) + V2(−s1) ≤ ηx; N>κx (−s1,−s0) = 0; N>κx (−s0, x) = 1

⎫⎪⎪⎬
⎪⎪⎭

≤ P

⎧⎨
⎩

4W
1
2 (−s1,−s0) + 2W �+δ

−tag(−s0, 0)

+ W �+δ
−tag(0, x) ≥ 7εx

∣∣∣∣∣∣
N>κx (−s1,−s0) = 0;
N>κx (−s0, x) = 1

⎫⎬
⎭

≤ P

{
W

1
2≤κx (−s1,−s0) ≥ εx

}
+ P

{
W �+δ

≤κx (−s0, 0) ≥ εx
}

+P

{
W �+δ

≤κx (0, x) ≥ εx
}

,

where the second step follows from the definition of s0. Each of the three terms can
now be controlled by applying Lemma A.2, thus completing the proof. ��
Lemma 4.6 For δ, ε, η > 0 sufficiently small and � < 1

2 , we have

P22(x) = o(P
{

Br > x
}
) as x → ∞.

Proof Again, let −y, y ∈ [s0, s1], be the arrival epoch of the tagged flow. The upper
bound for V2(0) is similar to the bound for V2(0) given by (27), see Lemma 4.5.
Specifically, it is first readily verified that (26) can be modified into

2V1(−y) + V2(−y) ≤ 2V1(−s1) + V2(−s1) + 2W
1
2−tag(−s1,−s0). (29)

Because of the PS discipline, we have B2(−y, 0) ≥ Btag
1 (−y, 0). Combining the

above with (5) and (4) yields

V2(0) = V2(−y) + B−
1 (−y, 0) + Btag

1 (−y, 0) − B2(−y, 0)

≤ V2(−y) + V1(−y) + A−
1 (−y, 0) − (� + δ)y + (� + δ)y − V −

1 (0)

≤ V2(−y) + V1(−y) + W �+δ
−tag(−s1, 0) + (� + δ)y − V −

1 (0). (30)
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We now distinguish between two different cases: (i) The large tagged flow already
left before time 0, and (ii) the large tagged flow is still present at time 0.

First consider case (i). Using (4), it holds that

B1(0, x) ≤ V −
1 (0) + A1(0, x)

≤ V −
1 (0) + W �+δ(0, x) + (� + δ)x . (31)

Thus, using (29)–(31),

V2(0) + B1(0, x) ≤ 2V1(−s1) + V2(−s1) + 2W
1
2−tag(−s1,−s0)

+ W �+δ
−tag(−s1, 0) + (� + δ)s1 + W �+δ(0, x) + (� + δ)x

≤ (� + δ + η)x + (� + δ)s1 + 2W
1
2−tag(−s1,−s0)

+3

2
W �+δ

−tag(−s1, 0) + W �+δ(0, x)

≤
(
1− 13

2
ε

)
x+2W

1
2−tag(−s1,−s0)+ 3

2
W �+δ

−tag(−s1, 0)+W �+δ(0, x),

where, in the second step, we added the term 1
2 W �+δ

−tag(−s1, 0) for consistency with
case (ii) below and we used that 2V1(−s1) + V2(−s1) ≤ ηx , while the final step
follows from the definition of s1.

Next consider case (ii). Due to the PS discipline, we have Btag
1 (−y, 0) = B2(−y, 0).

Moreover, because the total service capacity is used during [−y, 0], we obtain, using
(3) and (4), that

Btag
1 (−y, 0) = 1

2

(
y − B−

1 (−y, 0)
)

= 1

2

(
y − V1(−y) − A−

1 (−y, 0) + V −
1 (0)

)
.

Note that Btag
1 (0, x) ≤ Btag − Btag

1 (−y, 0). Combining the above and using (4) yields

B1(0, x) = B−
1 (0, x) + Btag

1 (0, x)

≤ V −
1 (0) + A1(0, x) + Btag − 1

2

(
y − V1(−y) − A−

1 (−y, 0) + V −
1 (0)

)

≤ V −
1 (0) + W �+δ(0, x) + (� + δ)x + Btag

+ 1

2
V1(−y) + 1

2

(
W �+δ

−tag(−s1, 0) + (� + δ − 1)y
)

. (32)
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Thus, applying (29), (30), and (32),

V2(0) + B1(0, x) ≤ 2V1(−s1) + V2(−s1) + 2W
1
2−tag(−s1,−s0) + 3

2
W �+δ

−tag(−s1, 0)

+ W �+δ(0, x) + (� + δ)x + Btag + 1

2
(3(� + δ)y − 1)

≤
(

1 − 13

2
ε

)
x + 2W

1
2−tag(−s1,−s0) + 3

2
W �+δ

−tag(−s1, 0)

+W �+δ(0, x),

where the final step follows from 2V1(−s1) + V2(−s1) ≤ ηx and the upper bound of
the service requirement of the tagged flow Btag.

Combining the sample-path relations for the cases (i) and (ii) with (19) provides
the following bound:

P22(x)

≤ P

{ (
1 − 13

2 ε
)

x + 2W
1
2−tag(−s1,−s0)

+ 3
2 W �+δ

−tag(−s1, 0) + W �+δ(0, x) ≤ (1 − 2ε)x

∣∣∣∣∣
N>κx (−s1,−s0) = 1;
N>κx (−s0, x) = 0

}

≤ P

{
W

1
2≤κx (−s1,−s0)≥εx

}
+P

{
W �+δ

≤κx (−s1, 0)≥εx
}
+P

{
W �+δ

≤κx (0, x)≥εx
}

.

Again, each of the three above terms can be controlled by an application of Lemma A.2,
which completes the proof. ��
Lemma 4.7 For 0 < δ < 1

2 − �, 0 < ε < (1 − � − δ)/5, and � < 1
2 , we have

P1(x) = o
(
P

{
Br > x

})
as x → ∞.

Proof Using (4) and (5) in addition to the fact that the total service capacity is used
during [−s�, 0], we have

V1(0) + V2(0) = V1(−s�) + V2(−s�) + A1(−s�, 0) + B1(−s�, 0) − s�

= 2V1(−s�) + V2(−s�) + 2A1(−s�, 0) − s� − V1(0)

= 2V1(−s�) + V2(−s�) + 2(A1(−s�, 0) − (� + δ)s�)

− (1 − 2(� + δ))s� − V1(0)

≤ max{2V1(−s1) + V2(−s1) − (1 − 2(� + δ))s1, 0}
+2W �+δ(−s1, 0) − V1(0),

where the last step follows by distinguishing between s� = s1 and s� < s1 (in addition
to δ ≤ 1

2 − �). Using (4) once more yields

B1(0, x) ≤ V1(0) + A1(0, x).
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Combining the above and using the definitions (20) and (21), we obtain

V2(0) + B1(0, x) ≤ max{2V1(−s1) + V2(−s1) − (1 − 2(� + δ))s1, 0}
+ 2W �+δ(−s1, 0) + W �+δ(0, x) + (� + δ)x .

Using (19), this sample-path relation can now be converted into a probabilistic
bound:

P1(x) ≤ P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max{2V1(−s1) + V2(−s1) − (1 − 2(� + δ))s1, 0} + 2W �+δ(−s1, 0)

+W �+δ(0, x) + (� + δ)x ≥ x(1 − 2ε);
2V1(−s1) + V2(−s1) ≤ (1 − � − δ − 5ε)x + (1 − 2(� + δ))s1;
N>κx (−s1, x) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

≤ P
{
2W �+δ(−s1, 0) + W �+δ(0, x) ≥ 3εx | N>κx (−s1, x) = 0

}

≤ P

{
W �+δ

≤κx (−s1, 0) ≥ εx
}

+ P

{
W �+δ

≤κx (0, x) ≥ εx
}

,

where we used that ε ≤ (1−�−δ)/5 in the second step. Both terms can be controlled
by Lemma A.2. This completes the proof. ��
Lemma 4.8 For all η, κ > 0 sufficiently small, κ > 0 and � < 1

2 , we have

P3(x) = o
(
P

{
Br > x

})
as x → ∞.

Proof This probability corresponds to the combination of two unlikely events. Specif-
ically, since 2V (−s1) + V2(−s1) and N>κx (−s1, x) are independent, we have

P3(x) ≤ P {2V (−s1) + V2(−s1) > ηx} P {N>κx (−s1, x) = 1} .

It follows from Theorem 2.1 and Lemma A.1 that P3(x) is bounded by o(P {Br > x})
as x → ∞. ��
Lemma 4.9 For any κ > 0, we have

P4(x) = o
(
P

{
Br > x

})
as x → ∞.

Proof This follows directly from Lemma A.1. ��

5 Conclusion and discussion

The main conclusion of our paper is that if B is regularly varying of index ν, then
so is the flow transfer delay; the steady-state workload, sojourn time, and queueing
delay, however, are regularly varying of index 1 − ν. The results for the flow transfer
delay and workload followed in a rather straightforward fashion from earlier results;
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the derivation of the asymptotics of the sojourn time and queueing delay turned out
to be substantially more involved. The proof relies on the following principles: (1)
First a most likely scenario is identified; (2) a lower bound follows from comput-
ing the asymptotics corresponding to the most likely scenario; (3) then it is shown
that all other scenarios provide negligible contributions compared to the most likely
scenario.

It is interesting to compare the sojourn-time asymptotics of this system with those
of corresponding FCFS and PS systems. Under FCFS a sojourn time is extremely long
essentially because the job under consideration finds an extremely long queue, and
this long queue is the result of one of the previous jobs being long. This explains why
the tail of the sojourn time resembles the tail of the workload, which (Pakes 1975) is
known to behave as the tail of Br , i.e., regularly varying of index 1 − ν. Under PS, on
the contrary, the sojourn time is long because the job itself is large, and therefore the
tail behaves as the tail of B, i.e., regularly varying of index −ν. The heuristics behind
the sojourn-time asymptotics of our model reveal that the sojourn time is large mainly
due to finding a long queue, thus explaining why the corresponding tail probability
vanishes as a regularly varying function of index 1 − ν. However, in addition to a
long queue, the long flow also affects the sojourn time in this system by reducing the
service capacity of the buffer. These effects lead to interesting most likely scenarios
for a large sojourn time to occur.

In the model we considered in this paper the queue is allocated the same share of
the service capacity as each of the transmitting flows. It could be expected that such a
policy may lead to relatively large buffer content of the queue. Alternatively, one may
decide to assign a higher weight to the queue than to the flows; one could for instance
serve the queue at rate 2/(n + 2) when there are n flows present. Under such a policy
multiple extremely large jobs are needed to cause a long sojourn time. This will be
reflected in the corresponding asymptotics, cf. Zwart et al. (2004).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Technical lemmas

Here we present two technical lemma’s that can be frequently encountered in studies
of queues with regularly varying service times, and that are used in Sect. 4.2. For
proofs, we refer to e.g. Bekker et al. (2005); Zwart et al. (2004).

Lemma A.1 For any k ∈ N, κ > 0, and γ > 0,

P {N>κx (−γ x, 0) ≥ k} = O
(
P

{
Br > x

}k
)

, as x → ∞.

Lemma A.2 There exists a κ∗ > 0 such that for all κ ∈ (0, κ∗], as x → ∞,

P

{
sup

0≤s≤γ x
{A2(−s, 0) − (� + δ)s} > εx | N>κx (−γ x, 0) = 0

}
= o

(
P

{
Br > x

})
.
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The same holds for the time-reversed case, i.e., there exists a κ∗ > 0 such that for all
κ ∈ (0, κ∗], as x → ∞,

P

{
sup

0≤s≤γ x
{A2(0, s) − (� + δ)s} > εx | N>κx (0, γ x) = 0

}
= o

(
P

{
Br > x

})
,

References

Bekker R, Borst SC, Núñez-Queija R (2005) Performance of TCP-friendly streaming sessions in the pres-
ence of heavy-tailed elastic flows. Perf Eval 61:143–162

Bingham NH, Goldie CM, Teugels JL (1987) Regular variation. Cambridge University Press, Cambridge
Boxma OJ, Foss SG, Lasgouttes J-M, Núñez-Queija R (2003) Waiting time asymptotics in the single server

queue with service in random order. Queueing Systems 46:35–73
Cohen JW (1973) Some results on regular variation for distributions in queueing and fluctuation theory.

J Appl Probab 10:343–353
Crovella M, Bestavros A (1996) Self-similarity in world wide web traffic: evidence and possible causes.

In: Proceedings of the ACM Sigmetrics ’96, pp 160–169
Guillemin F, Robert Ph, Zwart AP (2003) Tail asymptotics for processor sharing queues. Adv Appl Probab

36:525–543
Mandjes MRH, Roijers F (2007) A fluid system with coupled input and output, and its application to

bottlenecks in ad hoc networks. Queueing Systems 56:79–92
Pakes AG (1975) On the tails of waiting-time distributions. J Appl Probab 12:555–564
Reddy TB, Karthigeyan I, Manoj BS, Murthy CSR (2006) Quality-of-service provisioning in ad hoc wireless

networks: a survey of issues and solutions. Ad Hoc Networks 4:83–124
Reich E (1958) On the integrodifferential equation of Takács. I. Ann Math Stat 29:563–570
Roijers F, Van den Berg JL, Mandjes MRH (2008) Performance analysis of differentiated resource-sharing

in a wireless ad hoc network. Report PNA-E0807, CWI, The Netherlands
Van den Berg JL, Mandjes MRH, Roijers F (2006) Performance modeling of a bottleneck node in an IEEE

802.11 ad hoc network. In: Kunz T, Ravi SS (eds) Ad hoc now 2006. In: Fifth international conference
on ad hoc networks and wireless “ad hoc now”, Ottawa. Lecture Notes in Computer Science (LNCS)
Series, vol 4104, pp 321–336

Zwart AP, Borst SC, Mandjes MRH (2004) Exact asymptotics for fluid queues fed by multiple heavy-tailed
on-off flows. Ann Appl Probab 14:903–957

Zwart AP, Boxma OJ (2000) Sojourn time asymptotics in the M/G/1 processor sharing queue. Queueing
Systems 35:141–166

123


	A fluid model for a relay node in an ad hoc network: the case of heavy-tailed input
	Abstract
	1 Introduction
	2 Model and preliminaries
	3 Results
	3.1 Steady-state workload
	3.2 Flow transfer delay
	3.3 Sojourn time and queueing delay

	4 Proofs
	4.1 Lower bound
	4.2 Upper bound

	5 Conclusion and discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


