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Testing Predictive Developmental Hypotheses

Jan B. Hoeksma and Dirk L. Knol
Vrije Universiteit

Predictive developmental hypotheses play a crucial role in developmental theories.  These
hypotheses link early developmental behaviors or processes to later developmental
outcomes.  Empirical tests of predictive developmental hypotheses are generally based on
standard regression models.  It is argued that hierarchical linear models or longitudinal
multilevel models offer a better alternative.  A multivariate longitudinal model linking
developmental data to a criterion is described and an application is given.  The application,
derived from attachment theory, pertains to the prediction of infant behavior in the Strange
Situation.  It is concluded that the proposed approach offers a valuable tool to the
developmentalist, both from a theoretical and methodological point of view.

Many developmental psychological hypotheses derive their attractiveness
from the fact that they predict behaviors and attributes later in life.
Predictive developmental hypotheses typically link behaviors and processes
in an early phase of development to later outcomes.

According to Freud’s psychoanalytic theory for instance, the foundation
of adult personality is laid very early in life.  If the child’s psychosexual
development is arrested during the second part of the fist year of life, the
adult personality will be characterized by a quest for knowledge and power
(Miller, 1993).  Freud (1941) used verbal accounts of clients and colleagues
to justify his claims.  Of course his methods are seen as inadequate today.

The sensitivity attachment hypothesis of Ainsworth et al. (1978) offers
another example of a predictive developmental hypothesis.  According to
attachment theory (Bowlby, 1969, Ainsworth, 1978) the mother’s early
sensitivity affects the child’s quality of attachment later in life.  When a
mother is sensitive to her infant’s signals and needs, and responds to them
appropriately, the infant learns to trust his/her mother and a secure mother-
infant attachment relationship results.  Ainsworth and many that followed
her used correlational analyses to test the sensitivity attachment hypothesis
(Goldsmith & Alansky, 1987).  In a recent meta analysis, de Wolf and van
IJzendoorn (1997) report a mean correlation of r = .24 between sensitive
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responsiveness in the first year of life and the quality of attachment in the
second year of life.

Good developmental theories lead to developmental predictions.  In
general, theories that predict individual outcomes are preferred above
theories that only predict group means (Thomas, 1996).  Statistical models
that allow for individual predictions are therefore crucial to developmental
research.  Hierarchical linear models or multilevel models can be very
helpful in this respect.

Bryk and Raudenbush (1987, 1992), Francis et al.(1991), Goldstein
(1986, 1995), Plewis (this issue) and others showed that the hierarchical
linear model or multilevel model is well suited to analyze longitudinal data.
Hoeksma and Koomen (1992) showed that the longitudinal multilevel model
fits in well with the methodology of developmental research, as it was put
forward by Wohlwill (1973) and Baltes and Nesselroade (1979).  In this
article we will show how hierarchical linear models or multilevel models can
be used to investigate predictive developmental hypotheses.

The model to be described has its roots in the study of growth and
development.  The use of polynomials, which play an important part in the
longitudinal multilevel model, dates back to Wishart (1938).  He used
polynomial functions to describe weight-growth of pigs.  By now classic
work on the comparison of polynomial coefficients across groups was done
by Box (1950), Rao (1959, 1965) and Grizzle and Allen (1969).  Goldstein
(1986) showed how physical growth can be modeled efficiently from a
multilevel perspective.  More recently latent growth models have become an
important tool in the study of growth and development (e.g. McCardle &
Epstein, 1987; Muthén, 1991; Willet & Sayer, 1994).

The multilevel models to be described derive to a large extent from
Goldstein (1989).  He showed how the longitudinal multilevel model can be
used to predict adult physical height (c.f. Goldstein, 1995).

Longitudinal Predictions

A predictive developmental hypothesis is a hypothesis that links early
developmental processes or behaviors to later developmental outcomes.
Empirical tests of developmental hypotheses have to be based on longitudinal
data (Baltes & Nesselroade, 1979).  In actual studies the developmental
process will be charted by means of repeated measures of one or several
variables.  The outcome, criterion, or developmental status to be predicted
will be measured later in time.  The interval spanned by the hypothesis may
range from just a few days to many years.
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There are at least two approaches to test developmental hypotheses.
The first approach uses the regression model to predict the developmental
outcome.  The second approach is based on dynamic models.  In the latter
case extrapolation is used.  The curve describing the early developmental
changes is extended to the age of the developmental outcome to be
predicted.  Both approaches will be discussed briefly.  Subsequently we will
show how the longitudinal hierarchical linear model or multilevel model
combines the strengths of both approaches.

The following situation will be considered.  A sample of N individuals is
observed at T + 1 (possibly fixed) occasions.  The observations pertinent to
the early developmental process are designated by y

ti
, where t = 1,...,T refers

to the measurement occasion, and i = 1,...,N refers to the person.  The
variable a

ti 
refers to the age of person i at occasion t.  The outcome of the

developmental process or criterion to be predicted for person i at occasion
T + 1 is designated by y

ci
.

To illustrate our reasoning a hypothetical example will be used.  It is
hypothesized that the development of a person’s vocabulary during early
childhood predicts the size of his or her adult vocabulary.  The hypothetical
sample consists of N individuals, with repeated measurements of vocabulary
size (y

ti
) at yearly intervals from a

1i 
= 1 to a

5i
 = 5 years.  Adult vocabulary

(y
ci
) is measured at 21 years of age.

Regression Approach

In many instances predictive developmental hypotheses are tested by
means of regression analysis.  The analysis consists of finding a linear
combination of the developmental variables y

ti
 that optimally predicts the

developmental outcome y
ci
.  The well-known model is:

(1) y
ci
 =  �

0
  + 

t

T

=∑ 1
�

t
y

ti 
 + e

i
 with e

i  
~ N(0,�

e
2),

where y
ci
 is the observed measurement of the developmental outcome of

individual i at occasion T + 1 (e.g.  adult vocabulary size) and y
ti
 refers to the

observation of a developmental process of person i at occasion t (e.g.
repeated measurements of vocabulary size during childhood).  The
parameters to be estimated are the intercept �

0 
and the regression weights

�
t
.  The residuals e

i 
are assumed to be independent normally distributed with

E(e
i
) = 0 and Var(e

i
) = �

e
2.

The analysis consists of finding the regression weights �
t
, including the

intercept
 
�

0
,
 
that optimally predict the developmental outcome.  The

developmental hypothesis at issue is evaluated by considering the reliability



J. Hoeksma and D. Knol

230 MULTIVARIATE BEHAVIORAL RESEARCH

of the estimates of �
t
 and more importantly, the percentage of explained

variance in y
c
.  The root of the residual variance, that is �

e
, corresponds to

the root mean square error of predictions.  The developmental hypothesis is
thought to be valid, when (some of) the predictors are significantly different
from zero and the percentage of explained variance is reasonably large.

The standard regression model offers a very flexible statistical method
to examine developmental hypotheses.  The model can be extended easily
with another set of developmental variables (e.g.  repeated measurements
of verbal reasoning together with repeated measurements of vocabulary
size).  In addition the criterion does not have to refer to the same construct
as the predictors (e.g.  when repeated measures of vocabulary are used to
predict academic achievement).  From a statistical point of view it is
advantageous that the predictions are based on a small number of
parameters relative to the number of observations.

There are, however, shortcomings too.  Optimal prediction (maximum
explained variance) is obtained when the predictors y

ti 
correlate highly with

the response variable y
ci
, and at same time low with each other.  When

predictors refer to the same developmental process the latter condition is
often not met.  The development vocabulary size offers a nice illustration of
the reason why.  A child’s vocabulary at five years of age contains many
words from his vocabulary at four years of age.  His stock of words at four
years of age contains many words of three years of age, and so on.  This
natural overlap results in substantial correlations between predictors.  Thus,
the conditions for optimal prediction by means of the regression model are
not met.

Another drawback of the regression model is its disregard of the
intervals between the measurement occasions.  Each measurement
corresponds to a specific age.  The variable a

it
 (age) is however no part of

the model.  Finally, missing values need special attention.  Missing values,
either lead to list-wise deletion, or have to be replaced by means of imputation
(Little & Rubin, 1987).

When used to test developmental hypotheses, the flexibility and
statistical efficiency of the model do not compensate for its limitations.  From
a developmental perspective, correlations across occasions are very
meaningful.  They result from a common developmental process.  Time, and
thus the intervals between occasions, is part and parcel of this process
(Wohlwill, 1973).  Because the correlations and intervals between adjacent
measurements are not taken into account properly, the standard regression
model is not the best choice to test developmental hypotheses.
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Dynamic Models

Another, intuitively more appealing way to test predictive developmental
hypotheses is by means of dynamic models.  In dynamic models the
observations of person i are written as a function of age (or time).  Testing
developmental hypotheses takes two steps.  First a function is fitted that
describes the individual observations as a function of age or time: y

ti 
= ƒ(a

ti
)

+ �
ti
.  Next the fitted function is evaluated at a = a

T + 1,
 resulting in the

predicted criterion $yci .  Finally the extrapolated values $yci are compared
with the observed criterion y

ci
.

The function ƒ can take any form, depending on the developmental
process considered.  If little is known about the developmental process, as
is often the case, one generally resorts to polynomials (Guire & Kowalski,
1979).  The model is:

(2) y
ti  

= �
0i
 + 

p

P

=∑ 1
 �

pi
a

ti
p + �

ti
   with �

ti 
~ N(0,�

�i
2).

It describes the developmental process for person i.  y
ti
 and a

ti
 are

respectively the observation and age of person i at occasion t (e.g.
vocabulary size and age of a person during childhood).  The observations are
written as a P-degree polynomial function of age (a

ti
).  The parameters to

be estimated are the intercept �
0i 

and the polynomial coefficients �
pi
.  The

residuals �
ti
 are assumed to be independent normally distributed with E(�

ti
) = 0

and Var(�
ti
) = �

�i
2.  Note that the parameters �

pi
 and the residual variance

�
�i

2 are specific to person i.  No distributional assumptions are made about
the parameters across persons.  After the model has been fitted it is used
to predict the criterion value y

ci
.  A natural option is to evaluate the fitted

function at a = a
T + 1

.
To test the developmental hypothesis, the polynomials are estimated

individually for each of the N persons in the sample.  The subsequent
evaluations of ƒ at a

T + 1
 result in the predicted values for criterion $yci .  The

error of prediction is ε
i
 = y

ci
- $yci .  The root mean square error of prediction

is given by RMSE = (�
i 
ε

i
2/N)1/2.  The developmental hypothesis is thought

to be valid if the percentage of explained variance of y
c
 is reasonably large.

A significance test is performed through testing the correlation between the
predicted and observed criterion against zero.

Testing the predictive hypothesis about the relationship between the
development of vocabulary size during childhood and adult vocabulary would
involve the following steps.  First, for each individual a polynomial is fitted
through his or her five childhood observations.  Next a prediction of adult
vocabulary size is obtained for each individual by substituting the adult age
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(a
T + 1,i 

 = 21) in his or her estimated polynomial equation.  Finally a statistical
comparison is made between the predicted and observed vocabulary size.

Although the given procedure appears to be attractive to the
developmentalist it is rarely used.  Its attractiveness stems from the fact that
development is modeled at an individual level.  Regrettably, the method is
statistically deficient.  The individually estimated polynomials are likely to be
unreliable, because of the limited number of observations per person.  In
addition the fitted polynomials are even less reliable at the limits of and
beyond the age range they span (Weisberg, 1985).  Given these problems it
is not surprising that the approach seldom leads to good models (Burchinal
& Appelbaum, 1991)

Although the procedure has to be rejected for statistical reasons, its
merits deserve mention.  In contrast to the regression approach described
previously, the model takes the intervals between occasions into account.  In
addition it allows for individual variation in growth trajectories.  It handles
missing values easily.  For, if one of the early measurements is missing, a
polynomial can still be fitted.

In sum the model is unreliable, but has some attractive features for
developmentalists.

Hierarchical Linear Models

The longitudinal hierarchical linear model or multilevel model offers a
better alternative to examine developmental hypotheses.  Goldstein (1989)
presented the model to be described in the context of physical growth (c.f.
Goldstein, 1995).  He used it to predict adult physical height.  As we will
show, the model is also well suited to test predictive developmental
hypotheses.

Predictive developmental hypotheses consist of two parts, the early
developmental process and the developmental outcome or criterion.  The
structure of the hierarchical linear model, to be described, closely reflects the
structure of developmental hypotheses.  The first part of the model describes
the developmental behavior or process (e.g. the development of vocabulary
size during childhood).  The second part reflects the criterion or
developmental outcome (e.g. adult vocabulary).  Combining both parts
results in a bivariate longitudinal hierarchical linear model.

In actual studies the developmental process is likely to be operationalized
by means of repeated measurements of one or more variables.  For reasons
of clarity it is temporarily assumed that the developmental process of interest
is charted by means of repeated measurements of a single variable.  A more
complex case will be considered later.
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The longitudinal multilevel model (c.f. Bryk & Raudenbush, 1992,
Chapter 6; Plewis, this issue) is used to describe the repeated measurements
pertaining to the developmental process.  It is a 2-level model, with repeated
observations (level 1) nested within individuals (level 2).

The level 1 model describes the repeated observations of the
developmental process as a P-degree polynomial function of age,

(3) y
ti 

= �
0i 

 + 
p

P

=∑ 1
 �

pi 
a

ti
p + e

ti
   with e

ti
 ~ N(0,�

e
2),

where y
ti
 and a

ti
 are respectively observation and age of individual i at

occasion t; �
0i 

and
 
�

pi 
(p = 1,2,..P) are the intercept and P polynomial

coefficients of individual i.  �
1i
 is designated the linear coefficient, �

2i
 is the

quadratic coefficient, and so on.  The so-called level 1 residuals e
ti 
are assumed

to be independent normally distributed with E(e
ti
) = 0 and Var(e

ti
) = �

e
2.  More

complex error structures, including serial correlation (Goldstein et al.,1994)
and time dependent errors (Goldstein, 1995) can be accounted for, but will
not be considered here.

The polynomial coefficients �
pi

 (including the intercept) are assumed
to vary randomly across persons.  The accompanying level 2 model for
p = 0,1,...,P is

(4) �
pi
 = �

p
 + r

pi
 with  r

pi
 ~ N(0,T),

where �
pi
 is the p-th coefficient of individual i, �

p
 is the average pth polynomial

coefficient and r
pi
 the level 2 residual of person i.  The residuals r

pi
 are

assumed to be multivariate normally distributed with E(r
pi
) = 0 and variance–

covariance matrix T.
The full multilevel model describing the developmental  process is

obtained after the level 2 equation (Equation 4) is entered in the level 1
equation (Equation 3).  The resulting equation after rearranging terms is:

(5) y
ti
 = �

0
 + 

p

P

=∑ 1
 �

p
a

ti
p + r

0i
 + 

p

P

=∑ 1
 r

pi
 a

ti
p + e

ti
.

The first two terms on the right-hand side describe the average polynomial
curve with the fixed coefficient �

0
 to

 
�

p
.  The next two terms reveal how the

individual polynomials deviate from the average polynomial, by means of the
random deviations r

0i
 to r

pi
.  The final term e

ti
 is the residual error.

The residuals r
pi
 have substantive meanings.  The residual of the

intercept r
0i
 corresponds to the status of the person at a

ti
 = 0; the residual of

the linear coefficient r
1i
 refers to the developmental velocity and the
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quadratic residual r
2i
 pertains to 0.5 times the acceleration at that age.

Together they characterize the individual developmental curves.
The model discussed so far only pertains to the developmental process

(e.g. the development of vocabulary during childhood).  We now turn to the
developmental outcome or criterion to be predicted (e.g. adult vocabulary).
The criterion consists of a single observation per person.  As a result there
is no level 1 variability.  The model is

(6) y
ci
 =  �

c
 + r

ci
 with r

ci
  ~ N(0,�

c
),

where y
ci
 is the observed value of the developmental outcome or criterion of

person i at occasion T + 1.  The first term on the right, �
c
, is the mean

developmental outcome.  The second one, r
ci
, is the deviation (residual) from

the mean for person i.  The residual r
ci
 has an obvious interpretation, it refers

to the status of individual i relative to the other individuals.
In the final step the (uni-variate) model referring to the developmental

process (Equation 5) and the (uni-variate) model pertinent to the outcome
(Equation 6) are combined to a bivariate model.  Two indicator variables are
defined for that purpose.  The first one is defined as follows, 	

ti
 = 1 if y

ti
 refers

to a measurement of the developmental process and 	
ti
 = 0 otherwise.  The

second indicator is defined as 	
ci
 = 1 if y

ti
 refers to the developmental

outcome and 	
ci
 = 0 otherwise.

The multivariate multilevel model combining the developmental part and
the criterion is

(7) y
ti 

= 	
ti
(�

0
 + 

p

P

=∑ 1
 �

p
a

ti
p + r

0i
 + 

p

P

=∑ 1
 r

pi
 a

ti
p + e

ti
) + 	

ci
(�

c
 + r

ci
),

where the variables and parameters have the same meaning as before, be it
that y

ti
 refers to observations of the developmental process for t = 1,..,T and

to the developmental outcome for t = T + 1.  The first part of Equation 7
between brackets refers to the developmental process (Equation 5).  The
second part between brackets refers to the developmental outcome
(Equation 6).  The level 1 residuals e

ti
 are again assumed to be independently

normally distributed with E(e
ti
) = 0 and Var(e

ti
) = �

e
2.  It is further assumed

that the level 1 residuals e
ti
 and the residual of the outcome r

ci
 are

independent.  It embodies the assumption that developmental outcome is only
related to the early measurements through the developmental process, and
not otherwise.

The level 2 residuals r
0i
 ...  r

Pi
 and r

ci
 pertaining to the developmental

process and developmental outcome are allowed to co-vary.  The variance-
covariance matrix of the level 2 residuals contains crucial information
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regarding the validity of the developmental hypothesis at issue.  In many
instances the order of the random coefficients of the developmental part
does not exceed the second degree (P = 2).  The variance-covariance matrix
of the level 2 residuals pertaining to the developmental process (r

0i
 to r

2i
) and

the residuals of the criterion or developmental outcome (r
ci
) is

 var(r
0i

) 
 cov(r

1i
,r

0i
) var(r

1i
) 

(8) T* =  cov(r
2i
,r

0i
) cov(r

2i
,r

1i
) var(r

2i
) 

 cov(r
ci
,r

0i
) cov(r

ci
,r

1i
) cov(r

ci
,r

2i
) var(r

ci
) 

The original matrix T of the level 2 residuals referring to the developmental
process (Equation 4) is augmented with a row and corresponding column
referring to the developmental outcome or criterion.  The resulting matrix is T*.

The final row of T* reveals the relationship between the residuals
characterizing the developmental process, r

0i
 to r

2i
, and the developmental

outcome or criterion characterized by r
ci
.  To illustrate the meaning of the

final row of T* we return to our hypothetical example.  We assume that the
growth of vocabulary size during childhood follows a second-degree
polynomial model with random coefficients up to the second degree (P = 2).

The final row of T* is interpreted as follows.  Cov(r
ci
,r

0i
) indicates to

what extent the developmental status at a
ti
 = 0 is related to the developmental

outcome.  When Cov(r
ci
,r

0i
) is positive this would indicate that children with

a large initial vocabulary will have a large vocabulary as an adult.  Cov(r
ci
,r

1i
)

points to the relationship between the developmental velocity and the
developmental outcome.  A positive value of Cov(r

ci
,r

1i
) indicates that a high

growth rate during childhood results in a large adult vocabulary.  Finally
cov(r

ci
,r

2i
) pertains to the relationship between the acceleration and the

criterion or developmental outcome.
The final row (or column) of the variance-covariance matrix of the level

2 residuals already gives an indication of the validity of the developmental
hypothesis at hand.  Of course the covariance matrix can be transformed to
a correlation matrix for ease of interpretation.

It should be stressed, that the estimates of the variances and covariances
and thus the correlations depend on the scaling of the predictor a, measuring
age or time (Schuster & von Eye, 1998).  The estimates hold for a = 0.

Although the matrix already contains important information still another
step has to be taken.  The matrix is used to make individual predictions of
the developmental outcome.
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Predictions

The level 2 variance-covariance matrix of the multivariate hierarchical
linear model describes the empirical relationship between the developmental
process and the criterion.  The next step is to use this matrix to predict the
criterion observations.

Consider for a moment the possibility that the observations of a single
new case arrive after the bivariate model has been estimated.  In other
words the following parameters are given, �

0
 to �

P
 of the developmental

process, �
c 
of the criterion, the level 2 variance covariance matrix T* and the

level 1 residual variance �
e
2.

In the model the criterion is partitioned according to y
ci
 = �

c
 + r

ci
.  Given

that the parameter �
c
 has been estimated, prediction of criterion y

ci
 for the

new case comes down to prediction (or estimation) of the residual r
ci
, from

the observations y
ti
 of that case.  Estimation or prediction of residuals is

described by Goldstein (1995, Appendix 2.2).
To predict r

ci
 we first define the residualized observations ~yti  

= y
ti
 – ( $�0

+ �P
p=1

$�p a
ti

p).  In addition we define v-1
tt�

 the elements of the inverse of the
variance-covariance matrix V of the observations ~yti .  Note that this matrix
results from the estimates of T* and �

e
2 (Goldstein 1995, Appendix 2.1).  The

‘estimator’ of the predicted residual is

(9) $rci  = 
p

P

t

T

== ∑∑ 01
a

ti
p cov(r

ci
,r

pi
) ′ =∑t

T

1
v-1

tt�
~yt i′  ,

where $rci  is the predicted residual of the developmental outcome of
person i, based on his or her (residualized) observations ~yti  made on
occasions t = 1,..T and P is the order of the level 2 random coefficients.  The
a

ti 
refer to ages of person i on occasions t.  Cov(r

ci
,r

pi
) is the level 2

covariance between the pth random coefficient and the criterion.
Equation 9 is a so-called Empirical Bayes estimator.  It combines two

sources of information, data from the individual and data from the population
(Snijders & Bosker, 1999).  The first pertains to the individual’s early
observations ( ~yti ), the second to the estimates obtained from the model
(especially the final row of T* and the (co-)variances of the observations ~yti ).

If no early data were available for a person, the a priori prediction of his
or her developmental outcome would be $yci = $�c (i.e. the mean
developmental outcome).  But when one or more of his/her early
observations becomes available the prediction is adjusted, and the a
posteriori prediction becomes $yci  = $�c  + $rci .

In sum predictions of the criterion ( $yci ) are made by computing Empirical
Bayes estimates, based on the early developmental observations (y

ti
).
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Testing the Developmental Hypothesis

So far we discussed the bivariate longitudinal multilevel model linking the
developmental process to the criterion, and the method for making individual
predictions.  To test a specific developmental hypothesis the following steps
are taken.  First a reliable model describing the relationship between the
repeated measurements and the criterion (Equations 7-8) is sought.
Significance of the fixed coefficients in the model is tested using their
standard errors.  The reliability of the random coefficients is evaluated by
means of the likelihood ratio statistic (c.f.  Goldstein, 1995).  Once the model
is found, the developmental outcome is predicted using Equation 9. The
error of prediction is ε

i
 = y

ci
- $yci .  The root mean square error of prediction

is given by RMSE = (�
i 
ε

i
2/N)1/2.

The developmental hypothesis at issue is evaluated by considering the
reliability of the estimated level 2 covariances describing the relationship
between the developmental process and the criterion (the final row of T*,
Equation 8) and by considering the percentage of explained variance in y

c
.

The developmental hypothesis is considered valid when the covariances with
the developmental outcome are significantly different from zero and the
percentage of explained variance is reasonably large.

The longitudinal multilevel model has a number of attractive features for
developmental researchers.  The structure of the model closely reflects the
structure of the predictive developmental hypothesis.  It accounts for the
intervals between adjacent measurements in a proper way, whereas the
parameters of the model are readily interpretable in terms of developmental
status, velocity, and acceleration.

By means of Empirical Bayes estimates the model allows for reliable
individual predictions.  From a conceptual point of view it is important that
the developmental variables and the developmental outcome do not have to
refer to the same construct.  From a practical point of view it is advantageous
that the model handles missing values easily, both with respect to the
developmental process and the developmental outcome.  (If an outcome is
missing the early observations still contribute to the precision of the growth
parameters.) Last but not least the model can be extended with other sets of
measurements as will be shown in the next section.

Extending the Model

Predictive developmental hypotheses are often not restricted to a single
developmental process.  Adult vocabulary size for instance may be related
to the development of vocabulary size and to the development of verbal
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reasoning.  To test the relationship between the combined developmental
processes, the bivariate model has to be extended to a trivariate model.

We consider the following situation.  Two developmental processes are
observed.  The observations of the first developmental process are
designated by yti

( )1 , where t = 1,..,T(1) refers to the measurement occasion
and i to the person.  The observations of the second developmental process
are designated by yti

(2) , where t = 1,..,T(2) refer to the measurement occasion
and i to the person.  The criterion to be predicted is designated by y

ci
.

 The trivariate model is made of three components.  The first two
components describe developmental processes 1 and 2 by means of
polynomial multilevel models

(10)
y a r a e

y a r a e

ti p ti
p

p

P

pip

P

ti
p

ti

ti q ti
q

q

Q

qiq

Q

ti
q

ti

(1) (1) (1) (1)

(2) (2) (2) (2)

= + +

= + +

= =

= =

∑ ∑
∑ ∑

�

�

0 0

0 0

,

.

The Equations 10 parallel Equation 5.  (Note that Equation 5 contained the
intercept as a distinct term.)  The variables yti

(1)  and yti
(2)  refer to the

observations of developmental processes 1 and 2.  The processes are
described as an P-degree and Q-degree polynomial of age (a

ti
).  The

coefficients �p
(1)  and �q

(2)  describe the average developmental curves of
process 1 and 2.  The random parameters rpi

(1)  and rqi
(2)  describe how the

individual curves deviate from their respective average developmental curves
(Their distribution will be discussed shortly).  The residual errors eti

(1)  and eti
(2)

are assumed to be independently normally distributed with respectively E[ eti
(1) ]

= 0, Var[ eti
(1) ] = �e

(1)2 , and E[ eti
(2) ] = 0, Var[ eti

(2) ] = �e
(2)2 .  If necessary complex

error structures can be accounted for (Goldstein et al.,1994; Goldstein, 1995).
The third component of the model is identical to Equation 6, it partitions

the developmental outcome

(11) y
ci
 = �

c
 + r

ci
,

where y
ci
 the observed developmental outcome or criterion of person i, �

c
 the

mean developmental outcome and r
ci
 the deviation from the mean (residual)

of the observation of person i.
The next step is to combine the three components to one model, using

indicator variables (c.f. 7).  The combined model is

(12)
y a r a e

a r a e r
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pi ti
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The indicator variables are defined as follows. 	ti
(1) =1 if y

ti
 refers to a

measurement of the developmental process 1 and 	ti
(1) =0  otherwise; 	ti

(2) =1
if y

ti
 refers to developmental process 2 and 	ti

(2) =0  otherwise.  Finally 	
ci
 =

1 if y
ti 

refers to the developmental outcome and 	
ci
 = 0 otherwise.

The random parameters rpi
(1) and rqi

(2)  describing the individual
developmental curves, and the random parameter r

ci
 describing the

developmental outcome are assumed to be multivariate  normally distributed
with E[ rpi

(1) ] = E[ rqi
(2) ] = E(r

ci
) = 0 and variance-covariance matrix T* (c.f.

Equation 8).
To illustrate T* we assume that the model contains a random intercept

and a random linear coefficient for both developmental processes.  The level
2 covariance matrix T* for P = 1 and Q = 1 is

(13) T* =

var[ ]
cov[ , ] var[ ]
cov[ , ] cov[ , ] var[ ]
cov[ , ] cov[ , ] cov[ , ] var[ ]
cov[ , ] cov[ , ] cov[ , ] cov[ ,
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) ( (
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r r r
r r r r r
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The first two rows of T* correspond to the random level 2 parameters of
developmental process 1.   The next two rows, describe the covariances
between the random coefficients of both developmental processes (first two
columns) and the random parameters of developmental process 2 (next two
columns).  The final row contains important information with regard to the
validity of the developmental hypothesis at issue.  The random parameters
refer to the relationship between the developmental level and developmental
velocity of both processes with the criterion.

After the trivariate model (Equations 10-13) is fitted the parameter estimates
are used to make individual predictions.  First the observations of person i are
residualized according to ~ $y y ati ti p

P
p ti

p( ) ( ) ( )1 1
0

1= − =� �  and ~ $y y ati ti q
Q

q ti
q(2) (2)

0
(2)= − =� � .

The Empirical Bayes estimator of the residual is now given by

(14) $ ~r a r r a r r v yci t

T T

ti
P

ci pi ti
q

ci qiq

Q

p

P

tt t it

T T
= +

=

+

== ′
−

′′ =

+∑ ∑∑ ∑1

(1) (2) (1) (2)

0

1

1

(1) (2)
cov[ , ] cov[ , ]

0{ }

The final step consists of adding the mean of the criterion $�c  and the residual
$rci  to arrive at $yci .  How the trivariate and the previous models are applied

will be shown in the next section.
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Application

An application will be given involving the development of attachment
behavior during infancy.  Attachment behaviors are behaviors that promote
proximity or contact with the caregiver.  They are triggered by stressful
events, for instance a short separation from the caregiver, a strange visitor
at home, and illness (Bowlby, 1969).  At a psychological level, attachment
behaviors result in an increase of felt security.

The Strange Situation (Ainsworth et al., 1978) is a widely used standard
laboratory procedure to induce and study attachment behavior.  We will test
the hypothesis that the child’s attachment behavior in the Strange Situation
at the beginning of the second year of life is the outcome of the development
of the child’s attachment behavior at home during the first year of life.

Sample and Design.  The sample, consisting of 67 mother-child dyads, was
taken from a longitudinal study on the development of mother-child
interaction and attachment (Hoeksma & Koomen, 1991).  The development
of the attachment behavior was operationalized by means of two variables.
First, the child’s level of Contact Maintaining behavior was observed at
home, at 3, 6, 9 and 12 months (details can be found in Hoeksma, Koomen
& van den Boom, 1996).  Second, mothers filled out the Perceived
Attachment Behavior Scale (PABS) (Hoeksma & Koomen, 1991) when the
children were 6, 9 and 12 months of age.  The scale measures the level of
attachment behaviors in everyday situations.  The outcome (the criterion)
was the child’s level of Contact Maintaining behavior (Ainsworth et al.,
1978) shortly after 12 months of age in the Strange Situation.

Data.  The mean scores of Contact Maintaining and Perceived Attachment
Behavior were M = 1.87(SD = 1.57) and M = 4.75(SD = 4.75), respectively.
Figure 1 displays the raw data of the first 10 cases.  It reveals that Contact
Maintaining follows a rather irregular pattern in time, whereas the level of
Perceived Attachment Behavior seems to increase in time for most
individuals.  The level of Contact Maintaining in the Strange Situation (the
outcome to be predicted) was M = 3.51 (SD = 1.98).  Data were analyzed
using MlwiN (Goldstein et al., 1998).  Throughout the analyses Age was
centered at 9 months.

Preliminary Analyses.  In the context of multilevel modeling it is wise to
start with simple models first.  We started with univariate longitudinal models
(Equations 3-5), to get an impression of the developmental course of the
variables involved.
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During the analyses, fixed coefficients were added when they exceeded
twice their standard error.  Significance of added random terms is tested by
means of the likelihood ratio test (Goldstein 1995).  Results of the preliminary
analysis have been reported earlier in Hoeksma and Koomen (1991), and
Hoeksma et. al, (1996).

The analysis of both variables resulted in a linear model with a random
intercept and a random linear coefficient.  Table 1 (Column 2 and 3) contains
the parameter estimates.  Note that the linear coefficient of Contact
Maintaining does not exceed twice its standard error [�

1(Cont.Maint.) 
= .003, SE

= .033].  It was nevertheless retained in the model to get a proper estimate
of its level 2 variance.  Figure 2 portrays the individual developmental curves
based on the estimated models.  The developmental curves of Contact
Maintaining appear to cross each other, whereas the curves of Perceived
Attachment Behavior spread out with increasing age.

Bivariate Model.  Next a bivariate model (Equation 7) was evaluated, to test
the hypothesis that the development of Contact Maintaining at home affects
the level of Contact Maintaining in the Strange Situation.

The model describing the development of Contact Maintaining was
extended to a bivariate model by adding observations of Contact Maintaining
in the Strange Situation to the original response variable.  In addition two
dummy variables were created (	

ti
 and 	

ci
, Equation 7) to indicate to which

part of the model the observations and corresponding predictors belong.

Figure 1
Raw Data of Ten Cases
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Table 1
Longitudinal Multilevel Models of Contact Maintaining and Perceived
Attachment Behavior (PABS), and the Prediction of Contact Maintaining in
the Strange Situation: Parameter Estimates and (Standard Errors)

Contact PABS Bivariate Trivariate
Maintaining Model Model

Fixed:
�

0(Cont. Maint)
1.88 (.11) 1.88 (.11) 1.88(.11)

�
l(Cont. Maint)

.003(.033) .003(.033) .003(.033)
�

0(PABS)
5.13(.50) 4.75(.44)

�
l(PABS)

.76 (.10) .76(.10)
�

0(Attachment)
3.51 (.24) 3.51 (.24)

Random (Level 2):
Var[r

0i(Cont.Maint)
] .24 (.16) .24 (.16) .24(.16)

Var[r
1i(Cont.Maint)

] .031(.014) .031 (.014) .031(.14)
Cov[r

01i(Cont.Maint)
] .062(.035) .062 (.035) .062 (.35)

Var[r
0i(PABS)

] 11.04(2.25) 10.69 (2.25)
Var[r

1i(PABS)
] .38(.13) .37(.13)

Cov[r
01i(PABS)

] .88(.38) .88(.38)
Cov[r

0i(Cont.Maint)
,r

0i(PABS)
] 1.59(.45)

Cov[r
1i(Cont.Maint.)

,r
0i(PABS)

] .26 (.12)
Cov[r

0i(Cont.Maint.)
,r

1i(PABS)
] .17(.096)

Cov[r
1i(Cont.Maint.)

,r
1i(PABS)

] .007(.028)
Var(r

ci
) 3.87(.67) 3.87(.67)

Cov[r
ci
,r

0i(Cont.Maint.)
] .79(.24) .79(.24)

Cov[r
ci
,r

1i(Cont.Maint.)
] .16(.068) .16(.068)

Cov[r
ci
,r

0i(PABS)
] 2.86(.93)

Cov[r
ci
,r

1i(PABS)
] .46(.21)

Residual (Level 1):
�

e
2

(Cont.Maint).
1.99 (.24) 1.99 (.24) 1.99(.24)

�
e

2
(PABS).

5.50(.96) 5.72(.96)

Note: Columns 2 and 3: Univariate longitudinal models for Contact Maintaining and
Perceived Attachment behavior.  Column 4 and 5: Prediction of Contact Maintaining in the
Strange Situation.  Age centered at 9 months.
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Parameter estimates of the resulting bivariate model are displayed in
Table 1 (Column 4).  The estimates of the fixed parameters �

0(Cont.Maint.)
 and

�
1(Cont.Maint.)

 describing the average developmental curve of Contact
maintaining at home, are close to the estimates of the univariate model.  The
same holds for the random parameters Var[r

0i(Cont.Maint)
], Var[r

1i(Cont.Maint)
]

and Cov[r
01i(Cont.Maint)

].  If these random parameters were used to portray the
individual developmental curves of Contact Maintaining at home, this would
lead to a similar picture as in Figure 2.

The level 2 parameters Cov[r
ci
, r

0i(Cont.Maint.)
] and Cov[r

ci
, r

1i(Cont.Maint.)
]

pertain to the relation between the development of Contact Maintaining and
the level of the same behavior in the Strange Situation.  Because their
estimates are close to the estimates of the next model to be discussed we
postpone their interpretation to the next section.

The last step of the analysis involved the prediction of the level of
Contact Maintaining in the Strange Situation (see Equation 9).  The
correlation between the observed and predicted level of Contact Maintaining
was r = .45 (p <. 05, N = 67) corresponding to 20% of the variance.  The root
mean square error of prediction was RMSE = 1.77.  The results so far
indicate that Contact Maintaining in the Strange Situation is related to the
development of Contact Maintaining at home.

Trivariate Model.  It was hypothesized that Contact Maintaining in the
Strange Situation (the developmental outcome or criterion) was not only

Figure 2
Developmental Curves
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affected by the development of Contact Maintaining at home, but also by the
development of Perceived Attachment Behavior.  In the final model
evaluated, both variables were used to predict the behavior in the Strange
Situation.

The bivariate model describing the relationship between Contact
Maintaining at home and Contact Maintaining in the Strange Situation was
extended to a trivariate model.  The repeated observations of Perceived
Attachment Behavior were added to the response variable of the previous
bivariate model.  Besides the indicator variable 	

ti(Cont. Maint.)
 indicating

observations of Contact Maintaining at home and the indicator 	
ci
 pointing to

observations of Contact Maintaining in the Strange Situation, a third indicator
was created 	

ti(PABS.)
 to indicate the presence/absence of the observations

corresponding predictors of Perceived Attachment Behavior.
Table 1 (column 5) displays the parameter estimates of the fitted model.

The estimates pertaining to the developmental behaviors at home appeared
to match the estimates of the previous analyses again.  In other words the
multivariate model leads to the same interpretations with regard to the
development of Contact Maintaining and Perceived Attachment Behavior as
the univariate models.  As Figure 2 already revealed, the individual
developmental curves of Contact Maintaining cross each other, whereas the
curves of Perceived Attachment Behavior spread out with increasing age.

The random parameters Cov[r
ci
,r

0i(Cont.Maint.)
] to Cov[r

ci
,r

1i(PABS)
]in Table

1 (Column 5) reveal the relationship between the development of Contact
Maintaining and Perceived Attachment Behavior (PABS) on the one hand,
and the level of Contact Maintaining in the Strange Situation on the other.

Table 2 displays the relevant estimates once more.  For ease of
interpretation the covariances are converted to correlations.  There
appeared to be substantial correlations of the random intercepts (levels) of
both Contact Maintaining (r = .82) and Perceived Attachment Behavior
(r = .44) with the level of Contact Maintaining in the Strange Situation.  Note
that the correlations hold for the levels at 9 months of age, because the age
variable was centered at 9 months.

Substantial correlations were also observed for the linear coefficients of
Contact Maintaining (r = .45) and Perceived Attachment Behavior (r = .38)
with the behavior in the Strange Situation.  The correlations are valid for the
full age range considered, because the developmental curves are linear (see
Figure 2).  They suggest that the rate of change of both developmental
variables affects the behavior in the Strange Situation.

The last step of the analysis involved the prediction of the level of
Contact Maintaining in the Strange Situation on the basis of the parameters
of the model (c.f. Equation 14).  The correlation between the observed and
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predicted level of Contact Maintaining was r = .52 (p < .01,N = 67),
accounting for 27% of the variance.  The corresponding root mean square
error of prediction was RMSE = 1.70.

Conclusion.  The relation between the development of Contact Maintaining
and Perceived Attachment behavior was analyzed in three steps.  The
univariate model revealed clear individual differences with respect to the
development of both attachment behaviors.  The next analysis showed that
the development of Contact Maintaining at home accounts for 20% of the
variance of Contact Maintaining in the Strange Situation.  Adding the
development of Perceived Attachment behavior accounted for an additional
7% of the variance.  Not only the level of attachment behavior, but also
changes in attachment behavior, appeared to be related to the behavior in the
Strange Situation after the infant’s first year.  These results clearly confirm
the hypothesis that the child’s attachment behavior in the Strange Situation
is related to the development of attachment behavior at home during the first
year of life.

Discussion

Predictive developmental hypotheses play a crucial role in
developmental theories.  Hypotheses that allow for individual predictions are
preferred above hypotheses leading to predictions about means.  This makes
regression analysis the natural choice to investigate predictive

Table 2
Relationship between the Development of Contact Maintaining and
Perceived Attachment Behavior (PABS) at Home and the Level of Contact
Maintaining in the Strange Situation: Level 2 Covariances (including
Standard Errors) and Correlations

Contact Maintaining PABS

(r
ci
,r

0i
) (r

ci
,r

1i
) (r

ci
,r

0i
) (r

ci
,r

1i
)

Strange Cov .79(.24) .16(.07)a 2.86(.09) .55(.21)b

Situation r .82 .45 .44 .38

Note.  Age centered at 9 months.
a(G2 = 5.84, df = 1, p < 0.01).  b(G2 = 5.30, df = 1, p < 0.01).
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developmental hypotheses.  We argued that the model is less suited to test
predictive developmental hypotheses because it disregards the special
characteristics of developmental data.  Extrapolation of individual growth
curves appeared more attractive but is often unreliable.

In our view the longitudinal multilevel model combines the best of both
(rejected) approaches.  It is flexible and statistically efficient in the same
way as the regression model.  A relative small number of parameters is
estimated given the number of observations.  Its intuitive attractiveness
matches the attractiveness of the individually estimated dynamic model.  The
model allows for individual predictions from individual developmental data.

Growth and development can also be modeled within the framework of
Structural Equation Modeling (Muthén 1991, Willett & Sayer, 1994).  The
same holds for the longitudinal model presented here.  In our view there is
no principle reason to prefer one model above the other.  Both conceptual and
practical reasons should guide one’s choice.

The multilevel model was described for, and applied to interval
measurements.  It is a small step to replace the interval measurements of the
criterion by nominal observations or count data and their appropriate
distributions (Goldstein, 1995).  A further extension is to measure the
criterion more than once and to accommodate the model accordingly.

One of the main virtues of the model presented is that its structure closely
reflects the structure of predictive developmental hypotheses.  The first part
of the model describes the variability of individual developmental histories or
trajectories.  The second part describes various outcomes of these histories.
The full model combines the characteristics of the histories or trajectories
with the outcomes they are thought to bring about.  Developmental histories
or trajectories are characterized by change.  The predictive hierarchical
linear model acknowledges developmental changes.

The predictive hierarchical linear model is likely to have theoretical
implications.  Because the model takes developmental changes explicitly into
account, it forces developmental psychologists to think about change and not
only about the results of change.
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