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Abstract. This article discusses a number of issues that will become increasingly
important now that the concept of marginal external cost pricing becomes more
likely to be implemented as a policy strategy in transport in reality. The first
part of the article deals with the long-run efficiency of marginal external cost
pricing. It is shown that such prices not only optimize short-run mobility, given
the shape and position of the relevant demand and cost curves, but even more
importantly, also optimally affect the factors determining the shape and position
of these curves in the long run. However, first-best prices are a hypothetical
bench-mark only. The second part of the article is therefore concerned with
more realistic pricing options. The emphasis is on the derivation of second-best
pricing rules. Four types of second-best distortions are considered: distortions on
other routes, in other modes, in other economic sectors, and due to government
budget constraints.
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1 Introduction

Pigou (1920) and Knight (1924) were probably the first to argue that from the
viewpoint of economic efficiency, road users should be charged their marginal
external costs. This concept of Pigouvian taxation has remained the leading prin-
ciple in transport economic theory on road traffic externalities regulation (Button
and Verhoef 1998). Much to the satisfaction of most transport economists, this
principle now also seems to be gaining increasing political support; witness for
instance the recent EU-report ‘Towards Fair and Efficient Pricing in Transport’
(EC, 1995). Now that the practical implementation of Pigouvian pricing princi-
ples becomes more likely, it also becomes increasingly important that the eco-
nomic analysis of externality pricing be extended beyond the limiting boundaries
of textbook models. It should deal as well with the complexities that will be
encountered when actually applying the general idea in practice.

Certainly, the basic concept of marginal external cost pricing is straightfor-
ward: whereever efficient prices appear to be lacking, apply the price mechanism
in the same way as it applies elsewhere, by setting appropriate taxes or user fees.
When there is high demand, resulting in congestion, charges should be high to
deter excessive road use during peak hours. When transport noise affects resi-
dential areas more strongly , higher charges should give a stronger incentive to
reduce mobility levels, to drive at different times, on different routes, or to use
more quiet cars, and so forth. Simple as this general idea may seem, the practical
application may often be complicated. Even if we ignore more general imple-
mentation problems, such as the limited social and political acceptability and the
technical feasibility of marginal external cost pricing, it can be expected that in
reality, most of the implicit assumptions underlying the standard economic anal-
ysis, leading to the basic Pigouvian tax rule, will not be met. Instead, second-best
situations are likely to be the rule rather than the exception in setting regulatory
transport taxes.

The present article discusses some of the issues that will become particularly
important when designing transport pricing policies in practice. We start with
an exposition of the economic optimality of marginal external cost pricing in
Sect. 2. An important distinction will be made regarding the short-run and long-
run optimality of marginal external cost pricing, and in particular the latter will be
considered in more detail. It will then be emphasised that the ‘textbook’ case is
unfortunately nothing more than a hypothetical bench-mark. It is ‘a bench-mark’
because it is unique in simultaneously providing optimal short-run and long-
run incentives for behavioural changes. Practical pricing schemes will therefore
benefit, in particular in the long run, from being designed according to first-best
principles as closely as possible. However, it is ‘hypothetical’ because in reality,
transport charging will often be a matter of second-best pricing. This is caused
by the highly unrealistic nature of the assumptions underlying the derivation of
the standard first-best Pigouvian tax rule. Section 3 proceeds by discussing some
important issues in second-best pricing. The discussion focuses on second-best
tax rules. Such rules will be discussed for four typical second-best distortions



Marginal external cost pricing in road transport 309

in road transport pricing: distortions on other routes, in other transport modes,
in other economic sectors, and finally due to government budget constraints.
Finally, Sect. 4 offers some concluding remarks.

2 Marginal external cost pricing: a basic exposition

Transport in general, and road transport in particular, causes a variety of ex-
ternal effects: real impacts on the welfare levels of other agents, which are not
accounted for by those causing the effects due to the complete lack or at least
non-optimal feature of prices.1 Normally, in the context of transport, the follow-
ing main external cost categories are distinguished: congestion, environmental
effects, noise annoyance, and accidents. Road transport is generally identified as
the most important inland transport mode in terms of external cost generation.
For that reason, the discussion in this article will be cast in terms of road trans-
port. It should be noted, though, that the principles discussed are often applicable
to other transport modes as well.

2.1 Short-run optimality in road usage

An important distinction regarding the external costs of road transport is between
‘intra-sectoral externalities’ on the one hand, which are, like congestion and part
of the external accident costs, posed upon one-another by road users, and ‘inter-
sectoral externalities’ on the other, which are posed upon society at large. The
latter include environmental externalities, noise annoyance, and another part of
the external accident costs. This distinction may sometimes give rise to confusion
on the question of exactly what is an externality. For instance, it is sometimes
argued that congestion would not be an externality, because it is internal to the
road transport sector (road users only hinder each other, and no-one else suffers).
However, it is important to bear in mind that for a correct welfare analysis, the
relevant level of disaggregation is of course the individual level. At least from
a welfare economic viewpoint, therefore, both intra-sectoral and inter-sectoral
externalities are Pareto-relevant. This also follows from the standard diagram of
road transport externalities depicted in Fig. 1 (attributed to, for instance, Walters
1961).

Figure 12 shows how, due to the existence of intra-sectoral and environ-
mental external costs, the unregulated free market outcome exceeds the Pareto
optimal level of road mobility. The market equilibriumN 0 is at the intersection

1 A precise definition of external effects, based on the writings of for instance Mishan (1971)
and Baumol and Oates (1988) could be as follows: an external effect exists when an actor’s (the
receptor’s) utility (or production) function contains a real argument whose actual value depends on the
behaviour of anther actor (the ‘supplier of the effect’), who does not take this effect of his behaviour
into account in his decision making process. This definition guarantees that unpriced effects other
than Pareto-relevant externalities are excluded, such as pecuniary externalities, barter trade, etc. A
further discussion can be found in Verhoef (1996).

2 The discussion of Fig. 1 draws on earlier expositions as given in, for instance, Verhoef (1996).
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Fig. 1. The graphical representation of the bench-mark model of road transport externality regulation

of the demand curve, which is equal to the marginal private and social benefits
(D = MPB = MSB),3 and the marginal private cost curve (MPC). The latter is
positively sloped because of intra-sectoral externalities, such as congestion. This
reflects that the private costs of road usage increases with the level of road usage;
that is, with the number of road users sharing the road together with the marginal
road user. Because individual road users do not consider their own impact on
average speed and safety when deciding whether to use the road, but rather take
the congestion and safety levels as given, MPC may be equated to average social
cost (ASC). Therefore, taking account of intra-sectoral externalities only, MSC
represents marginal social costs. The fact that MSC is necessarily higher than
ASC follows from the fact that the total costs are by definition equal toN · ASC,
so that the marginal costs are equal to ASC +N · ∂ASC/∂N . 4

When accounting for the fact that also inter-sectoral (marginal) external costs
exist, such as environmental effects and noise annoyance, represented by MEC
(where E stands for ‘environmental’), TMSC gives the ‘total marginal social
costs’ (TMSC is found by shifting MSC upwards by a distance equal to MEC).
From the economic perspective, socially optimal road usage is therefore atN ∗,
where net social benefits, given by the area between the curves MPB and TMSC,
is maximised, and the shaded welfare loss is avoided.

3 Significant external benefits of road transport are not likely to exist; the benefits are usually
either purely internal or pecuniary in nature (Verhoef 1996). Hence, MPB and MSB are assumed to
be identical in Fig. 1.

4 Along the same line of reasoning, it is easy to show that MSC should also besteeper than
ASC:∂MSC/∂N = N · ∂2ASC/∂N 2 + 2 · ∂ASC/∂N > ∂ASC/∂N , because all terms are positive.
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Although diagrams such as Fig. 1 are usually taken to represent the situation
at a certain road on a certain time of day, the figure can also be seen as an
abstraction for the more general road transport issue.

The optimal road price that would secure the realisation of the optimal mo-
bility is depicted byr∗, which is equal to the level of the marginal external
cost in the optimum. After imposition of this charge, drivers betweenN ∗ and
N 0 – whose road usage is excessive from a social perspective since the social
benefits do not outweigh the social costs – will not find it attractive to use the
road anymore, since their benefits of road usage (MPB) then falls short of the
sum of the marginal private cost (MPC)plus the charger∗.

Figure 1 thus gives the basic theory of optimal transport pricing in a nutshell.
A number of points are worth emphasising. The first is that the postulation
of given demand and cost curves implies that essentially a short run-view is
taken. We will therefore address long-run issues surrounding marginal external
cost pricing in Sect. 2.2 below. The second point is that the bench-mark model
presented in Fig. 1 relies on a number of rather essential but – unfortunately –
unrealistic assumptions. These will be addressed explicitly in Sect. 2.3. Finally, it
is important to emphasize that the first-best character of the optimal road charge
r∗ can actually be attributed to two distinct features:

– The chargingmechanism itself is optimal: all road users face a charge ex-
actly equal to their marginal external costs. This point may appear somewhat
abstract in the present context with one link and basically identical users, but
the relevance will become clear in the following where second-best charging
mechanisms are considered.

– The level of the charge is optimal: the fee is set equal to the marginal external
costsin the optimum. It can be noted that if, for instance, the charge were
based on the marginal external costs in the non-intervention outcome N0, it
would overshoot its target. It can also be noted that, due to the variability of
the marginal external costs, the optimal value of the road charge cannot be
determined unless the optimal level of road mobility is known.

2.2 Long-run optimality and marginal external cost pricing

An analysis such as represented in Fig. 1 presupposes that the various curves
identified are stable. This implies that the analysis pertains to a certain time frame
within which the various factors determining the shape and positions of these
curves cannot change. Such a time frame is normally, somewhat tautologically,
referred to as the short run. Evidently, it is an attractive property that the marginal
external cost charge secures an optimal level of road usage in the short run.
However, from a policy perspective, a probably even more important question
concerns the long-run characteristics of such a measure. Is the optimality of
pricing measures maintained in the long run, or are additional measures necessary
to steer long-run developments in desirable directions? The answer is reassuring:
also in the long run, marginal external cost pricing provides first-best incentives;
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that is: they affect the factors behind the ‘shapes and positions’ of short-run
curves as shown in Fig. 1 in an optimal way.

The long-run optimality of marginal external cost pricing in general has been
discussed in the context of entry-exit behaviour of firms by, for instance, Spul-
ber (1985). We will here provide illustrations of this general result – which is
basically an application of the so-called ‘envelope theorem’ – for road transport,
using relatively simple but hopefully illuminating models, which are designed
only to demonstrate the general point that marginal external cost pricing pro-
vides optimal incentives not only in the short run, but also in the long run.
Before presenting these models, it is worthwhile explaining what we mean with
‘long-run factors’, by mentioning some examples for each of the relevant curves
shown in Fig. 1:

1. Factors affecting the shape and position of the demand curve for transport
(D) may include locational choices of firms and households. The demand for
transport, very often, is a derived demand, depending on differences in spatial
distributions of the supply and demand of goods, production factors (for
instance labour in the context of commuting), and services. When considering
peak demand, also issues like the flexibility in working and shopping hours
could be mentioned as an important factor determining the shape of the
demand function for peak traffic (in particular, its elasticity).

2. Factors affecting the shape and position of the marginal inter-sectoral ex-
ternal cost curve (MEC; not shown explicitly in Fig. 1, but implied by the
vertical distance between TMSC and MSC) are those factors that determine
the emissions of pollutants or noise per vehicle kilometre. These factors will
often be related to the vehicle technology used and the driving style.

3. Factors determining the shape and position of the marginal intra-sectoral
external cost curve (not shown explicitly in Fig. 1 but implied by the vertical
distance between MSC and MPC) are usually related to the capacity and the
quality of the infrastructure, in particular as far as the congestion externality
is concerned.

4. Factors determining the shape and position of the marginal private cost curve
(MPC) include the same factors as mentioned above for congestion, but also
factors like fuel-efficiency, and indeed any factor influencing the private costs
of road usage. Hence, also here, vehicle technology will be an important
factor.

Now, in order to demonstrate the long-run optimality of marginal external cost
pricing, we will consider three simple models: one dealing with factors behind the
demand curve, one with factors behind the marginal environmental cost curve,
and finally, one involving optimal investments in road infrastructure under con-
ditions of congestion.
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2.2.1 Optimal locational choice in the presence of transport externalities

To illustrate the optimal incentives that marginal external cost pricing in transport
give in terms of locational choices, consider the following simple model. Suppose
that there areN individuals, who can select a residence in either areaA or areaB .
All individuals have identical individual (inverse) demand functionsDTR(n) for
making trips to a third area, say the city centre (CBD), wheren is the number of
trips made by that person. The distance betweenA andCBD is F times as large
as betweenB andCBD , so both the private costsC P and the environmental costs
C E areF times as large (there is no congestion). However, areaA is generally
considered to be more attractive to live in for other reasons (otherwise, area
A would of course be an irrelevant alternative). Because we consider the long
run, it is assumed that dwellings are offered in both areasR according to a not-
perfectly-inelastic local supply curveSR . There are no externalities other than
the environmental effects of transport. Dwellings are, apart from their location,
homogeneous, and it is assumed that dwellings are supplied efficiently; that is,
the supplySR coincides with the marginal social costs.

The locational benefits of living inB are normalised to zero, andDLOC (X ) is
subsequently used to give the ‘excess benefits’ of living inA. Hence,DLOC (X )
represents the inverse demand for location in areaA rather thanB , and hence the
marginal willingness to pay to live inA (rather thanB ) for the X ’th individual
(with 0 < X ≤ N ). We can then derive that in any long run equilibrium, with
X individuals living in A and N − −X in B , the ‘generalised cost difference’
between living inA andB must beDLOC (X ). If this generalised cost difference
is smaller thanDLOC (X ), more people would be attracted toA; otherwise, the
opposite occurs. This generalised cost difference between living inA and B
is in the present model given by the price difference between dwellings,plus
the difference in net private benefits due to individually optimised mobility to
the CBD , given the locational choice andgiven the prevailing type of transport
regulation.

The total social welfare in the system can then be written out as the sum of
the net benefits of location behaviour, and the net benefits of transport (given the
location chosen):

W =

X∫
0

DLOC (x )dx −
X∫

0

SA(x )dx −
N −X∫
0

SB (x )dx+

X ·



nA∫
0

DTR(x )dx − nA · F · (
C P + C E

) +

(N − X ) ·



nB∫
0

DTR(x )dx − nB · (
C P + C E

)

(1)

wherenR gives the number of trips made by an inhabitant of areaR. We can
find the overall optimum by taking the first derivatives of (1) with respect toX ,
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nA andnB . This yields:

∂ W
∂ X

= DLOC (X ) − SA(X ) + SB (N − X )+


nA∫
0

DTR(x )dx − nA · F · (
C P + C E

) −



nB∫
0

DTR(x )dx − nB · (
C P + C E

) = 0

(2a)

∂ W
∂ nA

= X · (
DTR(nA) − F · (

C P + C E
))

= 0 (2b)

∂ W
∂ nB

= (N − X ) · (
DTR(nB ) − (

C P + C E
))

= 0 (2c)

However, for given locally differentiated transportation taxesrA andrB , individ-
uals will act according to the following equations:

DLOC (X ) − (SA(X ) − SB (N − X )) +


nA∫
0

DTR(x )dx − nA · (F · C P + rA)


 −




nB∫
0

DTR(x )dx − nB · (C P + rB )


 = 0

(3a)

DTR(nA) − F · C P − rA = 0 (3b)

DTR(nB ) − C P − rB = 0 (3c)

Equation (3a) describes individually optimising locational choice, taking into
account that an individual will act so as to maximise the net private benefits of
transport given the location chosen, and Eqs. (3b) and (3c) show the selection of
the individually optimising number of trips, given the choice of a location, and
given the prevailing transportation taxes.

Comparing (2b) and (3b), and (2c) and (3c), we first find that for both types
of trips the optimal transport taxes should be equal to the marginal external costs,
exactly as depicted in Fig. 1:

rA = F · C E (4a)

rB = C E (4b)

If we then substitute these taxes into (3a), it is easy to see that the incentives to
locate in either areaA or B are then exactly according to the social optimality
condition (2a). Hence, the long-run decision of where to reside will then be made
in line with overall economic efficiency, and no further regulation regarding
locational decisions is necessary. At the same time, it can be seen that when
the optimal transportation taxesrR are not used and are set equal to zero, we
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will not only have inefficiently high mobility levels for both types of transport
given the location of people, but in addition also an inefficiently high number of
residents in areaA, which ‘boosts’ also the demand for the relatively polluting
type of mobility in the sense that the demand curve for trips of typeA is ‘too
much outward rotated’, and for typeB ‘too much inward rotated’.

This admittedly simple model thus illustrates how optimal transport taxes not
only optimise transportgiven the shape and position of the demand curves, but
also create optimal incentives to change those aspects of behaviour that affect
the actual shape and position of these demand curves in the long run.

Finally, it can be mentioned that this type of result carries over to more
complex settings. An interesting example can be found in Oron et al. (1973),
who consider optimal location in a continuous-space monocentric city with con-
gested roads. Although they are unable to give a conclusive analytical answer
to the question of whether too much sub-urbanisation occurs without optimal
congestion taxes, they do show that optimal congestion charges are necessary for
decentralising efficient locational choices.

2.2.2 Optimal environmental technology choice in the presence
of transport externalities

According to the same sort of principles, we can spell out an equally simple
model that demonstrates the mechanism of optimal user charges affecting the
position and shape of the MPC and MEC curves implied in Fig. 1 in an optimal
manner. To keep things simple, we again assume that there is no congestion, and
that all trips have the same length (a formulation with a demand for vehicle-
kilometres instead of trips would in fact be exactly the same as the present
one). We further assume that, by obtaining more expensive cars, road users can
improve the energy efficiency,ε, above some default levelε0, and hence have
lower private costs (through a lower fuel input per kilometre travelled) as well as
lower emissions and hence external environmental costs per kilometre travelled.
The (per vehicle) marginal cost of such improvements is given by the function
C ε(ε). These improvements are fixed costs with respect to the number of trips.
Denoting the environmental costs per trip asC E (ε) and the private costs asC P (ε),
the (inverse) demand curve for road use asD(n) wheren gives the number of
trips per individual, and the number of (identical) individuals asN , we can write
out the following social welfare function:

W = N ·



n∫
0

D(x )dx − n · (
C P (ε) + C E (ε)

) −
ε∫

ε0

C ε(x )dx


 (5)

The social optimum requires the selection of an optimalε andn according to:

∂W
∂ε

= N ·
(

−n ·
(

dC P (ε)
dε

+
dC E (ε)

dε

)
− C ε(ε)

)
= 0 (6a)
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∂W
∂n

= N · (
D(n) − (

C P (ε) + C E (ε)
))

= 0 (6b)

Road users, when being informed on the nature of the user charge being made
optimally dependent on the technology chosen, so that it can be written asr(ε),
will invest in energy efficiency improvements up to the point where the marginal
private costs of doing so become equal to the marginal private benefits in terms
of reduced private costs and reduced charges for road usage. Hence, individual
road users act so as to set:

− n ·
(

dC P (ε)
dε

+
dr(ε)

dε

)
− C ε(ε) = 0 (7a)

Given the choice of a technology, they will choose a level of mobility according
to:

D(n) − C P (ε) − r(ε) = 0 (7b)

Again, comparing (7a) and (6a), and (7b) and (6b), it turns out that the first-best
pricing rule:

r(ε) = C E (ε) (8)

simultaneously optimises the choice of technology as well as the level of mobil-
ity, given the technology chosen. Since the technology in this example affects,
simultaneously, the marginal private costs and the marginal external costs, we
have illustrated how the long-run decisions – now in terms of technology choice
– are ‘automatically’ optimised using the marginal external cost pricing rule.

2.2.3 Optimal investments in infrastructure capacity
under conditions of congestion

The last example concerns the choice of optimal road capacity in the presence
of congestion. This problem differs somewhat from the two foregoing ones in
the sense that in this case, the long-run decision (i.e., the choice of infrastructure
capacity) is normally made by a different actor (i.e., the government) than the
short-run decisions (i.e., the choice of using the infrastructure, which is of course
made by the potential road users). Still, we wish to consider this example, also
because it underlines the long-run optimality of marginal external cost pricing in
an elegant and policy relevant way.

Consider a single road, and denote its capacityK . The average user costs
of making a trip are denoted asC P (N , K ), whereN gives the number of users.
Let ∂C P/∂N ≥ 0 represent congestion (at a given capacity), and∂C P/∂K ≤ 0
mitigation of congestion through capacity expansion. The marginal social cost of
capacity expansion is given by the functionC K (K ). We can then write out the
following social welfare function:

W =

N∫
0

D(x )dx − N · C P (N , K ) −
K∫

0

C K (x )dx (9)
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The social optimum requires the selection of an optimalN andK according to:

∂ W
∂ K

= −N · ∂ C P (·)
∂ K

− C K (K ) = 0 (10a)

∂ W
∂ N

= D(N ) − C P (·) − N · ∂ C P (·)
∂ N

= 0 (10b)

For a given capacity and with road pricing, road users will choose a level of
mobility according to:

D(N ) − C P (·) − r = 0 (11)

Comparing (11) and (10b) gives us the standard first-best congestion charge:

r = N · ∂ C P (·)
∂ N

(12)

On the basis of (10a) and (12), we can now derive one of the more famous
analytical results in transport economics, namely that the revenues from optimal
road pricing are, under certain conditions, just sufficient to cover the cost of
the optimal supply of road infrastructure capacity (Mohring and Harwitz 1962).
These conditions involve constant returns to scale in congestion technology, so
that C P (N , K ) can be written asC P (N /K ), and constant returns to scale in
capacity extension (C K (K ) is constant). WritingN /K = R (ratio), we find:

∂ C P (·)
∂ N

=
∂ C P (·)

∂ R
· ∂ R
∂ N

=
∂ C P (·)

∂ R
· 1

K
(13a)

∂ C P (·)
∂ K

=
∂ C P (·)

∂ R
· ∂ R
∂ K

=
∂ C P (·)

∂ R
· −N

K 2
(13b)

Using (13a) and (12), we can then write the total revenues from congestion
pricing as:

T = N · N · ∂ C P (·)
∂ N

=
N 2

K
· ∂ C P (·)

∂ R
(13c)

Substituting (13b) into (10a) and multiplying both sides byK finally yields:

N 2

K
· ∂ C P (·)

∂ R
− K · C K (K ) = 0 (13d)

The first term again gives the total revenues from congestion pricing, and the
second term the total costs of infrastructure capacity supply in caseC K (K ) is
constant. In other words, the government will then have a balanced budget,
and outlays on infrastructure capacity expansion can be exactly covered by the
revenues from optimal pricing. It should be noted that the fact that (13d) implies
a surplus (deficit) for the government in case of decreasing (increasing) returns
to scale in capacity expansion is of course not something specific to transport –
this property holds for optimal pricing in any market (Varian 1992).

The purpose of this last example is to highlight a slightly different type of
long-run optimality result from short-run marginal cost pricing. Here, the main
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message involves the optimal level of infrastructure capacity that would result
from investing the revenues from optimal pricing.

Clearly, the models presented above are rather abstract. The main purpose of
these models, however, is to demonstrate the general principle that the pricing rule
that is optimal in the short run, with given demand and cost curves, also provides
optimal incentives in terms of long-run behavioural issues, that determine the
shape and position of these curves. This result surely is not merely an interesting
academic side-issue. It is of utmost importance for the evaluation of second-best
pricing mechanisms, which will very often lack such ‘convenient’ properties, and
therefore often require additional types of measures to compensate for the implied
‘lost incentives’. This will be discussed in further detail in Sect. 2.3 below.

Another remark that can be made regarding the three illustrative models
just presented is, that it was assumed that all other relevant markets operate
efficiently. These other markets include the housing market in the first case
and the automobile market in the second. If this were not the case, additional
second-best considerations would of course enter and complicate the analysis.
Clearly, these can be considered in the present models, but were ignored above
deliberately, for reasons of exposition. In Sect. 3 below, however, such issues
will be considered in more detail, by investigating the impacts of such distortions
on second-best transportation taxes. It should be mentioned already, though, that
generally such other market failures could be dealt with more efficiently by direct
intervention at the source of the distortion, rather than by applying appropriately
corrected second-best pricing rules.

2.3 Marginal external cost pricing: a hypothetical but crucial bench-mark

Given the short-run and long-run optimality of marginal external cost pricing
outlined above, the question rises why such evidently attractive instruments have
not, or only sparsely, been used in the practice of policy making. Apart from
issues related to the limited social feasibility of pricing instruments, a different
sort of explanation for this paradox may be the fact that reality is often a lot
more complicated than the simple world assumed in Fig. 1. This, in turn, may
seriously complicate the determination and application of optimal road charges in
reality. It is instructive to explicitly list the most important implicit assumptions
underlying the model depicted in Fig. 1:

1. There is complete certainty and perfect information on all benefits and costs
(including external costs) of road usage;

2. Road users are completely homogeneous, and only (possibly) differ in terms
of their marginal willingness to pay to use the road;

3. The demand curve is stable over time, so that a static approach is valid;
4. The road system is a one-link network;
5. The (spatio-)economic system within which this transport network operates

is otherwise in a first-best optimum, without any uncorrected market failures
like external effects, market power, distortionary taxes, and so forth.
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Clearly, other than possibly in a few analysts’ minds, these assumptions will
never be met. Unfortunately, however, once these assumptions are relaxed, things
can become much more complicated than is suggested by the basic analysis of
Fig. 1. This is especially so because when more realism is added to the model,
an increasingly complicated optimal charge scheme will result, where optimal
user charges will vary according to many dimensions. In particular, because the
first-best principle that optimal user charges should be equal to marginal external
costs caused remains valid, these charges should vary along with variations in
marginal external costs caused by individuals. Recalling that transport externali-
ties include a large variety of effects – congestion, emissions, noise annoyance,
accidents – optimal individual charges should therefore vary at least according
to the following dimensions:

1. the vehicle (technology) used,
2. the actual state of this vehicle,
3. the kilometrage,
4. the time of driving,
5. the place of driving,
6. the actual route chosen,
7. the driving style.

Only then can the feature of road charging provide optimal incentives to change
behaviour in both the short run and the long run that possibly carry over to real-
life situations. Technically speaking however, such a situation can only be realised
if one would apply some ‘Big Brother’ type of electronic road charges, using very
sophisticated technologies that can monitor the actual emissions, the place and
time of driving, the driving style, and the prevailing traffic conditions; and that
allows the regulator to adjust the charge accordingly (see Johansson-Stenman and
Sterner 1998, for a thoughtful evaluation of the pros and cons of such systems).
Even disregarding the social acceptance of such technologies, possibly seriously
intruding the drivers’ privacy, even from a purely technological viewpoint such
systems are not likely to be introduced on a significant scale in the foreseeable
future. Still, the use of electronic congestion charges at an increasing number of
sites throughout the world (see Small and Gomez-Ibañez 1998, for an overview)
can of course be seen as a major step into this direction.

As a result, one will often have to rely on imperfect substitutes to the first-
best scheme when implementing pricing policies in reality. From a theoretical
viewpoint, this implies that we will have to accept second-best pricing measures.
Apart from the fact that such second-best instruments will generally provide
only imperfect incentives in terms of affecting mobility in the short run, a prob-
ably even more important shortcoming will be that the ‘convenient property’
of first-best charges affecting also all long-run decisions in an optimal manner,
will be partially or even entirely lost. As a result, there will often be a need for
complementary policies affecting long-run behavioural aspects underlying trans-
port decisions in a socially desirable manner. In other words, the acceptance of
second-best pricing measures generally implies that ‘policy packaging’ should be
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at the core of the policy design. Specifically, it is very likely that separate poli-
cies should be used to affect short-run decisions concerning mobility behaviour,
and long-run decisions concerning factors determining the long-run position and
shape of the relevant demand and cost curves identified above.

For reasons of space, the specific complications of policy packaging will not
be discussed in any detail in this article. However, one general remark concern-
ing the use of such second-best policy packages should be made. This concerns
the very important, but yet often neglected issue of the implied informational
and organisational burden that the deviation of marginal external cost pricing
implies for the regulator. In particular, it should be noted that the optimal incen-
tives created by the first-best policy naturally imply that decisions regarding these
long-run issues can be left to the market – unless, of course, other market failures
would exist (but these, in turn, could then normally be dealt with more efficiently
using measures directly aimed at mitigating those failures). Hence, there is actu-
ally no need for the regulator to obtain any information other than the optimal
value of the actual marginal external costs – which in itself will often be compli-
cated enough. Things become quite different, however, when second-best policies
are used, and the regulator feels that some of the implied imperfect or perhaps
even entirely lacking long-run incentives should be compensated for using poli-
cies directly aiming at the relevant long-run issues. The regulator should then
formulate expectations about the(second-best) optimal long run developments
determining the position and shape of the demand and cost curves for transport
(i.e., how would they have been affected when first-best policies were used, and
what is the second-best optimal shape and position, given the fact that first-best
pricing cannot be used?), and subsequently specify policies that could achieve
the implied targets in a socially cost-effective way. The implied informational
and organisational burden will of course be enormous, and the question remains
whether a regulator would ever be able to collect all information present in the
relevant markets, and process it as efficiently as an optimal market would do.

Therefore, apart from the unavoidable welfare losses that result by definition
from the use of second-best instruments compared to first-best instruments, it
is very likely that additional welfare losses due to ‘government failures’ will
then further reduce the social benefits from regulation. As just argued, such
government failures may in the first place result from the strongly increased
informational needs, necessary for applying second-best instruments optimally.
A second reason, however, would be that second-best tax rules will generally be
much more complicated than the relatively simple first-best ‘tax-equals-marginal-
external-costs’ rule. This is the topic of the next section.

3 Applying second-best policies in practice: The use of second-best tax rules

As argued above, under the rather stringent assumptions that first-best conditions
pertain elsewhere in the economic system and perfectly flexible regulatory poli-
cies exist for coping with road transport externalities, there would be little scope
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for improving on the standard Pigouvian solution to the problem of external costs
of road transport, as depicted in Fig. 1. These assumptions are, however, usually
not satisfied. Second-best problems have, accordingly, received ample attention
in the recent literature on road pricing. For instance, Wilson (1983), and d’Ouville
and McDonald (1990) studied optimal road capacity with suboptimal congestion
pricing; Braid (1989) and Arnott et al. (1990) and Laih (1994) consider uniform
or step-wise pricing of a bottleneck. Arnott (1979) and Sullivan (1983) look at
congestion policies through urban land use strategies. Two classic examples on
second-best regulation in road transport are Lévy-Lambert (1968) and Marchand
(1968), studying optimal congestion pricing with an untolled alternative, an issue
that was recently discussed also by Braid (1996), Verhoef et al. (1996), and Liu
and McDonald (1998, 1999). Glazer and Niskanen (1992) as well as Verhoef
et al. (1995) have studied second-best aspects related to parking policies, and
Mohring (1989) considered fuel taxation.

An essential joint conclusion from these studies is that, when applying
second-best regulatory tools, economic efficiency requires these instruments to
be applied according to differentrules than that apply for the first-best bench-
mark policy. This links in with the two last points raised in Sect. 2.1, where
the optimality of marginal external cost pricing was attributed to two separate
features: the charging mechanism is perfect, and the charge is set at the optimal
level. In second-best regulation, the second-best optimaltax rules (if a tax is
used) should account for the imperfection of the instrument itself, in order to
use it in a welfare optimising manner; given, of course, the persistence of the
second-best aspects.

In this section, this point will be clarified, by again giving a number of
examples. Four models will be presented, reflecting four major types of second-
best distortions that may occur in reality. The first model deals with distortions
on other routes within the same mode, the second one with distortions in other
transport modes, the third one with distortions elsewhere in the economy, and
the fourth one with distortions due to government budget constraints. As one can
imagine, second-best tax rules can become rather complicated as models become
more realistic. Therefore, the second-best tax rules will be considered only for
the most simple model settings possible. This is not because these simple models
are considered representative for any real-world situation, but simply because this
allows us to concentrate on the basic economic issues at hand, in analytically
tractable models. For each of the four models, more realistic extensions can be
constructed rather straightforwardly, based on the same methodology as used
below.

3.1 Second-best tolling with distortions on other routes

The impact of distortions on other routes in a road network on second-best tolls
can be illustrated by considering the classic two-route problem (Lévy-Lambert
1968). This entails a two-link network, connecting a joint origin-destination pair.
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Road users distribute themselves over both routes according to the rule that
marginal private costs, including tolls if there are any, should be equalissed over
both routes. Now, if there is congestion, it is easy to show that if the regulator
can levy a charge on both routes, optimal congestion charges as derived in (12)
would apply for both routes:

ri = Ni · d C P
i (Ni )

d Ni
(14a)

where the subscripti denotes the particular route considered. However, if the
regulator is for some reason only capable of putting tolls into effect on one
route only (say routeT ), and has to leave the other route (U ) untolled, it would
be incorrect to apply the first-best tax rule (14a) as if first-best conditions ap-
ply throughout the network. Instead, for this particular problem, the following
second-best tax rule for routeT can be derived:

rT = NT · d C P
T (NT )

d NT
− NU · d C P

U (NU )
d NU

·
−d D(N )

d N
d C P

U (NU )
d NU

− d D(N )
d N

(14b)

It would take too far to discuss this tax rule in great detail here: a comparable
problem is discussed below, and the interested reader may in addition refer
to Verhoef et al. (1996), where the derivation of (14b) is also provided. It is,
however, worth pointing out that for the specification of the second-best one-
route toll, one has to take account of the specific situation on the other, untolled
route, as well as of the prevailing demand structure (in particular the demand
elasticity, or more precisely: the slope of the demand curve). This has to do
with the spill-overs that regulation on routeT imply for the driving conditions
on routeU , and with the fact that one single tax aims to control two variables
affecting the overall efficiency: the overall level of demand, and the route split.
Note that the expression is composed of a term reflecting the marginal external
cost on the tolled route, and a second (negative) term representing those on the
untolled route, weighted with a fraction that may vary between 0 and 1. Also,
observe that the second-best toll may therefore be negative.

In general, this type of second-best problem may actually often be ‘self-
imposed’ by the regulator. In particular, when electronic charging mechanisms
are used, it may be considered inefficient to apply charges on all links, due to
the high fixed costs of installing the necessary equipment. Hence, the regulator
may choose to have toll-points installed only on a few key links in the network.
The second-best tolling problem resulting from such situations has recently been
studied for general networks by Verhoef (1998).

3.2 Second-best tolling with distortions in other modes

A second important assumption underlying the applicability of standard Pigou-
vian taxes is that alternative transport modes are efficiently priced. The validity
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of this assumption is of course often questionable, to say the least. In particu-
lar, it may often be the case that public transport services, for instance due to
subsidies, are inefficiently priced from an overall social welfare perspective. The
resulting impacts for second-best tax rules in private transport can be derived
in a manner that, from an analytical viewpoint, is comparable to the two-route
problem considered above. This reflects that, in a way, one could interpret public
transport as an inefficiently priced alternative route.

In order to study this problem, let us again consider a simple model. To keep
the analysis simple, and manageable using continuous functions, the following
assumptions are made. Consider the short run, so that only variable costs matter.
The generalised variable costs for public transport, as experienced by its users, are
made up of two components: the price of the ticketPT , and a termC T reflecting
the valuation of the average (per passenger) travel time in public transport. The
total short-run social costs of public transport are given by the total variable
costs made by the operator,TVC TO , plus the travel time costsC T times the
number of usersN T . There is therefore neither congestion, nor a ‘Mohring-
effect’5 (Mohring 1972) present in public transport. We use, as before,C P (N P )
to denote the average generalised costs for road usage, whereN P gives road
usage. Finally, there is one shared demand function for transport,D(N ), where
N = N T +N P . Hence, mode choice in this simple model results from generalised
private cost differences.6 Finally, we wish to take account of the fact that the
public transport operator may have some market power. In particular, he is not
a price-taker and can, for instance, change the price depending on the average
costs. This will be reflected below by the very general formulation that the ticket
price PT may depend on the level of usageN T . The exact pricing rule used
needs, for the present purpose, not be made explicit.

Under these assumptions, the second-best congestion toll for road transport
r can be found by solving the following Lagrangian, showing that the objec-
tive is to maximise the difference between total benefits and total costs, under

5 The Mohring-effect is the reverse of congestion, reflecting the positive externality that public
transport users create for each other through the increased frequency that is (in the long run) associated
with increased usage.

6 One could of course also model this choice using finite cross-elasticities of demand, but that
is firstly an unnecessary complication for the present purpose, and secondly quite restrictive too, in
the sense that this cross-elasticity assumes a high degree of homogeneity of users, and a relatively
low degree of substitutability between private and public transport. Taking the view that the eventual
good demanded is the move fromA to B , a trip by private or by public transport would be perfect
substitutes. Probably, the ‘correct’ way of modelling mode choice would allow for individually
differentiated levels of generalised costs attached to the use of public transport, reflecting taste
differences such as non-monetary costs associated with privacy, comfort, reliability, and so forth.
Continuous functions can then no longer be used in the optimisation procedure, since there needs
not be a perfect correlation between willingness to pay for trips, and individual generalised costs
for using public transport. However, since these differences between individual generalised costs
are fully internalised, a second-best tax rule comparable to the one given below is then still likely
to result. To see this, observe that different individual generalised costs attached to using public
transport would equally directly appear in the first-order conditions (17) and (20) below, also when
the choices of ‘discrete’ individuals were to be optimised. Hence, the simplified procedure followed
here certainly needs not necessarily imply that the result is flawed.
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the restrictions caused by individually optimising behaviour, equating marginal
benefits to marginal private generalised costs for both modes:7

Λ =

N P +N T∫
0

D(x )dx − N P · C P (N P ) − N T · C T − TVC TO (N T )

+λP
(
C P (N P ) + r − D(N P + N T )

)
+λT

(
C T + PT (N T ) − D(N P + N T )

)
(15)

yielding the following first-order conditions:

∂Λ

∂ N P
= D − C P − N P · d C P

d N P
+ λP · d C P

d N P
− (λP + λT ) · d D

d N
= 0 (16)

∂Λ

∂ N T
= D − C T − d TVC TO

d N T
+ λT · d PT

d N T
− (λP + λT ) · d D

d N
= 0 (17)

∂Λ

∂ r
= λP = 0 (18)

∂Λ

∂λP
= C P + r − D = 0 (19)

∂Λ

∂λT
= C T + PT − D = 0 (20)

Using (17), (18), and (20), it can be shown that:

λT =

d TVC TO

d N T
− PT

d PT

d N T
− d D

d N

(21)

Using (16), (18), (19), and (21), the following second-best toll can then be de-
rived:

r = N P · d C P

d N P
−

(
d TVC TO

d N T
− PT

)
·

−d D
d N

d PT

d N T
− d D

d N

(22)

First of all, the reader may verify the similarity with (14b). Observe also that
the sign of (22) is ambiguous. Also the interpretation of (22) is similar to that
of (14b). The first term shows the direct impact of the toll on congestion on the
road itself. The second term reflects that in the second-best optimum, account
should also be taken of a possibly non-optimal price in public transport. The term
between the large brackets represents the difference between the marginal social
costs of using public transport and the ticket price. Evidently, if public transport
is efficiently priced, this term vanishes, showing that the standard Pigouvian
toll suffices for the regulation of road use if the alternative mode is managed

7 The reverse of this problem, namely the second-best optimal price for public transport with
unpriced road traffic congestion, was studied by Henderson (1977, pp. 153–157).



Marginal external cost pricing in road transport 325

according to first-best standards. Note that the correction factor increases with
the extent to which public transport prices are distorted.

As is shown by the fraction behind the term between the large brackets, the
extent to which this distortion affects the second-best road pricer depends also
on the elasticity of the total demand for transport, and the sensitivity of public
transport prices to its usage, both evaluated in the second-best optimum.

In the one extreme, where the demand is perfectly elastic, the second-term
vanishes, reflecting that the usage of public transport cannot be affected with the
road price. The same extreme results if the public transport system is operating
at its capacity, and the pricePT is used by the operator to keep out excessive
demand exceeding the capacity. Then, the use of public transport is given and
determined by its capacity. In both cases, the road price can be set according to
the first-best rule, since the use of public transport cannot be affected.

In the other extreme, where either the demand is perfectly inelastic or the
public transport price is insensitive to it usage, the second-best road price be-
comes equal to the difference between the marginal external congestion costs on
the road, and the extent to which the marginal social costs of public transport
exceed the ticket price. With inelastic demand, this reflects that the total usage
of both modes together is given, and the road price should be used so as to
equate the marginal social costs for both modes in the second-best optimum.
With insensitive public transport prices, it also reflects that the overall level of
transport demand is given, but now by the intersection of the price-linePT and
the demand curveD . Also then, the distribution of this given number of users
over both modes in the second-best optimum should of course be such that the
marginal social costs are equalised.

For intermediate cases, the interpretation of the correction term can be given
by considering the joint impacts of the effects just discussed for extreme situa-
tions.

This admittedly simple model is at least sufficient to demonstrate how in
a second-best situation, where alternative modes are not efficiently priced, the
standard Pigouvian tax rule is no longer optimal. Instead, the second-best tax
rule to be used then depends on (and reflects) the distortions occurring also in
the other transport modes. Clearly, also this model could be made much more
realistic – at the price of increasing complexity. The general conclusion just
given, however, would not be affected. Such more realistic formulations will
often no longer have analytically tractable solutions as (22), and may therefore
be solvable only using numerical procedures for models with explicit demand
and cost functions.

Finally, it can be noted that the Lagrangian multipliersλ reflect the ‘shadow
price of non-optimal pricing’. Such multipliers are typical for second-best prob-
lems. These multipliers cause the second-best optimum to differ from the first-best
situation, where also the alternative mode is optimally priced. In particular, note
that if PT could be chosen freely by the regulator in the optimisation procedure,
we would find∂Λ/∂PT = λT = 0.
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Second-best tolling with distortions in other economic sectors

A next important assumption underlying the direct applicability of the standard
Pigouvian tax rule is that all other economic sectors, somehow connected to
the transport sector, should operate under first-best conditions themselves. This
is perhaps even more unlikely to hold true in reality than the two previously
considered assumptions, of first-best conditions prevailing in alternative routes
and modes. In particular, given the fact that most (if not all) economic sectors
require at least some transportation for their operation, the assumption actually
requires, for instance, the absence of market power and the absence of unpriced
environmental pollution throughout the economy. Needless to say that this will
normally not be the case.

One can again illustrate the basic economic issues involved in a simple model.
Let us consider the case of freight transport. To underline the second-best char-
acter of the problem, consider two polluting economic sectors (A and B ), and
assume that their production processes are polluting, causing constant average
external costsC E

A andC E
B . Next, observe that the demand for freight transport is

a derived demand, which is closely connected to the demand (and supply) struc-
ture for the transported good itself. In particular, the transportation of a good is
(normally) a necessary step in the process of bringing the demand and supply
physically together, and accomplishing a transaction. In the below model, it is
therefore assumed that every unit of good traded requires a transport movement.
Defining the units of both goods such that the transport effort for one unit re-
quires the same unit transport service, the equilibrium demand for transport is
simply equal to the sum of equilibrium quantities traded,QA andQB (note that
we have a non-spatial model, so that all trips have equal length).

Assume again that no congestion occurs, and that the constant average private
and external costs of transport can be written asC P andC E , respectively. Denote
the demand and supply curves for both goods (i ) asDi andSi , and assume that
apart from the externality, both markets operate efficiently, with prices reflecting
marginal social costs. The average transportation costsC P will thus drive a wedge
between the marginal benefitsD and the marginal production costsS (see also
the restrictions in the Lagrangian below). Finally, assume that only regulatory
transport taxesr are available (otherwise, we would not have a second-best
problem). The following Lagrangian then represents the second-best optimisation
problem:

Λ =

QA∫
0

DA(x )dx −
QA∫
0

SA(x )dx − QA · C E
A

+

QB∫
0

DB (x )dx −
QB∫
0

SB (x )dx − QB · C E
B

− (
C P + C E

) · (QA + QB ) + λA
(
SA(QA) + C P + r − DA(QA)

)
+λB

(
SB (QB ) + C P + r − DB (QB )

)

(23)
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which has the following first-order conditions (where primes denote derivatives):

∂Λ

∂ QA
= DA − SA − C E

A − C P − C E + λA · (
S ′

A − D ′
A

)
= 0 (24)

∂Λ

∂ QB
= DB − SB − C E

B − C P − C E + λB · (
S ′

B − D ′
B

)
= 0 (25)

∂Λ

∂ r
= λA + λB = 0 (26)

∂Λ

∂λA
= SA + C P + r − DA = 0 (27)

∂Λ

∂λB
= SB + C P + r − DB = 0 (28)

Substitution of (27) in (24), and (28) in (25) yields:

λA =
C E

A + C E − r
S ′

A − D ′
A

(29)

λB =
C E

B + C E − r
S ′

B − D ′
B

(30)

As in the previous model, these multipliers reflect the shadow price of non-
optimal pricing, now in the two goods markets. These multipliers are for both
goods increasing in the difference between the marginal external costs, of pro-
duction and transportation together, and the regulatory tax. Equations (26), (29)
and (30) finally imply the following second-best transportation tax:

r = C E +

C E
A

S ′
A − D ′

A

+
C E

B

S ′
B − D ′

B
1

S ′
A − D ′

A

+
1

S ′
B − D ′

B

(31)

The second-best tax rule shows that, in addition to the ‘first-best component’
reflecting the marginal external costs of transport itself, a term is added which
reflects the marginal external costs caused by production in the two sectors.
More precisely, a weighted average of these marginal external costs is included
in r, where the weight reflects the sensitivity of the equilibrium output to price
distortions: if either the demand or the supply for a sector is fully inelastic, the
associated term vanishes. This is of course rather intuitive: due to the inelasticity,
the emissions cannot be affected, and the best thing to do for the regulator is
to set the tax such that emissions from transport and from the other sector are
optimised. Note also that if we happen to findC E

A = C E
B , the first-best outcome

can be reproduced, since the road tax then simply includes also the external
costs of production. Because every good produced is also transported, and all
shipments are assumed to be equally long, a tax on transport alone is then in fact
indistinguishable from the set of first-best taxes on both production and transport.
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The tax rule in Eq. (31) thus shows that distortions in other economic sectors
will generally affect second-best transportation taxes. Clearly, the economically
optimal way of dealing with such distortions would be to use regulatory taxes di-
rectly targeted at the sectors involved, and to apply first-best tax rules throughout
the economy. The purpose of the above analysis, however, is merely to illustrate
that if such a tax system, for some reason, does not exist, or if taxes are not used
optimally, the second-best tax rule for transport will be affected accordingly.
Simply ignoring the distortions elsewhere in the economy is then non-optimal,
and would lead to regulatory taxes for transport that can be improved upon. As
is illustrated in Verhoef et al. (1997), in a spatial analysis of the above prob-
lem, the näıve use of standard Pigouvian taxes may then in some cases even be
counter-productive, in the sense that positive taxes for transport could lead to a
reduction in social welfare.

3.3 Second-best tolling with distortions due to government budget constraints

A final, somewhat different type of distortion we would like to consider here
concerns the case where the government’s budget constraint somehow enters the
optimisation procedure. The standard procedure used for finding optimal taxes
normally assumes that the marginal utility of funds is constant over actors. It has
been argued, however, for instance by Ochelen et al. (1998), that this needs not
always be the case. In particular, if a government uses the tax revenues from
regulatory transport pricing to reduce distortive taxes on, for instance, labour,
a double dividend can possibly be reaped (on this double-dividend hypothesis,
see for instance Bovenberg and De Mooij 1994; and Bovenberg and Goulder
1996). Such a higher social value of tax revenues is often modelled using a
‘shadow price of public funds’,λP . This denotes the additional reward that is
given to each unit of tax revenues. Note thatλP > 0 denotes the case where it
is assumed that toll revenues are used by the government in a way that enhances
economic efficiency;λP < 0 would denote the situation where the government
uses the revenues in a less efficient way than consumers would do. Applying
this procedure in a simple model of transport with an environmental externality
only, and maintaining the notation used before, the following Lagrangian can be
set up:

Λ =

N∫
0

D(x )dx − N · (
C P + C E

)
+ λP · r · N + λ · (

C P + r − D(N )
)

(32)

The following first-order conditions apply:

∂Λ

∂ N
= D − C P − C E + λP · r − λ · D ′ = 0 (33)

∂Λ

∂ r
= λP · N + λ = 0 (34)
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∂Λ

∂λ
= C P + r − D = 0 (35)

Substitution of (34) and (35) into (33) yields the following tax rule:

r =
C E − λP · N · D ′

1 +λP
=

C E ·
(

1 +λP · N ·−D′
C E

)
1 +λP

(36)

where the second formulation merely facilitates interpretation. It is interesting
to note that Eq. (36) shows how, even ifλP > 0, the implied tax certainly
needs not exceed the standard Pigouvian ruler = C E applying with constant
marginal external cost. The reason is that the sub-goal of revenue maximisation
may require an upward or a downward adjustment of the tax, depending on the
elasticity of demand. This is caused by the fact that a marginally higher tax
rate on the one hand increases the tax revenue per road user, but on the other
hand decreases the number of road users. In the extreme of a perfectly inelastic
demand, additional taxes revenues can be generated without affecting demand,
and the sub-goal of externality regulation then becomes completely unimportant
(observe, however, that the assumed constancy ofλp will of course become less
realistic as total tax revenues approach infinity). With a relatively elastic demand,
however, (when−D ′ approaches zero from above) a downward adjustment on
the standard Pigouvian tax rule is called for, since in that case a lower tax rate
is associated with higher revenues. In particular, we find:

sign
(
r − C E

)
= sign

(
N · −D ′

C E
− 1

)
(37)

Hence, if either the demand is relatively inelastic or the marginal external cost
relatively low, a tax rate exceedingC E will be found.

It is evident that the four second-best tax rules derived above are more compli-
cated than the first-best rules. Generally, one finds from the literature on second-
best taxation increasingly complex policy rules for increasingly imperfect instru-
ments. In other words, when the charging mechanism itself is no longer perfect,
it becomes in addition more difficult to apply this instrument in an optimal way
given its inherent distortions. Therefore, additional welfare losses, due to a larger
probability of not using the instrument in the optimal manner, are likely to re-
duce the efficiency of the second-best instrument even further as compared to
the first-best bench-mark. Apart from the ‘information argument’ mentioned in
Sect. 2.3, also for this reason, therefore, the probability of government failures
in addition to market failures thus increases when second-best instruments are
used.

It should be emphasised that this phenomenon of more complicated policy
rules for imperfect instruments is of course not restricted to tax instruments. For
instance, in the context of Fig. 1, if the regulator would aim at accomplishing a
reduction in road usage by physical traffic restraints (for instance an odd/even
number plate scheme, or car-free Sundays), it would not be optimal to impose a
restriction consistent with the optimal reduction in mobility with optimal charges:
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N 0 − N ∗. The reason is that with such a physical measure, it is not at all evident
that it is the mobility representing the lowest social benefits, so to speak between
N ∗ and N 0, will be affected. If the restriction is purely non-discriminating be-
tween mobility with a higher or lower benefit, one would use the instrument up
to the level where theexpected net benefits (benefits minus private costs) of the
marginally affected traffic is equal to the marginal reduction in external costs.
This, necessarily implies a smaller second-best optimal reduction than would be
realised using the optimal tax instrument.

This brings us to the last point to be mentioned here, namely that in general,
the second-best optimal reduction in external costs will be smaller when less
perfect instruments are used. The intuition is simple: the marginal social costs
of reducing the externalities will be higher, because of the policy-induced dis-
tortions. Hence, one will sooner get to the point where the marginal social costs
of reducing the external costs becomes equal to the marginal social benefit of
doing so (i.e., the marginal social value of reductions in the externality).

4 Conclusion

This article discussed some important issues in the operationalisation of marginal
cost pricing in transport. The discussion was mainly directed to road transport,
but many of the principles discussed carry over quite easily to other transport
modes as well. The main conclusions are as follows.

Marginal external cost pricing is a first-best bench-mark policy, because it
simultaneously provides optimal incentives both in the short run (that is, given
the shape and position of the relevant cost and demand functions) and – probably
even more importantly – also in the long run, by optimally affecting those factors
that determine the shape and position of the relevant demand and cost functions.
However, this bench-mark policy is hard to implement in reality, because of
a variety of technical, political, social, psychological and institutional barriers.
Realistic second-best alternatives will normally only cover parts of the first-best
incentives, and will therefore often have to be combined in packages, such that
the complete range of incentives is eventually covered. This normally involves
instruments covering short-run behaviour, long-run demand factors, and long-run
supply-side related factors.

Apart from the increased informational needs implied for the regulator,
second-best instruments also require the application of second-best policy and
tax rules in order to be used optimally, which are usually far more complex
than the standard first-best Pigouvian rule, in which the regulatory tax is equated
to the marginal external costs. For both reasons, therefore, there is a large risk
of additional government failures, adding to unavoidable welfare losses arising
from the second-best nature of the instruments themselves. Therefore, the first-
best bench-mark should not be ignored in the process of policy making, for the
reason that it is ‘only a hypothetical policy’. Instead, this aticle has made a strong
case for using it as a focal point in the design of policy packages.
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