
Suppressed charmed B decays



Dit werk maakt deel uit van het onderzoekprogramma van de Stichting voor Funda-
menteel Onderzoek der Materie (FOM), die financieel wordt gesteund door de Neder-
landse Organisatie voor Wetenschappelijk Onderzoek (NWO).

This work is part of the research programme of the ’Stichting voor Fundamenteel
Onderzoek der Materie (FOM)’, which is financially supported by the ’Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO)’.



VRIJE UNIVERSITEIT

Suppressed charmed B decays

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op dinsdag 2 juni 2009 om 13.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door
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Introduction

The Standard Model of particle physics describes the strong and electroweak interactions
between elementary particles. The model has now survived forty years of stringent tests
and has established itself firmly in the world of particle physics. However, there are clues
to why the Standard Model cannot describe the Universe that we live in to full accuracy.
The Standard Model is, for example, not able to explain the abundance of matter over
antimatter in the Universe.

Differences between matter and antimatter could arise during the Big Bang through
weak interactions. Such processes, that are called CP violating, were first observed in
1964 by Cronin, Fitch and collaborators1. The CP violating processes can only exist in
hadronic decays if there are three or more generations of quarks. This was realized by
Kobayashi and Maskawa in 1972 and led to the prediction of three new quarks2. The
new quarks were discovered in 1974, 1977 and 1994 and are called charm, beauty and
top respectively. Sakharov3 stated that violation of CP is one of three conditions that
need to be satisfied to explain the absence of antimatter in the Universe. Although the
presence of CP violation in the Standard Model is now established, the predicted levels
of violation are still too small to explain the data.

The relative long lifetime of the beauty quark is ideal for testing the predictions in
the Standard Model towards CP violation. Two B factories were set up, BABAR (see
Fig. 1) and Belle, which have now measured different aspects of CP violation to high
accuracy. So far all measurements are in agreement with predictions from the Standard
Model.

The properties of weak interactions with quarks lead to relations that can be ex-
pressed as a triangle in a complex plane, called the CKM Unitarity Triangle. The surface
area of the Unitarity Triangle is directly related to the size of CP violation present in
hadronic weak decays. The CKM triangle characteristics, side lengths and interior an-
gles, can be measured by studying particle decays. The least restricted property of the
Unitarity Triangle is the so-called CKM angle γ. Current direct measurements of this
angle are performed by the study of time dependent interference in e.g. B0 → D∗−ρ+,
B0 → D∗−π+ or B0 → D∗−a1(1260)+ decays. The sensitivity to the angle γ in these
measurements is however small.

This thesis reports on the study of B0 → D(∗)−a+
0 decays, which are sensitive to the

1Nobel Prize in Physics 1980
2Nobel Prize in Physics 2008
3Nobel Prize for Peace 1975
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Introduction

Figure 1: The BABAR detector during construction.

CKM angle γ. Potentially, the sensitivity to γ can be larger than that of the current
measurements. The sensitivity to the CP phase depends on the asymmetry amplitude
which in turn depends on the relative sizes of the two interfering decay amplitudes.
Compared to the B0 → D∗−h+ (h = π, ρ, or a1) decays, this relative size is larger. This
enhancement is caused by a suppression of one of the otherwise dominant, contributing
diagrams so that the two interfering amplitudes are almost of equal size.

The two diagrams that dominate in the B0 → D(∗)−a+
0 decay are presented in Fig. 2.

The left diagram is suppressed by the small coupling of the a0-meson to the W boson.
The right diagram is suppressed by the small CKM element in the b → u transition.

The decay amplitude of each diagram is computed using a so-called factorization
technique, which allows to express the total amplitude in terms of separate components.
Non-factorizing components are related to for example final-state interactions through
gluon exchange in the formed hadronic states and are very hard to calculate. Usually
these non-factorizing terms have a smaller contribution to the decay amplitude compared
to the factorizing terms and can be neglected. The suppression mechanism in the left
diagram in Fig. 2 causes the factorizing term to become so small that non-factorizing
contributions could dominate the decay amplitude. A measurement of the branching
fraction of the B0 → D(∗)−a+

0 decay can say something about how well the factorization
technique works and is therefore valuable.

There are no previous reports on the observation of the B0 → D(∗)−a+
0 decays and

the low predicted decay rates (order of 10−6) poses experimental challenges for the
measurement of the branching fractions. Other charmed decay modes that are produced
abundantly, such as B0 → D∗−ρ+ and B0 → D∗−a1(1260)+, create a background that is
hard to remove, especially since the width of the a0 Breit-Wigner lineshape is not well

2
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Figure 2: Feynman diagrams for the CKM favored B0 → D(∗)−a+
0 decay (left), and

the doubly-CKM-suppressed B0 → D(∗)−a+
0 decay (right).

known. A two-fold solution to tackle this problem is used in the analysis presented in this
thesis. First an advanced data selection and subsequently a three dimensional likelihood
fit is performed. The fit distinguishes the resonant B0 → D(∗)−a+

0 signal, where a+
0 →

ηπ+, from expected non-resonant B0 → D(∗)−ηπ+ events, resonant B0 → D(∗)−D+
s ,

and background events. The B0 → D(∗)−D+
s events are used as a control sample to

validate the analysis. The branching fraction of the non-resonant B0 → D(∗)−ηπ+ events
is measured simultaneously with the measurement of the B0 → D(∗)−a+

0 branching
fraction.

This thesis is organized in the following chapters. Chapter 1 gives an overview of
the presence of CP violation in the Standard Model and how the B0 → D(∗)−a+

0 decays
are sensitive to the CKM angle γ. Subsequently, this chapter describes factorization
with QCD corrections and how the branching fraction of the B0 → D(∗)−a+

0 decay is
sensitive to the kinematic terms used in factorization. Also, the possibility of rescattering
contributions to the decay amplitude is discussed. Chapter 2 describes the experimental
setup of the BABAR experiment. Chapter 3 describes the general setup of the signal
selection, the data and Monte Carlo samples used, and the reconstruction of the B
mesons. Chapter 4 describes the final selection of the signal. The selection variables
are introduced and the procedure to optimize the cuts on these variables is described.
Chapter 5 presents the setup of the three dimensional likelihood fit, the behavior of
the fit on the Monte Carlo and data sample and the method that is used to extract
the branching fraction from the fit results. In chapter 6 various validation tests are
described that have been performed to test the fit procedure and the data selection.
Chapter 7 reports on the systematic uncertainties that are present in the analysis. The
results of the measurement are presented in Chapter 8, and finally Chapter 9 discusses
the conclusions that can be drawn from the results.

3
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Chapter 1

Complex B physics

This thesis presents the analysis of the search for B0 → D(∗)−a+
0 decays1. The interest

for these decays is motivated by two arguments that will be discussed at length in this
chapter.

The first argument is the sensitivity of the decay modes to the CKM angle γ, which is
the least accurately known angle of the Unitarity Triangle. There are many more decays
sensitive to this angle, but the time-dependent analysis of the B0 → D(∗)−a+

0 decay is
expected to have larger sensitivity to the asymmetry than the decays that are currently
deployed for the measurement of γ, such as B0 → D∗−ρ+ and B0 → D∗−π+. This will
be motivated in the first five sections of this chapter.

The second argument is that the predicted decay amplitude is sensitive to differences
in theoretical QCD factorization models. The usually dominant ‘factorizing terms’ in B
decay amplitudes are suppressed by several mechanisms for the B0 → D(∗)−a+

0 decay,
described in Sect. 1.6. Owing to the suppression of the factorizing terms, non-factorizing
terms can become visible. Different models predict different sizes for these terms. There-
fore, the measurement of the branching ratio of the B0 → D(∗)−a+

0 decay can possibly
exclude factorization models, and as a result provide more knowledge of the strong effects
that occur in the hadronization of quarks. This is discussed in Sect. 1.7.

In all weak decays that produce hadrons QCD is involved, and in almost all of
these decays the hadronic physics is complex to calculate. It is the most problematic
uncertainty introduced in B physics, obfuscating the extraction of ‘clean’ electroweak ob-
servables, forcing us to carefully choose unaffected observables. A better understanding
of the hadronic processes would allow for more measurements to contribute to preci-
sion electroweak physics. The intertwinement of the complex calculations of the strong
interactions and the beauty of B physics will be brought to the attention in this chapter.

1.1 Symmetries and CP violation

Three discrete transformations occur in field theory, abbreviated as C, P and T . Charge
conjugation (C) interchanges particles and anti-particles; Parity (P ), reverses all spatial

1Charge conjugation is implied throughout this thesis, unless explicitly stated otherwise.
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Chapter 1 Complex B physics

coordinates; Time reversal (T ) reverses the time flow in physical processes. In any local
Lagrangian field theory, such as the electroweak theory, the combined effect of the three
operators, CPT , is an exact symmetry [1, 2]. The combined CP transformation replaces
a particle with its anti-particle of opposite spin-parity and reverses its momentum. For
long it was assumed to be conserved in the electroweak field theory. However, after the
discovery of P violation by Wu et. al. [3] in 1957 and CP violation in 1964 by Christenson
et. al. [4], a revolution in the understanding of the weak interaction has taken place.

The existence of CP violation is readily accommodated in the electroweak field the-
ory. CP violation arises whenever there are complex coupling constants that cannot be
removed by any set of phase redefinitions of the fields. In the Standard Model this is only
possible with three or more generations of quarks. This was first realized by Kobayashi
and Maskawa [5] and led to the prediction of the third generation particles (b and t
quarks and τ and ντ leptons) for which they received the Nobel Prize in Physics 2008.

1.2 CP violation in the CKM matrix

The interactions of charged W bosons of the weak interactions with quarks can be
written as

LW =
g√
2

∑
i,j

(VCKM )ijū
M
i γμ(1 − γ5)dM

j Wμ + h.c., (1.1)

where u and d refer to up-type and down-type quarks, i, j = 1, 2, 3 denotes the three
quark generations, g is the weak coupling constant, γμ, γ5 are Dirac matrices and Wμ the
charged weak bosons. The complex matrix elements, VCKM , are introduced to relate the
weak eigenstates to the mass eigenstates and define the relative strength of the quark
flavor transitions. The matrix elements are physical, measurable quantities.

The three up-type quarks (u, c and t) are considered pure states by convention. Flavor

mixing is induced by the 3×3 Cabibbo-Kobayashi-Maskawa mixing matrix, V̂CKM , and
operates on the three down-type quarks (d, s and b) [6, 5]. This is expressed as⎛⎝ d′

s′

b′

⎞⎠ =

⎛⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎠ ·

⎛⎝ d
s
b

⎞⎠ ≡ V̂CKM ·

⎛⎝ d
s
b

⎞⎠ . (1.2)

If there are only three generations of quarks, and the quarks cannot transform into other
quantum states, the CKM matrix must be a unitarity matrix. A popular parametrization
of the matrix is given by Wolfenstein [7]

VCKM =

⎛⎝ 1 − λ2

2
λ Aλ3(ρ−iη)

−λ 1− λ2

2
Aλ2

Aλ3[(1−ρ)−iη] −Aλ2 1

⎞⎠+ O(λ4). (1.3)

The four variables λ, ρ, η and A are called the Wolfenstein parameters. Exact definitions
of the parameters can be found in [7]. The advantage of this parametrization is that the
similarity between the CKM matrix and the unit matrix become particularly evident.

6
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VudV
∗
ub

VcdV
∗
cb

VtdV
∗

tb

VcdV
∗
cb

γ

α

β

O

η̄

ρ̄

(ρ, η)

1
Figure 1.1: CKM triangle.

The diagonal elements are close to unity and the off-diagonal elements are increasingly
small. This means that the mixing between different generations of quarks is small, also
referred to as Cabibbo-suppressed or CKM-suppressed.

The unitarity condition of the CKM matrix leads to 9 constraining relations of which
6 are orthogonality relations. These can be represented as triangles in the complex plane.
All the triangles have the same surface area, as was first pointed out by Cecilia Jarlskog
[8], but only two are not squashed and have three sides that are of comparable size which
makes over constraining of these triangles, by experiment, feasible. The orthogonality
relations describing the two non-squashed triangles are

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.4)

V ∗
udVtd + V ∗

usVts + V ∗
ubVtb = 0. (1.5)

In the Wolfenstein parametrization all entities of these two equations are the same to
leading order O(λ3). The triangle from the first relation is referred to as the Unitarity
Triangle of the CKM matrix, see Fig. 1.1. The three angles of the Unitarity Triangle are
denoted by α, β and γ and are defined as

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, (1.6)

β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
and (1.7)

γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
≡ π − α − β. (1.8)

While for a two-generation family situation the unitary matrix could have been
chosen to be real, this is no longer possible for 3 generations. The irreducible phase
introduced in the CKM matrix is the source of the CP violation that occurs in the
hadron sector in the Standard Model. The surface area of the Unitarity Triangle is thus
proportional to the size of the occurring CP violation in weak hadron decay [8].
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Figure 1.2: Current status of the constraints on the CKM triangle [9].

From experimental knowledge of weak hadron interactions, assuming unitarity and
three generations, the current 90% confidence limits on the magnitude of the CKM
matrix elements are [9]

|VCKM | =

⎛⎝ 0.9739–0.9751 0.221–0.227 0.0029–0.0045
0.221–0.227 0.9730–0.9744 0.039–0.044
0.0048–0.014 0.037–0.043 0.9990–0.9992

⎞⎠ . (1.9)

The current status of the constraints on the CKM triangle are shown in Fig. 1.2. It is
clear from the plot that the least constrained angle, by direct measurements, is γ. A
precise direct measurement of this angle will decrease the uncertainty on the apex along
the ρ axis. A summary of the present constraints of the three angles is given in Table
1.1.

8



1.3 CP violation through interference

CKM angle constraints
α (88+6

−5)
◦

β (21.5+1.4
−0.5)

◦

γ (77+30
−32)

◦

Table 1.1: Current constraints on the CKM angles α, β and γ [9].

The decays of B mesons are well-suited to study flavor physics and CP violation.
Large CP violating effects and large mixing, explained in Sect. 1.4.1, are possible in the
neutral Bd and Bs systems. The advantage over exploiting neutral K and D mesons is
that the large mass of the B meson makes it possible to have a better understanding
of the hadronic physics involved in decays, because mb � ΛQCD, which is needed to
extract the size of the electroweak physics involved in the decay. Another advantage is
the large number of B meson decay modes that makes it possible to measure the CKM
angles in various ways reducing the theoretical and experimental uncertainties.

1.3 CP violation through interference

A direct measurement of CP violation necessarily has to be performed by the study of
interference of amplitudes. Only then it is possible to study the complex phases in the
CKM matrix.

In general an amplitude can contain a CP even part, which is invariant under the
CP operation, and a CP odd part, which changes sign under the CP operation. Let us
now introduce an amplitude, A, to a final state f , with two independent contributions,

Af = A1e
i(δ1+φ1) + A2e

i(δ2+φ2), (1.10)

where δ1 and δ2 are the CP even phases and φ1 and φ2 are the CP odd phases. The total
decay rate can now be expressed as

|Af |2 = AfA
∗
f (1.11)

= (A1e
i(δ1+φ1) + A2e

i(δ2+φ2)) · (A1e
−i(δ1+φ1) + A2e

−i(δ2+φ2)) (1.12)

= |A1|2 + |A2|2 + |A1A2|ei(Δδ+Δφ) + |A1A2|e−i(Δδ+Δφ) (1.13)

= |A1|2 + |A2|2 + 2|A1A2| cos(Δδ + Δφ), (1.14)

where we have used the convention Δδ ≡ δ1 − δ2 and Δφ ≡ φ1 −φ2. The CP conjugated
process Af is then

|Af |2 = AfA
∗
f (1.15)

= (A1e
i(δ1−φ1) + A2e

i(δ2−φ2)) · (A1e
−i(δ1−φ1) + A2e

−i(δ2−φ2)) (1.16)

= |A1|2 + |A2|2 + |A1A2|ei(Δδ−Δφ) + |A1A2|e−i(Δδ−Δφ) (1.17)

= |A1|2 + |A2|2 + 2|A1A2| cos(Δδ − Δφ). (1.18)

9



Chapter 1 Complex B physics

The unnormalized asymmetry is then defined as

|Af |2 − |Af |2 = 2|A1A2|{cos(Δδ + Δφ) − cos(Δδ − Δφ)} (1.19)

= 4|A1A2| sin(Δδ) sin(Δφ). (1.20)

From this it can be seen that both CP even and CP odd phases are necessary to observe
CP violation; if there is no CP even phase, the asymmetry collapses. The magnitude of
the observable effect is related to the ratio of the amplitudes∣∣∣∣∣Af

Af

∣∣∣∣∣
2

=

∣∣∣∣ |A1|2 + |A2|2 + 2|A1A2| cos(Δδ + Δφ)

|A1|2 + |A2|2 + 2|A1A2| cos(Δδ − Δφ)

∣∣∣∣2 . (1.21)

If both |A1| and |A2| are of almost equal magnitude and with a different phase, the asym-
metry is large, while a large difference in magnitude gives, at most, a small observable
asymmetry.

The measurable CP odd phases occur only in the CKM matrix in the hadron sector
of the Standard Model [10] and are called weak phases. The CP even phases can occur
in scattering or the decay amplitudes. Usually dominant rescattering phases are owing
to the strong interaction, thus the CP even phases are referred to as strong phases.

1.4 CP violation in B decays

1.4.1 Mixing of neutral B mesons

Neutral B-mesons have mass eigenstates that are not flavor eigenstates. The flavor eigen-
states are useful to understand particle production and decay processes. The states of
definite mass and lifetime are, by definition, eigenstates of the Hamiltonian describing
the system. If CP was a good symmetry the mass eigenstates would also be CP eigen-
states. This is not the case and will be discussed later on. The mass eigenstates are, in
general, not the same as the flavor eigenstates and so the flavor eigenstates are mixed
with one another as they evolve.

The flavor mixing occurs through second-order weak interactions that are illustrated
in Fig. 1.3. This process was first observed in 1987 by both the ARGUS experiment [11]
and the UA1 experiment [12].

An arbitrary linear combination of the neutral B-meson flavor eigenstates is given
by

|ψ(t)〉 ≡ a|B0〉 + b|B0〉. (1.22)

The Schrödinger equation for the time evolution and decay can be written as

i
d

dt

{
a
b

}
= {M − i

2
Γ}
{

a
b

}
, (1.23)

where M and Γ represent the mass and decay-width, 2 × 2 Hermitian, matrices. The
off-diagonal terms, M12 and Γ12, arise from the box diagram illustrated in Fig. 1.3. The
light |BL〉 and heavy |BH〉 mass eigenstates are given by

|BL〉 = p|B0〉 + q|B0〉, |BH〉 = p|B0〉 − q|B0〉. (1.24)
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B0 B0

t

W W

t

d

b

b

d

Vtd V ∗
tb

V ∗
tb Vtd

B0 B0

W

t

W

t

d

b

b

d

Vtd V ∗
tb

V ∗
tb Vtd

Figure 1.3: Leading box diagrams for the B0 − B0 transitions.

The complex coefficients p and q obey the normalization condition

|q|2 + |p|2 = 1. (1.25)

The mass difference Δmd and the decay width difference ΔΓd are defined as

Δmd ≡ MH − ML, (1.26)

ΔΓd ≡ ΓH − ΓL, (1.27)

where H and L refer to the heavy and light B mass eigenstates. The lifetime difference
ΔΓd is sensitive to Γ12, which is produced by decay channels common to both the B0

and B0, e.g. B → DD. The branching ratios for such channels are at or below the level
of 10−3. The eigenvalues of Eq. (1.23) can now be expressed as

(Δmd)
2 − 1

4
(ΔΓd)

2 = 4(|M12|2 −
1

4
|Γ12|2), (1.28)

ΔmdΔΓd = 4Re(M12Γ
∗
12). (1.29)

The ratio q/p is given by

q

p
=

√
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

. (1.30)

The Standard Model predicts |q/p|−1 = (2.5−6.5) ·10−4 [9]. From this it is assumed
that ΔΓd � Γd [13], confirmed by the measurements |ΔΓd/Γd| = 0.009 ± 0.037 [14].

The mass difference Δmd, on the other hand, is well known

Δmd = 0.507 ± 0.005 ps−1[14]. (1.31)

In conclusion, the two mass eigenstates have virtually equal lifetimes but noticeably
different masses. This implies that Eq. (1.28) and (1.30) can be simplified to

Δmd = 2|M12|, q/p = −|M12|/M12. (1.32)
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Chapter 1 Complex B physics

1.4.2 Time evolution of neutral B mesons

Any B meson state can be written as an admixture of the states BH and BL whose
coefficients evolve in time

aH(t) = aH(0)e−iMH te−
1
2
ΓH t, aL(t) = aL(0)e−iMLte−

1
2
ΓLt. (1.33)

A state that is created at time t = 0 as initially pure B0, is denoted |B0
phys〉, has aL(0) =

aH(0) = 1/(2p). Similarly an initially pure B0, |B0
phys〉, has aL(0) = −aH(0) = 1/(2q).

The time evolution of these states is thus given by

|B0
phys(t)〉 = g+(t)|B0〉 + (q/p)g−(t)|B0〉, (1.34)

|B0
phys(t)〉 = (p/q)g−(t)|B0〉 + g+(t)|B0〉, (1.35)

where

g+(t) = e−iMte−Γt/2 cos(Δmdt/2), (1.36)

g−(t) = e−iMte−Γt/2i sin(Δmdt/2), (1.37)

that uses M = 1
2
(MH + ML) and Γ = 1

2
(ΓH + ΓL).

1.4.3 Coherent B0B0 states

At the BABAR experiment the B0B0 meson pair is produced through the process e+e−

→ Υ (4S) → B0B0. Through this production mechanism the B0 and B0 mesons are
produced in a coherent L = 1 state. Each of the two produced B mesons evolves in time
as is described above. However, owing to Bose-Einstein statistics they must evolve in
phase coherently so that, until the first decay, one of each B meson flavors is present.
Once the first B meson decays, the second continues to evolve.

The two particles have back-to-back momenta in the Υ (4S) rest frame. The forward
and backward moving B mesons have the proper times tf and tb. Now the B0B0 state
is described as

|B0
physB

0
phys; tf , tb〉 = {|B0

phys(tf )〉|B0
phys(tb)〉 − |B0

phys(tf)〉|B0
phys(tb)〉}/

√
2. (1.38)

We now first introduce

Ai ≡ 〈fi|HW |B0〉, Ai ≡ 〈fi|HW |B0〉. (1.39)

From Eq. (1.38) and Eqs. (1.34-1.37) one can derive the amplitude for decays where one
of the B’s decays to any final state f1 at time t1 and the other decays to f2 at time t2

A(t1, t2) = {〈f1|HW |B0
phys(t1)〉〈f2|HW |B0

phys(t2)〉
−〈f1|HW |B0

phys(t1)〉〈f2|HW |B0
phys(t2)〉}/

√
2

=
1√
2
e−(Γ/2+iM)(t1+t2){cos(Δmd(t1 − t2))(A1A2 − A1A2)

−i sin(Δmd(t1 − t2))(
p

q
A1A2 −

q

p
A1A2)}. (1.40)
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1.4 CP violation in B decays

The time dependent rate for producing the combined final states f1, f2 is then

R(T,Δt) = Ce−ΓT{(|A1|2 + |A1|2)(|A2|2 + |A2|2) − 4Re(
q

p
A∗

1A1)Re(
q

p
A∗

2A2) (1.41)

− cos(ΔmdΔt)[(|A1|2 − |A1|2)(|A2|2 − |A2|2) + 4Im(
q

p
A∗

1A1)Im(
q

p
A∗

2A2)]

+ sin(ΔmdΔt)[Im(
q

p
A∗

1A1)(|A2|2 − |A2|2) − (|A1|2 − |A1|2)Im(
q

p
A∗

2A2)]},

where C is a normalization constant, and substitutions have been made for T = t1 + t2
and Δt = t1−t2. This expression can be integrated over the experimentally unobservable
variable T that has the range (|Δt|,∞). This changes Ce−ΓT to C ′e−ΓΔt in Eq. (1.41). As
a consequence only the decay-time difference, Δt, has to be measured, which is achieved
by measuring the distance between the two B decays. As a consequence, no information
is needed on the Υ (4S) decay vertex (which would introduce large errors!). This is the
premise of the B factories.

Another advantage of the coherent production of the two B mesons is that by em-
ploying special B decays, so called tagging decays, knowledge on the flavor of the other
B can be derived. An example of such a tagging decay is B0 → D∗−l+ν. In this decay
the charge of the lepton is directly connected to charge of the b quark contained in the
B meson. If one B decays through one of the tagging decays, not only do we know the
flavor of the decaying B meson at time Δt = 0, we also know that at the same time the
other B is of the opposite flavor.

1.4.4 Three types of CP violation in B decays

In the neutral B system we have two different ingredients in the amplitude that can cause
interference: mixing and decay. The two ingredients give three different combinations:
mixing, decay and the combination of mixing and decay. All three types are based on
the interference mechanism explained in Sect. 1.3.

Direct CP violation

Direct CP violation is also known as CP violation in decay. Given the process B → f
and B → f with decay amplitudes Af and Af , direct CP violation occurs when∣∣∣∣∣Af

Af

∣∣∣∣∣ �= 1. (1.42)

In this type of CP violation no B0B0 mixing is involved and it can occur in both neutral
and charged B meson decays. The CP asymmetry

ACP ∝
1 − |Af/Af |2

1 + |Af/Af |2
, (1.43)

from which then follows
ACP �= 0. (1.44)
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B0

B0

f

I

II

Af

arg(q/p) Af

B0

B0

f

III

IV

Af

arg(p/q) Af

Figure 1.4: Four decay paths are illustrated. The B0 meson can (I) directly decay
to final state f , or (II) first oscillate to a B0 and then decay to the
same final state. For B0 the analog paths are shown in (III) and (IV).

An example of direct CP violation is the decay B0 → K+π−, which has a measured
asymmetry of −0.133 ± 0.030 (stat) ±0.009 (sys) [15].

The interpretation of the experimental results in terms of CKM matrix elements is
not straightforward. The asymmetry also depends on the strong phases and the uncer-
tainty that follows from the calculation of these phases is dominant. One should note
that the uncertainties do not apply to the observation of direct CP violation itself as
the strong interactions are invariant under CP transformations.

CP violation in mixing

CP violation in mixing is also referred to as indirect CP violation. In Eq. (1.26) and
(1.27), mH ,mL,ΓH and ΓL are in principal all complex numbers. If the interference
between the heavy and light mass states give rise to an overall phase difference (|q/p| �=
1), the probabilities of the oscillations of B0 → B0 are different from B0 → B0.

CP violation in mixing is studied in semi-leptonic decays by measuring

ACP =
Γ(B0

phys(t) → l−νlX) − Γ(B0
phys(t) → l+νlX)

Γ(B0
phys(t) → l−νlX) + Γ(B0

phys(t) → l+νlX)
=

1 − |q/p|4
1 + |q/p|4 . (1.45)

The CP asymmetry is expected to be small, at the order of O(10−2), and to date has
not been observed.

CP violation in interference between mixing and decay

The third type of CP violation, relevant to the B0 → D(∗)−a+
0 decay, occurs via quantum-

mechanical interference between two possible amplitudes for the same physical process.
Consider the final state f accessible to both B0 and B0. Mixing now occurs between the
decay paths B0 → f and B0 → B0 → f . This is illustrated in Fig. 1.4.

The final state f can be a CP eigenstate, f = ±f (e.g. Bd → J/ψK0
S). In this case

the difference between the decay paths I and II in Fig. 1.4 comes solely from q/p that
comes from the B0B0 oscillations.

The case of a non-CP final state is worked out in Sect. 1.5.
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W
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c

V ∗
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Vcd

Figure 1.5: The CKM favored (left) and doubly CKM suppressed amplitude (right)
for the decays B0 → D(∗)±h∓.

1.5 The CKM-angle γ

One way of measuring the angle γ is through the decay of B0 → D(∗)+h−, where h− is
a meson containing a u and d quark, such as π−, ρ− or a−

0
2.

The final states D(∗)+h− and D(∗)−h+ are accessible for both B0 and B0 states. The
leading Feynman diagrams for the B0 decay are shown in Fig. 1.5.

1.5.1 Time dependent CP asymmetry of B0 → D(∗)+h−

From Eq. (1.41) we write the proper-time distributions for
( )

B0 → D(∗)±h∓

R(B0(Δt) → D(∗)−h+) = Ne−|Δt|/τB0
(
1 + C cos(ΔmdΔt) + (−1)LS+ sin(ΔmdΔt)

)
,

R(B0(Δt) → D(∗)−h+) = Ne−|Δt|/τB0
(
1 − C cos(ΔmdΔt) − (−1)LS+ sin(ΔmdΔt)

)
,

R(B0(Δt) → D(∗)+h−) = Ne−|Δt|/τB0
(
1 + C cos(ΔmdΔt) − (−1)LS− sin(ΔmdΔt)

)
,

R(B0(Δt) → D(∗)+h−) = Ne−|Δt|/τB0
(
1 − C cos(ΔmdΔt) + (−1)LS− sin(ΔmdΔt)

)
,

(1.46)

where we neglect the decay width difference, τ 0
B is the B0 lifetime, and L is the angular

momentum of the decay. The cosine terms come from interference between an even
number (or direct decay) and odd number of B0B0 oscillations. The S and C terms are

S± = −2Im(λ±)

1 + |λ±|

2

, and C =
1 − r2

±
1 + r2

±
, (1.47)

with
r+ ≡ |λ+|, r− ≡ |λ−|, (1.48)

and

λ± ≡ λ[D(∗)±h∓] ≡ q

p

A(B0 → D(∗)∓h±)

A(B0 → D(∗)∓h±)
. (1.49)

2Throughout this thesis a0 will refer to the a±
0 (980) meson.
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Assuming no CP violation in mixing (|q/p| = 1), as is expected in the Standard Model,
a good approximation is given by

q

p
=

V ∗
tbVtd

VtbV
∗
td

= e−i2β, (1.50)

using phase convention defined by the Wolfenstein parametrization. For the final state
D(∗)+h− the amplitude decay ratio is given by

A(B0 → D(∗)+h−)

A(B0 → D(∗)+h−)
=

VcbV
∗

ud

VcdV
∗

ub

M(B0 → D(∗)+h−)

M(B0 → D(∗)+h−)
, (1.51)

where M(B0 → D(∗)+h−) and M(B0 → D(∗)+h−) are hadronic decay amplitudes in-
duced by strong interactions.

The combination of Eq. (1.50) and (1.51) and the angle definitions in Eq. (1.8) gives

λ− = λ[D+h−] = e−i(2β+γ)

∣∣∣∣VcbV
∗
ud

VcdV
∗
ub

∣∣∣∣ M(B0 → D(∗)+h−)

M(B0 → D(∗)+h−)
, (1.52)

= e−i(2β+γ−δDh)

∣∣∣∣VcbV
∗
ud

VcdV
∗
ub

∣∣∣∣ ∣∣∣∣M(B0 → D(∗)+h−)

M(B0 → D(∗)+h−)

∣∣∣∣ , (1.53)

where δDh is the strong phase difference between M(B0 → D(∗)+h−) and M(B0 →
D(∗)+h−). The case of the final state D(∗)−h+ gives the ratio

A(B0 → D(∗)−h+)

A(B0 → D(∗)−h+)
=

VubV
∗
cd

VudV
∗
cb

M(B0 → D(∗)−h+)

M(B0 → D(∗)−h+)
. (1.54)

Conservation of CP in the strong interactions guarantees M f = Mf and Mf = Mf so
we can write

λ+ = λ[D−h+] = e−i(2β+γ+δDh)

∣∣∣∣VubV
∗
cd

VudV
∗
cb

∣∣∣∣ ∣∣∣∣M(B0 → D(∗)+h−)

M(B0 → D(∗)+h−)

∣∣∣∣ . (1.55)

From this we can see that |λ+| = |1/λ−| and r+ = r− ≡ r. The difference between
D∗±h∓ and D±h∓ final states is only found in the hadronic matrix elements.

We can now rewrite Eq. (1.47)

S± =
2r

1 + r2
sin(2β + γ ± δ), and C =

1 − r2

1 + r2
, (1.56)

and use this in Eq. (1.46) to get the CP asymmetry

ACP (Δt) =
FBtag=B0 − FBtag=B0

FBtag=B0 + FBtag=B0

(1.57)

=
2r

1 + r2
sin(2β + γ) cos(δ) sin(ΔmdΔt). (1.58)
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1.5 The CKM-angle γ

Here we have absorbed the factor (−1)L in Eq. (1.46) in the strong phase by changing
δ → δ + π as was first suggested by [16].

From this we conclude that the time evolution of B0 → D(∗)±h∓ is sensitive to
the CP angle γ. The asymmetry amplitude scales with the dominating CKM terms
|VubV

∗
cd/VudV

∗
cb| and the hadronic matrix element term |M(B0 → D(∗)+h−)/M(B0 →

D(∗)+h−)|, as can be seen from Eq. (1.55). The hadronic term depends on the light
unflavored charged meson that is substituted for h±, while the CKM term does not
depend on this.

1.5.2 Large asymmetries versus large statistics

From Eqs. (1.48) and (1.55) we write the asymmetry amplitude for the decay

r =

∣∣∣∣VubV
∗
cd

VudV
∗

cb

∣∣∣∣︸ ︷︷ ︸
rCKM

·
∣∣∣∣M(B0 → D(∗)+h−)

M(B0 → D(∗)+h−)

∣∣∣∣︸ ︷︷ ︸
rM

. (1.59)

From Eq. (1.9) we find that rCKM is in the order of 2.0 · 10−2. If now rM is large, this
compensates the rCKM term and the sensitivity to the asymmetry would still be large.
However, this implies that the CKM-allowed diagram in Fig. 1.5 is just as small as the
CKM-suppressed diagram. Hence, there will be less events in the sample but with a
larger asymmetry amplitude.

To understand the cost versus the benefit, we investigate the statistical error on the
asymmetry A. By using the standard error propagation

σ2
A =

(
∂A

∂FBtag=B0

σFB
tag=B0

)2

+

(
∂A

∂FBtag=B0

σFB
tag=B0

)2

(1.60)

on Eq. (1.57) and FBtag=B0 + FBtag=B0 ≡ N , we find

σA

A =

√
1 −A2

A2N
(1.61)

where N is the number of B events in the analysis sample. We can see however that
the quadratic sensitivity of the asymmetry measurement depends linearly on the decay
rate but quadratically on the asymmetry amplitude, which makes the latter a more
important contribution.

1.5.3 Asymmetry sensitivity for different h± mesons

Now that we understand the importance of a large asymmetry amplitude we have a look
on what to expect from the hadronic contribution rM .

In a naive approach we can calculate M(B → D(∗)±h∓) by simply assuming that the
CKM favored diagrams, see Fig. 1.5, can be expressed as [13]

M(B0 → D(∗)−h+) ∼ 〈h+|HW |0〉〈D(∗)−|HW |B0〉, (1.62)

M(B0 → D(∗)+h−) ∼ 〈h−|HW |0〉〈D(∗)+|HW |B0〉, (1.63)
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meson X: D(∗) Ds π ρ a0(980) a1(1260)
fX [ MeV] 200-230 294 131 210 ∼ 1.6 238

Table 1.2: Weak decay constants for different mesons taken from [9, 20, 21, 17, 22].

decay value decay value
F B→π

0 (m2
D) 0.28 AB→D∗

0 (m2
π) 0.68

F B→π
1 (m2

D∗) 0.33 AB→ρ
0 (m2

D) 0.33

F B→D
0 (m2

π) 0.67 AB→ρ
1 (m2

D∗) 0.25

Table 1.3: Form factors for different B decays taken from [20].

and the CKM suppressed diagrams

M(B0 → D(∗)+h−) ∼ 〈D(∗)+|HW |0〉〈h−|HW |B0〉, (1.64)

M(B0 → D(∗)−h+) ∼ 〈D(∗)−|HW |0〉〈h+|HW |B0〉. (1.65)

This approach is called conventional, or naive, factorization because it divides the Feyn-
man diagram in two parts that are separated by the weak current. (The principles of
factorization will be introduced in Sect. 1.7.) The hadronization part in the upper vertex
〈X|HW |0〉 is related to the weak decay constant, fX , that can be calculated or measured
in lepton decays where l → Xν. The B decay 〈Y |HW |B0〉 depends on the form factor
F (q2)B→Y and can be extracted from semi-leptonic decays or other B decays where the
Y meson cannot be produced in the upper vertex.

Table 1.2 presents the decay constants for different mesons. The decay constant for
the a0 meson, fa0 has been calculated using finite energy sum rules by Maltman [17] and
Narrison [18]. All other decay constants have been confirmed by experiments. In general
theoretical predictions of the decay constants have agreed well with the measurements,
see for example Ref. [19].

Table 1.3 summarizes the different form factors that contribute to 〈Y |HW |B〉. Very
little is known about the form factors F1(0)B→a0(980). An estimate has been made by
Chernyak [23] F1(0)B→a0(1450) � 0.46 using light-cone sum rules. This result is only
slightly larger then F B→π

0 � 0.3. A qualitative argument by Diehl and Hiller [24], based
on the work of Wirbel, Stech and Bauer [25], explains that the ratio of F B→a0(980)/FB→π

should be larger than one.

If we now look at both the decay constants and the form factors we conclude that
the form factors are all of the same order of magnitude while the decay constant of the
a0 is about 2 orders of magnitude smaller compared to the other mesons in Table 1.2.
The coupling of the a0 to the weak current is heavily suppressed by two mechanisms, G
parity and CV C suppression, which will be explained in Sect. 1.6.

First we focus on Eq. (1.59). We concluded earlier that rCKM ≈ 2 · 10−2. To increase
the amplitude asymmetry r, rM needs to be large. The hadronic asymmetry amplitude
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1.6 Electroweak a0 coupling suppressions

scales as

rM =

∣∣∣∣M(B0 → D(∗)+h−)

M(B0 → D(∗)+h−)

∣∣∣∣ ≈ 〈D(∗)+|HW |0〉〈h−|HW |B0〉
〈h−|HW |0〉〈D(∗)+|HW |B0〉

≈ fD(∗)

fh

F B→h
0/1 (m2

D/D∗)

F B→D
0/1 (m2

h)
.

(1.66)
Now assuming that

F B→h
0/1 (m2

D/D∗)

F B→D
0/1 (m2

h)
≈ O(1), (1.67)

which we conclude from the earlier discussion, we see that

rM ∝ fD(∗)

fh

. (1.68)

If we compare the decay constants of the different options for h± to that of the D(∗)±

meson we see that for the π and ρ mesons rM is in the order of one while for the a0 meson
rM is about 102. The large hadronic amplitude asymmetry for the a0 compensates the
small rCKM and leads to an asymmetry amplitude A close to the maximum of one.

1.5.4 B0 → D(∗)−a+
0 motivation

We conclude that the B0 → D(∗)−a+
0 decay has an advantage over the B0 → D(∗)−π

or B0 → D(∗)−ρ decays for the measurement of the angle γ because the asymmetry
amplitude is enhanced by a factor of O(100). At the same time the production of the
B0 → D(∗)−a+

0 decay will be at a lower rate as both the contributing diagrams are
suppressed. From Eq. (1.61) we can see however that the quadratic sensitivity of the
asymmetry measurement depends linearly on the decay rate but quadratically on the
asymmetry amplitude. As is already concluded earlier, this makes the latter a more
important contribution.

There is only one problem at the horizon. The predicted branching ratios of the
B0 → D(∗)−a+

0 decays are very small, since both contributing diagrams are small. A too
small branching ratio makes the extraction of γ in a time-dependent analysis impossible.
In section Sect. 1.7 we continue the discussion on the branching ratio predictions and
their uncertainties for this channel.

1.6 Electroweak a0 coupling suppressions

In conventional factorization the pair of quarks hadronizes independently of the rest
of the B decay. This implies that there is no final-state interaction (or rescattering)
between the hadrons coming from the W and the other hadrons of the final state. Under
this assumption the hadron production, resulting from the coupling of the quarks to
the virtual W boson, follows the production rules (the same rules as in semi-leptonic τ
decays [26]) that will be discussed in this section.
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Chapter 1 Complex B physics

The structure of the vector and axial-vector hadronic currents, consistent with Lo-
rentz invariance, has the general form [27]

Vμ = ū(p′)
[
gV (q2)γμ + gM(q2)σμνqν + igS(q2)qμ

]
v(p), (1.69)

Aμ = ū(p′)
[
gA(q2)γμγ5 + gT (q2)σμνγ5qν + igP (q2)qμγ5

]
v(p), (1.70)

where qμ = (p + p′)μ is the four-momentum transfer. The form factors gi (i = V, A,
M, S, T, P ) are functions of the Lorentz scalar q2. The values of these form factors
in the limit of zero momentum transfer, q2 → 0, are called the vector, axial vector,
weak magnetism, induced scalar, induced tensor, and induced pseudo-scalar couplings
respectively. In particular gV = gV (0) and gA = gA(0) are the leading terms in V and A
whereas the other terms are the induced weak currents.

Light unflavored charged mesons couple to either the vector term or the axial-vector
term as is dictated by their spin-parity state. ‘Natural’ spin-parity (0+, 1−, ...) states
couple to the vector term, Eq. (1.69), and ‘unnatural’ spin-parity (0−, 1+, ...) states to
the axial term, Eq. (1.70).

Now we first investigate the differences between a vector and an axial-vector weak
coupling.

1.6.1 Conserved vector and partial-conserved axial currents

The vector part of the Lagrangian Eq. (1.69) has many similarities with the electro-
magnetic current. In analogy to the electromagnetic interactions we can show that the
vector current is (almost) conserved. Taking the divergence of the leading term (any
term that contains only γμ would do) in Eq. (1.69)

∂μVμ = ∂μ(ψū gV γμ ψv
′) (1.71)

= (∂μψū) gV γμ ψv
′ + ψū gV γμ(∂μψv

′) (1.72)

= −imū ψū gV ψv
′ + i ψū gV mv ψv

′ (1.73)

= i gV ψū(mv − mū)ψv
′. (1.74)

The Dirac equation, (iγμ∂μ − m)ψv = 0, has been used to deduce Eq. (1.73) from Eq.
(1.72). Now we see that the conserved vector current (CV C) is broken by the mass
difference of the quarks that are involved. In the case of the a0 coupling the CVC is only
broken by the (small!) mass difference of the u and d quarks. In other words, the vector
current is conserved up to isospin corrections.

Similarly we investigate the axial-vector current in Eq. (1.70)

∂μAμ = ∂μ(ψū gA γμ γ5 ψv
′) (1.75)

= (∂μψū) gA γμ γ5 ψv
′ + ψū gA γμ γ5(∂μψv

′) (1.76)

= −imū ψū gA γ5 ψv
′ − i ψū gA mu γ5 ψv

′, (γμγ
5 = −γ5γμ) (1.77)

= −i gA (mv + mū)ψū γ5 ψv
′. (1.78)

This current is called the partially conserved axial current (PCAC) since it is only
broken by the masses of the involved quarks but still very small for interactions with u
and d quarks due to their small masses.
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1.6 Electroweak a0 coupling suppressions

Due to the CVC and PCAC mechanisms, light unflavored charged mesons that couple
to the vector current, natural states such as the a0 meson, are suppressed compared with
the mesons that couple to the axial current, unnatural states.

1.6.2 G parity and second-class currents

Further suppression of the a0 weak coupling arise from G parity.
The study of the symmetries of the induced weak interaction currents has introduced

the concept of G parity. The G parity operator is defined as the combination of a charge
conjugation transformation and a rotation through an angle π in isospin space [28]

G ≡ CeiπI2. (1.79)

This transformation is a symmetry of the strong interaction [28]. It is interesting to study
the properties of the terms in the vector current, Eq. (1.69), and the axial current, Eq.
(1.70), under G to determine, at least at the phenomenological level, whether all terms
are allowed under G parity conservation. Already fifty years ago Weinberg [29] classified
the currents in two parts: vector currents with G parity +1 and axial currents with G
parity −1 are called first-class currents (FCC) and the opposite combinations are called
second-class currents (SCC). The first-class currents contains the vector, gV , and weak-
magnetism, gM , form-factors in Eq. (1.69) and the axial, gA, and induced pseudo-scalar,
gP , form factors in Eq. (1.70). The induced scalar, gS, in Eq. (1.69) and induced tensor,
gT , in Eq. (1.70) belong to the second-class currents.

The requirement that V and A currents have definite G parity appears in the elab-
oration of a unified electroweak theory by Feynman and Gell-Mann [30] that was based
on the work of Sudarshan and Marshak [31]. This requirement implies that either FCC
or SCC can exist. The existence of FCC is ensured by the measurement of the large
vector, gV , and axial-vector, gA, form vectors. Hence it follows that the SCC should not
exist and gS(q2) = 0 and gT (q2) = 0.

According to this theory a virtual W boson that produces a ud state can produce
even G parity natural spin-parity states or odd G parity unnatural spin-parity states.

In Table 1.4 a summary of the quantum numbers and weak decay constants are given
for several mesons. The combination of G parity and spin-state gives the classification
for first or second-class current. It is apparent from the table that indeed the second-class
W decay constants for the b1 and the a1 mesons are suppressed. The effect of G parity
suppression is most apparent in the large difference between the W coupling strength
of the a±

1 and b±1 mesons.
In summary the coupling strength of the a0 meson to the weak current is doubly

suppressed. The first suppression mechanism is via G-parity, or second-class current
suppression, and the second mechanism is due to the conserved vector current in the
weak interaction.

Experimental limits on second-class currents

A limit on the existence of second-class currents, or breaking of G parity, has been set
by different experiments in both lepton decays and nuclear decays.
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Chapter 1 Complex B physics

X π± a±
1 (1260) b±1 (1235) a±

0 (980) ρ± η
mX [ MeV ] 139.6 1230 1229.5 984.7 775.5 547.5
G − − + − + +
JP 0− 1+ 1+ 0+ 1− 0−

weak coupling A A A V V n.a.
FCC or SCC FCC FCC SCC SCC FCC n.a.
fX [ MeV ] 131 238[22] ∼0.6[22] ∼1.6 210

Table 1.4: Summary of quantum numbers and decay constants for different mesons.
For the charged mesons it is indicated to which part of the weak interac-
tion the meson couples (natural states to the vector term and unnatural
states to the axial term). From the combination with the G parity and
the weak coupling it follows that the meson decays via a first-class cur-
rent (FCC) or second-class current (SCC).

For example the leptonic decay, τ → ντπη is used for this purpose. The ηπ system
has parity [32]

P (ηπ) = P (η)P (π)(−1)J = (−1)(−1)(−1)J = (−1)J , (1.80)

and thus has the natural spin-parity JP = 0+ or 1−. The G parity of the system is given
by

G(ηπ) = G(η)G(π) = (+1)(−1) = −1. (1.81)

The combination of the spin parity and the G parity makes it a second-class current.
In 1987 a positive signal on the G-parity non-conserving [33] decay τ → ντπη was set
by Derrick et. al. [32]. The anxiety that followed after the apparent observation of the
existence of this second-class current lead to many other searches for this decay by other
experiments, for example [34, 35], but the measurement could not be repeated. Later it
was concluded that the signal found by [33] was more likely a statistical fluctuation or
background feature [36]. The current limit on this decay is 1.4 · 10−4 at 90% confidence
limit (CL). The limit on τ → η′(958)πντ was recently set at 7.2 · 10−6 at 90% CL by
BABAR [37].

Excellent reviews of the second-class current searches can be found in Refs. [38, 39].

1.7 Factorization and B0 → D(∗)−a+
0 production am-

plitude

In B decays a technique called factorization is used to estimate the size of the decay
amplitude. In fact we have already used this technique in Sect. 1.5.3 to estimate the
asymmetry amplitude for different B decays.

The factorization principle is based on the operator product expansion (OPE) for-
malism proposed by Wilson [40]. A weak meson decay amplitude A for a decay process
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1.7 Factorization and B0 → D(∗)−a+
0 production amplitude

can be expressed as [41]

A = 〈Heff 〉 =
∑

i

Ci(μ,MW )〈Oi(μ)〉. (1.82)

The amplitude A is then factorized into the Wilson coefficient functions Ci and the
matrix elements of local operators Oi. In this process the W boson and other fields with
mass bigger than a factorization scale μ are integrated out. The effect of their existence
is however implicitly taken into account in the Wilson coefficients. In a more intuitive
interpretation one can view the expression

∑
CiOi as an effective Hamiltonian for the

process considered, with Oi as the effective vertices and Ci the corresponding coupling
constants.

The calculated physical parameter, in this case A, should not depend on the chosen
artificial scale μ. However, most calculations do have some scale dependence because of
the approximations made. In B physics the scale is usually chosen to the mass of the b
quark (μ = mb) [42]. The uncertainty in the calculation is then typically estimated from
the changes in the calculated quantity as the scale is varied from mb/2 < μ < 2mb.

We now use the factorization principles to calculate the decay amplitude for the
B0 → D(∗)−a+

0 decay.

1.7.1 Matrix elements for hadronic two-body B decays

We follow the work of Diehl and Hiller [24] and present the low-energy (only taking into
account gV and gA in Eqs. (1.69) and (1.70)) effective weak Hamiltonian that describes
the hadronic two-body B decay

Heff =
GF√

2

[ ∑
j,k=u,c

VjbV
∗

kd(C1O
jk
1 + C2O

jk
2 ) − VtbV

∗
td

∑
i

CiOi

]
+ h.c., (1.83)

where Vxy are the CKM matrix elements from Eq. (1.3), and Ci and Oi are the Wilson
coefficients and local operators equivalent to Eq. (1.82). The first two operators O1 and
O2 correspond to the tree level diagrams. The remaining operators are of the so-called
penguin type and have no important contributions to the B0 → D(∗)−a+

0 decay. The two
operators that contribute are

Ocu
1 = c̄αγμ(1 − γ5)bαd̄βγμ(1 − γ5)uβ, (1.84)

Ocu
2 = c̄αγμ(1 − γ5)bβ d̄βγμ(1 − γ5)uα, (1.85)

where α and β are color indexes. In conventional factorization, the matrix element
〈Y X|Heff |B〉 is written as the product of matrix elements corresponding to the B
decay to Y , and the vacuum and X. By applying a Fierz transformation and keeping
only color singlet contributions [43] the effective Hamiltonian Heff is replaced by the
effective transition operator T

〈D(∗)a0|Heff |B〉 =
GF√

2
〈D(∗)a0|T |B〉, (1.86)
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Chapter 1 Complex B physics

Figure 1.6: Order αS vertex corrections. The two upward lines create the a0 meson.
The spectator quarks are not drawn.

where

T = VcbV
∗
ud

[
a1c̄γ

μ(1 − γ5)b ⊗ d̄γμ(1 − γ5)u + a2d̄γμ(1 − γ5)b ⊗ c̄γμ(1 − γ5)u
]
, (1.87)

the ⊗ symbols indicate that the matrix elements are to be taken in factorized form
(〈D(∗)a0|j1 ⊗ j2|B〉 ≡ 〈D(∗)|j1|B〉〈a0|j2|0〉). The coefficients a1 and a2 are related to the
Wilson coefficients C1 and C2 at leading order by

a1 = C1 +
1

Nc

C2 and (1.88)

a2 = C2 +
1

Nc

C1, (1.89)

where Nc = 3 is the number of colors3. The coefficient a1 is color allowed and a2 is color
suppressed.

The Wilson coefficients Ci depend on the scale μ and on the strength of the strong
coupling αs. The coefficients at the b mass scale μ = mb have been calculated to leading
order to be a1 = 1.020 and a2 = 0.140 [44]. Eq. (1.86) now becomes

〈D−(∗)a+
0 |Heff |B〉 = 〈D−(∗)|HW |B〉〈a0

+|HW |0〉. (1.90)

Note that the color suppressed part (term with a2 in Eq. (1.87)) produces neutral D0(∗)

and a0
0 mesons in the final state.

We have now derived the expression that factorizes the B0 → D(∗)−a+
0 decay in two

parts: the B → D decay and the a0 produced via the weak interaction.

1.7.2 QCD factorization

Beneke, Buchalla, Neubert and Sachrajda showed [44] that for higher order in αs the
simple factorization as expressed in Eq. (1.87) is broken. Some ‘non-factorizing’ diagrams
can be absorbed in correction terms that can be calculated. This can be expressed in
the form

〈D(∗)a0|T |B〉 = 〈D(∗)|j1|B〉〈a0|j2|0〉 ·
[
1 +

∑
rnα

n
s + O(ΛQCD/mb)

]
. (1.91)

3Note that this definition of C1 and C2 follows the convention of [44] and differs from [43] where
labels 1 and 2 have been interchanged.
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B0 D(∗)−

a+
0

W

d

b̄

d̄

d

c̄

u

V ∗
cb

Vud

B0 a+
0

D(∗)−

W

d̄

b

d

d̄

u

c̄

Vub

V ∗
cd

Figure 1.7: Feynman diagrams for the CKM favored B0 decay (left) and doubly
CKM suppressed B0 decay (right) to the final state D(∗)−a+.

In this QCD factorization approach the ‘non-factorizing’ terms are separated into a soft
part that is power suppressed and a hard part of order αs [45]. The hard scattering
diagrams relevant to the decay B0 → D(∗)−a+

0 are calculable and are shown in Fig. 1.6
[46].

Following Ref. [44] a correction term is added to a1 to include the diagrams from
Fig. 1.6. The coefficient a1 at next-to-leading order (NLO) read

a1 = C1 +
1

Nc

C2︸ ︷︷ ︸
afact

+
αs

4π

CF

N
C2F︸ ︷︷ ︸

acor

, (1.92)

where CF = (N2
c − 1)/(2Nc) and F is a function depending on a meson distribution

amplitude ϕX(u), where u is the momentum fraction that is carried by the quark in
meson X, describing the transition from the qq̄ pair to meson X. For details see Ref.
[46]. For a non-suppressed weak decay constant the acor amounts to only a few percent of
the leading order afact [24]. For suppressed decays, such as in the B0 → D(∗)−a+

0 decay,
the correction term can become visible. This is interesting because the dependence on the
distribution amplitude ϕX(u) and the scale factor μ, provide insight in the kinematical
features of factorizing models [24].

1.7.3 Branching ratio of the CKM allowed decay

Diehl and Hiller [24] estimate the branching ratios for the decay B0 → D(∗)−a+
0 , using

the hard-scattering correction terms, where the a0 is produced in the upper vertex (left
diagram in Fig. 1.7). The meson distribution amplitude ϕa0(u) is calculated using a
so-called light-cone calculation method. Results of the calculations are summarized in
Table 1.5. The prediction of the branching ratio using QCD factorization is about twice
the predicted branching ratio calculated with the conventional factorization model. The
prediction relies heavily on the choice of the scale factor μ.
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decay mode naive factorization QCD factorization
μ = mb μ = mb/2

B0 → D−a+
0 1.1 · 10−6 2.0 · 10−6 4.0 · 10−6

B0 → D−∗a+
0 1.0 · 10−6 1.8 · 10−6 3.7 · 10−6

Table 1.5: Summary of predicted branching fractions for the CKM allowed decay.

B0 a+
0

D
(∗)−
s

W

c̄

b

s

d̄

u

c̄

Vub

V ∗
cs

Figure 1.8: Feynman diagram for the B0 → D
(∗)−
s a0+ decay.

Quark state nature of the a0 meson

The meson distribution amplitude depends on the quark structure of the involved meson.
In the calculations of Diehl and Hiller [24] the assumption was made that the a0 meson
consists of a u and a d quark. Arguments are made in the literature that the nature
of the a0 meson should be interpreted as a four-quark q2q̄2 state [47]. For a discussion
on this topic see Ref. [17]. We follow the arguments made by Cheng, Chua and Yang
[48], and Diehl and Hiller [24], that if the observed branching ratio is much smaller than
the predictions presented in Table 1.5 this could indicate the a0 meson has a four-quark
structure.

1.7.4 Branching ratio of the CKM suppressed decay

The branching ratio of the B0 → D(∗)−a+
0 decay where the B meson decays directly in the

a0 meson (right diagram in Fig. 1.7) are calculated to be B(B0 → D+a−
0 ) = 2.1·10−6 and

B(B0 → D∗+a−
0 ) = 1.9 · 10−6[24]. In this calculation only the conventional factorization

contributions are calculated. QCD factorization corrections are hard to calculate for this
diagram as simplifications based on the heavy-light decay structure cannot be made.
However, the QCD factorization correction terms are expected to be small (in the order
of a few percent) since the D(∗)± decay is not suppressed and the naive weak decay
constant is large, see also Table 1.2.

The form factor F B→a0 has large uncertainties, see also the discussion on this in
Sect. 1.5.3. If this form factor is much larger than expected, the contribution of the
CKM suppressed diagram is much larger. In turn, this affects the measurement of the
non-factorizing terms.

One way to verify the numerical assumptions and test the validity of the factorization
approach is to measure the branching fractions for the SU(3) conjugated decay modes
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B0

Y

X

Figure 1.9: Non-factorizable annihilation diagram.

B0 → D
(∗)+
s a−

0 . These decays can only occur via a single tree diagram presented in Fig.
1.8. We calculate the branching ratio for these decay using the predictions made by Diehl
and Hiller [24] for the B0 → D(∗)−a+

0 decays, and replacing the CKM elements Vcd by
Vsd and form factors fD by fDs. The predicted branching ratio is then ∼ 8 · 10−5. Upper
limits are set by the BABAR collaboration at 90% CL at B(B0 → D+

s a−
0 ) < 1.9 · 10−5

and B(B0 → D∗+
s a−

0 ) < 3.6 · 10−5[49]. The upper limit value for B0 → D
(∗)+
s a−

0 is lower
than the theoretical expectation, indicating that the CKM suppressed contribution in
the B0 → D(∗)−a+

0 decay is lower than assumed.

In the B0 → D(∗)−a+
0 decay, the conventional factorizing terms in both the CKM

suppressed and allowed diagrams are small making it possible to measure the effects of
higher-order factorizing terms. Also non-factorizing effects, that are not included in the
correction term acor such as annihilation diagrams, see Fig. 1.9, can contribute to this
decay mode [24].

1.8 Final-state interactions

In this section we evaluate the effects of final-state interactions (FSI) contributing to
the B0 → D(∗)−a+

0 decay amplitudes.

Rescattering effects are soft, long distance, strong interactions between final states. In
non-leptonic two body B decays, rescattering effects occur between the weakly produced
hadronic states. A schematic drawing of the decay B → M1M2 → M3M4, is presented
in Fig. 1.10.

Rescattering can be categorized in two classes, elastic rescattering where the weakly
produced mesons remain in the same isospin multiplet and inelastic rescattering where
the produced mesons M1 and M2 exchange quantum numbers, such as spin, and rescatter
to mesons M3 and M4.

One form of inelastic rescattering is when weakly produced vector-pseudoscalar
(VP) state as for example D∗π rescatter in the PV state Dρ [50], other examples are
K∗π ↔ Kρ [25]. Note that in the rescattering processes the total angular momentum
is conserved; the angular momentum J is transfered from one produced meson to the
other. Under time invariance, the rescattering occurs in both directions equally. In a
very similar way rescattering may occur in the process Da1 ↔ D∗a0.

Final-state interactions can modify the phase and magnitude of decay amplitudes.
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B

M3

M4

M1

M2

Figure 1.10: Schematic drawing of the weak decay B → M1M2 and the final-state
rescattering of M1M2 → M3M4.

Following Watson [51], and Nardulli and Pham [50] this is expressed as

A =
√

SAb, (1.93)

where Ab are the bare weak production amplitudes, S is the scattering matrix and A
are the final amplitudes. The scattering effects are independent of the weak productions
processes. Amplitudes, which are small before final-state interactions, can receive im-
portant contributions via rescattering with stronger coupled channels [25]. In the case
of Da1 ↔ D∗a0 this means that although the rescattering effects of Da1 → D∗a0 are
as strong as the time reversed process D∗a0 → Da1, the first process is expected to
be larger since the bare weak production amplitude for B0 → D−a1(1260)+ is about a
thousand times larger than the predicted B0 → D∗−a+

0 production.
A reliable way to compute soft non-perturbative effects, like inelastic rescattering,

is missing at present. There are at current no theoretical predictions for the size of
the inelastic rescattering effects in Da1 ↔ D∗a0. Instead we use the only quantitative
calculation of inelastic rescattering performed by Nardulli and Pham [50] (for Dρ ↔
D∗π) and use this result directly with no alterations. This will by no means give a
correct prediction to the size of the inelastic rescattering effects in B0 → Da1 → D∗a0,
but it is at present the only way to estimate the size of the rescattering effects.

We now express the decay amplitude A(B→Da0) including the final-state interaction
effects as

A(B→Da0) = Adir(B → D∗a0) + AFSI(B → Da1 → D∗a0), (1.94)

where Adir is the amplitude coming from the direct weak process B0→D∗−a+
0 and AFSI

is the rescattering amplitude. We estimate AFSI(B → Da1 → D∗a0) to be

AFSI(B → Da1 → D∗a0) =
√

Sod × Ab(B
0 → Da1), (1.95)

where Sod is the off-diagonal term in the scattering matrix that is responsible for the
inelastic rescattering. Using the measured branching ratio B(B0 → D−a1(1260)) =
(6.0± 3.3) · 10−3 and the inelastic rescattering size in the order of 10−4 taken from [50],
we derive a contribution from inelastic rescattering to the branching ratio of order 10−6.

We can make a few qualitative arguments to why the inelastic rescattering effects
should in fact be larger than this result. (A factor ten enhancement of the rescattering
amplitude would lead to a contribution to the branching fraction of order 10−4.)
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The first difference between the two rescattering processes is the larger mass of the
a0 (985 MeV/c2) and a1 (1230 MeV/c2) mesons compared to the π (140 MeV/c2) and ρ
(776 MeV/c2) masses. Owing to this larger mass the mesons have more time to allow for
final-state strong interactions as the momentum difference with the D-meson is smaller,
see for example [52]. The chance for the final rescattering to occur will be larger.

Secondly, the mass difference between the a0 and a1 meson is much smaller than the
mass difference between the π and ρ mesons. This means that less energy needs to be
transfered between D∗ and a1, leading to a higher soft rescattering probability. Realize
that for successful rescattering the energetically stable pion needs to be broken up to
form a relatively heavy ρ meson. This requires a high energy transfer making rescattering
more unlikely. The mass difference between the D∗ and D meson is also relatively small
∼ 140 MeV/c2, so that the overlap with the ρ and π mesons is suppressed.

Third, although the same spin transfer is needed to occur between the produced
mesons, the a1 and a0 mesons are members of the same quark spin triplet (qq̄)(s=1,l=1)

whereas the spin of the [π] ρ meson caused by the [(qq̄)(s=0,l=0)] (qq̄)(s=1,l=0) quark state.
To alter the spin state of the a1, so that it transforms into an a0 meson state, only the
projection of the internal angular momentum needs to be changed.

If we now compare the result obtained in this sections for the inelastic rescattering
contribution to the predictions made by Diehl and Hiller for the bare electroweak decay
amplitude, see Table 1.5, we must conclude that the contribution of final-state rescat-
tering to the decay amplitude of B0→D∗−a+

0 is of the same order or may possibly even
be larger.

The measurement of the CKM angle γ will not be compromised by the rescattering
process. The channel B0 → Da1 → D∗a0 contains the same weak angle, sin(2β + γ)
as the direct B0→D∗−a+

0 decay. However, the asymmetry amplitude r in B0 → D−a+
1

is different from the asymmetry amplitude in B0→D∗−a+
0 . The decay constant for a a1

meson, fa1 , is of the same order as for a D∗ meson, f ∗
D, see Table 1.2. The CKM-allowed

diagram is therefore not suppressed in the way it is suppressed for the B0→D∗−a+
0 decay.

A measurement of the ratio r of the relative amplitude contributions will be needed in
order to measure the CKM angle. This can be performed by measuring the cosine term
in a time dependent analysis. More information about this technique can be found in
[13]. The size of the inelastic rescattering, and thus of r, can also be determined by
looking at the decay B0 → D∗a1 → Da2. The amplitude of this channel should have the
same size as the B0 → Da1 → D∗a0 channel. The direct production of the CKM-allowed
B0 → Da2 is not possible since a tensor-meson cannot be produced in a weak B0 decay,
see also [24].

So far, we have discussed the possible final-state contributions to the decay B0 →
D∗−a+

0 . Inelastic rescattering effects to the D+a−
0 final state are even more complicated

to estimate. A contributing channel could be through B0 → D∗a1 → Da0, similar
to rescattering in K∗ρ ↔ Kπ described by Wirbel [25]. The branching ratio of the
decay B0 → D∗a1 is of the same order as B0 → Da1, (1.30 ± 0.27) · 10−2 versus
(6.0 ± 3.3) · 10−3. But the inelastic soft rescattering between D∗a1 ↔ Da0 is probably
smaller than Da1 ↔ D∗a0. This is because only the zero angular momentum projection
of the D∗a1-meson pair can contribute to form a Da0 meson pair. The contribution to the
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amplitude in the B0→D−a+
0 decay arising from soft inelastic rescattering is therefore

expected to be smaller than the rescattering contribution in the B0→D∗−a+
0 decay

amplitude.

1.9 Motivation summary

The interest in the B0→D−a+
0 and B0→D∗−a+

0 decays is twofold.
We have argued that the B0 → D(∗)−a+

0 decay mode has a potential high sensitivity
to a measurement of the CKM angle γ in Sect. 1.5.3. In comparison to the decays
B0 → D∗−π+, B0 → D∗−a1(1260)+ and B0 → D∗−ρ+ the sensitivity to γ could be
enhanced by a factor hundred. The impact on the current status of the measurement on
γ would be large. On the other hand the cost is that the B0 → D(∗)−a+

0 decay rate is
suppressed. The low statistics in the channel could severely impact the measurement, if
the branching fraction of the B0 → D(∗)−a+

0 decay is too low.
Theoretical predictions on the branching ratio of the B0 → D(∗)−a+

0 decay show
large QCD model dependent uncertainties. Non-factorizing terms that can be calcu-
lated by QCD factorizing models have a large impact on the branching fraction of this
decay mode. Also non-factorizing inelastic soft rescattering effects can contribute to the
branching ratio. A measurement or limit of the branching fraction will thus bring more
insight into the theoretical models. In general a better understanding of the QCD models
will be necessary to conduct weak interaction physics at the next level.

The decay amplitudes from both the CKM-allowed as the CKM suppressed diagrams
are predicted in the order of 10−6 for the B0→D−a+

0 and B0→D∗−a+
0 decay modes.

The predicted total branching ratio of the B0→D−a+
0 decay mode is 3.2 · 10−6 for

naive factorization, and in the range (4.1 − 6.1) · 10−6 using QCD correction terms in
the CKM allowed diagram.

For the B0→D∗−a+
0 decay mode this summarizes to 2.9 · 10−6 for the naive factor-

ization approach and in the range (3.7 − 5.6) · 10−6 using the QCD correction terms in
the CKM allowed diagram.

A measurement of the branching ratio of the B0 → D(∗)−a+
0 decay can give more

insight into the factorization models and dependencies. And in addition, if the branching
ratio of the decays is large enough, a very precise measurement of the CKM angle γ is
possible.

1.10 Analysis Strategy

The analysis described in this thesis focuses on the measurement or exclusion of the
B0→D−a+

0 and B0→D∗−a+
0 decay modes where the a0 is reconstructed in the a+

0 → ηπ+

mode. Because of large uncertainties in the a0 line width no selection restrictions can
be placed on the a0 meson mass. Instead we select the resonant B0 → D(∗)−a+

0 events
by a multi-dimensional fit, presented in Chapter 5, that follows the event selection. The
non-resonant events are selected in the same fit and we profit from the analysis setup
by performing the B0 → D(∗)−ηπ+ branching ratio measurement at the same time.

30



1.11 Non-resonant B0 → D(∗)−ηπ+ predictions

1.11 Non-resonant B0 → D(∗)−ηπ+ predictions

Non-resonant B0 → D(∗)−ηπ+ events have so far not yet been observed. Theoretical
predication on the branching ratio are not available either.

As for the B0 → D(∗)−a+
0 decay, the diagram where the B decays into a D(∗)± meson

and the weak current couples to a ηπ state is not allowed due to G-parity violation,
as follows from arguments made in Sect. 1.6.2. Other diagrams can contribute. One
example is a diagram where a pion is formed from the weak current and a D(∗)±η
meson is produced in the B0 decay. Two other diagrams exist where the D(∗)± meson
is produced in the weak decay and creates a ηπ± meson pair in the B0 decay. All these
contributions are expected to be suppressed compared to the B0 → D(∗)−a+

0 decay,
because they require an additional quark pair created from the vacuum. Additionally,
there are no known excited D+ meson states that decay to a D(∗)+η pair.

Experimental measurements from the similar non-resonant B0 → D∗−π+π0 decay
also suggest this suppression. The branching ratio of the non-resonant B0 → D∗−π+π0

decay is suppressed compared to the resonant B0 → D∗−ρ+ decay amplitude [53].
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Chapter 2

The BABAR experiment

This analysis is performed on data collected by the BABAR experiment, located at the
IR-2 interaction region of the PEP-II B Factory at the Stanford Linear Accelerator
Center (SLAC) in Menlo Park, CA in the United States of America. The experiment
has accumulated data between Oct 1999 and April 2008.

The PEP-II B Factory and the BABAR experiment, its detector components, the
online data acquisition and trigger system, will be briefly described in this chapter.
Detailed descriptions of the PEP-II B Factory and the BABAR detector can be found in
respectively [54] and [55].

2.1 The BABAR detector

The BABAR detector is optimized to measure time-dependent CP violation in the B
meson system. The B mesons are produced by the PEP-II B Factory, which is an e+e−

collider. The energy of the electron (9.0 GeV) and positron (3.1 GeV) beams are tuned
at the Υ (4S) resonance.

The Υ (4S) resonance lies just above the B meson pair production threshold and the
operation at this resonance gives a high B meson production rate. In this production
mechanism there is no room for fragmentation products and as a result the B meson
pair is produced in a coherent quantum state. A measurement of time-dependent CP
violation in the B system requires the (partial) reconstruction of both B mesons and of
the lifetime difference of the B meson pair. It further uses the properties of the coherent
B pair production.

A Lorentz boost of βγ = 0.56, that is the result of the energy difference given to
the PEP-II beams, makes it possible to accurately measure the lifetime difference. The
boost is optimized to the maximal separation of the B vertexes and the best vertex
resolution. The average separation along the z-axis is 250μm. A higher boost would
give a larger vertex separation but would reduce the separation of particle trajectories,
lowering opening angles, which results in a worse vertex resolution.

An asymmetric detector design maximizes the coverage in the (boosted) Υ (4S) frame.
A longitudinal cross section of the BABAR detector is presented in Fig.2.1. Five sub-
detectors form the BABAR detector and are situated in concentric cylinders around the
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Figure 2.1: Longitudinal cross-section of the BABAR detector. The BABAR coordi-
nate system is defined in the top of the figure.

interaction point. Inside a 1.5 Tesla superconducting solenoid sit the two tracking de-
tectors, the silicon vertex tracker (SVT) and the drift chamber (DCH), the detector
of internally reflected Čerenkov light (DIRC) specifically designed for charged hadron
particle identification, and the cesium iodide electromagnetic calorimeter (EMC). The
instrumented flux return (IFR) is build outside the magnetic coil and is designed to
identify muons. The magnetic field in the BABAR detector is approximately homoge-
neous and aligned with the z-axis of the detector. An array of electronics provides the
readout and monitoring of the detectors.

The BABAR detector and PEP-II interaction region layout are tightly connected.
To achieve high luminosities, the beams are divided into closely spaced bunches with
a 4.2 ns separation, which minimizes beam-beam interference. The beams are brought
together just before the interaction point (IP) and separated immediately after, such
that secondary collisions cannot occur. This is achieved by placing separation dipole
magnets (B1), which horizontally displace the beams very close, at 21 cm, to the IP.
The B1 magnets, as well as the Q1 quadrupole magnets are permanent magnets and are
placed inside the magnetic field of the detector. Because of the close proximity to the
IP the B1 magnet position limits the angular acceptance of the BABAR detector. The
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Figure 2.2: Integrated luminosity delivered by PEP-II and recorded by BABAR be-
tween October 1999 and December 2007.

SVT is build in between the B1 magnets and fixed to the relative movement of the B1
forward magnet.

The high luminosity produced by PEP-II and the efficient operation of both the
collider and the detector makes the BABAR experiment also well suited to study rare B
decays. The delivered and recorded luminosity are presented in Fig. 2.2.

2.2 Silicon vertex tracker (SVT)

The SVT is the inner of the two tracking detectors in BABAR and is crucial for the
measurement of the B decay vertexes. The SVT is designed to measure both the direction
and the position of charged particles close to the interaction point.

The average momentum of charged particles produced in B decays is less than 1
GeV/c, which makes multiple scattering a significant limitation on the track parameter
resolution. Hence, the amount of material in the tracking system is reduced as much as
possible.

The SVT consists of five layers of double sided silicon strip sensors organized in
respectively 6, 6, 6, 16 and 18 modules per layer. The strips on the opposite sides of
a sensor are oriented orthogonal to each other. Schematic overviews of the layers are
presented in Fig. 2.3 and Fig. 2.4. The first layer is as close as 3.2 cm to the beam axis,
while the outer layer is 14.0 cm away.

The first three layers are straight, positioned in a barrel geometry, and tilted by 5◦
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Figure 2.4: Orthogonal cross-section of the SVT and the beam-pipe.

in the transverse plane to allow an overlapping region with neighboring modules. The
overlap is used for alignment of the detector. The inner three layers primarily provide
position and angle information for the measurement of the vertex position. The outer
two layers are arch shaped, see Fig. 2.4, and situated close to the DCH to provide the
measurements needed to link the tracks reconstructed in the SVT and the DCH. This
design is chosen to have the optimal measurement for particles with a large opening
angle and the minimum needed silicon sensors to cover the solid angle. Because of the
arch shape, the modules in the outer layers cannot be tilted to create a suitable overlap.
To create an overlap region, the layers 4 and 5 are divided into two sub-layers (4a, 4b,
5a and 5b) with slightly different radii. In total about 150,000 channels are read out by
front-end chips.

The SVT has a typical single-hit resolution of 10 μm and provides precise recon-
struction of charged particle trajectories and decay vertexes of B and D mesons near
the interaction region. It also provides stand alone tracking capability for charged parti-
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2.2 Silicon vertex tracker (SVT)

Figure 2.5: Pedestal offsets in the backward west module of the innermost layer,
situated in the horizontal plane (ROS 134), measured on June 15, 2004
at an approximate integrated radiation dose of 3.3 MRad measured by
the nearest PIN diode. The numbers on top of the plot indicate the
chip number.

cles with a transverse momentum lower than 120 MeV/c as these particles do not reach
the DCH.

The close proximity to the beam and the high luminosities delivered to the SVT
cause relatively high radiation doses. The design of the AToM readout chip and of the
silicon wafers was based on the expected 2 MRad radiation dose. After only 4 years of
running parts of the detector already received more than that. The inner layers naturally
absorb the highest dose and due to the design of the interaction region, the radiation is
concentrated in a 1-cm wide band in the horizontal. The radiation in this area is caused
by off beam particles which are over-bent by the permanent magnets placed at ±20
cm from the IP to separate the two beams [56]. Away from the horizontal band, the
radiation levels are up to a factor 10 lower at the same radius.

The radiation is monitored by a set of 12 reverse biased silicon pin diodes placed
between the beam pipe and the innermost silicon layer, close to the AToM readout chips.
Two polycrystalline chemical-vapor-deposition (pCVD) diamond sensor were placed
close to PIN diodes, forward west and east in the horizontal plane, in 2003 [57] and
have taken over the radiation dose measurements of the corresponding PIN diodes in
2005. The radiation is concentrated in the horizontal bending plane of the colliding
beams with an average level in the range 30-50 mRad/s, this corresponds to an inte-
grated dose of about 1.5 MRad (May 2003). The expectation for the whole life of the
experiment was approximately 2 MRad.

After an accumulated dose of about 1 MRad, we measured an increase in the pedestal
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Figure 2.6: Averaged pedestal offset over groups of 8 readout channels versus the
integrated radiation dose measured by the nearest PIN diode. The top
(bottom) plot shows readout chip 2 (3 ) of the backward west module
(ROS 134) of the innermost layer, situated in the horizontal plane.
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2.3 Drift chamber (DCH)

of the signal into the comparator in the AToM readout chip, requiring an increased
threshold level in order to keep the noise occupancy at a reasonable low level. Figure 2.5
shows the pedestal offset for a layer 1 module that is situated in the horizontal plane.
The increase was first observed in the readout channels exposed to the highest amount of
radiation, but other channels followed as soon as their accumulated dose reached about
1 MRad. This is illustrated in Fig. 2.6, which shows the measured pedestal offset versus
the radiation dose measured with the closest PIN diode for two of the chips that are
located in the backward west innermost layer in the horizontal plane. This corresponds to
over-bend positrons. The readout channels in the AToM chip are geometrically offset in
azimuth with respect to the silicon strips, showing that it is the most irradiated readout
channel, not silicon strip which changes first. From this we conclude that the radiation
damage is in the AToM chip itself. The pedestal continues to rise until an additional 400
kRad of dose has been accumulated, after which it starts to fall back toward its original
value. The pedestals peak at roughly half the dynamic range of the threshold DAC,
corresponding to roughly 1fC. This effect is qualitatively understood as an imbalance
in the comparator circuit caused by the nonuniform irradiation [56, 58, 59, 60, 61].
After sufficient irradiation the balance slowly gets restored. This effect did not show
up in the initial irradiation tests with 60Co [55] as that had a uniform radiation field.
Subsequent radiation tests [61] with a narrow electron beam reproduced the pedestal
shift. Operationally the noise is kept under control by increasing the threshold used
in the readout. However, this can only be set on a chip-by-chip basis leading to an
inefficiency for small charges in channels, where the pedestal has not yet increased. A
procedure has been devised which selects the optimal threshold for each chip balancing
the inefficiencies from noise occupancy and minimum charge requirement.

2.3 Drift chamber (DCH)

The DCH contributes to the transverse momentum measurement and is also used for
the reconstruction of vertexes outside the SVT volume that solely rely on the DCH. The
DCH provides the particle identification of low momentum particles by the measurement
of the ionization loss dE/dx.

The DCH is 2.8 meters long and spans the radial region 22 < r < 80 cm. It consists of
40 layers with in total 7104 hexagonal cells. The 40 layers are divided into 10 super-layers.
Twenty-four layers are given a stereo-angle to make it possible to measure longitudinal
positions.

A schematic layout for the four innermost super-layers is shown in Fig. 2.7. Each cell
consists of a tungsten-rhenium sense wire surrounded by six aluminum field wires. The
field wires are at ground potential and the sense wires are operated at a high voltage
∼+1,900V. The DCH is filled with a 80:20 mixture of helium-isobutane. The mate-
rial design of the DCH is optimized to minimize multiple scattering and the radiation
length (<0.2%X0). The readout electronics are mounted on the backward endplate of
the chamber, minimizing the amount of material in front of the calorimeter endcap.
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Figure 2.7: Schematic layout of drift cells for the four innermost super-layers. Lines
are added between field wires to aid in visualization of the cell bound-
aries. The numbers on the right side give the stereo angles (mrad) of
sense wires in each layer. The 1 mm-thick beryllium inner wall is shown
inside of the first layer.

2.4 Detector of internally reflected Čerenkov light

(DIRC)

The DIRC is a sub-detector devoted to particle identification and is specially designed to
provide good pion-kaon separation for momenta between 500 MeV/c and the kinematic
limit of B decays of 4.5 GeV/c. It is based on the principle that charged particles
traversing a medium radiate Čerenkov light if their velocity is greater than the local
phase velocity of light. The light is emitted at the Čerenkov angle, cos θc = 1/nβ, which
depends on the index of refraction n of the medium and the velocity of the particle
β = v/c. The measurement of θc is then used, together with tracking information from
the SVT and DCH, to identify particles.

The principle of light production, transportation and detection is illustrated in Fig.
2.8. The DIRC is positioned within the electromagnetic calorimeter and spans a small
radial volume of 10 cm and is uniform to minimize the degradation of the energy mea-
surement. It consists of 156 fused silica bars, 4.9 meter long, oriented parallel to the z
axis, with a rectangular cross section of 1.7×3.5 cm2 and a refractive index of n = 1.743.
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Figure 2.8: Schematics of the DIRC fused silica radiator bar and imaging region.

The Čerenkov light is transported by total internal reflection, preserving the angle of
emission, to either one or both ends of the silica bar, depending on the particle incident
angle. On one end a mirror is placed to avoid double instrumenting. At the other end of
the bar the light enters a water tank through a silica wedge. The photons are detected
by a densely packed array of photomultiplier tubes (PMTs). The PMTs are situated
beyond the backward end of the magnet.

The position and arrival time of PMT signals permit the extraction of the Čerenkov
angles when supplemented with track position and angle information. The timing in-
formation also assists in suppressing background photons. Covering 94% of the azimuth
and 83% of the center-of-mass polar angle, the DIRC provides Čerenkov angle measure-
ments with a resolution of ∼ 3 mrad for tracks with momenta starting at the Čerenkov
threshold of about 500 MeV/c and separates pions from kaons up to 4 GeV/c.

2.5 Electromagnetic calorimeter (EMC)

The electromagnetic calorimeter measures electromagnetic showers with excellent energy
and angular resolution over the energy range from 20 MeV to 9 GeV. This capability
allows the detection of photons from π0 and η decays as well as from electromagnetic
radiative processes. The upper bound of the energy range is set by the need to measure
QED processes for calibration and luminosity determination.

The EMC is composed of a finely segmented array of in total 6580 thallium-doped
cesium iodide CsI(Tl) crystals, see Fig. 2.9. The crystals, with radiation lengths between
16.0 and 17.5 X0, are instrumented with silicon photodiodes. Two diodes are used to
increase the reliability of the system.
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Figure 2.9: A longitudinal cross-section of the top half of the EMC indicating the
arrangement of the 56 crystal rings. The detector is axially symmetric
around the z-axis. All dimensions are given in mm.

The crystals are arranged in modules, which are supported individually by an exter-
nal support structure, build in two sections, a barrel and a forward endcap. The barrel
is arranged in 48 distinct rings with 120 identical crystals each. The end-cap holds 820
crystals arranged in eight rings. It has full coverage in the azimuthal angle and covers
the polar angle range 15.8◦ − 141.8◦ providing a 90% solid angle coverage in the center-
of-mass system. To obtain the desired resolutions, the amount of material in front of
and in-between the crystals is minimized.

2.6 Instrumented flux return (IFR)

The IFR is the BABAR sub-system designed for muon identification and for the identi-
fication of neutral hadrons. The IFR also serves as the flux return for the 1.5 T super-
conducting magnet and as the support structure for the detector. The IFR consists of
a hexagonal barrel with a forward and backward endcap, see Fig. 2.10. The barrel is
segmented into 19 layers of resistive plate chambers (RPC) with the thickness of iron
between each layer increasing from 2 cm at the inner radius to 10 cm at the outer side.
The endcaps each have 18 layers of RPCs arranged in a similar way to the barrel. Single
gap RPCs are inserted between the absorbers to detect streamers from ionizing particles.

2.7 The online system

The BABAR electronics, trigger, data acquisition (DAQ) and online computing systems
are composed of tightly coupled hardware and software.

The aim of the BABAR trigger systems is to select interesting physics events, see
Table 2.1, while rejecting background events, such that the final reconstruction event
rate is under ∼370 Hz, acceptable for processing and storage. The trigger consists of a
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Figure 2.10: Overview of the IFR: Barrel sectors and forward (FW) and backward
(BW) end doors; the shape of the RPC modules and their dimensions
are indicated.

Event type Cross section (nb) Production rate (Hz) L1 rate (Hz)

BB 1.1 10.7 10.7

uu + dd + cc + ss 3.4 34.0 33.7
e+e− ∼53 530 520
μ+μ− 1.2 11.7 10.3
τ+τ− 0.9 9.3 8.0

Table 2.1: Cross sections, production and trigger rates for the principal physics
processes at 10.58 GeV/c2 for a luminosity of 1 × 1034cm−2s−1.

level 1 (L1) hardware trigger and a level 3 (L3) software trigger. The design allows for
a level 2 trigger to be introduced should increasing luminosities require it, but this has
never been necessary.

The L1 trigger has a maximum latency of 12μs per beam crossing. and is therefore
designed to select events at a rate of up to 2.5 kHz. It consists of a drift chamber trigger
(DCT), calorimeter trigger (EMT) and the global trigger (GLT). Configured to reduce
background event rates, the L1 makes decisions based on the number of charged tracks
above a preset transverse momentum in the DCH, showers in the EMC and tracks
in the IFR. The three sub-systems triggers are considered independently, maximizing
redundancy in order to measure and monitor efficiencies.

The L3 responds to the L1 output, performs a rate reduction for the main physics
sources, and identifies and flags special categories of events needed for luminosity de-
termination, diagnostic and calibrating purposes. The L3 filter acceptance for physics
is about 280 Hz, while 90 Hz contain the other special event categories. The selected
events are then stored for offline processing. At a luminosity of 1034cm−2s−1, the trigger
efficiency exceeds 98% for all BB events.
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Figure 2.11: Schematic diagram of the DAQ system, from the detector to the data
storage on disk for reconstruction by OPR.

A schematic drawing of the data acquisition and trigger system is shown in Fig.
2.11. The data are passed from the detectors through their front-end electronics to
VME dataflow read-out modules (ROMs) through optical fibers. The ROMs carry out
higher-level feature extraction with system-dependent algorithms designed to extract
the signal while minimizing backgrounds and noise. The data are then passed to the L3
trigger if the L1 accept is made. Events passing the L3 trigger are written to a temporary
file before online prompt reconstruction (OPR) is carried out.

Online prompt reconstruction of the collected events occurs within a few hours after
logging by farms of several hundred Unix workstations running in parallel. Using the raw
detector signals and the partially reconstructed events of the L3 trigger, OPR performs
full reconstruction of all physics events and selects calibration events. These algorithms
categorize potentially interesting events before storing the results.
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Chapter 3

Reconstruction of B mesons

In the BABAR analysis framework the selection of signal candidates is performed in
several stages, where each stage refines the sample obtained from the previous selection
stage. The design of the analysis framework was mainly driven by CPU power and disk
capacity efficiency.

A typical BABAR physics analysis selects only a tiny fraction of all events. There-
fore, it is extremely inefficient for each analysis to process all available data repeatedly.
Additionally, allowing many analysis jobs to access the central event store puts a large
load on the system and requires a large local computing farm to provide the necessary
CPU power and disk capacity. These issues are circumvented by a centrally managed
pre-selection, or skim, of events as a first stage in the analysis chain. The skim uses
basic selection criteria such as mass and momentum cuts.

Two types of skims exist, a deep-copy skim and a pointer skim. The deep-copy skim
produces a complete copy of the data, the pointer skim returns only the location of the
selected event in the full data sample, and is in general slower to access. The deep-copy
skim is only available if the total selection rate is smaller than a few percent of the full
dataset.

The skim is usually defined to have a high signal selection efficiency. The background
rejection is preferably high but of less importance in this stage. It does determine how
fast the second selection stage can be optimized and performed and if the skim is cat-
egorized as deep-copy or pointer skim. A single skim can be the starting sample for
multiple analyses.

The second selection stage is performed under control of the user. The optimization
of this stage is performed on the skimmed dataset and depends on the physics goal of
the analysis, e.g. branching fraction measurement, time dependent analysis.

For this analysis a dedicated skim was setup. Very loose restrictions are chosen for the
skim to fully exploit the more sophisticated selection criteria available in the following
selection stage. This results in a high signal efficiency but unfortunately at the same
time a high rate for background events. The skim was kept just small enough so that
it is processed as deep-copy. The skim is chosen to select four types of decay modes,
B0 → D−ηπ+, B0 → D∗−ηπ+, B+ → D0ηπ+ and B+ → D∗0ηπ+. The last two modes
are not discussed in this thesis, they are part of the skim to allow access for a possible
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Chapter 3 Reconstruction of B mesons

Monte Carlo Type Size Scaling factor
sample (# events) to full dataset

Generic B0B0 546.5M 0.214
Generic B+B− 539.5M 0.213
uds 710.7M 0.644
cc̄ 417.9M 0.681
B0→D∗−a+

0 II 117k n.a.
B0→D∗−a+

0 I 131k n.a.
B0→D−a+

0 II 115k n.a.
B0→D−a+

0 I 131k n.a.
B+→D∗0a+

0 I 16k n.a.
B+→D0 a+

0 I 16k n.a.

Table 3.1: Sizes and scaling factors to the full Run 1-4 dataset of the Monte Carlo
samples that are used for the analysis. Two types of signal Monte Carlo
are used indicated with the roman indexes, please see the text for further
explanation.

extension of the analysis that are needed for the measurement of γ.
This chapter describes the setup of the skim that is used in the analysis. The opti-

mization of the selection that follows the skim is presented in Chapter 4.

3.1 Used data samples

3.1.1 BABAR data

This analysis uses the data acquired by the BABAR detector during the period Octo-
ber 1999 through 2004, referred to as Run 1 to Run 4; see Fig. 2.2 on page 35. This
corresponds to 208 fb−1 collected at the Υ (4S) resonance (on-peak data). An addi-
tional 21 fb−1 is collected 40 MeV/c2 below the Υ (4S) resonance peak (off-peak data),
which allows the study of continuum background events, produced through the process
e+e− → ff where f may be any of the charged leptons or lighter quarks u, d, s or c.
The total number of BB pairs analyzed is estimated to be 229.4 million.

3.1.2 Monte Carlo simulated data production

Monte Carlo simulated events are produced to understand the performance of the de-
tector and the sources and properties of background events. In this analysis the Monte
Carlo data are used to optimize the final event selection and to tune the likelihood fit,
described in Chapters 4 and 5 respectively.

The production of the Monte Carlo data is performed in three stages. First, physical
processes are simulated by an event generator and particle four-vectors are produced.
The generator simulates the spread of energies allowed in the PEP-II beam collision to
determine the energy available to the resulting particles. The beam energies are smeared
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using Gaussian distributions of width 5.5 MeV and 3.1 MeV for the high- and low-
energy beams, respectively. The collision point coordinates are smeared with Gaussian
distributions with a width of 160 μm in x̂ and 6 μm in ŷ. The z coordinate is modeled
with a 1 cm long flat distribution.

Two different event generators are used, Jetset and EvtGen. Observed B meson
decays, listed in the PDG [9], are generated with the EvtGen [62] generator. The un-
observed part (49.75%), and the continuum qq events are produced by Jetset. The
particles produced by the generators are propagated through a model of the material of
the BABAR detector. Interactions between the particles and the material in the detec-
tor, and the detector response is computed using the GEANT4 [63] simulation package.
The samples are presented in the same form as the raw signals within the detector and
processed through the Level 1 and Level 3 triggers. The result is an event analogous to
actual data recorded by the BABAR detector.

There are two kinds of produced Monte Carlo events: single mode and generic sam-
ples. The single mode Monte Carlo samples contain one or a few decay chains and are
used to study the signal or specific background decays. The generic Monte Carlo sam-
ples model the complete BABAR dataset and all possible decays, and are grouped in four
categories: B0B0, B+B−, uds and cc̄ events. The Monte Carlo samples that are in this
analysis are summarized in Table 3.1.

Dedicated signal Monte Carlo is produced for this analysis in four different decay
modes. The full decay chain that is produced is summarized in Table 3.2. Per event
the Υ (4S) decay is simulated to decay in a B0B0 pair, one of the B mesons decays
generically while the other B, decays to a pre-described decay chain. The decay is
modeled according to its angular distribution, based on the angular momentum and spin
of the decay products. The particles are modeled taking into account their Breit-Wigner
lineshape. Specific particle descriptions, such as mass and width, are predefined and use
the measured values listed in the PDG [9]. The non-resonant signal B0 → D(∗)−ηπ+

Monte Carlo events are produced as part of the generic B0B0 Monte Carlo by Jetset,
for these events no additional produced Monte Carlo is used.

There are four inconsistencies with the Monte Carlo generation models that are
corrected for in the analysis.

First, the model used by EvtGen to produce the a0 lineshape in the signal Monte Carlo
lacks a kinematical factor in the Breit-Wigner lineshape function. This is discussed in
Sect. 5.2.3 and is referred to as EvtGen lineshape bug . Figure 3.1 compares the lineshape
with and without this bug.

Second, due to a wrong particle description, a part of the produced signal Monte
Carlo has a cut-off in the lineshape, see Fig. 3.1. We have defined two different types,
I and II, to label the signal Monte Carlo. Type I (II) has the cut-off (full) lineshape.
The optimization of the selection makes uses of the type I, otherwise type II is used
throughout the analysis.

Third, the phase-space definition that is used by Jetset in the B0 → D(∗)−ηπ+

events is wrong. Figure 3.2 shows the difference in produced events in the phase-space
between Jetset and correctly produced EvtGen events in the ηπ invariant mass distri-
bution. The impact of this error on the analysis is large but is corrected for. We refer to
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Parent Decay Ratio

Υ (4S) B0
specB

0
gen 0.5

B0
specB

0
gen 0.5

B0
spec D∗− a+

0 1.0

a+
0 ηπ+ 1.0

η γγ 1.0

D∗− D0 π− 1.0

D0 K+ π− 0.142
K+ π− π0 0.513
K0

S π− π+ 0.068
K+ π− π+ π− 0.277

K0
S

π+ π− 1.0

(a) B0→D∗−a+
0

Parent Decay Ratio
Υ (4S) B+

specB
−
gen 0.5

B−
specB

+
gen 0.5

B−
spec D∗ a+

0 1.0

a+
0 ηπ+ 1.0

η γγ 1.0
D∗ D0 π0 1.0
D0 K− π+ 0.142

K− π+ π0 0.513
K0

S π+ π− 0.068
K− π+ π− π+ 0.277

K0
S π+ π− 1.0

(b) B+→D∗0a+
0

Parent Decay Ratio

Υ (4S) B0
specB

0
gen 0.5

B0
specB

0
gen 0.5

B0
spec D− a+

0 1.0

a+
0 ηπ+ 1.0

η γγ 1.0
D− K+ π− π− 0.589

K0
S π− π0 0.317

K0
S

π− 0.094
K0

S π+ π− 1.0

(c) B0→D−a+
0

Parent Decay Ratio
Υ (4S) B+

specB
−
gen 0.5

B−
specB

+
gen 0.5

B+
spec D0 a+

0 1.0

a+
0 ηπ+ 1.0

η γγ 1.0

D0 K+ π− 0.142
K+ π− π0 0.513
K0

S
π− π+ 0.068

K+ π− π+ π− 0.277
K0

S π+ π− 1.0

(d) B+→D0 a+
0

Table 3.2: Summary of the generated signal Monte Carlo events for the four dif-
ferent samples with the generated decays. The Bgen, decays generically.
The D0 → K− π+ π− π+ is an incoherent sum of resonances and does
not describe the interference between the underlying modes.

this bug as the Jetset bug .

Fourth, Jetset produces some decay modes abundantly that are not allowed or are
suppressed. Most of these decays do not pass the selections. However, one specific type
of events passes the selection and are removed. These events are produced by the decays:
B0 → D(∗)+K−η, B+ → D(∗)K+η. These decays are not observed and the production
amplitude is expected to be negligible. The K+ meson must be produced by the W
decay and this gives a term of Vus which makes it Cabibbo suppressed. In addition, to
produce the additional η meson the decay is color-suppressed. Finally, no resonant states
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Figure 3.1: Left: The black dotted curve represents the correct Breit-Wigner line-
shape, the solid gray curve has a missing phase-space term, which is
referred to as the EvtGen lineshape bug. Right: the differences between
the type I (solid gray curve) lineshape, which has a cutoff at 50 MeV/c2

below the nominal mass and type, and type II (dotted black curve)
signal Monte Carlo with the correct lineshape.
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Figure 3.2: Produced mηπ invariant-mass distribution for the B0 → D(∗)−ηπ+ de-
cays with Jetset (left) and EvtGen (right). There is a clear difference.
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Chapter 3 Reconstruction of B mesons

parameter description
d0 distance between the PoCA and the origin in the x − y plane
φ0 azimuth angle of the track
ω curvature of the track, ω = 1/pt

z0 distance between the PoCA and the origin along the z-axis
tan λ the dip angle relative to the transverse plane

Table 3.3: Parameters defining the trajectory of charged particles. The PoCA is
the Point of Closest Approach to the z-axis.

are know that can produce the K+η meson pair in B decays. For example, a K∗
2(1430)

meson cannot be produced by a W decay because it is a tensor meson.

3.2 Particle reconstruction

The reconstruction of B mesons starts with the reconstruction of charged tracks and
trajectories in the detector volume. From these, composite particles such as K0

S , η or
B mesons, are formed, as described in Sect. 3.3. For a more detailed discussion on this
topic we refer to Ref. [55].

In BABAR a set of particle candidate lists are defined, they categorize tracks and
neutral particles using a set of selection rules. The use of these candidate lists is stan-
dardized throughout the BABAR analysis framework as much as possible. The skim itself
is written in terms of particle candidate lists. This has the advantage that its properties
(e.g. efficiency and purity) are well studied.

In the following sections we define the particle candidate lists that are used in this
analysis.

3.2.1 Reconstruction of charged particles

The track reconstruction of charged particles uses the tracking system of the detector,
the SVT and the DCH. The trajectory of a charged particle is locally defined by five
parameters (d0, φ0, ω, z0, tan λ) that are explained in Table 3.3.

The track reconstruction begins in the drift chamber and uses the tracks found in the
DCH by the L3 trigger algorithm as a starting point. A Kalman filter fitting algorithm
is used that takes into account the detailed distribution of material in the detector and
the full map of the magnetic field [64]. Additional drift chamber hits that are found to
be consistent with the tracks are then added. Two more tracking procedures are applied
to the remaining drift chamber hits that are designed to find tracks that do not pass
through the entire DCH or do not originate from the interaction point.

All the tracks found in the drift chamber are extrapolated to the SVT taking into
account the material and magnetic field. SVT track segments are added if they are
consistent with the expected error in the extrapolation. Finally, a stand-alone SVT
track finder is run on the remaining SVT hits to find low momentum tracks that do not
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Figure 3.3: Left: Resolution in the parameters d0 and z0 for tracks in multi-hadron

events as a function of the transverse momentum. Right: Resolution
in the transverse momentum pt determined from cosmic ray muons
traversing the DCH and SVT.

reach the drift chamber.
The resolution of the five track parameters are monitored with e+e− and μ+μ−

events and checked offline in multi-hadron events and cosmic-ray muons. The measured
resolutions depend on the transverse momentum pt of the tracks. With cosmic-ray tracks
with pt = 3 GeV/c the resolutions are determined to be

σd0 = 23 μm, σφ0 = 0.43 mrad,

σz0 = 29 μm, σtan λ = 0.53 · 10−3.

The dependence of the resolution in d0 and z0 on the transverse momentum pt is
presented in the left plot in Fig. 3.3. The measurement is based on tracks in multi-hadron
events. The right plot in Fig. 3.3 shows the resolution in the transverse momentum
derived from cosmic muons. The resolution function can be parametrized by

σpT
= (0.13 ± 0.01)% · pT + (0.45 ± 0.03)%. (3.1)

Three different particle candidate lists of charged tracks are described in Table 3.4
for later use. The categories are presented with increased quality as they pass more
requirements.

3.2.2 Reconstruction of neutral particles

Neutral pion decays, η decays, electrons and photons from QED and radiative processes,
produce showers in the electromagnetic calorimeter (EMC). A typical electromagnetic
shower spreads over adjacent crystals forming a cluster of energy deposits. Pattern recog-
nition algorithms have been developed to efficiently identify these clusters, and to dif-
ferentiate single clusters, with one energy maximum, from merged clusters, with more
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Chapter 3 Reconstruction of B mesons

List name Requirements

ChargedTracks - reconstructed in SVT and/or the DCH
GoodTracksVeryLoose - member of ChargedTracks

- p ≤ 10 GeV/c
- DoCA to beam spot dt ≤ 1.5 cm transverse to
beam axis
- DoCA to beam spot dl ≤ 10 cm parallel to
beam axis

GoodTracksLoose - member of GoodTracksVeryLoose

- pT ≥ 0.1 GeV/c
- at least 12 hits in the DCH

Table 3.4: Charged track lists. DoCA is the abbreviation for Distance of Closest
Approach.

than one local energy maximum, referred to as bumps. An example for local maximums
occurrence is when photons from high-energy π0 or η decays are unresolved, resulting
in several showers in close proximity.

Clusters are formed around initial seed crystals containing at least 10 MeV of de-
posited energy. Neighboring crystals are added to the cluster if their energy exceeds 1
MeV. If the newly added crystal has energy greater than 3 MeV, its contiguous neighbors
are also included in the cluster.

Bumps can be associated with a charged particle by projecting a track to the inner
face of the calorimeter. If the distance between the track and the center of the bump is
consistent with the momentum and the angle of the track, the bump is associated with
the charged track. If no association is made the bump is assumed to originate from a
neutral particle.

The energy resolution of the calorimeter is measured at low energies directly with a
radioactive source under ideal low-background conditions. At high energies it is derived
from Bhabha scattering where the energy of the detected shower can be predicted from
the polar angle of the electron. Below 2 GeV, the mass resolution of π0 and η mesons
decaying into two photons of approximately equal energy is used to infer the EMC
energy resolution, as shown in the left plot in Fig. 3.4. The decay χcl → J/ψγ provides a
measurement at an average energy of about 500 MeV. The combination of the resolution
measurements can be seen in the right plot in Fig. 3.4. At normal incidence the energy
resolution for photons is described by

σE

E
=

2.3%
4
√

E( GeV)
+ 1.9%. (3.2)

The measurement of the angular resolution is based on the analysis of π0 and η
decays to two photons of approximately equal energy. The resolution varies between 12
mrad at low energies and 3 mrad at high energies and is described by

σθ = σφ =
3.87√

E( GeV)
mrad. (3.3)

52



3.2 Particle reconstruction

)2 (GeV/cγγm
0.05 0.1 0.15 0.2 0.25

E
nt

rie
s

0

2000

4000

6000

8000

10000

12000
γγ→0π

Bhabhas
c γψ J/→χ

Photon Energy (GeV)
10–1 1.0 10.0

 σ
E
 / 

E

0.02

0.02

0.04

0.06

Figure 3.4: Left: Invariant mass of two photons in BB events. The energies of the
photons and the π0 are required to exceed 30 MeV and 300 MeV,
respectively. The solid curve is a fit to the data. Right: The energy res-
olution for the EMC measured for photons and electrons from various
processes. The solid curve is a fit to Eq. (3.2).

List name Requirements

CalorNeutral - not a member of ChargedTracks

GoodNeutralLooseAcc - member of CalorNeutral

- E ≥ 30 MeV
- lateral shape parameter[65] λLAT ≤ 1.1
- polar angle 0.41 < θLAB < 2.409 rad

GoodPhotonLoose - member of CalorNeutral list
- lateral shape parameter λLAT ≤ 0.8

Table 3.5: Neutral particle lists.

Similar to the charged tracks, the neutral candidates are organized into lists in Table
3.5.

3.2.3 Kaon selection

For a pure kaon selection a likelihood based method is developed [13] that, depending
on the momentum of the particle, uses information from one or a combination of three
sub-detectors: the SVT, the DCH and the DIRC [66, 67].

The distribution of the measured dE/dx in the DCH as a function of momentum
is shown in Fig. 3.5. The difference between the measured dE/dx and the expected
truncated mean for a given mass hypothesis, with a typical resolution of 7.5%, is used
to calculate the likelihoods, Lπ,LK and Lp assuming Gaussian distributions.

The same method is used to calculate a likelihood, based on the measured dE/dx in
the SVT, using an asymmetric Gaussian distribution. For minimum ionizing particles
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Figure 3.5: Left: The DCH distributions of dE/dx versus the track momenta,
the Bethe-Bloch expectations for the particle types are superimposed.
Right: The measured distribution of the Čerenkov angle θc of kaons,
pions and protons versus the track momenta in the DIRC.

the resolution on the SVT truncated mean is about 14%. This gives a 2σ separation
between pions and kaons below 500 MeV/c, and between kaons and protons for over 1
GeV/c.

For particles with a momentum between the Čerenkov threshold of 600 MeV/c up
to 4.2 GeV/c, the DIRC provides a π/K separation of � 4σ at 3 GeV/c. The distri-
bution of the measured Čerenkov angle versus the track momentum is shown in Fig.
3.5. A likelihood is obtained for each particle hypothesis, using two ingredients: the ex-
pected number of Čerenkov photons (assuming a Poisson distribution) and the difference
between the measured and the expected angle θ0

c , assuming a Gaussian distribution.

The NotAPion kaon selector is defined by combining the individual likelihoods
from the SVT, the DCH and the DIRC. The selection criteria are summarized in Table
3.6. The NotAPion list has a nearly constant kaon-identification efficiency of about
96%, and a pion misidentification probability of not larger than 30%, for tracks in the
transverse momentum range between 1 and 2.5 GeV/c. For this analysis a candidate list
is used for the Kaon component where the requirement is made that the reconstructed
track must satisfy both the NotAPion requirements and that of GoodTracksLoose.
This particle candidate list is referred to as KMicroNotPionGTL, see also Table 3.6.

3.3 Reconstruction of composite particles

From the charged tracks and neutral particle candidate lists we reconstruct the com-
posite particles to form the B decays that are of interest in this analysis, B0 → D−ηπ+

and B0 → D∗−ηπ+. There are no requirements made on the a0 meson; the selection is
equivalent to a selection of non-resonant B0 → D(∗)−ηπ+ events. This is motivated by
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3.3 Reconstruction of composite particles

List name Requirements

NotAPion - For p < 0.5 MeV/c: LK/Lπ < 0.1 and LK/Lp <
0.1 for likelihoods from both SVT and DCH
- For (0.5 ≤ p < 0.6) GeV/c: LK/Lπ < 0.1 and
LK/Lp < 0.1 for likelihoods from only DCH
- For p > 0.6 GeV/c: LK/Lπ < 1 and LK/Lp < 1
for likelihoods from only DIRC

KMicroNotPionGTL - member of NotAPion

- member of GoodTracksLoose

- p > 150 MeV/c

Table 3.6: Kaon Selectors
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Figure 3.6: The two final reconstructed decay chains with the six different recon-
structed modes. The π0 meson is reconstructed in the π0 → γγ decay,
the K0

S in K0
S → π+π−.

the large uncertainties of the a0 lineshape width. The selection allows a likelihood fit in
a wide region in the invariant ηπ mass region to search for the a0. Figure 3.6 presents a
schematic drawing of the reconstructed channels.

3.3.1 π0 candidates

Neutral pion candidates are constructed in the most abundant decay mode, π0 → γγ,
with a branching ratio of (98.798 ± 0.032)% [9]. The photons must satisfy the Good-

PhotonLoose requirements and the invariant mass of the π0 candidate is required to
be in the range (115 ≤ mγγ ≤ 150) MeV/c2 with an energy larger than 200 MeV. The
π0 candidates are referred to as the Pi0AllDefault list.
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3.3.2 η candidates

The η is reconstructed in the η → γγ decay. This decay has a branching fraction of
(39.30 ± 0.24)% [9]. Two GoodPhotonLoose candidates are combined to form η
candidates. The following requirements must be met: photon energies Eγ ≥ 50 MeV,
an invariant mass between (470 ≤ mγγ ≤ 620) MeV/c2, a momentum pη ≥ 200 MeV/c,
maximum lateral moment λLAT [65] ≤ 0.8.

3.3.3 K0
S

candidates

The K0
S candidates are reconstructed in the decay mode K0

S → π+π− which has a
branching fraction of (69.20 ± 0.05)%. Another frequent decay K0

S → π0π0 (B ∼ 31 %)
is not reconstructed in this analysis: the neutral particles are not efficiently reconstructed
and would introduce background events in the analysis. The K0

S selector pairs all possible
tracks of opposite sign, using the ChargedTrack list. The mass is constrained to be
in the range of (473 ≤ mK0

S
≤ 523) MeV/c2. These K0

S candidates are referred to as the
KsDefault list.

3.3.4 D+ candidates

Charged D(∗)± mesons The reconstructed D mesons are reconstructed in two decays.
The D+→K−π+π+mode is constructed from a KMicroNotPionGTL candidate

and two GoodTracksVeryLoose tracks as pion candidates. The invariant mass for
the D+ candidate is required to be within 70 MeV/c2 of the nominal D+ mass.

The D+→K0
Sπ+mode is constructed from a KsDefault and a GoodTracksVery-

Loose candidate. The invariant mass for the D+ candidate constrained to be within 70
MeV/c2 of the nominal D+ mass.

3.3.5 D0 candidates

There are four reconstructed D0 decay modes used in this analysis.
The D0→K−π+mode is constructed of two GoodTracksVeryLoose candidates,

for the K+ meson and the π+ meson. The D0 candidate is required to have a mass
within 70 MeV/c2 of the nominal D0 mass.

The D0→K−π+π0mode is constructed of a GoodTracksLoose candidate for the
K+, one GoodTracksVeryLoose for the π+, and one Pi0AllDefault candidate
for the π0 meson. The mass of the reconstructed D0 candidates is required to be within
90 MeV/c2 of the nominal D0 mass.

The D0→K−π+π+π− mode is constructed of one GoodTracksLoose track for
the K+ and three GoodTracksVeryLoose candidates for the three π+ mesons. The
mass of the reconstructed D0 meson is restrained within 70 MeV/c2 of the nominal D0

mass.
The D0→K0

Sπ+π−mode is constructed of one KsDefault candidate and two Good-

TracksVeryLoose candidates. The mass of the reconstructed D0 candidate is re-
strained within 70 MeV/c2 of the nominal D0 mass.
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3.3.6 D∗+ candidates

The D∗+ meson is reconstructed in the decay D∗+ → D0π+ which has a branching
ratio of 67.7 ± 0.5% [9]. The D∗+ decay to D+ π0 (branching ratio 30.7 ± 0.5%) is not
reconstructed. The mass difference between the D∗+ and the D+ is small compared to
the pion mass which results in a small momentum and the reconstruction of this low
momentum neutral pion creates a high background rate. In the effort to keep the analysis
as a deep-copy skim this mode is not reconstructed in this analysis.

The momentum of the π+ is small due to the small mass difference between the D∗+

and the D0, this pion is also referred to as soft pion. The D∗+ candidates are constructed
from one of the D0 candidates discussed in Sect. 3.3.5 and one GoodTracksVery-

Loose candidate that has a maximum momentum of 450 MeV/c.
The reconstructed D∗+ candidate is required to have a mass within 500 MeV/c2 of

the nominal D∗+ mass and a minimal momentum in the center-of-mass frame of 1.3
GeV/c.

Another requirement is placed on the mass difference between the D∗+ and the D0

daughter, Δm = mD∗+ − mD0. The mass of the D0 is constrained at the nominal mass
and required to be within the range of (130 < Δm < 160) MeV/c2.

3.3.7 B0 candidates

B0 meson candidates are reconstructed in two different modes, B0 → D−ηπ+ and B0 →
D∗−ηπ+. The B0 mesons that decays via B0 → D−ηπ+ are reconstructed by combining
η and D+ candidates with a GoodTracksLoose candidate for the charged pion. The
B0 mesons reconstructed in the B0 → D∗−ηπ+ mode, uses the D∗+ instead of the
D+. The requirements that are placed on the reconstructed B0 candidates are: The
reconstructed B mass is within 4.5 and 5.5 GeV/c2; No more than 550 candidates are
reconstructed in a single event. (This is done to remove noisy events from the analysis.);
The beam-energy-substituted mass must be in the range, (5.18 < mES < 5.35) GeV/c2

(see Sect. 4.2.2 for a definition of mES); The energy difference, |ΔE| < 200 MeV (for a
description of ΔE see Sect. 4.2.2).

3.3.8 Global decay chain fit

Traditionally in a BABAR analysis, a leaf-by-leaf fit is performed on the decay chain. For
this analysis a global-decay-chain fit package is used instead. A detailed description of
this vertex fit, called TreeFitter, is found in [68]. TreeFitter is a method that performs
a least squares fit on the whole decay chain in one stage. This technique allows us to
obtain the decay time, position and momentum parameters for all the particles in the
decay chain simultaneously.

In some cases the position and momentum parameters can be improved by constrain-
ing the mass of composite particles in the decay tree to the known particle mass. In this
analysis we have constrained all the masses in the reconstructed decay chain.

In addition TreeFitter can provide the decay lengths of the K0
S and D+ mesons

which are used later for background suppression.

57



Chapter 3 Reconstruction of B mesons

Skim line Input sample

B
0
→

D
∗−

a
+ 0

M
.C

.
(1

6k
)

B
0
→

D
−
a

+ 0
M

.C
.
(1

6k
)

B
+
→

D
∗0

a
+ 0

M
.C

.
(1

6k
)

B
+
→

D
0

a
+ 0

M
.C

.
(1

6k
)

G
en

er
ic

B
B

M
.C

.
(1

k
)

G
en

er
ic

B
+
B

−

M
.C

.
(1

k
)

D
at

a
(5

k
)

B0 → D∗−ηπ+ 40% 8% 37% 44% 1.9% 1.8% 0.4%
B0 → D−ηπ+ 15% 30% 30% 39% 0.4% 0.9% 0.4%
B+ → D∗0ηπ+ 13% 7% 48% 46% 6.3% 7.3% 2.2%
B+ → D0ηπ+ 10% 10% 10% 38% 5.0% 7.3% 2.5%
Total Skim 54% 54% 55% 57% 7.6% 7.3% 3.4%

Table 3.7: Selection fractions of the different Monte Carlo samples and measured
data samples. The size of the used data samples to determine the frac-
tions is quoted between brackets.

Events where the global-decay-chain fit has failed have an unconverged fit TreeFit-
ter status and are removed from the analysis.

3.4 Skim rates and selection efficiency

A summary of the fractions of different data samples that are selected by the four
different skims are presented in Table 3.7. (For completeness we also quote the charged
B skims.)

The first four columns in Table 3.7 quote the selected fractions in the dedicated signal
Monte Carlo data. Ideally, one would select 100% of the matching Monte Carlo data (row
n matches to column n), and 0% in all other boxes. This would correspond to a selection
efficiency of 100% with no cross-feed from other skim lines; i.e. the B0 → D(∗)−ηπ+

skim would select no events that are produced via B0 → D∗−ηπ+, B+ → D0ηπ+ or
B+ → D∗0ηπ+.

The 5th and 6th column of Table 3.7 represent the selected fraction of the generic
B meson Monte Carlo data. Since there are no B0 → D(∗)−a+

0 events produced in the
Monte Carlo data and only a small fraction of B0 → D(∗)−ηπ+ events, these numbers
reflect the number of expected B meson background events.

The last column in Table 3.7 gives the selected fraction of measured data for the
four different skims. Note that although these numbers might appear small, the actual
number of background events in the skimmed data sample is huge (0.4% × ∼ 109

events).
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Event selection

The resulting sample obtained from the skim, defined in Chapter 3 is now input to a
final event selection. This stage in the data selection uses as many signal-background
discriminating variables as possible to achieve the highest possible signal sensitivity.
A dedicated optimization procedure is used to maximize the significance level of the
selected data set. Here, the significance level reflects the sensitivity to the discovery or
exclusion of B0 → D(∗)−a+

0 signal, which is the primary goal of this analysis. A set of
optimized rectangular box cuts is produced for each separate reconstructed decay chain1:
two for B0→D−a+

0 and four for B0→D∗−a+
0 decays.

The optimization process is described in Sect. 4.1. The discriminating variables are
presented in Sect. 4.2. The optimized final selection is given in Sect. 4.3, and Sect. 4.4
gives a description of the final sample. Efficiency curves of the selected data sample are
determined, for later use, in Sect. 4.5.

4.1 Selection optimization

The optimization process aims to find the highest significance level in the multi-variable
phase space. We first find an appropriate definition of the significance level in Sect. 4.1.1.
The method that is developed to search the variable phase-space for the optimal com-
bination of cuts leading to the highest significance level of the final sample, is presented
in Sect. 4.1.3. Finally, the best candidate selection, that deals with events where more
than one B candidate survives the selection, is given in Sect. 4.1.4.

1Throughout this thesis the following notations are used in captions and tables for the six re-
constructed decay chains. DchI for B0→D−a+

0 (D+→K−π+π+), DchII for B0→D−a+
0 (D+→K0

Sπ+),
DstI for B0→D∗−a+

0 (D∗+→D0π+, D0→K−π+), DstII for B0→D∗−a+
0 (D∗+→D0π+, D0→K−π+π0),

DstIII for B0→D∗−a+
0 (D∗+→D0π+,D0→K−π+π+π−) and DstIV for B0→D∗−a+

0 (D∗+→D0π+,
D0→K0

Sπ+π−).
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4.1.1 Significance level

Two commonly used functions to define the significance level are

S√
S + B

, (4.1)

and
S√
B

. (4.2)

Here S is the number of selected signal events in a given dataset, and B is the number
of selected background events expected in this sample. The number of selected signal
events is connected to the selection efficiency of the signal, εS, the branching ratio of the
decay, B, and the number of BB decays in the dataset, NBB, by the following relation

S = εS · B · NBB, (4.3)

Optimization of the first equation, Eq. (4.1), needs prior knowledge (or a guesstimate)
of the branching ratio. This poses a problem when the branching ratio is not known and
cannot be estimated. The second equation can be optimized without this knowledge.
The branching ratio introduces an overall scaling factor that does not influence the
optimization procedure. However, optimization based on this function becomes non-
optimal for small number of selected background events as it will prefer to push the
signal efficiency down to small values, see the discussion in Punzi [69].

A definition for the significance level is proposed by Punzi that needs no prior knowl-
edge of the branching ratio and still behaves properly for small numbers of background
events. The definition of the significance level SL is given by [69]

SLP =
εS

a/2 +
√

B
, (4.4)

where a is the desired significance of the measurement and B is the number of back-
ground events. By finding the maximum of this function the minimal detectable branch-
ing ratio is found that can still be measured, or excluded, with a significance of a. By
including the desired significance, a, the formula becomes more robust for small numbers
of B.

We define a significance level that is used for our optimization process. It behaves
exactly like Eq. (4.4) in the optimization procedure and is more practical in use

SL =
Nsig

1.5 +
√

B
(4.5)

where Nsig is the number of selected signal events in the Monte Carlo sample. We have
chosen to optimize for a 3σ discovery or 95% CL exclusion. The difference between Eq.
(4.4) and (4.5) is a constant scaling factor and does not influence the optimization.
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4.1 Selection optimization

4.1.2 The Monte Carlo data used for the optimization

The optimization is performed using category I signal Monte Carlo and four types of
background Monte Carlo data, see Table 3.1 on page 46. The number of background
events obtained is scaled to match the used data sample of 208 fb−1, with the use of
the scaling factors summarized in Table 3.1.

A part of the signal Monte Carlo events is not correctly reconstructed and has to
be considered as background. To reduce the number of mis-reconstructed events in the
Monte Carlo sample we place a cut around the a±

0 mass region, (0.9 < ma0 < 1.1) GeV/c2.
After this cut, a selected event in the corresponding signal Monte Carlo data is assumed
to be a selected signal event in the optimization procedure.

Only non-resonant B0 → D(∗)−ηπ+, and no resonant B0 → D(∗)−a+
0 , events are

generated in the background Monte Carlo data. For the optimization procedure the
non-resonant B0 → D(∗)−ηπ+ events are removed from the background Monte Carlo
samples. After this, any selected event in the generic B0B0 or B+B−, the cc̄ or uds
Monte Carlo sample is considered to be a background event.

The optimization is thus only performed for the B0 → D(∗)−a+
0 signal events and

not specifically for the B0 → D(∗)−ηπ+ signal events.

During the optimization procedure the statistics of the selected background events
can run into the single digit numbers and the statistical uncertainty starts to play an
important role. To enhance background statistics, we loosen the selection cuts on the
mES and ΔE variables and scale the area of the sidebands to the area of the signal
box to make use of the fact that the background distribution is almost constant as a
function of mES, and to a very good approximation linear in ΔE. In Fig. 4.1 the different
areas are presented, the signal region is defined by (5.273 ≤ mES ≤ 5.289) GeV/c2 and
|ΔE| ≤ 40 MeV, the ΔE sideband by (5.273 ≤ mES ≤ 5.289) GeV/c2 and (40 ≤ |ΔE| ≤
100) MeV, and the mES sideband by (5.200 ≤ mES ≤ 5.273) GeV/c2 and |ΔE| ≤ 40 MeV.
For the optimization of all variables, except mES and ΔE, the sideband estimation
technique has been used.

For later use we define a region that is a combination of the a±
0 mass region and the

mES-ΔE signal region that is referred to as the a0 box.

4.1.3 Scanning the multi-variable phase space

The optimization procedure operates in a set of cycles. In a single cycle the variables
are optimized, one-by-one, in predefined search regions. If variable n is evaluated cuts
are placed on all other variables. For the first cycle the set of cuts is given by the user.
Each following cycle uses the optimized cuts produced by the previous cycle.

Each variable has a predefined exclusion direction, either greater or smaller than
the cut position. In addition, by using absolute values and introducing offsets, intervals
around for example particle masses, are defined.

The predefined search region is divided into a predefined number of bins, Nbins, and
for every bin the significance level, SL, is calculated using Eq. (4.5). In one cycle, the
significance levels are calculated for each bin, and for all variables. The search region
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Figure 4.1: Definition of signal and sideband regions in the (mES, ΔE) plane.

can be changed during the procedure in three different ways, zoom-in, zoom-out and
displaced.

Some of the variables that are optimized are correlated and this can lead to conver-
gence problems. Consider two positively correlated variables that are evaluated in one
cycle and both lead to a looser cut. The combination of the two leading to a too loose
selection. In the next cycle the same two variables are then evaluated to be tightened. If
no further restrictions are made, these correlated variables may never converge. To im-
prove the convergence of the optimization procedure, a friction term, F , is introduced:
instead of moving the current cut to the position of the highest significance level (Copt),
the value is placed somewhere in between. The cut for the next cycle is calculated for
variable i as

Cj+1
i = Cj

i + F · (Cj
i;opt − Cj

i ), (4.6)

where j is the cycle number. A friction of F = 0 is maximal, no optimization takes place.
The minimal friction of F = 1 gives the maximal movement of the cuts, but introduces
the convergence problems. Empirically, a friction term of F = 0.3, leads to a stable,
relatively fast, optimization procedure, with our set of variables.

The size and location of the search region is in some cases re-defined during the
procedure. The region is defined between Rmin and Rmax, with size Rsize = |Rmax−Rmin|.
There are a two situations where the definition of the region is changed between cycles.

1. If the cut, Cj+1, is close to a border, Rmin or Rmax, the size of the region is enlarged
by 20% and centered at the cut.

2. If the optimal cut position, Cj
opt, is within 0.1% of the new cut, Cj, the size of the

region is decreased by 10% and centered at the new cut.

The requirement is made that for absolute-value variables the minimum and maximum
of the probe region must be non-negative: Rmin ≥ 0 and Rmax > 0.
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Figure 4.2: Significance level of the B0→D−a+
0 (D+→K−π+π+) decay mode for

increasing cycle numbers during the optimization process.

The average time per cycle depends on the number of variables, the number of bins,
and the number of Monte Carlo events for the specific decay mode. This last number
varies significantly and depends on the branching ratio and pre-selection of the D∗ or
D0 mode.

The procedure is monitored by calculating the significance level in each cycle. If the
level converges the process is stopped and the set of cuts corresponding to the highest
significance level is selected. As an example, the calculated SL for 100 cycles of the
optimization of the B0→D−a+

0 (D+→K−π+π+) decay mode is shown, in Fig. 4.2.

From Fig. 4.2 it can be seen that the significance level increases on average as more
optimization cycles have been performed. However, there are fluctuations; from one
cycle to the next it can actually decrease. There are two mechanisms that can cause
this behavior. The first is the friction term in Eq. (4.6). Because of this friction term a
cut can be positioned in an area where the significance level is actually lower than at
the position where it started at. The second is that the combination of optimized cut
position of the individual variables does not necessarily give the optimized significance
level for the combination of variables.

The fluctuating behavior cannot be compared to an overtraining effect as sometimes
occurs in a neural network training. In that case, the calculated significance level is cal-
culated on a monitoring sample, and as the neural network training becomes overtrained,
the significance level of the monitoring sample starts to fluctuate where the significance
level of the training sample still increases. The significance level as shown in Fig. 4.2 is
however calculated on the same sample that is also used for the optimization process.
The fluctuations can therefore not be the sign of overtraining of the optimization.
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This of course does not exclude the possibility that our optimization might be over-
trained. However, any overtraining effects that might be present in the optimization do
not influence the analysis. The efficiency that is calculated is performed on an entirely
different Monte Carlo sample (of type II).

The outcome of the optimization can be biased by the original set of cuts placed by
the user for the first cycle, halting at a local maximum. To reduce the effects of this, the
optimization procedure is repeated a couple of times using different starting sets. The
most optimal set of cuts is taken as the final selection.

4.1.4 Multiple candidates selection

It is possible that, in a single event, more than one B candidate survives the final
selection for a specific mode. This happens in 40 − 70% of the events. The average
multiplicity (B candidates per event) is between 3−5 per multiplicative event, depending
on the decay mode and the selection. The best candidate in the event is selected on the
basis of a χ2, computed for each candidate. For the B0→D−a+

0 decay this χ2 is defined
as

χ2 =

(
mη − mPDG

η

σmη

)2

+

(
mD± − mPDG

D±

σmD±

)2

, (4.7)

where mx is the mass of meson x, mPDG
x is the meson mass as listed in the PDG [9], and

σmx is the Gaussian width of its mass distribution. The χ2 for the B0→D∗−a+
0 decay is

defined by

χ2 =

(
mη − mPDG

η

σmη

)2

+

(
Δm − ΔmPDG

σΔm

)2

, (4.8)

where Δm is defined as the mass difference between the reconstructed D∗± meson and
the nominal D0 mass, and ΔmPDG is the mass difference as listed in the PDG. The
candidate with the smallest χ2 is selected.

Many more variables could be used to define the χ2, such as ΔE or mES, however
this would create a bias in the analysis, moving background events toward the signal
area.

4.2 Selection variables

This section describes the variables that are used to reduce the number of background
events. Every defined variable has a power to discriminate signal from background events.
Optimized selection variables that do not hold unique discriminative powers, that is if
they are removed the selection does not change, are removed from the selection set and
not described in this section. Roughly speaking we can separate the selection variables
in two categories. The first are variables that discriminate between continuum qq events
and B events; these are described in Sect. 4.2.1. The second set of variables, described
in Sect. 4.2.2, are discriminatory toward signal events.
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Any figure shown in this section is produced with the skimmed Monte Carlo data
and shows the distribution of the selected events in the DstI decay mode or, if stated
explicitly, in the DchI or DchII decay mode. Some cuts are placed to select the signal area:
mES <5.27 GeV/c2 (except for the mES plot itself), |ΔE| < 100 MeV and a converged
TreeFitter fit. Non-resonant B0 → D(∗)−ηπ+ and other over-abundantly produced
background states, see Sect. 3.1.2, are removed from the shown generic B Monte Carlo
samples.

4.2.1 Continuum background suppression

The Υ (4S) resonance is little over twice as heavy as the B mass. In the Υ (4S) frame
the produced B meson pair is therefore almost at rest. The subsequent decay of the
B mesons is therefore highly isotropic. The mass of the u, d, s and c quarks are much
lighter than the b quark mass. Hence, the decay of continuum background events have
a jet-like topology. A reconstructed B mass in such an event would require to utilize
particles from more than one jet.

Variables that are sensitive to this geometrical difference are called event shape vari-
ables. In this section the different event shape variables are described.

The thrust of the B event

The thrust of an events is defined by [70]

T =

∑
i |T̂ · p∗

i|∑
i |p∗

i|
, (4.9)

where T̂ is direction to which the thrust is calculated, p∗
i is the momentum in the Υ (4S)

frame, and the summation sums over all the particles in the event. Thrust is a measure
of the alignment of the particles within an event and has a quantity in the range (0.5,
1.0). We calculate the thrust using the direction of the reconstructed B as T̂ . The lower
the thrust, the more spherical the event is, the higher the thrust the more momenta lie
collinear to the reconstructed B momentum and thus the more jet-like the event is. The
distribution of the thrust is plotted in Fig. 4.3 for the different types of events.

The thrust angle

The thrust axis is the vector where the thrust, calculated by Eq. (4.9) is maximal. The
thrust angle, θT , is defined as the angle between the thrust axis of the B candidate and
the thrust axis of the rest of the event. In a perfectly isotropic event, there is no relation
between the thrust axis and the B momentum. The distribution of this variable for BB
events is therefore flat. If the B meson is reconstructed in a continuum background event,
the thrust axis is collinear with the B meson direction and thus peaks at | cos θT | ∼ 1,
as is shown in Fig. 4.3.

In a similar way the thrust and the thrust angle can be calculated considering only
the reconstructed B meson. This information is used in the Fisher discriminant that is
described on page 68.
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Figure 4.3: Normalized distributions of the thrust (left) and thrust angle (right)
distributions for signal, generic B and qq events.

The sphericity of the event

The sphericity tensor is defined as [71],

Sαβ =

∑
i p

α
i pβ

i∑
i p

2
i

, (4.10)

where α, β = 1, 2, 3 corresponds to the x, y, z components of the momentum (in the
Υ (4S) frame) vector p∗

i , the summation sums over all the particles in the event. By
standard diagonalization of Sαβ one finds three eigenvalues λ1 ≥ λ2 ≥ λ3, and λ1 +λ2 +
λ3 = 1. The sphericity of the event is then defined as

S =
3

2
(λ2 + λ3) , (4.11)

so that 0 ≤ S ≤ 1. Sphericity is a measure of the summed p2
⊥ with respect to the event

axis. A two-jet event corresponds to S ∼ 0 and an isotropic B event to S ∼ 1.

The sphericity angle

The sphericity angle θS, is defined as the angle between the momentum direction of the
B candidate and the sphericity axis, which is the eigenvector corresponding to largest
eigenvector, λ1. The isotropic character of the B decays causes the distribution of | cos θS|
to be flat for correctly reconstructed B mesons and will peak at ∼ 1 for continuum
background events, as is shown in Fig. 4.4.
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Figure 4.4: Normalized distribution of the sphericity angle for signal, generic B
and qq events.

The normalized second Legendre moment

The normalized second Legendre moment is defined as

L2

L0

=

∑
i |p∗

i | cos2 θi∑
i p

∗
i

, (4.12)

where θi is the angle between the momentum direction in the Υ (4S) frame p∗
i and the

thrust angle. The summation sums over all the particles in the event. L2/L0 is defined
in the range (0, 1). A perfect two-jet event has L2/L0 = 1, more isotropic events have
values close to 0.5. The distribution for different kind of events are shown in Fig. 4.5.

The normalized second Fox-Wolfram moment

The Fox-Wolfram moments Hl, where l = 0, 1, 2, . . . , are defined as [72],

Hl =
∑
i,j

|p∗
i ||p∗

j |
E2

vis

Pl (cos θij) , (4.13)

where θij is the opening angle between hadrons i and j and Evis the total visible energy
of the event. Autocorrelations, i.e. i = j, are included. The Pl(x) are the well-known
Legendre polynomials.

The normalized ratio R2 = H2/H0, has values in the range (0, 1). R2 values closer
to 0 indicate a more spherical event, values closer to one a more jet-like event. The
distribution of R2 for signal and background events are shown in Fig. 4.5.
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Figure 4.5: Normalized distribution of L2/L0 (left) and R2 (right) for signal,
generic B and qq events.

Momentum flow

The space around the thrust axis T, can be divided into nine cones, each of which
covers an angle Δθ = π

18
. The nine cones together cover Δθ = π

2
, and the space beyond,

is mirrored into this region. The momentum flow

pi =
∑

j

|p∗
ij|, (4.14)

is defined as the scalar sum of all momenta p∗
j , in the Υ (4S) frame, found inside the

ith cone. In general, more energy is found in the cones nearer the candidate thrust axis
in jet-like continuum background events than in the more isotropic BB events. This
variable is one of the variables used in the Fisher discriminant, described next.

The Fisher discriminant

A Fisher discriminant is a linear combination of a set of measurements. The coefficients
of the Fisher discriminator are determined in a way that maximizes its overall ability to
discriminate between signal and background events [73].

The Fisher discriminant F combines eleven different event shape variables, the he-
licity angle of the B meson (cos θB), defined in the next section, the thrust angle of the
B meson (cos θTB

) and the nine different momentum flow cones. In equation form,

F =

11∑
i=1

αixi. (4.15)
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Figure 4.6: Normalized distribution of the Fisher discriminant for signal, generic
B and qq events.

The coefficients αi are optimized for the discrimination between B decays and continuum
background. We have used the optimized coefficients taken from Ref. [74]. The Fisher
distribution for the different types of events is given in Fig. 4.6.

4.2.2 Signal event selection variables

In the previous section we have presented variables that discriminate between B events
and continuum background events. In this section the variables are presented that dis-
criminate between the specific B0 → D(∗)−ηπ+ and B0 → D(∗)−a+

0 signal events, and
all other background events.

The ΔE variable

The energy difference ΔE is defined as

ΔE = E∗ − E∗
beam, (4.16)

where E∗ is the energy of the reconstructed B meson in the Υ (4S) frame, E∗
beam is half

the Υ (4S) energy. Because the Υ (4S) decays into exactly two B mesons with no addi-
tional particles, E∗

beam is the best estimate for the B energy. As E∗
beam is very accurately

known from the accelerator center of mass energy, the resolution of ΔE is dominated
by the measurement of E∗ which is in turn dominated by the momentum resolution and
depends on the reconstructed decay chain. Correctly reconstructed decays will spread
around ΔE = 0. Incorrectly identified particles, missing or additional tracks in the re-
construction lead to a shift in ΔE. For example, a reconstructed decay where one pion
too many has been assigned to the reconstructed B decay, has a ΔE ∼ mπ. Figure 4.7
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Figure 4.7: Normalized distributions for ΔE (left) and mES (right) for signal,
generic B and qq events.

shows the distribution for the different types of events in a region of 200 MeV around
zero.

The mES variable

The beam energy substituted mass is defined as

mES =
√

E∗2
beam − p∗2

B , (4.17)

where p∗
B is the momentum of the reconstructed B candidate in the center of mass rest

frame. Since |p∗
B| � E∗2

beam, the experimental resolution on mES is dominated by beam
energy fluctuations. Signal events are centered around the B meson mass. Background
events can be separated in a combinatorial and a peaking component.

The combinatorial background is distributed as an Argus function described by [75]

A(mES;m0, ξ) = mES ·
√

1 − (mES/m0)
2 · eξ(1−(mES/m0)2), (4.18)

where m0 is the upper kinematic limit fixed at the beam energy, and ξ controls the slope
of the function.

A peaking background event has a similar decay constitution to a signal event and
therefore constructs a B mass in the B mass region and peaks around ΔE =0. An
example of such a decay is B0 → D(∗)−D+

s , where D+
s → ηπ+: this decay produces the

same final state particles as the B0 → D(∗)−a+
0 or B0 → D(∗)−ηπ+ signal decay modes.

The peaking background is not covered by the Argus function and is a Gaussian
like distribution centered at the B mass. The contribution of this distribution can be
determined with Monte Carlo studies. The total normalized distributions for the signal
and background components are presented in Fig. 4.7.
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Figure 4.8: Normalized distribution for the decay length significance of the recon-
structed D0 (left) or D± (right) meson for signal, generic B and qq
events reconstructed in the DstI (left) and DchII (right) decay mode.
The last bin shows the overflow, or integral of the area on the right of
the plotted region.
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Figure 4.9: Normalized distribution for the DchII mode of the decay length signifi-
cance of the K0

S meson for signal, generic B and qq events. The last bin
shows the overflow, or integral of the area on the right of the plotted
region.
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Figure 4.10: Normalized distribution of the reconstructed π0 veto mass for sig-
nal, generic B and qq events in the DchII decay mode. The last bin
shows the reconstructed π0’s that where not considered as potential
π0 candidates.

The decay length significance

For mesons with a relatively large lifetime, the K0
S , the D0, and the D+ mesons, we

calculate a decay length significance, dls. Figures 4.8 and 4.9 show the decay length
significance distributions.

The overlapping photon veto

Both π0 mesons and η mesons can decay into two photons. In a typical BABAR event η
mesons are outnumbered by the produced π0’s, and thus most of the photons originate
from a π0 decay. A reconstructed η meson that passes all the selection criteria, can still
be reconstructed from two random photons in the event. The chance that one of the
random photons originates from a π0 decay are high.

We pair each of the two selected photons with any other photon found in the event,
and calculate the invariant mass of the new pair. When this is close to the π0 mass the
η meson candidate is vetoed.

Figure 4.10 shows the normalized distributions of the reconstructed π0 mass.

Helicity angles

Another powerful method for suppressing backgrounds is to exploit the spin structure
of the e+e− → Υ (4S) → B0 → D(∗)−a+

0 decay chain.
In the reaction, Y → X → a+b, the helicity angle of particle a, is the angle measured

in the rest frame of the decaying parent particle, in this case X, between the direction of
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Figure 4.11: Helicity angle of the photons in the a+
0 → ηπ+(η → γγ) decay. The

angle is measured between the a+
0 , or π+, and the γ in the a+

0 rest-
frame.
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Figure 4.12: Normalized distributions of the cosine of the helicity angle of the B
(left) and D0 (right) for signal, generic B and qq events.

the decay daughter, a, and the direction of the grandparent particle, Y . As an example,
the helicity angle of the photons originating from the η decay is schematically drawn in
Fig. 4.11.

In the decay chain e+e− → Υ (4S) → BB, the Υ (4S) is produced with helicity
λΥ (4S) = ±1. The Υ (4S) decays into two (spin-zero) B mesons. The angular distribution
is then given by a scaling factor multiplied with the squared Clebsch-Gordan coefficient,
which is given by

DJX
λX ,λa−λb

= D1
1,0, (4.19)

which gives a sin2 θ distribution. Any angular distribution that is expected in the back-
ground will be smeared because the decay will be mis-reconstructed, background events
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Figure 4.13: Normalized distributions of cosine of the helicity angle of the η (left)
and the γ (right) for signal, generic B and qq events.

are thus expected to have a flat distribution. The normalized B helicity angle distribu-
tion for signal and background Monte Carlo samples are shown in the left plot in Fig.
4.12.

The D0 helicity angle distribution is shown the right plot in Fig. 4.12. The decay
D∗± → D0π±, is a vector to two pseudoscalar decay. The helicity of the parent D∗

must be zero, it was produced in a B decay (spin-zero) and the helicity difference of
the daughters must also be zero as they are both pseudoscalars. The signal events are
therefore distributed as cos2 θ. Random tracks that are assigned as the slow pion, from
the D∗ decay, create combinatorial background that is distributed flat, since there is no
preferred angle.

The η meson is produced in the scalar to two pseudoscalars decay a0 → ηπ. The
spin of the parent a0 is zero so the distribution of the η helicity angle must be flat.
The distribution of the η helicity angle is presented in the left plot in Fig. 4.13. The
background, from B mesons and qq, is not flat but peaks at | cos θ| = 1. This corresponds
with a decay where the momentum of the η or the pion, from the a0 decay, fly parallel
to the D∗ and B meson. In qq events this can be understood because of the jettiness of
the events. The generic B background peaks at cos θ = −1. The η momentum is then
aligned with the D∗± momentum in the a0 rest-frame. These are background decays
that have a correctly reconstructed D∗± or D± meson, but a mis-reconstructed η or π±.
Dominant background modes that peak at | cos θ| ∼ 1 are B0 → D∗+π−π0, B0 → D∗+ρ−,
B0 → D∗+a−

1 and B0 → D∗+l−νl. In the non-leptonic modes the photons of the neutral
pion are then assigned to the η meson.

Two photons are produced by the pseudoscalar η meson, giving a flat distribution
in the γ helicity angle. The right plot in Fig. 4.13 shows the helicity angle distributions
of one of the photons. The signal shows a flat distribution with a small peak around 1,
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Figure 4.14: Normalized distribution of the ln(DOCA) for signal, generic B and
qq events, reconstructed in the DchII (left) and DstI (right).

due to mis-reconstruction of η mesons. The peaking behavior in the qq events can be
understood in the same way as the η helicity, the photons are either parallel or anti-
parallel. The peaking behavior of the generic B Monte Carlo sample is dominated by
the B0 → D∗+π−π0, resonant and non-resonant decay modes.

The distance of closest approach

The distance of closest approach, or DOCA, is defined as the calculated distance be-
tween the bachelor pion and the D± trajectory or the reconstructed D0 trajectory, for
B0→D−a+

0 and B0→D∗−a+
0 decays, respectively. Properly reconstructed events should

have a DOCA consistent with zero, whereas random combinations can lead to large
values. The normalized distributions for B0→D−a+

0 and B0→D∗−a+
0 decays are shown

in Fig. 4.14.

The χ2 consistency of the decay chain fit

The distribution of the χ2 consistency of the global-decay-chain fit performed by Tre-
eFitter is shown in Fig. 4.15. In case the assumed signal hypothesis is correct, this is
expected to be distributed uniform over the range (0, 1). If the hypothesis is wrong,
small values are expected.

Particle mass, momentum and angle

Furthermore, the mass, m, momentum, p, and angles, polar angle, θ, and azimuthal
angle, φ, are used as discriminatory variables.
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Figure 4.15: The χ2 consistency distributions for signal, generic B and qq events.
The left (right) plot shows the distribution for DchII (DstI ) recon-
structed events. Both plots show the integral of the region to the right
of the plotted area.

4.3 Final selection

The results of the optimization procedure are presented in Table 4.1. Selection powers
of the individual variables are summarized in App. A. Variables that do not add any
selection power with respect to the other variables, i.e. when removal of the variable
does not make a difference, have been removed from the list.

As can be seen from Table 4.1, the optimized cut positions in the variables can vary
between different D(∗)± meson decay modes. This is caused by a couple of reasons. First,
the different various D(∗)± meson decays have different fractional branching ratios. In the
optimization procedure this will lead to a tighter (smaller branching ratio) or more loose
selection (higher branching ratio). Second, there is the composition of particles in the
reconstructed decay mode that lead to differences. For example the π0 in the B0→D∗−a+

0

(D∗+→D0π+, D0→K−π+π0) decay leads to the selection of more background events.
Many π0 mesons are produced in an average B decay event and as a result more B
candidates will meet the selection criteria. Also some particles provide variables that
are effective to reduce background, such as the decay length significance in the dlsK0

S
,

this will then release the pressure on the other variables in the optimization. Third,
correlations between variables and a difference in starting position in the variable phase
space for the optimization cause differences in the optimization output.

The number of events in the Monte Carlo datasets, at different stages of the selection
are summarized in Table 4.2. The total selection has a high background reduction power
and a relatively high signal efficiency.
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variable DchI DchII DstI DstII DstIII DstIV
mES > 5.22 5.22 5.22 5.22 5.22 5.22
|ΔE |< 0.1 0.1 0.1 0.1 0.1 0.1
χ2> 0.0255 0.0499 0.01 0.01 0.01 0.01
|cos θT |< 0.905 0.959 0.996 0.738 0.972 0.98
|cos θB|< 0.953 0.964 0.89 0.775 0.891 0.81
|cos θS|< 0.872 0.851 0.931 0.868 0.901 0.889
|T|< 0.919 0.847 0.853 - 0.83 -
ln(DOCA)< 0.95 −1.77 −1.22 −1.74 0.459 −1.11
F< 0.923 1.4 1.55 1.79 1.02 1.83
|mD±−mPDG

D± |< 0.0132 0.0445 - - - -
dlsD> 0 0 - - - -
|p∗K |< 1.9 - - - - -
|p∗π2|> 0.0723 - - 0.119 - -
|mη−mPDG

η |< 0.0235 0.0289 0.0349 0.0305 0.0278 0.0256
|p∗η|> 0.64 0.679 0.68 0.7 0.628 -
|mV ETO

π0 −mPDG
π0 |> 0.00344 9.8e−05 0.00533 0.00657 0.00423 0.005

|cos θη|< 0.822 0.852 0.787 0.812 0.768 0.86
|EπB|< 2.2 2.29 2.37 2.21 - -
|p∗πB|< 1.61 1.61 1.59 1.5 1.46 1.54
|θπ|< 2.35 - 2.57 - - -
|Eγ|> 0.224 0.191 0.188 0.208 - 0.061
|L2/L0|< 0.524 0.517 0.603 0.481 0.567 0.55
|mK0

S
−mPDG

K0
S

|< - 0.0153 - - - 0.0168

|dlsK0
S
|> - 4.89 - - - 6.46

|p∗π1|> - 0.391 - - - -
|Eη|> - 0.738 0.77 - - -
|R2|< - - 0.467 0.342 - 0.431
|mD∗±−mPDG

D∗± |< - - 0.00295 0.00272 0.00332 0.0028
|cos θD∗ |> - - 0.185 0.292 0.273 0.187
|cos θa0|< - - 0.998 0.94 0.994 -
|mD0−mPDG

D0 |< - - 0.09 0.0662 - 0.02
|θD0|< - - 1.89 - 1.81 -
−2 < dlsD < - - 6.9 5.24 4.76 5.02
|φK |> - - 0.0128 - - -
|p∗π1|< - - 2.25 2.12 1.55 -
|pSπ|> - - 0.0784 0.08 0.0748 -
|φSπ|> - - 0.0346 - - -
|p∗K |> - - - - 0.228 -
|p∗π3|> - - - - 0.0621 -

Table 4.1: Summarized result for the optimized variable cuts. Energies are given
in GeV, momentums in GeV/c, masses and mass differences in GeV/c2

and angles in rad. All cosined angles are helicity angles.
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DchI DchII
SigMC NonRes BB qq SigMC NonRes BB qq

skim 26947 99250 6265105 10459061 7143 20990 1742462 4951231
selection 3896 7710 3814 1619 1061 1373 1129 650
a0 box 2773 1048 53 7 781 196 27 2

DstI DstII
SigMC NonRes BB qq SigMC NonRes BB qq

skim 6847 20242 504851 479780 19670 100527 4100912 4355261
selection 1434 2268 1215 169 1328 1449 806 162
a0 box 1019 365 28 0 907 212 13 0

DstIII DstIV
SigMC NonRes BB qq SigMC NonRes BB qq

skim 16654 1284870 6631073 4379028 6990 41753 1800745 1162762
selection 1003 1631 953 118 359 529 340 46
a0 box 727 272 21 2 248 84 4 1

Table 4.2: Number of events in the data sample at different stages of the selection,
skim is the output of the skim, selection after the final selection and a0

box is after the final selection only in the a0 box.

4.4 Selected sample

This section describes the selected Monte Carlo data samples.

Table 4.3 presents the number of events in the different samples, the fraction of
events that contain only one candidate, and the overall averaged multiplicity. As can be
seen from the table, the fraction of single-candidate events ranges from 81% and 97%
and the overall multiplicity lies between 1.03 and 1.23. The best-candidate-selection,
described in Sect. 4.1.4, takes care of those events with multiple B candidates.

The peaking background events in the selected generic BB samples are summarized
in Table 4.4. The generic B+B− samples show no significant peaking background modes,
the highest contribution comes from B+ → D+π+π−π0, which has up to 5 events in
the selected samples. Figure 4.16 shows the dominant background modes, in the DchI
selection, distributed in the ηπ-invariant-mass spectrum.

The dominant background mode is the decay B0 → D(∗)−D+
s . This mode peaks in

the ηπ-invariant-mass distribution at the D+
s mass at 1.969 GeV/c2, since the D+

s can
decay via D+

s → ηπ+. This background mode poses no threat to the B0 → D(∗)−a+
0

or B0 → D(∗)−ηπ+ measurement because of its well defined narrow peak in the ηπ-
invariant mass, far away from the a0 resonance. In the fit routine, following this selection,
a separate p.d.f. is setup to describe the D+

s peak. In fact, we will use these events as a
control channel in the study of systematic uncertainties.

78



4.4 Selected sample

DchI DchII
Sig MC NonRes BB qq Sig MC NonRes BB qq

events 3890 7716 3814 1619 1059 1375 1129 650
single cand 92% 93% 96% 97% 89% 91% 95% 98%
multiplicity 1.09 1.08 1.05 1.03 1.12 1.09 1.06 1.02

DstI DstII
Sig MC NonRes BB qq Sig MC NonRes BB qq

events 1433 2269 1215 169 1325 1452 806 162
single cand 87% 91% 95% 97% 85% 85% 89% 90%
multiplicity 1.15 1.10 1.06 1.03 1.18 1.17 1.12 1.12

DstIII DstIV
Sig MC NonRes BB qq Sig MC NonRes BB qq

events 1003 1631 953 118 359 529 340 46
single cand 84% 84% 92% 95% 89% 94% 93% 93%
multiplicity 1.17 1.19 1.09 1.05 1.12 1.07 1.08 1.07

Table 4.3: Number of events in the final selection, percentage of single candidate
events and overal multiplicity of the selected data sample.
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Figure 4.16: Peaking background distribution in the ηπ-invariant-mass spectrum
for the DchI mode. The filled areas are incremented for the back-
ground modes quoted in the legend.
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decay mode DchI DchII DstI DstII DstIII DstIV

generic BB backgrounds
B0 → D+ D−

s 122 19 - 1 - -
B0 → D+ ρ− 25 23 - 1 - 1
B0 → D+ A−

1 23 8 1 1 - -
B0 → D∗+ π− π0 15 3 19 6 6 5
B0 → D∗+ μ−ν̄ 7 - - - 2 2
B0 → D∗+ ρ− 7 4 19 5 7 4
B0 → D+ ν̄ 6 - - - 1 -
B0 → D∗+ A−

1 6 - 19 12 15 1
B0 → K0

S X - 11 - - - -
B0 → D+ K0

S π− - 3 - - - -
B0 → D∗+ D−

s - - 67 38 43 14
B0 → D+ π− π− π+ - - - - 2 -

Table 4.4: Dominant background modes in the signal box specified as number of
unscaled events per decay mode.

4.5 Signal selection efficiency

The efficiency of the resonant B0 → D(∗)−a+
0 signal is defined as

ε ≡ Nsel

Ngen

, (4.20)

where Nsel is the number of selected events and Ngen the number of generated events.
The efficiency is calculated per reconstructed decay mode and presented in Table 4.6.
Note that the efficiency is calculated on type II Monte Carlo where the optimization
is performed on type I Monte Carlo. For the calculation of the efficiency we have used
only the events in the a0 box, which places additional cuts in mES, ΔE and mηπ, see
page 61 for a definition.

The calculation of the efficiency of the B0 → D(∗)−ηπ+ analysis is more difficult.
First, we do not known how many events have been produced in the Monte Carlo
datasets. The B0 → D(∗)−ηπ+ events are generated by Jetset which makes it impossible
to accurately find out how large the fraction of the produced B0 → D(∗)−ηπ+ events is
compared to the full Monte Carlo dataset. Secondly, the produced events are incorrectly
simulated in the mηπ phase-space due to the Jetset bug, see also Sect. 3.1.2. If the
number of generated events would be known, still we would have to correct for the
incorrect shape.

We calculate the B0 → D(∗)−ηπ+ selection efficiency in two stages.
First, we determine the relative efficiency curve in the invariant mηπ mass. We do this
by dividing the distribution in mηπ of the selected non-resonant events by the generated
distribution. At this point we are not interested in the overall normalization but just
in the shape. We subsequently fit the resulting distribution with a fifth order Cheby-
chev polynomial of the first kind using a likelihood fit that is multiplied with two error
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4.5 Signal selection efficiency

parameter DchI DchII DstI DstII DstIII DstIV
c0 −1.25 −1.45 −8.76 −4.20 −6.56 0.46
c1 0.29 0.29 0.64 0.58 0.73 0.57
c2 −0.27 −0.29 −4.45 −1.74 −3.28 0.93
c3 0.12 0.13 0.40 0.33 0.28 0.24
c4 0.01 0.18 −1.39 −0.58 −1.00 0.12

Table 4.5: The fitted Chebychev parameters to the efficiency curves in the mηπ

mass range between 0-4 GeV/c2.

DchI DchII DstI DstII DstIII DstIV
εRS (%) 5.75±0.09 9.8±0.3 8.6±0.02 2.21±0.06 3.09±0.10 4.51±0.23
εNR (%) 3.91±0.06 6.92±0.21 4.64±0.11 1.19±0.03 1.49±0.04 2.11±0.10

Table 4.6: Efficiency for the resonant (RS) and non-resonant (NR) signal selection
for the different reconstructed modes.

functions, one for each kinematical limit of the phase space. The fitted Chebychev pa-
rameters are presented in Table 4.5. The resulting functions are used in the likelihood
fit that follows this selection, described in Chapter 5. Subsequently, the resulting func-
tions are multiplied with the theoretical distributions of the events defined in Eq. (5.4)
resulting in the expected observed function in mηπ. This can be expressed as

fobs(mηπ) = εNR(mηπ) · fBW (mηπ), (4.21)

where fobs is the observed distribution function, εNR(mηπ) is the calculated non-resonant
efficiency curve and fBW is the theoretical distribution.

Second, we compare the efficiency of the B0 → D(∗)−a+
0 analysis in the area of 2

linewidths around the nominal a0 mass, between 869 and 1097 MeV/c2. In this area
∼ 95% of the signal events are distributed. Since there are no selection criteria that
distinguish the B0 → D(∗)−a+

0 and the B0 → D(∗)−ηπ+ events, we do not expect
the efficiency curves to be any different from each other. The only difference is that
the B0 → D(∗)−ηπ+ events are distributed in a larger mass range compared to the
B0 → D(∗)−a+

0 events. Throughout this mass range the efficiency is not linear because
selection variables, such as on the D∗ momentum, induce kinematical constraints. Ig-
noring detector resolution effects, the efficiency curves in mηπ for the B0 → D(∗)−a+

0

events in the mass range (869 < mηπ < 1097) MeV/c2 are flat. We define

εRS ≡ NRS
sel

NRS
gen

=
NRS

sel;x

NRS
gen;x

=
NNR

sel;x

NNR
gen;x

, (4.22)

where Nstate;x is the number of events in the mass range x defined by (869 < mηπ <
1097) MeV/c2, and the RS (NR) superscription stands for the resonant (non-resonant)
signal events.

We then calculate the expected efficiency of the B0 → D(∗)−ηπ+ events distributed
with the correct Breit-Wigner lineshape, using the efficiency determined on B0 →
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Chapter 4 Event selection

D(∗)−a+
0 events in the range x = (869 < mηπ < 1097) MeV/c2 using the following

relation

εNR =
Nsel

Ngen

= εRS · Ngen;x

Nsel;x

× Nsel

·Ngen

, (4.23)

= εRS
Nsel/Nsel;x

Ngen/Ngen;x

= εRS
1/fobs;x

1/fBW ;x

, (4.24)

= εRS
fBW ;x

fobs;x

, (4.25)

where εRS is the efficiency of the resonant B0 → D(∗)−a+
0 signal, Nstate are for the non-

resonant selection and fstate;x is defined as the area of the function fstate in the area x
relative to the full area.

The resulting calculated non-resonant signal efficiencies after the selection are pre-
sented in Table 4.6.
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Chapter 5

Three dimensional likelihood fit

The two types of signal, resonant and non-resonant, and the background events that are
present in the selected data sample are distinguished from each other by performing an
unbinned likelihood fit.

This chapter presents the setup of the maximum likelihood fit. Sect. 5.1 describes
the general setup. The different probability density function (p.d.f.) components of the
fit are described in Sect. 5.2. The parameters, which define the various p.d.f.’s, are
obtained from Monte Carlo samples and are summarized in Sect. 5.3. Section 5.4 shows
the likelihood fit as fitted on Monte Carlo data. Efficiencies of the combined variable
cuts and likelihood fit selections are presented in Sect. 5.5. The likelihood-fit performed
on the selected data sample is presented in Sect. 5.6. The method that will be used to
calculate the branching fractions from the obtained results is presented in Sect. 5.7.

5.1 Global fit setup

The aim of the fit is to distinguish between B0 → D(∗)−a+
0 , B0 → D(∗)−ηπ+ and

background events in the final selected data sets, making use of the different behavior
in the combination of three observables.

Every reconstructed mode has its three-dimensional p.d.f. defined as the product of
the p.d.f.’s of the three observables, mES, ΔE and the ηπ invariant mass, mηπ. This
three-dimensional p.d.f. is a combination of different component p.d.f.’s that are defined
for background and signal components. The components are: B0 → D(∗)−a+

0 signal1;
B0 → D(∗)−ηπ+ signal; BB background events; specific B0 → D(∗)−D+

s background
and qq (q = u, d, s) continuum background events. The p.d.f.’s are implemented and
fitted using the RooFit C++ data modeling package [76].

The parameters that define the p.d.f.’s are fixed using Monte Carlo data. Only the
number of events of the different components are free parameters in the final likeli-
hood fit, the rest is fixed. The fit is defined in the following intervals: (5.22 < mES <
5.3) GeV/c2, (−0.1 < ΔE < 0.1) GeV and (0 < mηπ < 4) GeV/c2.

1In this chapter short notations are used in captions and tables for the following decays: B0 → Da0

for B0 → D(∗)−a+
0 , B0 → Dηπ for B0 → D(∗)−ηπ+, and B0 → DDs for B0 → D(∗)−D+

s

83



Chapter 5 Three dimensional likelihood fit

)2(GeV/cESm
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

A
rb

it
ra

ry
 U

n
it

s

)2(GeV/cESm
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

A
rb

it
ra

ry
 U

n
it

s

1

2

3

4

5

6

7

8

Figure 5.1: An example of the distribution in mES. The gray area shows an Argus
function, the solid curve gives the stacked Cruijff distribution.

5.2 Description of probability density functions

Every component p.d.f. is defined in three dimensions, and is a product of three or more
functions each defined in a single dimension. Different components of the total p.d.f. use
a different set of functions. In this section the various functions used for the observables
are described.

5.2.1 The mES distribution

Two different functions are defined for the mES observable described in Sect. 4.2.2.

The first is the Argus function defined in Eq. (4.18) on page 70 that describes
combinatoric background events. The endpoint, m0, of the Argus function is the upper
kinematic limit and is fixed at the largest mES value found in the data set. The slope
parameter, ξ, is determined on the Monte Carlo data set.

The second, is a Cruijff function [77] that describes signal events and the peaking
background. Signal spreads around the B mass in the mES distribution. Two effects
contribute to a tail on the left side of the B mass peak. First limited energy resolution
in the EMC, due to energy loss in the DIRC, results in an asymmetric error on the
measured energy of the reconstructed η. The second effect is the limited precision in
the track reconstruction. Both effects lead to a bias toward lower mES values due to the
low momentum of the B meson. The Cruijff function can describe these effects and is
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5.2 Description of probability density functions

defined as [77]

Cr(mES;σL,R, αL,R,mB) = exp

(
−(mES − mB)2

2σ2
L,R + αL,R(mES − mB)2

)
. (5.1)

The Cruijff function behaves as a Gaussian with separate widths, σL,R, on the left and
the right side of the B mass, mB, and a first order correction to this width, αL,R. All
parameters are determined on Monte Carlo data distributions. For convergence reasons
the parameters are limited to σL = σR, αR = 0 and αL < 0.15.

A combination of the Argus and Cruijff shapes is shown in Fig. 5.1.

5.2.2 The ΔE distribution

The ΔE observable is presented in Sect. 4.2.2. Two functions are used to describe ΔE.
The first describes the background and is a first order polynomial Chebychev

Ch(ΔE; c0) = 1 + c0 · ΔE. (5.2)

The second is a Cruijff, now as a function of ΔE,

Cr(ΔE;σL,R, αL,R, E0) = exp

(
−(ΔE − E0)

2

2σ2
L,R + αL,R(ΔE − E0)2

)
, (5.3)

and describes the signal, and peaking background such as the B0 → D(∗)−D+
s back-

ground events. In a perfect detector the ΔE is distributed as a perfect Gaussian around
E0 = 0. However, limited reconstruction precision and energy loss in reconstructed
particles cause deformations. This can described by the Cruijff. Asymmetric Gaussian
widths and exponential tail are allowed in the fit. All parameters are fixed on Monte
Carlo samples. For fit stability the tails are limited to αL,R<0.15.

A combination of the Cruijff and the Chebychev polynomial is shown in Fig. 5.2.

5.2.3 The ηπ invariant-mass distribution

Four different functions are used to describe the ηπ invariant-mass distribution.
The first function is a relativistic Breit-Wigner lineshape function and is used to

describe the mass resonances of the X meson (where X → ηπ). It is described by

BW(mηπ;MB,MD,m0,Γ0) = |A|2 · pX

MB

· p

mηπ

· mηπ︸ ︷︷ ︸
phase−space factor

, (5.4)

and consists of the amplitude part |A|2 multiplied with a phase-space factor, mηπ is the
observed mass of the X meson, MB is the B meson mass and p (pX) is the momentum
of the π (X) in the X (B) rest frame. The amplitude is then expressed as

A =
fBW · (pX/pX,0)

LB

m2
0 − m2

ηπ − i · m0γ
, (5.5)
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Figure 5.2: An average ΔE distribution. The gray area shows the Chebychev poly-
nomial, the solid curve shows the stacked Cruijff distribution.

where pX,0 is the X momentum in the B rest frame evaluated at the nominal mass m0,
LB is the angular momentum of the B decay, and γ is the mass-dependent width given
by

γ = Γ0 ·
p

pX,0

· m0

mηπ

· f 2
BW , (5.6)

where Γ0 is the width of the lineshape and fBW is the Blatt-Weisskopf factor that
depends on the spin of the meson X. Both the a0 and the Ds meson have spin 0 so we
write only the Blatt-Weisskopf factor

fBW = 1, for LX = 0. (5.7)

The BABAR event generator, EvtGen, that produces the B0 → D(∗)−a+
0 and B0 →

D(∗)−D+
s Monte Carlo simulated events, does not generate the correct lineshape. The

EvtGen lineshape bug misses the (p/mηπ) phase-space factor in Eq. (5.4). Also, the
lineshape in EvtGen is generated with the LB = 0 component only. We correct for this
bug by fitting the Monte Carlo events with a modified Breit-Wigner lineshape function
that describes the generated function. The physical Breit-Wigner lineshape function is
then used to fit the observed data. The masses MB and MD are taken from the PDG
values. The a0 lineshape parameters m0 and γ0 are fixed on the signal Monte Carlo data.
The D+

s meson parameter m0 is fixed on the generated nominal mass value for the fits
to the Monte Carlo, and on the PDG value for the fits to the data samples. The D+

s

linewidth is fixed on the fitted value to the Monte Carlo data.
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5.2 Description of probability density functions

The second function used, describes the non-resonant B0 → D(∗)−ηπ+ decays, is
the Breit-Wigner lineshape function as defined in Eq. (5.4) where A = 1. So only the
phase space part of the function contributes. The non-resonant B0 → D(∗)−ηπ+ Monte
Carlo data are produced by Jetset. In Sect. 3.1.2 it is explained that due to a bug in
Jetset the non-resonant Monte Carlo data are produced in a wrong way. Figure 3.2
on page 49 shows the impact of the Jetset bug . In order to describe the observed
B0 → D(∗)−ηπ+ events correctly we use the correct physical non-resonant Breit-Wigner
lineshape function, multiplied with the efficiency as a function of the ηπ invariant mass,
as determined in Sect. 4.5.

The B0 → D(∗)−ηπ+ Monte Carlo data are fitted with a third function and makes use
of a so-called keys p.d.f.. This is an unbinned and non-parametric method that produces
an estimation of the p.d.f. that describes the data; for a full description see Ref. [78].
The keys p.d.f. is also used to describe the qq background.

The fourth function is a fifth order Chebychev polynomial of the first kind and is
used to describe the combinatoric background of mis-reconstructed B events. The fitting
range in mηπ, between 0 and 4 GeV/c2, is larger than the kinematic allowed range. In
order to properly describe this, the Chebychev polynomial is multiplied with a two error
functions, one mirrored to the other, both with a steep slope. This gives almost the same
result as would the fit be performed in the region defined by the double error function.

A combination of the background and Breit-Wigner lineshape functions is plotted in
Fig. 5.3. The lineshapes of the a+

0 and D+
s mesons are well separated. The B0 → D(∗)−D+

s

background does not influence the measurement of the B0 → D(∗)−a+
0 branching ratio.

5.2.4 Background and signal component composition

The single dimension p.d.f.’s described in mES, ΔE and mηπ are now combined to form
the three-dimensional component p.d.f.’s that describe the different background and
signal distributions. The different combinations of functions that form the component
p.d.f.’s are summarized in Table 5.1. The crosses, X, represent the one dimensional
p.d.f.’s that are used to form the component p.d.f.. In three cases, (non-) resonant signal
and generic BB, the component p.d.f. itself is split up in two parts. The two parts are
indicated with indexes I and II. This will be further explained below.

The B0 → D(∗)−a+
0 signal Monte Carlo data are described by a combined p.d.f.

that consists of two parts. In the reconstruction of B0 → D(∗)−a+
0 signal a part is mis-

reconstructed, explaining a background-like part, indicated with II, of the p.d.f.. The
correctly reconstructed part is is indicated with I. A relative fraction between the two
parts (correctly and mis-reconstructed) is determined on signal Monte Carlo data and
is used for the determination of the signal selection efficiency. The data distribution is
fitted with only part I, the mis-reconstructed events are taken care of by the generic BB
p.d.f.. We define

ST ≡ S + SMR, (5.8)

where SMR is the number of mis-reconstructed signal events, S is the number of correctly
reconstructed events and ST is the total number of signal Monte Carlo events. The
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Figure 5.3: A typical mηπ distribution. The gray area shows the Chebychev back-
ground function, the solid curve shows the stacked B0 → Da0 and
B0 → DDs lineshapes, with the a0 peaking at 980 MeV/c2 and the Ds

at 1968.3 MeV/c2.

fraction fS, is defined as

fS =
I

I + II
≡ S

ST

. (5.9)

A fraction of the B0 → D(∗)−ηπ+ signal events can be mis-reconstructed. Like the
resonant signal, the p.d.f. is split in two parts. Part I describes the signal, part II the mis-
reconstructed events. The fraction between the two parts is determined on the Monte
Carlo sample and used in the calculation of the efficiency. For the fit to the Monte Carlo
a keys p.d.f. is used to describe the mηπ distribution, both for part I as for part II.
Similar to the signal p.d.f. we define

NRT ≡ NR + NRMR, (5.10)

and the fraction fNR

fNR =
I

I + II
≡ NR

NRMR

. (5.11)

In the fit to the data, the mis-reconstructed events are taken care of by the general
background p.d.f.’s. The mηπ distribution is fitted with the Breit-Wigner multiplied
with the efficiency function.

The generic BB component also has two parts. A fraction of the events reconstructed
in the lower region in the mηπ observable, below 1.5 GeV/c2, has a different Argus slope
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5.3 Summary of fixed shape parameters

component mES ΔE mηπ

p.d.f. Cruijff Argus Cruijff Chebychev BW BWnr Chebychev Keys
B0 → Da0 I II (MC) I II (MC) I - II (MC) -
B0 → Dηπ I II (MC) I II (MC) - I (data) - I, II (MC)
qq - X - X - - - X
BB II I - I,II - - I,II -
B0 → DDs X - X - X - - -

Table 5.1: Summary of the component p.d.f.’s used for the different types of signal
or background. Each row represents one component p.d.f., crosses, X,
and roman indexes represent the used combinations. The component
p.d.f.’s that are composed of two parts, explained in the text, have the
parts indicated with the indexes I and II.

compared to the rest of the spectrum. This is understood to be due to the presence of
B0 → D(∗)+ρ− and B0 → D(∗)+a1

− background events in this region. This behavior is
described by using the Cruijff function in the mES for part II and defining this part with
a different Chebychev function in mηπ. Now the Cruijff will fit any peaking behavior, or
alter the Argus shape in mES for the lower region in mηπ. The fraction between the two
parts are fixed on the Monte Carlo sample.

5.3 Summary of fixed shape parameters

The B0 → D(∗)−a+
0 signal p.d.f. parameters are summarized in Table 5.2. The parameters

presented, are fixed using the selected signal Monte Carlo data sample.

The non-resonant B0 → D(∗)−ηπ+ signal p.d.f. parameters are summarized in Table
5.3. Due to the Jetset bug described in Chapter 2, only the mES and ΔE observables
are described correctly. These two observables are fitted using the generic BB Monte
Carlo data produced in the B0 → D(∗)−ηπ+ mode. The mηπ shape is fitted with two keys
p.d.f.’s, subsequently defined in the mES signal and sideband area. Using these two keys
p.d.f.’s we determine the parameters for the mES and ΔE shapes, and the fraction of
mis-reconstructed events. When fitting the data, we do not use this defined keys p.d.f.’s
and instead use the theoretical shape in the mηπ observable, corrected for the efficiency
function as is determined in Sect. 4.5.

The qq background p.d.f. parameters can be found in Table 5.4. The parameters of
this p.d.f. are determined using the selected qq Monte Carlo datasets. The parameters
of the p.d.f.’s describing the B0 → D(∗)−D+

s events are presented in Table 5.6. The
shape parameters are fixed using the generic BB Monte Carlo dataset selecting only the
region between (1.85 < mηπ < 2.1) GeV/c2. A background function defined by an Argus
for mES and a first order Chebychev in ΔE and mηπ is defined to fit the combinatoric
background in the region. On top of that the parameters of the B0 → D(∗)−D+

s p.d.f.
are fitted.

The generic BB background p.d.f. consists of two parts and is determined using
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Parameter DchI DchII DstI
mES II A ξ −110.0 ± 9.0 −113.0 ±11.0 −85.0 ±13.0
mES II A m0 5.290 fixed 5.290 fixed 5.290 fixed
mES I Cr αL 0.100 ± 0.007 0.080 ± 0.014 0.103 ± 0.012
mES I Cr mB 5.27970± 0.00005 5.27960± 0.00008 5.27980± 0.00008
mES I Cr σ 0.00248± 0.00003 0.00259± 0.00006 0.00246± 0.00006
ΔE II Ch c0 0.17 ± 0.10 0.0 ± 0.2 −0.2 ± 0.2
ΔE I Cr αL 0.150 ± 0.002 0.150 ± 0.011 0.150 ± 0.010
ΔE I Cr αR 0.15 ± 0.09 0.150 ± 0.011 0.150 ± 0.012
ΔE I Cr E0 0.0010 ± 0.0007 0.0019 ± 0.0015 0.0007 ± 0.0013
ΔE I Cr σL 0.0196 ± 0.0006 0.0181 ± 0.0007 0.019 ± 0.002
ΔE I Cr σR 0.0135 ± 0.0005 0.0131 ± 0.0006 0.0146 ± 0.0009
mηπ I BW m0 0.9820 ± 0.0007 0.9841 ± 0.0013 0.9827 ± 0.0012
mηπ I BW Γ0 0.0600 ± 0.0015 0.056 ± 0.003 0.060 ± 0.003
mηπ II Ch c0 −7.9 ± 0.2 −1.5 ± 0.3 −6.0 ± 5.0
mηπ II Ch c1 −5.8 ± 0.3 −6.0 ± 2.0 5.0 ± 6.0
mηπ II Ch c2 2.46 ± 0.13 8.7 ± 0.3 9.0 ± 3.0
mηπ II Ch c3 7.6 ± 0.6 0.4 ± 0.6 6.0 ± 6.0
mηπ II Ch c4 −7.4 ± 0.5 −10.0 ±19.0 −10.0 ±15.0
mηπ II Ch c5 9.999 ± 0.011 8.0 ± 2.0 4.0 ± 7.0
I/(I + II) = fS 0.910 ± 0.005 0.883 ± 0.011 0.896 ± 0.009

Parameter DstII DstIII DstIV
mES II A ξ −91.0 ±14.0 −69.0 ±16.0 −68.0 ±21.0
mES II A m0 5.290 fixed 5.290 fixed 5.290 fixed
mES I Cr αL 0.100 ± 0.003 0.09 ± 0.02 0.09 ± 0.04
mES I Cr mB 5.27980± 0.00009 5.27970± 0.00010 5.2793 ± 0.0002
mES I Cr σ 0.00265± 0.00007 0.00248± 0.00008 0.0026 ± 0.0002
ΔE II Ch c0 −0.1 ± 0.2 0.1 ± 0.2 0.00 ± 0.05
ΔE I Cr αL 0.150 ± 0.005 0.15 ± 0.03 0.150 ± 0.013
ΔE I Cr αR 0.13 ± 0.03 0.13 ± 0.08 0.09 ± 0.05
ΔE I Cr E0 −0.002 ± 0.002 0.002 ± 0.014 0.003 ± 0.003
ΔE I Cr σL 0.0202 ± 0.0012 0.021 ± 0.005 0.019 ± 0.002
ΔE I Cr σR 0.018 ± 0.002 0.015 ± 0.007 0.016 ± 0.003
mηπ I BW m0 0.9823 ± 0.0012 0.9823 ± 0.0012 0.981 ± 0.002
mηπ I BW Γ0 0.056 ± 0.002 0.056 ± 0.002 0.055 ± 0.005
mηπ II Ch c0 −8.3 ± 0.9 4.0 ±33.0 −18.0 ±15.0
mηπ II Ch c1 −7.0 ± 5.0 −39.91 ± 0.14 −10.0 ±16.0
mηπ II Ch c2 19.9 ± 0.2 40.0 ± 6.0 20.0 ±29.0
mηπ II Ch c3 12.0 ± 5.0 5.0 ± 5.0 6.0 ± 5.0
mηπ II Ch c4 3.0 ± 2.0 −9.0 ± 8.0 9.0 ±19.0
mηπ II Ch c5 17.6 ± 1.5 37.0 ± 7.0 8.0 ±10.0
I/(I + II) = fS 0.885 ± 0.010 0.894 ± 0.011 0.84 ± 0.02

Table 5.2: Fitted parameters for the B0 → D(∗)−a+
0 signal p.d.f.. Part I (II) is the

(mis-)reconstructed event description.
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5.3 Summary of fixed shape parameters

Parameter DchI DchII DstI
mES II A ξ -107.0 ± 7.0 -84.0 ±12.0 -105.0 ±12.0
mES II A m0 5.290 fixed 5.290 fixed 5.290 fixed
mES I Cr αL 0.078 ± 0.009 0.05 ± 0.02 0.06 ± 0.02
mES I Cr mB 5.27970± 0.00003 5.27960± 0.00009 5.27960± 0.00007
mES I Cr σ 0.00247± 0.00003 0.00253± 0.00008 0.00253± 0.00006
ΔE II Ch c0 −0.08 ± 0.07 0.07 ± 0.14 0.16 ± 0.12
ΔE I Cr αL 0.150 ± 0.005 0.150 ± 0.009 0.15 ± 0.11
ΔE I Cr αR 0.117 ± 0.012 0.15 ± 0.13 0.09 ± 0.03
ΔE I Cr E0 0.0001 ± 0.0007 0.0024 ± 0.0014 −0.0004 ± 0.0015
ΔE I Cr σL 0.0195 ± 0.0004 0.0211 ± 0.0011 0.0201 ± 0.0010
ΔE I Cr σR 0.0148 ± 0.0006 0.0137 ± 0.0010 0.0170 ± 0.0004
I/(I + II) = fNR 0.901 ± 0.004 0.868 ± 0.011 0.882 ± 0.008

Parameter DstII DstIII DstIV
mES II A ξ -148.0 ±12.0 -80.0 ±19.0 -113.0 ±23.0
mES II A m0 5.290 fixed 5.290 fixed 5.290 fixed
mES I Cr αL 0.10 ± 0.02 0.06 ± 0.06 0.0751 ± 0.0005
mES I Cr mB 5.27970± 0.00009 5.2798 ± 0.0002 5.28 ± 3.0e−06
mES I Cr σ 0.00245± 0.00008 0.0027 ± 0.0002 0.00237± 2.6e−10
ΔE II Ch c0 −0.26 ± 0.12 −0.06 ± 0.11 −0.3 ± 0.2
ΔE I Cr αL 0.15 ± 0.15 0.15 ± 0.10 0.150 ± 0.015
ΔE I Cr αR 0.14 ± 0.03 0.01 ± 0.03 0.09 ± 0.04
ΔE I Cr E0 −0.002 ± 0.002 −0.004 ± 0.002 −0.0040 ± 0.0010
ΔE I Cr σL 0.021 ± 0.002 0.0181 ± 0.0012 0.0172 ± 0.0011
ΔE I Cr σR 0.018 ± 0.002 0.020 ± 0.002 0.0180 ± 0.0014
I/(I + II) = fNR 0.813 ± 0.013 0.834 ± 0.011 0.89 ± 0.02

Table 5.3: Fitted parameters for the non-resonant B0 → D(∗)−ηπ+ signal p.d.f..

Parameter DchI DchII DstI
mES A ξ −15.0 ± 4.0 −9.0 ± 5.0 −2.0 ± 6.0
mES A m0 5.290 fixed 5.290 fixed 5.290 fixed
ΔE Ch c0 −0.18± 0.04 −0.20± 0.07 −0.03± 0.14

Parameter DstII DstIII DstIV
mES A ξ −22.0 ±11.0 −2.0 ±12.0 −7.0 ±20.0
mES A m0 5.290 fixed 5.290 fixed 5.290 fixed
ΔE Ch c0 −0.12± 0.14 −0.1 ± 0.2 −0.2 ± 0.3

Table 5.4: Fitted parameters for the qq p.d.f..
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Chapter 5 Three dimensional likelihood fit

Parameter DchI DchII DstI
mES I A ξ −44.0 ± 3.0 −45.0 ± 5.0 −71.0 ± 5.0
mES I A m0 5.290 fixed 5.290 fixed 5.290 fixed
mES II Cr αL 0.150 ± 0.013 0.05 ± 0.02 0.20 ± 0.13
mES II Cr mB 5.2738± 0.0011 5.27960± 0.00009 5.2773± 0.0008
mES II Cr σ 0.0085± 0.0008 0.00253± 0.00008 0.0052± 0.0006
ΔE I Ch c0 −0.41 ± 0.03 −0.32 ± 0.05 −0.38 ± 0.06
ΔE II Ch c0 −0.40 ± 0.14 −0.1 ± 0.2 −0.1 ± 0.2
mηπ I Ch c0 3.2 ± 0.4 10.0 ±13.0 −10.0 ±17.0
mηπ I Ch c1 −9.74 ± 0.13 −33.0 ± 3.0 −3.5 ± 1.1
mηπ I Ch c2 3.1 ± 0.3 14.5 ± 1.2 2.9 ± 1.0
mηπ I Ch c3 2.4 ± 0.3 −1.0 ± 2.0 7.3 ± 1.3
mηπ I Ch c4 −3.0 ± 0.3 −5.0 ± 1.4 0.1 ± 0.7
mηπ I Ch c5 3.0 ± 0.4 6.0 ± 2.0 3.2 ± 1.0
mηπ II Ch c0 −9.26 ± 0.15 8.2 ± 0.4 9.0 ±19.0
mηπ II Ch c1 10.0 ± 4.0 7.7 ± 0.7 8.9 ± 0.4
mηπ II Ch c2 0.8 ± 1.3 8.9 ± 0.3 10.0 ±16.0
mηπ II Ch c3 13.1 ± 0.2 10.0 ± 2.0 9.1 ± 0.3
mηπ II Ch c4 6.0 ± 2.0 6.02 ± 0.05 4.7 ± 0.4
mηπ II Ch c5 9.9 ± 0.5 10.0 ± 3.0 8.3 ± 0.4

I/(I + II) 0.907 ± 0.008 0.87 ± 0.02 0.84 ± 0.02

Parameter DstII DstIII DstIV
mES I A ξ −54.0 ± 7.0 −41.0 ± 5.0 −77.0 ±19.0
mES I A m0 5.290 fixed 5.290 fixed 5.290 fixed
mES II Cr αL 0.3 ± 0.2 0.3 ± 0.2 0.000 fixed
mES II Cr mB 5.274 ± 0.003 5.275 ± 0.004 5.280 fixed
mES II Cr σ 0.008 ± 0.002 0.006 ± 0.002 0.006 fixed
ΔE I Ch c0 −0.44 ± 0.08 −0.50 ± 0.06 −0.1 ± 0.2
ΔE II Ch c0 −0.5 ± 0.3 −0.4 ± 0.3 −0.287 fixed
mηπ I Ch c0 6.7 ± 0.4 3.0 ± 2.0 1.6 ± 0.3
mηπ I Ch c1 −1.1 ± 0.2 −3.5 ± 0.8 2.36 ± 0.05
mηπ I Ch c2 8.0 ± 2.0 9.6 ± 0.9 8.3 ± 0.2
mηπ I Ch c3 5.0 ± 4.0 9.7 ± 0.3 10.0 ± 0.2
mηπ I Ch c4 1.8 ± 0.8 1.1 ± 0.8 2.21 ± 0.04
mηπ I Ch c5 3.0 ± 2.0 5.9 ± 0.5 5.76 ± 0.11
mηπ II Ch c0 7.3 ± 1.0 6.1 ± 0.3 1.000 fixed
mηπ II Ch c1 9.3 ± 1.4 6.7 ± 0.3 0.000 fixed
mηπ II Ch c2 −2.3 ± 0.6 6.77 ± 0.02 0.000 fixed
mηπ II Ch c3 −6.0 ±11.0 5.2 ± 0.3 0.000 fixed
mηπ II Ch c4 −4.1 ± 0.4 2.40 ± 0.08 0.000 fixed
mηπ II Ch c5 8.0 ± 5.0 3.42 ± 0.09 0.000 fixed

I/(I + II) 0.90 ± 0.02 0.91 ± 0.02 1.000 fixed

Table 5.5: Fitted parameters for the generic B p.d.f..
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5.4 Likelihood fit performed on Monte Carlo data

Parameter DchI DchII DstI
mES Cr αL 0.14 ±0.09 0.17 ±0.06 0.0 ±0.2
mES Cr mB 5.2802±0.0002 5.2811±0.0004 5.2798±0.0004
mES Cr σ 0.0023±0.0002 0.0016±0.0003 0.0030±0.0003
ΔE Cr αL 0.15 ±0.03 0.00 ±0.14 0.10 ±0.08
ΔE Cr αR 0.04 ±0.13 0.15 ±0.15 0.06 ±0.07
ΔE Cr E0 0.001 ±0.005 0.000 ±0.003 −0.000 ±0.006
ΔE Cr σL 0.024 ±0.004 0.013 ±0.003 0.038 ±0.006
ΔE Cr σR 0.019 ±0.005 0.014 ±0.004 0.016 ±0.007
mηπ BW Γ0 0.019 ±0.002 0.015 ±0.006 0.021 ±0.003

Parameter DstII DstIII DstIV
mES Cr αL 0.04 ±0.11 0.15 ±0.02 0.10 ±0.10
mES Cr mB 5.2792±0.0005 5.2792±0.0004 5.2783±0.0004
mES Cr σ 0.0031±0.0004 0.0028±0.0003 0.0014±0.0003
ΔE Cr αL 0.15 ±0.02 0.15 ±0.11 0.15 ±0.09
ΔE Cr αR 0.13 ±0.04 0.15 ±0.10 0.00 ±0.15
ΔE Cr E0 −0.0109±0.0008 0.004 ±0.007 0.010 ±0.003
ΔE Cr σL 0.0300±0.0012 0.036 ±0.009 0.026 ±0.010
ΔE Cr σR 0.023 ±0.002 0.017 ±0.006 0.014 ±0.003
mηπ BW Γ0 0.014 ±0.002 0.017 ±0.003 0.020 ±0.006

Table 5.6: Fitted parameters for the B0 → D(∗)−D+
s specific background p.d.f..

the selected generic BB Monte Carlo dataset. The results are presented in Table 5.5.
First, the mES and ΔE parameters of part I are determined selecting the area mηπ

> 1.5 GeV/c2. Above this limit no significant difference was found in the shape of mηπ

between the mES signal and sideband selections. The B0 → D(∗)−D+
s background is

fitted with the already defined B0 → D(∗)−D+
s p.d.f.. After fixing the mES and ΔE

parameters of part I, the full p.d.f. is fitted in the entire mηπ region.

5.4 Likelihood fit performed on Monte Carlo data

The likelihood fit on the Monte Carlo data, using the p.d.f.’s described in this chapter,
are presented in Fig. 5.4 through 5.9. Each figure presents the resonant signal, the
non-resonant signal and the accumulated-unscaled background for the reconstructed
decay mode (rows) for one of the reconstructed decay modes. The Monte Carlo data are
projected in the mES, ΔE and mηπ observables (columns). The (non-) resonant signal
Monte Carlo data sample are fitted with the corresponding (non-) resonant component
p.d.f. as is defined in Table 5.1. The unscaled accumulated background is fitted with
the total background p.d.f. that consists of the BB, qq and B0 → DDs components as
described in Table 5.1. For a detailed description we refer to the caption of Fig. 5.4.

The results of the likelihood fits to the unscaled (not scaled to the data sample)
Monte Carlo data samples are presented in Table 5.7.
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Chapter 5 Three dimensional likelihood fit
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Figure 5.4: Distributions of reconstructed Monte Carlo B candidates in the DchI
mode, projected on mES, ΔE and mηπ (from left to right) and for res-
onant signal, non-resonant signal and background Monte Carlo data
(from top to bottom). The solid curves are the fit projections for the
corresponding component p.d.f.’s. The dashed curve in the top (mid-
dle) row shows the projected background component in the resonant
(non-resonant) signal p.d.f.. The bottom row shows the accumulated
projections of the qq (dot-dash), the generic B part I (dotted) and
generic B part II (dashed) p.d.f.’s. The total background p.d.f. also
describes the reconstructed B0 → DDs events.

5.5 Efficiency

The efficiency of the resonant signal selection and likelihood fit is defined as the number
of selected events, S, divided by the number of produced events. The results are presented
in Table 5.8. The efficiency of non-resonant signal selection is calculated by multiplying
the efficiency obtained in Sect. 4.5 with the fraction NR/NRT as is determined on the
Monte Carlo sample.

5.6 Results of the likelihood fit to data

The selected data and the likelihood-fit results are presented in Figs. 5.10-5.15 for each
decay mode separately. Each figure shows nine projections of the same data set on the
mES, ΔE and mηπ observables. The second and third rows show the side- and signal
region in mES respectively as is indicated in the corresponding mES plot. For a full
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5.6 Results of the likelihood fit to data
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Figure 5.5: Distributions of reconstructed Monte Carlo signal candidates in the
DchII mode, see the caption of Fig. 5.4 for a description.
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Figure 5.6: Distributions of reconstructed Monte Carlo signal candidates in the
DstI mode, see the caption of Fig. 5.4 for a description.
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Figure 5.7: Distributions of reconstructed Monte Carlo signal candidates in the
DstII mode, see the caption of Fig. 5.4 for a description.
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Figure 5.8: Distributions of reconstructed Monte Carlo signal candidates in the
DstIII mode, see the caption of Fig. 5.4 for a description.
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5.6 Results of the likelihood fit to data
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Figure 5.9: Distributions of reconstructed Monte Carlo signal candidates in the
DstIV mode, see the caption of Fig. 5.4 for a description.

description see the caption of Fig. 5.10. The fitted p.d.f. is projected on the data in the
plots. Note that each dataset is fitted only once and the nine plots are projections of
the same data set and fit result.

The fitted p.d.f. describes the data points in the samples to a satisfying level for all
reconstructed decay modes, in all three dimensions and all nine projections. The D+

s res-
onance can be clearly identified for four of the six decay modes, all but the reconstructed
modes B0→D−a+

0 (D+→K0
Sπ+) and B0→D∗−a+

0 (D∗+→D0π+, D0→K0
Sπ+π−).

The results of the likelihood fits are summarized in Table 5.9. Note that the errors
given in Table 5.9 only present the statistical errors as obtained by the likelihood fit
and do not reflect the error of the total measurement. The systematic error is calculated
in Chapter 7, after the validation of the selection and likelihood fit are presented in
Chapter 6.

From the fit results we see that a positive number of signal events is found for the
four B0→D∗−a+

0 modes, but not in the two B0→D−a+
0 decay modes. The significance

of the fitted B0→D∗−a+
0 events, and the combined results of four decay modes, are

presented in Chapter 8 after the full systematic errors are calculated.

The fitted number of non-resonant signal events is positive for all six decay modes.
A combined result for the two B0 → D−ηπ+ modes and the four B0 → D∗−ηπ+ modes
are presented in Chapter 8.
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Chapter 5 Three dimensional likelihood fit

DchI DchII DstI
M.C. sample #ev fitted value #ev fitted value #ev fitted value
resonant signal 3896 1061 1434
#ST 3895.7+

−
63.0
61.8 1060.9+

−
33.0
32.2 1434.0+

−
38.2
37.5

nonres. signal 7710 1373 2268
#NRT 7710.0+

−
88.1
87.5 1373.0+

−
37.4
36.7 2267.9+

−
48.0
47.2

background 5433 1779 1384
#Ds 188.9+

−
15.4
14.7 26.7+

−
6.3
5.6 119.9+

−
12.2
11.5

#Bkg 5244.1+
−

73.0
72.3 1752.3+

−
42.3
41.6 1264.1+

−
36.2
35.5

BB/(qq +BB) 0.72+
−

0.02
0.02 0.641+

−
0.034
0.034 0.841+

−
0.030
0.031

DstII DstIII DstIV
M.C. sample #ev fitted value #ev fitted value #ev fitted value
resonant signal 1328 1003 359
#ST 1327.8+

−
37.0
35.9 1003.0+

−
32.0
31.3 358.7+

−
19.6
18.3

nonres. signal 1449 1631 529
#NRT 1449.0+

−
38.4
37.7 1631.0+

−
40.7
40.0 528.9+

−
23.5
22.5

background 968 1071 386
#Ds 77.2+

−
9.8
9.1 75.5+

−
10.0
9.2 24.7+

−
5.7
5.0

#Bkg 890.8+
−

30.4
29.7 995.5+

−
32.2
31.4 361.3+

−
19.4
18.8

BB/(qq +BB) 0.907+
−

0.063
0.066 0.935+

−
0.042
0.044 0.93+

−
0.04
0.05

Table 5.7: Results from the likelihood fits to the selected Monte Carlo samples,
corresponding to Fig. 5.4-5.9, and the number of entries of the samples
input to the fits.

mode DchI DchII DstI DstII DstIII DstIV
εRS (%) 5.23 ± 0.09 8.7 ± 0.3 7.7 ± 0.2 1.96 ± 0.05 2.76 ± 0.09 3.80 ± 0.23
εNR (%) 3.50 ± 0.06 6.0 ± 0.2 4.10 ± 0.09 0.97 ± 0.03 1.24 ± 0.04 1.88 ± 0.10

Table 5.8: The efficiency of the resonant signal modes after the likelihood fit for
the resonant (RS) and non-resonant (NR) signal.

5.7 Branching ratio determination method

The observed number of signal events as presented in the previous section can be used
to calculate a branching ratio using the formula

B(B0 → D(∗)−a+
0 )i × B(a+

0 → ηπ+) =
Nobs

NB × B(D(∗)±)i × εi

, (5.12)

where i is one of the six D(∗)± decay modes, Nobs is the number of signal events (S), NB

is the total number of B events in the data sample, B(D(∗)±) is the fractional branching
ratio of the D(∗)± decay and ε is the efficiency of the selection.

To find the non-resonant signal branching ratio, the combination B(B0 → D(∗)−a+
0 )×

B(a+
0 → ηπ+) can be substituted by B(B0 → D(∗)−ηπ+) and the number of observed
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5.7 Branching ratio determination method

DchI DchII DstI
parameter #ev fitted value #ev fitted value #ev fitted value
selected 1567 490 326
#S -3.3+

−
4.4
3.0 -2.2+

−
2.6
1.7 16.8+

−
6.1
5.2

#NR 36.1+
−

11.3
10.4 5.0+

−
5.2
4.3 15.1+

−
6.9
5.9

#Ds 49.6+
−

8.4
7.6 2.2+

−
2.0
1.2 20.6+

−
5.5
4.8

#Bkg 1484.5+
−

39.9
39.2 485.0+

−
23.0
22.1 273.4+

−
17.8
17.0

BB/(BB +qq) 0.50+
−

0.04
0.04 0.39+

−
0.07
0.07 0.57+

−
0.08
0.08

DstII DstIII DstIV
parameter #ev fitted value #ev fitted value #ev fitted value
selected 256 300 123
#S 8.3+

−
4.4
3.5 1.2+

−
3.4
2.4 3.7+

−
3.4
2.5

#NR 12.3+
−

6.6
5.6 40.7+

−
8.9
8.1 8.4+

−
4.6
3.7

#Ds 15.4+
−

4.7
3.9 13.0+

−
5.0
4.2 0.0+

−
0.5
0.0

#Bkg 220.1+
−

16.0
15.3 245.0+

−
16.9
16.0 110.9+

−
11.2
10.6

BB/(BB +qq) 0.64+
−

0.13
0.13 0.77+

−
0.09
0.10 0.72+

−
0.11
0.12

Table 5.9: Results from the likelihood fits to the observed distributions and the
number of the selected B candidates, corresponding to Fig. 5.10-5.15.

events, Nobs, with NR.
Using formula Eq. (5.12) we can combine the results from the different decay modes

to four main results; the branching fraction from the resonant and non-resonant signal
both in the D+ and the D∗+ decay modes. Before we do this in Chapter 8, we first
validate the setup of the analysis and investigate possible biases in the fit in Chapter 6
and determine correction terms and systematic uncertainties in Chapter 7.
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Figure 5.10: Observed distribution of the reconstructed B candidates in the DchI
mode projected in, from left to right, mES, ΔE and mηπ. The top
(middle, bottom) row shows the full (sideband, signal selected) region.
The exclusion region per row is indicated by the hatched area in
the mES projection of the data sample. The component background
p.d.f.’s are accumulated in the following order: background (short
dashed), B0 → D(∗)−D+

s (long dashed), non-resonant B0 → D(∗)−ηπ+

signal (dotted), B0 → D(∗)−a+
0 signal (solid) curve.
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5.7 Branching ratio determination method
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Figure 5.11: Observed distributions of reconstructed B candidates in the DchII
mode, see Fig. 5.10 for a description.
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Figure 5.12: Observed distributions of reconstructed B candidates in the DstI
mode, see Fig. 5.10 for a description.
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Figure 5.13: Observed distributions of reconstructed B candidates in the DstII
mode, see Fig. 5.10 for a description.
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Figure 5.14: Observed distributions of reconstructed B candidates in the DstIII
mode, see Fig. 5.10 for a description.
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Figure 5.15: Observed distributions of reconstructed B candidates in the DstIV
mode, see Fig. 5.10 for a description.
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Chapter 6

Validation studies

Various validation tests have been performed to verify the quality of the fit procedure,
the selection criteria and the decay chain reconstruction. The test methods and results
will be described in this chapter.

First the performance of the likelihood fit algorithm is tested on Monte Carlo samples.
Second we perform various tests on data.

6.1 Fit bias validation studies on Monte Carlo

To validate the fit procedure and determine possible biases introduced by the algorithms,
a study has been performed on fast parametrized simulated data, or ‘toy’, Monte Carlo
events and on fully simulated, or ‘full’, Monte Carlo events, described in Sect. 3.1.2.

6.1.1 Toy Monte Carlo studies

In total 18000 toy Monte Carlo sample sets have been produced, 3000 for each D(∗)±

decay mode. The samples are generated using the p.d.f. shapes that are also used to
fit the data. The same constitution and number of background events are produced
as found in the fit to the data, as summarized in Table 5.9. A third of the sets are
produced without signal events, a third with 10 resonant signal events added and third
with 10 non-resonant signal events added to the background sample. The parameters
determined by the likelihood fits are compared with the input values, so-called ‘true’
values, by calculating the pull. The pull on a parameter x is defined by

pullx =
xfit − xtrue

σx

, (6.1)

where xfit is the fitted parameter, σx the associated fit error and xtrue is the true value
of the parameter. The pull distributions are fitted with a Gaussian function. The mean
and widths of the fitted Gaussians are presented in Table 6.1.

The fit algorithm gives consistent, unambiguous results. No artificial biases are in-
troduced in the fitted parameters by the algorithm. The errors are neither over- nor
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Chapter 6 Validation studies

pull background only +10 signal events +10 non-resonant events
mean width mean width mean width

DchI decay
#S −0.07±0.05 1.00±0.04 −0.03±0.05 1.01±0.03 −0.12±0.05 1.06±0.04

#NR 0.08±0.04 0.96±0.03 −0.04±0.04 0.99±0.03 −0.02±0.05 0.99±0.03
DchII decay

#S −0.09±0.05 1.12±0.04 0.01±0.05 0.98±0.03 −0.07±0.05 1.05±0.04
#NR −0.14±0.05 1.05±0.04 0.02±0.05 0.95±0.03 −0.05±0.05 1.04±0.03

DstI decay
#S −0.13±0.06 1.11±0.04 0.02±0.05 0.99±0.03 −0.03±0.05 1.04±0.04

#NR 0.01±0.05 1.06±0.04 −0.01±0.05 1.00±0.03 0.01±0.04 0.99±0.03
DstII decay

#S −0.19±0.06 1.13±0.04 −0.06±0.04 0.97±0.03 −0.08±0.06 1.12±0.04
#NR 0.05±0.05 1.13±0.04 −0.07±0.04 0.97±0.03 0.06±0.05 1.05±0.03

DstIII decay
#S −0.20±0.06 1.15±0.04 −0.00±0.05 0.98±0.03 −0.08±0.06 1.13±0.04

#NR 0.06±0.05 1.07±0.04 0.00±0.04 0.99±0.03 0.04±0.05 1.02±0.03
DstIV decay

#S −0.06±0.07 1.26±0.06 0.10±0.05 1.02±0.03 −0.09±0.06 1.15±0.05
#NR 0.01±0.06 1.24±0.05 −0.25±0.05 1.07±0.04 0.09±0.05 1.05±0.04

Table 6.1: The mean and width of a Gaussian fitted to the pull distributions of
the fitted number of resonant (#S) and non-resonant (#NR) events
of 1000 fits on a toy Monte Carlo sample. Three types of samples are
fitted, the left (middle, right) two rows present the result on background
only (with 10 resonant signal events added, with 10 non-resonant signal
events added) samples.

underestimated. In conclusion, the fit model and its implementation performs as de-
sired.

The fitted background fraction BB/(BB + qq) is not very sensitive. As an example
one of the distributions of this parameter is shown in Fig. 6.1. The distribution is rep-
resentative for all the decay mode fits and is very broad. The two background p.d.f.’s
are very similar and do not hold much discriminative power against each others shape.
We do not expect any errors introduced from this insensitivity to the other fitted pa-
rameters. The correlations between the other parameters and the background fraction
parameter are not significant.

6.1.2 Fit bias studies on full Monte Carlo events

To further study possible biases introduced by the fit model, we perform a test on
full Monte Carlo simulations. BABAR does not have enough generated full Monte Carlo
BB and qq background events to create more than one independent data-like Monte
Carlo sample. The generic BB sample is almost five time larger then the expected BB
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Figure 6.1: Distribution of the fitted background fraction BB/(BB + qq) of the
DstI decay mode fit. The fraction is produced around ∼ 0.57. A Gaus-
sian function is fitted to the distribution and imposed on the plot in a
gray dashed line.

background in the data, while the qq Monte Carlo sample is less then twice the size.
The scaling factors can be found in Table 3.1.

We randomly form (highly-correlated) samples with the expected size and compo-
sition as the data sample, by pulling random events from the background samples.
Resonant events are added by pulling events from the signal Monte Carlo. Added non-
resonant events are taken from produced toy Monte Carlo since we have no correct full
Monte Carlo description for these events due to the Jetset bug, see Sect. 3.1.2. Samples
are produced with no signal events added and with 2, 5, 10, 15 and 20 resonant signal
full Monte Carlo events or 2, 5, 10, 15, 20 and 40 non-resonant signal toy Monte Carlo
events. For each kind 100 samples are produced, in each decay mode separately, and
subsequently fit. The distribution of the fit results, central values and errors, are fitted
with a Gaussian. The means of these Gaussians, central values and errors, are presented
in Fig. 6.2 for the resonant signal sets and in Fig. 6.3 for the non-resonant signal sets.
We correct for the fraction of mis-reconstructed events in the signal Monte Carlo using
the fitted ratio, fS, presented in Table 5.2. A line is fitted to the points and the resulting
parameters are presented in the plots.

From the bias test, for both the resonant signal and non-resonant signal, we conclude
that no major deviations from the nominal response line (a line through the origin with
slope equal to one) are found. All slopes are consistent with the nominal response line
and no major offsets are found. The results of the fitted slopes are used to determine a
systematic error and to correct the fitted number of resonant and non-resonant events.
Both will be discussed in Sect. 7.1.1.
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Figure 6.2: Results of bias test on full Monte Carlo samples with added signal
events. Each point represents the mean of the central values for 100
fits, the error represents the mean of the fit errors. The points are
fitted with a line (dashed), the resulting parameters are presented in
the plots. The dotted line indicates the nominal response (y = x) line.
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Figure 6.3: Results of bias test on full Monte Carlo samples with added toy Monte
Carlo non-resonant signal events. Each point represents the mean of the
central values for 100 fits, the error represents the mean of the fit errors.
The points are fitted with a line (dashed), the resulting parameters are
presented in the plots. The dotted line indicates the nominal response
(y = x) line.
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decay mode scaled off-peak data scaled M.C.
DchI 940+

−
100
93 1068+

−
27
26

DchII 198+
−

48
41 429+

−
17
16

DstI 69+
−

30
23 112+

−
9
8

DstII 40+
−

23
17 107+

−
9
8

DstIII 79+
−

31
25 78+

−
7
7

DstIV 69+
−

30
23 30+

−
5
4

Table 6.2: Fitted number of qq events and asymmetrical error, both scaled to the
full on-peak data sample size, for the off-peak data and full Monte Carlo
simulated data samples. The scaling factor for the off-peak data is 9.9
and for the Monte Carlo data is 0.66.

6.2 Validation studies performed on data

Several tests have been performed on data to validate the selection and likelihood fit
setup.

First, we review the likelihood-fit results on data as performed in Sect. 5.6. Second,
we compare the selection and fits on off-resonant data with continuum background full
Monte Carlo simulated data. Next, we present a test to validate the data selection, using
the D+

s resonance in the ηπ-invariant mass distribution. And finally we test the response
of the fit setup using a signal Monte Carlo enriched data sample.

6.2.1 Continuum background description

The continuum qq (q = u, d, s, c) background that is formed in the e−e− collisions in the
PEP-II beam interactions is described by the qq p.d.f. where the p.d.f. shape parameters
are fixed on the qq generated full Monte Carlo events. The agreement between the
generated qq events and the qq background in the data is verified by studying the fit
performance on the off-peak data set. The off-peak data are taken at a center-of-mass
energy 40 MeV lower than the on-resonance data, i.e. below the bb production threshold.
We correct the data for the energy scale difference in mES and ΔE.

The full Monte Carlo simulated data are shown in Fig. 6.4. The simulated data
are projected in mES, ΔE and mηπ and are shown for each reconstructed decay mode
separately. The likelihood fit of the qq p.d.f. is projected as a line on top of the data
points. The qq p.d.f. parameters are fixed on the shown samples.

The (energy-scaled) data, projected in mES, ΔE and mηπ, are presented in Fig. 6.5
for each reconstructed decay mode separately. The fitted qq p.d.f. is projected on top of
the data. The off-peak data sample are about ten times smaller than the on-peak sample
(21 fb−1 versus 208 fb−1) and is therefore limited in statistics. We conclude that the
qq p.d.f. shape describes the energy-scaled off-peak data points adequately within the
statistics that are available.

Table 6.2 shows the fitted number ofqq events that are scaled to the full on-peak
dataset of 208 fb−1. The prediction from the Monte Carlo simulation does not fully
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Figure 6.4: Off-peak Monte Carlo data projected on mES, ΔE and mηπ (from left
to right) for the DchI, DchII, DstI, DstII, DstIII and DstIV from top
to bottom. The likelihood fit of the continuum background p.d.f. is
projected on the data as a solid line.
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Figure 6.5: Off-peak data projected on mES, ΔE and mηπ (from left to right) for
the DchI, DchII, DstI, DstII, DstIII and DstIV from top to bottom.
The likelihood fit of the continuum background p.d.f. is projected on
the data as a solid line.
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Figure 6.6: Schematic drawing of the B0 → D(∗)−a+
0 (left) and B0 → D(∗)−D+

s

decays (right) time of flight.

overlap with the observed number of events in the off-peak data sample. This does not
influence the results of the fitted number of (non-)resonant events or B0 → D(∗)−D+

s

events.
As we have concluded earlier, Jetset does not implement several suppression mech-

anisms that are present. Only a naive prognosis of decay channels is produced. The
chances of a qq event to pass the selection are not uniform over all produced channels
and, as such, the Monte Carlo sample produced by Jetset may well lead to a wrong
prediction of the size of the background in the data sample. Although the likelihood fit,
as it has been setup, is not very sensitive to fitting the precise ratio between qq and BB
background, it is for distinguishing signal from background. As a result, since the shapes
are well described, no errors are expected from the difference between the measured and
predicted sample sizes.

6.2.2 Validation of reconstruction and selection criteria using
the Ds resonance

The B0 → D(∗)−D+
s , D+

s → ηπ+, decay is an excellent decay mode to validate the
reconstruction and selection criteria. The decay has the same final state (D(∗)−ηπ+) as
the B0 → D(∗)−a+

0 and B0 → D(∗)−ηπ+ analysis and has a relatively large branching
ratio, B(B0 → D−D+

s ) = (7.4 ± 0.7) · 10−3 and B(B0 → D∗−D+
s ) = (8.3 ± 1.1) · 10−3.

Although the exact same reconstruction of the B meson and selection criteria are
used, the reconstruction efficiency of this decay is lower for the B0 → D(∗)−D+

s recon-
struction than that of B0 → D(∗)−ηπ+ and B0 → D(∗)−a+

0 . This is because some of the
selection variables are sensitive to difference in flight length of the Ds and a0 mesons;
the a0 decays almost instantaneous while the Ds meson has a short but significant flight
length. Figure 6.6 shows a schematic drawing of the flight length difference between
the decays. The TreeFitter decay chain fit is highly sensitive to this difference. It is
configured to fit for no flight length for the a0 meson in the reconstructed B0 → D(∗)−a+

0

decay hypothesis. For a produced B0 → D(∗)−a+
0 or B0 → D(∗)−ηπ+ event it converges

five times more often than for a produced B0 → D(∗)−D+
s decay.
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DchI DchII DstI
selected #ev fitted value #ev fitted value #ev fitted value
# selected 171 40 54
#Ds 48.1+

−
7.9
7.2 2.1+

−
1.9
1.2 19.1+

−
5.2
4.4

#Bkg 123+
−

12
11 37.9+

−
6.5
5.8 34.9+

−
6.6
5.9

slope −0.07+
−

0.17
0.16 −0.22+

−
0.25
0.24 −0.32+

−
0.31
0.30

DstII DstIII DstIV
selected #ev fitted value #ev fitted value #ev fitted value
# selected 36 52 8
#Ds 15.4+

−
4.6
3.9 13.8+

−
4.9
4.1 0.0+

−
0.6
0.0

#Bkg 20.6+
−

5.2
4.5 38.2+

−
7.1
6.3 8.0+

−
3.2
2.5

slope −0.54+
−

0.34
0.28 −0.30+

−
0.26
0.24 0.2+

−
0.5
0.6

Table 6.3: Results from the likelihood fits (to the data) corresponding to Fig. 6.7-
6.12 and the number of selected B candidates for the reconstructed
modes.

As a result of this difference, the reconstruction efficiency in the B0 → D(∗)−D+
s

channels is lower than in the B0 → D(∗)−a+
0 channel. And hence, we cannot make

a direct quantitative comparison between the two analyses. Instead, we compare the
expected number of reconstructed B0 → D(∗)−D+

s events, as obtained from Monte Carlo
simulation studies, with the observed number of B0 → D(∗)−D+

s events in the data
sample.

For the comparison, a mass window around the Ds resonance of 250 MeV/c2 in the
ηπ-invariant mass observable is selected. The background in this small mass window, is to
a good approximation, flat. The likelihood fit is performed in the three observables mES,
ΔE and mηπ and modeled with the generic BB and B0 → D(∗)−D+

s p.d.f. components,
as described in Table 5.1. The BB p.d.f. in the mηπ observable has been replaced by a
first order polynomial to describe the flat background in the region.

The results of the likelihood fit to the (unscaled) Monte Carlo data are presented in
Fig. 6.13-6.18 and summarized in Table 6.4. The results of the likelihood fit to the data
are presented in Fig. 6.7-6.12 and the summarized results are found in Table 6.3. For
easy comparison Table 6.5 presents the scaled Monte Carlo results next to the results
obtained from the data.

From the Figs. 6.7-6.12, a clear difference is seen in the ΔE and mηπ plots between
the mES side and signal region, both in the data distribution and in the projected fitted
p.d.f.. The shapes of the mES Argus function, the ΔE slope of the BB p.d.f., as well
as the mES and ΔE Cruijff functions, and the Breit-Wigner lineshape function in the
B0 → D(∗)−D+

s p.d.f. match the projected data points adequately.
Decays of D∗+

s mesons into D+
s γ, produced in B0 → D(∗)−D∗+

s decays, can also con-
tribute to the D+

s resonance in the ηπ-invariant mass spectrum. In the reconstruction
as B0 → D(∗)−ηπ+ events, the omitted photon will lead to missing energy and momen-
tum and as a result, the events will peak in neither mES nor ΔE. In Fig. 6.17 we can
clearly identify a D+

s resonance in the mES sideband where the events have been iden-
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DchI DchII DstI
p.d.f./MC #ev fitted value #ev fitted value #ev fitted value
# selected 690 187 242
#Ds 177+

−
15
14 23.5+

−
5.9
5.1 113+

−
12
11

#Bkg 513+
−

24
23 163+

−
13
13 129+

−
12
12

slope −0.17+
−

0.08
0.08 −0.28+

−
0.13
0.13 0.03+

−
0.17
0.17

DstII DstIII DstIV
p.d.f./MC #ev fitted value #ev fitted value #ev fitted value
# selected 183 200 66
#Ds 76.5+

−
9.6
8.9 70.4+

−
9.6
8.8 22.5+

−
5.3
4.7

#Bkg 0.6+
−

0.0
0.0 130+

−
12
12 43.5+

−
7.1
6.5

slope −0.10+
−

0.18
0.17 −0.09+

−
0.16
0.16 −0.26+

−
0.25
0.23

Table 6.4: Results from the likelihood fits (to the Monte Carlo) corresponding to
Fig. 6.13-6.18 and the number of selected B candidates for the recon-
structed modes.
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Figure 6.7: Observed distribution of the reconstructed B candidates in the DchI
mode projected (from left to right) in mES, ΔE and mηπ. The top (mid-
dle, bottom) row shows the full (sideband, signal selected) region. The
excluded region is indicated by the hatched area in the mES projection
of the data sample. The component background p.d.f.’s are accumu-
lated in the following order: background (dashed), B0 → D(∗)−D+

s

(solid) line.
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Figure 6.8: Observed distribution of the reconstructed B candidates in the DchII
mode, see Fig. 6.7 for a description.
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Figure 6.9: Observed distribution of the reconstructed B candidates in the DstI
mode, see Fig. 6.7 for a description.
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Figure 6.10: Observed distribution of the reconstructed B candidates in the DstII
mode, see Fig. 6.7 for a description.
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Figure 6.11: Observed distribution of the reconstructed B candidates in the DstIII
mode, see Fig. 6.7 for a description.
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Figure 6.12: Observed distribution of the reconstructed B candidates in the DstIV
mode, see Fig. 6.7 for a description.
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Figure 6.13: Distributions of the Monte Carlo simulated data reconstructed in the
DchI mode, see Fig. 6.7 for a description.
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Figure 6.14: Distributions of the Monte Carlo simulated data reconstructed in the
DchII mode, see Fig. 6.7 for a description.
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Figure 6.15: Distributions of the Monte Carlo simulated data reconstructed in the
DstI mode, see Fig. 6.7 for a description.
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Figure 6.16: Distributions of the Monte Carlo simulated data reconstructed in the
DstII mode, see Fig. 6.7 for a description.

5.22 5.24 5.26 5.28 5.3

E
ve

n
ts

 / 
( 

0.
00

44
 )

20

40

5.22 5.24 5.26 5.28 5.3

E
ve

n
ts

 / 
( 

0.
00

44
 )

20

40

−0.1 −0.05 0 0.05 0.1

E
ve

n
ts

 / 
( 

0.
01

33
 )

10

20

−0.1 −0.05 0 0.05 0.1

E
ve

n
ts

 / 
( 

0.
01

33
 )

10

20

1.85 1.9 1.95 2 2.05

E
ve

n
ts

 / 
( 

0.
01

25
 )

10

20

30

40

1.85 1.9 1.95 2 2.05

E
ve

n
ts

 / 
( 

0.
01

25
 )

10

20

30

40

5.22 5.24 5.26 5.28 5.3

E
ve

n
ts

 / 
( 

0.
00

44
 )

20

40

5.22 5.24 5.26 5.28 5.3

E
ve

n
ts

 / 
( 

0.
00

44
 )

20

40

−0.1 −0.05 0 0.05 0.1

E
ve

n
ts

 / 
( 

0.
01

33
 )

5

10

15

−0.1 −0.05 0 0.05 0.1

E
ve

n
ts

 / 
( 

0.
01

33
 )

5

10

15

1.85 1.9 1.95 2 2.05

E
ve

n
ts

 / 
( 

0.
01

25
 )

5

10

15

1.85 1.9 1.95 2 2.05

E
ve

n
ts

 / 
( 

0.
01

25
 )

5

10

15

)2 (GeV/cESm
5.22 5.24 5.26 5.28 5.3

E
ve

n
ts

 / 
( 

0.
00

44
 )

20

40

)2 (GeV/cESm
5.22 5.24 5.26 5.28 5.3

E
ve

n
ts

 / 
( 

0.
00

44
 )

20

40

 E (GeV)Δ
−0.1 −0.05 0 0.05 0.1

E
ve

n
ts

 / 
( 

0.
01

33
 )

5

10

15

20

 E (GeV)Δ
−0.1 −0.05 0 0.05 0.1

E
ve

n
ts

 / 
( 

0.
01

33
 )

5

10

15

20

)2 (GeV/cπηm
1.85 1.9 1.95 2 2.05

E
ve

n
ts

 / 
( 

0.
01

25
 )

10

20

30

)2 (GeV/cπηm
1.85 1.9 1.95 2 2.05

E
ve

n
ts

 / 
( 

0.
01

25
 )

10

20

30

Figure 6.17: Distributions of the Monte Carlo simulated data reconstructed in the
DstIII mode, see Fig. 6.7 for a description.
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Figure 6.18: Distributions of the Monte Carlo simulated data reconstructed in the
DstIV mode, see Fig. 6.7 for a description.

# reconstructed B0 → D(∗)−D+
s events

decay mode MC unscaled MC scaled data
DchI 177+

−
14
14 37.9+

−
3.1
3.0 48+

−
7
7

DchII 23.5+
−

5.9
5.1 5.0+

−
1.3
1.1 2.1+

−
1.9
1.2

DstI 112+
−

11
10 24.1+

−
2.5
2.3 19+

−
5
4

DstII 76.5+
−

9.6
8.9 16.4+

−
2.1
1.9 15.4+

−
4.6
3.9

DstIII 70.4+
−

9.6
8.8 15.1+

−
2.1
1.9 13.8+

−
4.9
4.1

DstIV 22.5+
−

5.3
4.7 4.8+

−
1.1
1.0 0.0+

−
0.6
0.0

Table 6.5: Number of reconstructed B0 → D(∗)−D+
s events to the Monte Carlo and

measured data for each reconstructed decay mode. The Monte Carlo
results are presented unscaled and scaled to the measured data.

tified as B0 → D(∗)−D∗+
s events. Some of the D∗+

s events may be fitted as D+
s events.

As the produced branching fraction in Monte Carlo simulations is consistent with the
measurements [9], this will not deteriorate the B0 → D(∗)−D+

s comparison.

In Table 6.5 the direct comparison is presented between the data and the scaled
Monte Carlo simulated data. In general the measured number of B0 → D(∗)−D+

s events
in data match the predictions from the Monte Carlo simulated data.

It can be argued that the two K0
S modes, B0→D−a+

0 (D+→K0
Sπ+) and B0→D∗−a+

0

(D∗+→D0π+, D0→K0
Sπ+π−), do not agree. However, removal of the K0

S specific selection
variables does not alter the relative difference between the Monte Carlo predictions and
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Chapter 6 Validation studies

the measurement in data. There is no reason to believe that the difference is caused by
selection variables as in all other decays the measurements in data are well predicted
by Monte Carlo studies. We would like to point out that uncertainties in the fractional
branching ratios in these channels are relatively high. These are presented in Sect. 7.3.

In the next chapter we will calculate the systematic uncertainty for the event shape
uncertainties based on the results presented here.

From Monte Carlo studies we expect to see the D+
s resonance in the mηπ spectrum

in most of the reconstructed decays. This agrees with our observations in data. The
distributions that are found in the three observables, mES, ΔE and mηπ in data are
adequately described by the BB and B0 → D(∗)−D+

s p.d.f.’s. The parameters, except for
the mηπ slope, of these p.d.f.’s have been determined on the full Monte Carlo simulated
data. This leaves us no reason to question the correctness of the description of the event
shape variables that are used to select the data.

6.2.3 Fit bias studies with signal enriched data samples

We study the fit response in signal enriched data samples. Samples are created with 2,
5, 10 and 20 added full Monte Carlo signal events, 100 samples each, and subsequently
fitted. The distributions of the fitted number of events and the fit errors are fitted with
a Gaussian function and the mean of these, central value and error, are plotted versus
the added number of signal events, see Fig. 6.19. We correct for the fraction of mis-
reconstructed events in the signal Monte Carlo using the fitted ratio, fS, presented in
Table 5.2. The fitted slopes of the signal response are, for all the different decay modes,
consistent with one. In other words, for every signal event that is injected to the data
set, we fit one extra signal event. The response of the fit is behaving perfectly.

The response test on non-resonant signal is performed using toy Monte Carlo events,
as full Monte Carlo events are not available due to the Jetset bug. Sets of 2, 5, 10,
20, 30 or 40 events are created and added tot the data sample and fitted. For every set
this is repeated 100 times. The distributions of the fitted number of events and errors
of the likelihood fit are subsequently fitted using a Gaussian function. The means of the
central values and errors are plotted against the added number of events and fitted with
a line.

The fitted slopes of the non-resonant signal response are, for all the different decay
modes, consistent with one. In other words, for every added non-resonant signal event
that is injected to the data set, we fit one extra non-resonant signal event. The response
of the fit is behaving perfectly.
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Figure 6.19: Result of bias test on data with added full Monte Carlo signal events.
The first point represent the central value and error of the likelihood
fit to the data sample. Each following point represents the mean of
the central values for 100 fits, the error represents the mean of the fit
errors.
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Figure 6.20: Result of bias test on data with added, toy Monte Carlo produced,
non-resonant signal events. The first point represent the central value
and error of the likelihood fit to the data sample. Each following
point represents the mean of the central values for 100 fits, the error
represents the mean of the fit errors.
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Chapter 7

Evaluation of systematic
uncertainties

In this chapter we evaluate the systematic uncertainties that are present in the analysis.

The fitted number of B0 → D(∗)−ηπ+ and B0 → D(∗)−a+
0 signal events are used to

calculate branching ratios using formula Eq. (5.12) on page 98. The sources of systematic
errors that we consider are categorized in the four ingredients input to the branching
ratio calculation: errors present in Nobs, NB, B(D(∗)±) and in the efficiency ε. Corrections
applied on the observed number of events and to the efficiency are discussed in Sect.
7.1.1 and 7.4 respectively. All results obtained in this chapter are summarized in Sect.
7.5.

7.1 Number of observed events uncertainties

7.1.1 Bias offset

A bias in the fitted number of resonant and non-resonant signal events is determined
in a Monte Carlo response test in Sect. 6.1.2. The same test shows that the response is
consistent with a linear behavior. All fitted slopes to the plots presented in Fig. 6.2 and
Fig. 6.3 are consistent with one. The number of observed signal events is corrected with
the observed bias offset determined for the number of observed events. A systematic
error that is equal to the size of the correction is assigned to this procedure. Table 7.1
presents the correction values.

7.1.2 Non-resonant mηπ shape description

The p.d.f. that describes the non-resonant invariant ηπ-mass distribution is the product
of the theoretical shape and the selection efficiency as a function of mηπ. The selection
efficiency function is determined using the generated and selected event distributions,
see Sect. 4.5. The two distributions, which are in our case statistically independent, are
divided and fitted with a Chebychev polynomial.
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Chapter 7 Evaluation of systematic uncertainties

decay resonant signal non-resonant signal
DchI +2.7 +8.3
DchII +1.8 −8.2
DstI +1.3 +3.7
DstII +0.5 +2.5
DstIII −0.9 +4.6
DstIV −0.5 −3.0

Table 7.1: Correction values to Nobs.

The systematic error associated to the statistical uncertainties that are present in the
determination of the shape of the final p.d.f., is determined using simulation studies. We
produce toy Monte Carlo sets that are Poisson variations of the two original distributions,
and repeat the division and fitting process for each of the generated sets. The newly
fitted Chebychev polynomial replaces the original non-resonant mηπ efficiency function
and used as input in a combined fit to the data. This procedure is repeated 100 times,
for each decay mode separately. The combined fits, as described in Sect. 5.7, to obtain
the branching ratio’s for the four decays (B0→D−a+

0 , B0→D∗−a+
0 , B0 → D−ηπ+ and

B0 → D∗−ηπ+), are repeated with the new description of the efficiency curve.
The standard deviations on the fitted branching ratio are 3.2·10−7, 3.8·10−7, 5.3·10−7

and 1.4·10−6 for the B0→D−a+
0 , B0→D∗−a+

0 , B0 → D−ηπ+ and B0 → D∗−ηπ+ branch-
ing ratio measurements respectively. The systematic error associated to the uncertainties
in the mηπ description are taken as these standard deviations.

7.1.3 Lineshape uncertainties

The lineshape width and nominal mass of the a0 meson are not accurately known. The
current PDG [9] summarizes the measurements of the nominal mass and width of the a0

meson and quotes (984.7±1.2) MeV/c2 and a range from (50 to 100) MeV/c2 respectively.
The width of the Breit-Wigner lineshape, used in the resonant signal p.d.f., is fixed

on the Monte Carlo simulated data. This data are generated with a nominal mass of
983 MeV/c2 and a width of 57 MeV/c2. The nominal mass is fixed at the central value
quoted in the PDG.

The induced error on the fitted number of signal events, introduced by an incorrect
nominal mass and/or lineshape width, is investigated by refitting the data using the
combined branching ratio fit with different values for the lineshape parameters. The
nominal mass value is varied within (−2σ,+2σ) around the central value of 984.7 MeV/c2.
The linewidth is varied between 50 and 100 MeV/c2. The results for the individual fits
are presented in Fig. 7.1.

The systematic errors associated to the uncertainties in the lineshape are taken to
be one standard deviation of the spread of the results induced by deviations to the
nominal mass or the linewidth. The standard deviations on the fitted branching ratio
are 2.7 ·10−7, 4.0 ·10−6, 8.4 ·10−7 and 6.7 ·10−7 for the different linewidths and 5.3 ·10−8,
4.5 ·10−8, 5.6 ·10−8 and 5.4 ·10−8 for the variation of the nominal mass for the branching
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Figure 7.1: Fitted number of signal events for different lineshape parameter values
for the six individual decay mode likelihood fits. In the top plot the
linewidth is varied, in the bottom plot the nominal mass value.
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Chapter 7 Evaluation of systematic uncertainties

ratios of B0→D−a+
0 , B0→D∗−a+

0 , B0 → D−ηπ+ and B0 → D∗−ηπ+ respectively.

7.1.4 Cross feed between decay modes

Cross feed between the six reconstructed D(∗)± decay modes is studied using the full
Monte Carlo samples. No significant cross feed is found.

Only one event from the signal Monte Carlo sample that is produced in B0→D−a+
0

(D+→K0
Sπ+) mode is selected in the B0→D−a+

0 (D+→K−π+π+) mode, no events were
selected in the vice versa way. The cross feed between the two D± modes is smaller
than 0.04%. Under the assumption that the branching ratios of the B0→D∗−a+

0 and
B0→D−a+

0 are the same, less than 0.5% of the selected events in the reconstructed
B0→D−a+

0 mode originates from B0→D∗−a+
0 decays.

For the four analyzed D∗± modes at most 1% of the selected events were produced
in different decay modes. Most of these events lie in the side band and do not change
the number of fitted signal events. The number of cross feed events that are fitted as
signal is smaller 0.6%. No events are picked up from the generated D± modes.

All numbers quoted are corrected with a 1σ deviation to obtain an upper limit on
the associated error. The effects of the cross-feeds are ignored because of the very small
error that is introduced by doing so.

7.1.5 P.d.f. shape uncertainties

The p.d.f. shapes depend on the p.d.f. parameters. The error that is associated with the
uncertainties in the p.d.f. parameters is studied.

The data are refit varying important shape parameters, one at a time, using the
errors (−σ,+σ) associated to the fitted shape parameter. The following parameters are
varied for the B0 → D(∗)−D+

s and signal p.d.f.’s: the mB, σ and αL for the mES Cruijff,
and all five parameters of the ΔE Cruijff. For the qq and BB p.d.f.’s the mES Argus
slope and the ΔE slope are varied, and for the peaking BB p.d.f. also the mES Cruijff
mB, σ and αL. Furthermore the ratio between the peaking and non-peaking BB p.d.f.
is changed.

The systematic error associated to the p.d.f. shape uncertainties is taken to be
one standard deviation of the fitted branching ratios. The standard deviation for the
B0→D−a+

0 , B0→D∗−a+
0 , B0 → D−ηπ+ and B0 → D∗−ηπ+ branching ratios is 2.9·10−7,

3.7 · 10−7, 7.2 · 10−7 and 8.0 · 10−7.

7.2 Uncertainties in the number of B events

7.2.1 Luminosity and B counting

The number of B mesons in the data set is calculated by using the increase in the
hadronic event rate, compared to direct muon pair production, between the off resonant
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7.3 Fractional branching ratio uncertainties

decay branching fraction (%)
B(η → γγ) 39.39±0.24
B(D∗+→D0π+) 67.7±0.5
B(D+→K−π+π+) 9.51±0.34
B(D+→K0

Sπ+) 1.47±0.06
B(D0→K−π+) 3.82±0.07
B(D0→K−π+π0) 13.5±0.6
B(D0→K−π+π+π−) 7.7±0.25
B(D0→K0

Sπ+π−) 2.88±0.19
B(K0

S
→ π+π−) 69.20±0.05

B(π0 → γγ) 98.798±0.032

Table 7.2: Branching fractions of sub-decays used to calculate the intermediate
branching fractions for the B0 → D(∗)−a+

0 and B0 → D(∗)−ηπ+ decays
[80].

decay mode branching fraction (%) rel. error (%)
DchI 3.75±0.14 3.6
DchII 0.401±0.017 4.1
Total D+ modes 4.15±0.14 3.3
DstI 1.019±0.021 2.1
DstII 3.56±0.16 4.6
DstIII 2.05±0.07 3.4
DstIV 0.53±0.14 25.8
Total D∗± modes 7.16±0.22 3.1

Table 7.3: Intermediate branching fractions and relative errors for the different
decay modes.

and on resonant data. The increase is attributed to Υ (4S) decays. The systematic un-
certainty in the B counting is 1.1% and is dominated by differences between the data
and Monte Carlo tracking efficiency. The statistical uncertainty is negligible [79].

7.3 Fractional branching ratio uncertainties

The uncertainties on the fractional branching fraction of the D(∗)± decay are calculated
using the values and errors taken from [9], and are summarized in Table 7.2. The result-
ing intermediate branching fractions for each decay mode, and the relative errors are
presented in Table 7.3.
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Chapter 7 Evaluation of systematic uncertainties

7.4 Uncertainties and corrections in the selection ef-

ficiency

7.4.1 Statistical errors on the determined selection efficiency

The statistical errors on the calculated selection efficiencies, presented in Table 5.8 on
page 98, are taken into account.

7.4.2 Reconstruction and selection criteria uncertainties

The systematic error associated to the reconstruction and selection criteria uncertainties
is estimated using the B0 → D(∗)−D+

s decay. In Sect. 6.2.2 we have used this decay for
validation studies and compared the Monte Carlo predictions with the observations. The
resulting number of predicted and observed B0 → D(∗)−D+

s events are summarized in
Table 6.5.

From these results we test the hypothesis that the measurement matches the predic-
tion with no bias or scaling factor. We define a normalized χ2 by

χ2
norm =

N∑
i

1

N
· (Nm − Np)

2
i

(σm + σp)i

, (7.1)

where the summation sums over all decay modes, Nm is the number of measured B0 →
D(∗)−D+

s events, Np is the predicted number of events, and σm and σp are the associated
errors. The error associated to the prediction, σp, contains the error from the likelihood
fit and the associated error of the fractional branching ratio of the D(∗)± decay chain.
The error σm is taken to be the square root of the predicted number of events, to reduce
the impact of statistical fluctuations in the errors observed in data at the current low
statistics.

The calculated normalized χ2 is 1.24 which corresponds to a systematic error of 10%
using the following equation

σsys = 1 −
√

1

χ2
norm

. (7.2)

7.4.3 Track finding efficiency

The track finding efficiency for the different tracking lists are determined by a dedicated
working group in BABAR, using the information of the SVT and DCH [81]. The Good-

TracksVeryLoose efficiencies in the Monte Carlo are assigned a 1.4% systematic
error per track, the GoodTracksLoose 1.3% per track and the KsDefault 1.5%
per reconstructed K0

S . The uncertainties are added linearly. The resulting systematic
errors are given in Table 7.5.

130



7.5 Systematic errors summary tables

D± modes D∗± modes
Source DchI DchII DstI DstII DstIII DstIV
η eff. (%) −3.0 −3.0 −3.0 −3.0 −3.0 −3.0
K0

S eff. (%) − −2.0 − − − −2.0
π0 eff. (%) − − − −0.5 − −
tracking (%) −2.6 −1.3 −2.3 −2.3 −3.6 -1.8

Table 7.4: Efficiency correction factors.

7.4.4 Neutral particle identification

A dedicated working group determines the systematic bias and error in the neutral
particle identification using τ decays [82]. We use the results of the performed studies
and apply a systematic error of 3% per reconstructed π0 and η meson. The η meson,
which is composed of the same lists (GoodPhotonLoose) as the π0 meson, is treated
in the same way.

7.4.5 Summary of efficiency corrections

Efficiency corrections are performed for differences between the Monte Carlo and data
in the reconstruction of charged tracks and neutral particle identification [81, 82]. A
−0.5% correction is applied to compensate for the differences between Monte Carlo and
data due to a different description of the π0 reconstruction. The efficiency is corrected
with −0.8% per GoodTrackLoose track and −0.5% per GoodTrackVeryLoose

track.

7.5 Systematic errors summary tables

All systematic uncertainties that are quoted in this chapter are summarized in Table 7.5.
The largest common error is induced by the uncertainty of the Monte Carlo description
of the selection variables. All values are used in the next chapter to determine the
systematic errors on the determined branching ratios.
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Chapter 7 Evaluation of systematic uncertainties

D± modes D∗± modes
source DchI DchII DstI DstII DstIII DstIV

Resonant signal specific errors
observed number of events
bias offset (a.v.) 2.7 1.8 1.3 0.5 0.9 0.5
observed branching ratio
Γa0 (a.v) 2.7 · 10−7 4.0 · 10−6

ma0 (a.v.) 5.3 · 10−8 4.5 · 10−8

mηπ eff. (a.v.) 3.2 · 10−7 3.8 · 10−7

p.d.f. shape (a.v) 2.9 · 10−7 3.7 · 10−7

Non-resonant signal specific errors
observed number of events
bias offset (a.v.) 8.3 8.2 3.7 2.5 4.6 3.0
observed branching ratio
Γa0 (a.v) 8.4 · 10−7 6.7 · 10−7

ma0 (a.v.) 5.6 · 10−8 5.4 · 10−8

mηπ eff. (a.v.) 5.3 · 10−7 1.4 · 10−6

p.d.f. shape (a.v) 7.2 · 10−7 8.0 · 10−7

Common errors
number of B events
B counting (%) 1.1 1.1
fractional D decay
D(∗)± decay (%) 3.6 4.1 2.1 4.6 3.4 25.8
efficiency
π0 ID (%) − − − 3.5 − −
K0

S ID (%) − 0.5 − − − 0.5
η ID (%) 3 3
tracking (%) 5.4 4.2 5.5 5.4 8.2 5.6
selection (%) 10 10

Table 7.5: Summarized systematic errors.
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Chapter 8

Determination of the branching
ratios

The setup and results of the combined likelihood fit to the B0→D−a+
0 , B0→D∗−a+

0 ,
B+ → D0ηπ+ and B0 → D∗−ηπ+ branching ratios are presented in this chapter.

Section 8.1 discusses the method used to combine the separate decay modes in two
final likelihood fits. The results of the combined fits are given in Sect. 8.2. In Sect. 8.3
the significance levels and exclusion limits are derived from the results.

8.1 Combined branching ratio fit

The number of signal events are corrected for the bias offset, obtained in Sect. 6.1.2,
and multiplied with a scaling factor to derive the corresponding branching ratio. The
following equation is used

B(B0 → D(∗)−a+
0 )i ×B(a+

0 → ηπ+) = (Nobs,i −Nbias,i)×
1

NB × B(D(∗)±)i × εeff,i

,︸ ︷︷ ︸
scalingfactor

(8.1)

where Nobs, is the number of signal events (S) fitted in decay mode i, Nbias is the bias
correction determined on Monte Carlo samples, NB is the number of B events, B(D(∗)±)
is the branching ratio of the D± or D∗± decay chain and εeff is the efficiency corrected
for the factors given in Sect. 7.4. The equation that gives the branching ratio for the
non-resonant signal can be found by substituting B(B0 → D(∗)−a+

0 )i × B(a+
0 → ηπ+)

by B(B0 → D(∗)−ηπ+)i and the observed number of signal events, S, by the observed
number of non-resonant signal events (NR) as Nobs. The scaling factor is different for
each of the different decay modes. All numbers used to calculate the scaling factor are
summarized in Table 8.1.

Combined likelihood fits are setup for the two D± and the four D∗± decay modes. In
the combined fits both the branching ratio of the resonant and non-resonant signal are
fitted simultaneously. All other parameters, the number and constitution of background
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Chapter 8 Determination of the branching ratios

Quantity Value
DchI DchII DstI DstII DstIII DstIV

Nbias res. +2.7 +1.8 +1.3 +0.5 −0.9 −0.5
non-res. +8.3 −8.2 +3.7 +2.5 +4.6 −3.0

NB 229.4 · 106

B(D(∗)±)(%) 3.8 0.4 1.0 3.6 2.1 0.5
εeff (%) res. 5.0 8.7 7.7 2.0 2.8 3.8

non-res. 3.36 5.8 3.9 0.9 1.2 1.8

Table 8.1: Summary table for numbers used in the scaling factor.

events and the number of B0 → D(∗)−D+
s events, are fitted for every decay mode sep-

arately. In a single likelihood fit in total 8 parameters are fitted for the D± and 14 for
the D∗± analysis at the same time.

8.2 Combined fit results

8.2.1 Analysis of reconstructed B0 → D−ηπ+ events

In this section we present the results of the simultaneous likelihood fit on the B0→D−a+
0 ,

where D+→K−π+π+or D+→K0
Sπ+, reconstructed events. All fitted parameters, eight

in total, are summarized in Table 8.2. The data and likelihood-fit results are presented
in Fig. 8.1. The figure shows nine projections of the same data set on the mES, ΔE and
mηπ observables. The second and third rows show the side- and signal region in mES

respectively as is indicated in the corresponding mES plot. The fitted p.d.f. is projected
on the data in the plots. Note that all nine plots are projections of the same data set
and the same fit result.

The B0→D−a+
0 branching ratio is fitted at (−0.11+0.93

−0.67) · 10−5 and we conclude from
this result that no significant signal has been found. Propagation of the systematic error,
on the scaling factor and the bias offset correction gives a final result of

B(B0 → D−a+
0 ) × B(a+

0 → ηπ+) = (−0.11+0.93
−0.67(stat)+0.29

−0.76(sys)) · 10−5. (8.2)

An upper limit on the exclusion of signal is determined in Sect. 8.3.2.
The non-resonant B0 → D−ηπ+ branching ratio is fitted at (13.41+3.54

−3.25) · 10−5. This
corresponds to about 46 non-resonant fitted B0 → D−ηπ+ events in the sample. Propa-
gation of the systematic error, on the scaling factor and the correction for the bias offset,
gives

B(B0 → D−ηπ+) = (13.41+3.54
−3.25(stat)+2.42

−1.94(sys)) · 10−5. (8.3)

The significance of this result is determined in Sect. 8.3.1.
In Figs. 8.2 and 8.3 projections of the selected data sample are shown with cuts to

select the resonant signal region in the mηπ observable and combined ΔE and mES and
observables respectively. Both figures show no indication of B0→D−a+

0 signal events
present in the data sample.
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8.2 Combined fit results

Quantity Value
resonant signal BF (−0.11+

−
0.93
0.67) · 10−5

corresponding signal events DchI −3.2
DchII −1.9

non-resonant signal BF (13.41+
−

3.54
3.25) · 10−5

corresponding non-resonant signal events DchI 30.5
DchII 15.4

number of B0 → DDs events DchI 50.1+
−

8.4
7.7

DchII 2.1+
−

1.9
1.2

number of background events DchI 1488.0+
−

39.9
39.2

DchII 478.6+
−

22.3
−0.0

background ratio DchI 0.50+
−

0.04
0.04

DchII 0.37+
−

0.07
0.06

Table 8.2: Fitted parameters.
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Figure 8.1: Observed distributions of the reconstructed B0 → D−ηπ+ candidates
projected in, from left to right, mES, ΔE and mηπ. The top (middle,
bottom) row shows the full (sideband, signal selected) region. The ex-
clusion region per row is indicated by the hatched area in the mES

projection of the data sample. The component background p.d.f.’s
are accumulated in the following order: background (short dashed),
B0 → D(∗)−D+

s (long dashed), non-resonant B0 → D−ηπ+ signal (dot-
ted), B0→D−a+

0 signal (solid) curve.
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Chapter 8 Determination of the branching ratios
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Figure 8.2: Observed distributions of the reconstructed B0 → D−ηπ+ candidates
projected in, from left to right, mES, ΔE and mηπ. The plots only show
the data that lie in a selected area in the mηπ observable between 780
and 1180 MeV/c2 around the a0 mass peak. The excluded regions are
indicated with the hatched area. The component background p.d.f.’s
are accumulated in the following order: background (short dashed),
B0 → D(∗)−D+

s (long dashed), non-resonant B0 → D−ηπ+ signal (dot-
ted), B0→D−a+

0 signal (solid) curve. In the mES and ΔE plots, no
significant indication of resonant B0→D−a+

0 signal is recognized.
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Figure 8.3: Observed distribution in the reconstructed B0 → D−ηπ+ candidates
projected in the mηπ observable where the data has been selected above
5.27 GeV/c2 in mES and between -50 and +50 MeV in ΔE. The compo-
nent background p.d.f.’s are accumulated in the following order: back-
ground (short dashed), B0 → D(∗)−D+

s (long dashed), non-resonant
B0 → D−ηπ+ signal (dotted), B0→D−a+

0 signal (solid) curve. No sig-
nificant indication of resonant B0→D−a+

0 signal is recognized.
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8.2 Combined fit results

Quantity Value
resonant signal BF (5.93+

−
1.64
1.48) · 10−5

corresponding signal events DstI 9.4
DstII 9.0
DstIII 8.6
DstIV 3.2

non-resonant signal BF (33.91+
−

5.47
5.11) · 10−5

corresponding non-resonant signal events DstI 27.6
DstII 23.3
DstIII 14.2
DstIV 10.4

number of B0 → DDs events DstI 19.5+
−

5.4
4.7

DstII 14.9+
−

4.6
3.9

DstIII 15.8+
−

5.3
4.5

DstIV 0.0+
−

0.5
−0.0

number of background events DstI 272.1+
−

17.5
16.8

DstII 214.9+
−

15.6
14.9

DstIII 254.6+
−

17.0
16.3

DstIV 110.3+
−

11.1
10.4

background ratio DstI 0.56+
−

0.08
0.08

DstII 0.60+
−

0.13
0.14

DstIII 0.81+
−

0.09
0.10

DstIV 0.71+
−

0.11
0.12

Table 8.3: Fitted parameters.

8.2.2 Analysis of reconstructed B0 → D∗−ηπ+ events

This section summarizes the results of the simultaneous likelihood fit on the B0→D∗−a+
0 ,

where D∗+→D0π+ and D0 →K−π+, K−π+π0, K−π+π+π−, K0
S
π+π−, reconstructed

events. All fitted parameters, fourteen in total, are summarized in Table 8.3. The data
and likelihood fit results are presented in Fig. 8.4 and show nine projections of the same
data set in the mES, ΔE and mηπ observables. The second and third rows show the data
in the side- and signal region in mES, respectively, as is indicated in the corresponding
mES plot. The fitted p.d.f. is projected on the data point in the plots. All nine plots are
projections of the same data set and likelihood fit.

The B0→D∗−a+
0 branching ratio is fitted at (5.93+1.64

−1.48) · 10−5 which corresponds to
about 30 events in the selected data sample. Propagation of the systematic errors that
are present in the scaling factor and the bias offset correction gives the final result of

B(B0 → D∗−a+
0 ) × B(a+

0 → ηπ+) = (5.93+1.64
−1.48(stat)+2.22

−1.52(sys)) · 10−5. (8.4)

The significance of this result is determined in Sect. 8.3.1.
The non-resonant B0 → D∗−ηπ+ branching ratio is fitted at (33.91+5.47

−5.11) · 10−5, cor-
responding to about 76 non-resonant B0 → D∗−ηπ+ events in the data sample. Prop-
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Figure 8.4: Observed distributions of the reconstructed B0 → D∗−ηπ+ candidates
projected in, from left to right, mES, ΔE and mηπ. The top (middle,
bottom) row shows the full (sideband, signal selected) region. The ex-
clusion region per row is indicated by the hatched area in the mES

projection of the data sample. The component background p.d.f.’s
are accumulated in the following order: background (short dashed),
B0 → D(∗)−D+

s (long dashed), non-resonant B0 → D∗−ηπ+ signal
(dotted), B0→D∗−a+

0 signal (solid) curve.

agation of the systematic error present in the scaling factor and bias offset corrections
gives

B(B0 → D∗−ηπ+) = (33.91+5.47
−5.11(stat)6.86

5.14(sys)) · 10−5. (8.5)

The significance of this result is determined in Sect. 8.3.1.

Figure 8.5 show the projection of the data sample and likelihood fit in the mES

and ΔE observables where a region in mηπ, around the a0 mass peak, is selected. The
rejected area is indicated with the hatched boxes. Selecting this signal region in the mηπ

observable, the signal area in ΔE, around zero GeV, and in mES, around the B0 mass
at 5.280 GeV/c2, clearly show an excess of events above the expected background levels
indicating the presence of signal events.

In Fig. 8.6 the data points are projected in the mηπ observable that lie in the signal
areas in both mES and ΔE. The fitted p.d.f. is projected on top of the data points. The
Breit-Wigner lineshape is visible on top of the projected background and non-resonant
B0 → D∗−ηπ+ p.d.f.’s. The total p.d.f. describes the data points well.
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8.2 Combined fit results
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Figure 8.5: Observed distribution in the reconstructed B0 → D∗−ηπ+ candidates
projected in, from left to right, mES, ΔE and mηπ. The plots only show
the data where 780 < mηπ < 1180 MeV/c2 around the a0 mass peak.
The excluded regions are indicated in the left plot with the hatched
area. The component background p.d.f.’s are accumulated in the follow-
ing order: background (short dashed), B0 → D(∗)−D+

s (long dashed),
non-resonant B0 → D−ηπ+ signal (dotted), B0→D−a+

0 signal (solid)
curve. A clear indication for the B0→D∗−a+

0 signal is present in the
mES and ΔE projections.
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Figure 8.6: Observed distribution in the reconstructed B0 → D∗−ηπ+ candidates
projected in the mηπ observable where the data has been selected above
5.27 GeV/c2 in mES and between -50 and +50 MeV in ΔE. The compo-
nent background p.d.f.’s are accumulated in the following order: back-
ground (short dashed), B0 → D(∗)−D+

s (long dashed), non-resonant
B0 → D−ηπ+ signal (dotted), B0→D−a+

0 signal (solid) curve.
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Chapter 8 Determination of the branching ratios

8.3 Significance of the results

In this section we determine the significance of the fitted branching ratios for the non-
resonant B0 → D−ηπ+ analysis and the resonant and non-resonant B0 → D∗−ηπ+

analysis. The resonant B0 → D−ηπ+ analysis did not result in a positive fitted branching
ratio. For this analysis we determine an upper limit for the signal exclusion.

8.3.1 Significance levels

The significance levels of the obtained results are determined using profile likelihoods.
A profile shows the difference with the global minimum of the likelihood fit for different
values of the observable. The significance can then be calculated using the difference
between the minimized likelihood and the likelihood for the absence of signal, at a
branching ratio of zero.

The significance is defined is

σ =
√

2 · Δll, (8.6)

where Δll is the difference in likelihood between the zero signal and the minimized
branching ratio.

The effects of the systematic errors on the significance are propagated by recalcu-
lating the profile while varying the scaling factor and bias offset corrections. Also the
width and central mass in the a0 lineshape function are varied. The lowest significance
that is obtained is quoted.

The systematic error on the scaling factor does not influence the significance of
the result. The likelihood profile is squeezed or stretched by the scaling factor and it
does change the minimized value of the branching ratio, however the difference in the
likelihood between the minimized point and the null hypothesis is unaltered.

Figures 8.7, 8.8 and 8.9 present the results of the profile likelihood fits for the non-
resonant B0 → D−ηπ+, resonant and non-resonant B0 → D∗−ηπ+ branching ratios
respectively. The significance of the branching ratio measurements are: 4.4σ for the
non-resonant B0 → D−ηπ+ signal, 5.3σ for the B0→D∗−a+

0 signal and 8.2σ for the
non-resonant B0 → D∗−ηπ+ signal.

8.3.2 Upper limit for the B0→D−a+
0 signal exclusion

The profile of the B0→D−a+
0 branching ratio is presented in Fig. 8.10. For the determi-

nation of the upper limit of the branching ratio we calculate the probability distribution
using the following formula

P = e−Δll, (8.7)

using the profile likelihood, Δll. The integral ratio

AR =

∫ x

0
PdB∫∞

0
PdB

, (8.8)
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Figure 8.7: Profile likelihood fit to the B0 → D−ηπ+ data sample projected on
the non-resonant signal branching ratio. The black curve indicates the
profile obtained by the nominal scaling factor and bias offset correction.
The gray area indicates the effect of the different systematic errors.
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Figure 8.8: Profile likelihood fit to the B0 → D∗−ηπ+ data sample projected on the
resonant signal branching ratio. The black curve indicates the profile
obtained by the nominal scaling factor and bias offset correction. The
gray area indicates the effect of the different systematic errors.
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Figure 8.9: Profile likelihood fit to the B0 → D∗−ηπ+ data sample projected on
the non-resonant signal branching ratio. The black curve indicates the
profile obtained by the nominal scaling factor and bias offset correction.
The gray area indicates the effect of the different systematic errors.

gives the relative area, AR, in the physical range (for positive values of the branching
ratio) up till a branching ratio of B = x. The 90% confidence limit (CL) is set at B = x
when the relative area is 90%, AR = 0.9, of the total physical area.

In Fig. 8.10 the distribution of the profile likelihoods is presented. The black curve
indicates the profile likelihood using the nominal scaling factor and lineshape settings.
The gray area indicates the propagation of the varies systematic errors in the function.
The dominant error is produced by the linewidth uncertainty of the Breit-Wigner a0

lineshape. A broad lineshape gives a higher probability to find a larger branching ratio
of the B0→D−a+

0 signal.
The profile likelihood that produces the largest probabilities to find signal in the data

sample, indicated with the dashed curve in Fig. 8.10, is used to calculate the probability
distribution to set the upper limit at 90% CL. The resulting probability distribution is
shown in Fig. 8.11.

The upper limit for the exclusion of B0 → D
(∗)+
s a−

0 signal, determined with the
method described in this section, is found at

B(B0 → D−a+
0 ) < 2.3 · 10−5@90%CL. (8.9)

8.4 Summary of obtained results

We have performed unbinned likelihood fits to the selected events in the selected B
decays reconstructed in the B0 → D−ηπ+ and B0 → D∗−ηπ+ decay modes.
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Figure 8.10: Profile likelihood fit to the B0 → D−ηπ+ data sample projected on
the B0→D−a+
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Chapter 8 Determination of the branching ratios

The B(B0 → D−a+
0 )×B(a+

0 → ηπ+) and the non-resonant B(B0 → D−ηπ+) branch-
ing ratios where fitted with a combined unbinned likelihood fit to the B0→D−a+

0 , where
D+→K−π+π+or D+→K0

Sπ+, reconstructed events. In total eight parameters where fit-
ted simultaneously.

The B0→D−a+
0 branching ratio is fitted at

B(B0 → D−a+
0 ) × B(a+

0 → ηπ+) = (−0.11+0.93
−0.67(stat)+0.29

−0.76(sys)) · 10−5, (8.10)

and is consistent with the null-hypothesis. An upper limit was set at

B(B0 → D−a+
0 ) < 2.3 · 10−5@90%CL. (8.11)

The B0 → D−ηπ+ branching ratio fit result gives

B(B0 → D−ηπ+) = (13.41+3.54
−3.25(stat)+2.42

−1.94(sys)) · 10−5, (8.12)

and excludes the null-hypothesis with 4.4σ.
The B(B0 → D∗−a+

0 ) × B(a+
0 → ηπ+) and the non-resonant B(B0 → D∗−ηπ+)

branching ratios where fitted with a combined unbinned likelihood fit to the B0→D∗−a+
0 ,

where D∗+→D0π+ and D0 →K−π+, K−π+π0, K−π+π+π−, K0
Sπ+π− reconstructed

events. In total fourteen parameters where fitted simultaneously.
The B0→D∗−a+

0 branching ratio is fitted at

B(B0 → D∗−a+
0 ) × B(a+

0 → ηπ+) = (5.93+1.64
−1.48(stat)

+2.22

−1.52
(sys)) · 10−5. (8.13)

The significance of this result is determined to be 5.3σ. The branching ratio of the
non-resonant B0 → D∗−ηπ+ events results in

B(B0 → D∗−ηπ+) = (33.91+5.47
−5.11(stat)+6.86

−5.14(sys)) · 10−5, (8.14)

this measurement excludes the null-hypothesis with 8.2σ.
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Chapter 9

Conclusions

In this chapter we summarize our measurements and review the theoretical implication
the measurements have. First we recapitulate the important conclusions that are drawn
in Chapter 1 in Sect. 9.1. A brief summary of the results of the branching ratio is
presented in Sect. 9.2, which are interpreted in Sect. 9.3. An outlook is given in Sect.
9.4.

9.1 Theory recap

The B0 → D(∗)−a+
0 decays have two important contributing diagrams, presented in

Fig. 9.1. The decay amplitudes of the B0 → D(∗)−a+
0 decay modes are calculated for

each diagram individually. The combination of both amplitudes results in the predicted
branching ratio of the B0 → D(∗)−a+

0 decay mode.
The decay amplitudes are calculated using factorization principles that divide the

calculation in two parts. For the CKM allowed and CKM suppressed decays presented
in Fig. 9.1 this is expressed as

〈D−(∗)a+
0 |Heff |B0〉 = 〈D−(∗)|HW |B0〉〈a+

0 |HW |0〉, and (9.1)

〈D−(∗)a+
0 |Heff |B0〉 = 〈a+

0 |HW |B0〉〈D−(∗)|HW |0〉, (9.2)

respectively. In the naive factorization principle the quarks produced in the W decay
hadronize independently from the rest of the B decay. Corrections on this principle are
made using QCD hard-scattering correction terms.

CKM allowed decay

The branching ratio of the CKM allowed decay, the left diagram in Fig. 9.1, is calculated
using QCD correction terms to the naive factorization principles. The correction terms
apply to the a0 production process.

The coupling of the a0 meson with the weak interaction is G-parity violating, which
causes a heavy suppression of the decay amplitude. Strong limits on the breaking of G
parity have been set in different experiments using nuclear and leptonic decays [83, 39].
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B0 D(∗)−

a+
0

W

d

b̄

d̄

d

c̄

u

V ∗
cb

Vud

B0 a+
0

D(∗)−

W

d̄

b

d

d̄

u

c̄

Vub

V ∗
cd

Figure 9.1: The CKM allowed B0 decay (left) and the CKM suppressed B0 decay
(right) to the final state D(∗)−a+.

The branching ratio for the B0→D−a+
0 CKM-allowed decay is calculated to be

1.1 · 10−6 implementing the naive factorization approach and between 2.0 · 10−6 and
4.0 · 10−6 using QCD factorization. For the B0→D∗−a+

0 CKM-allowed decay the naive
factorization approach predicts a branching ratio of 1.0 ·10−6 and the QCD factorization
predicts branching ratios between 1.8 · 10−6 and 3.7 · 10−6 [24].

The calculations depend on the quark structure of the a0 meson. In these prediction
it is assumed that the a0 meson consists of two quarks, a u and a d quark. A possible
four-quark structure of the a0 meson would result in an even smaller decay rate [24, 48].

CKM suppressed decay

The branching ratio of the CKM suppressed decay, the right diagram in Fig. 9.1, is calcu-
lated using naive factorization models. The decay is very similar to the CKM suppressed
B0 → D∗−π+ decays and no large theoretical uncertainty due to the factorization model
is expected.

Large uncertainties however do arise from the F1(0)B→a0(980) form factor that is
present in the B decay amplitude. Estimates of this form factor, that are calculated
using light-cone sum rules, are used in the calculations.

The branching ratio of the CKM suppressed B0 → D(∗)−a+
0 decays are calculated to

be B(B0 → D+a−
0 ) = 2.1 · 10−6 and B(B0 → D∗+a−

0 ) = 1.9 · 10−6 [24].
The factorization approach and the form-factor assumption is validated by a mea-

surement of the branching ratio of the SU(3) conjugated decay modes B0 → D
(∗)+
s a−

0 .
These decay can only occur via a single tree diagram presented in Fig. 9.2. The upper
limits that are set by the BABAR collaboration at 90% CL are B(B0 → D+

s a−
0 ) < 1.9·10−5

and B(B0 → D∗+
s a−

0 ) < 3.6·10−5[49]. These limits are lower than the predicted ∼ 8·10−5

that is calculated by substituting the CKM element Vcd by Vsd and form factor fD by
fDs in the B0 → D(∗)−a+

0 branching ratio calculations. These results imply that the
predictions made for the branching ratio of the CKM suppressed B0 → D(∗)−a+

0 decay
are too large.
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Figure 9.2: Feynman diagram for the B0 → D
(∗)−
s a0+ decay.

Combined B0 → D(∗)−a+
0 factorized branching ratio predictions

The decay amplitudes from both the CKM allowed as well as the CKM suppressed
diagrams are predicted in the order of 10−6 for the B0→D−a+

0 and B0→D∗−a+
0 decay

modes.
The predicted total branching ratio of the B0→D−a+

0 decay mode is 3.2 · 10−6 for
naive factorization, and in the range (4.1 − 6.1) · 10−6 using QCD correction terms in
the CKM-allowed amplitude calculations.

For the B0→D∗−a+
0 decay mode this summarizes to 2.9 · 10−6 for the naive factor-

ization approach and in the range (3.7 − 5.6) · 10−6 using the QCD correction terms in
the CKM-allowed diagram.

Rescattering effects

Rescattering effects can contribute to the B0→D−a+
0 and B0→D∗−a+

0 decay amplitudes.
Reliable methods to compute the size of the contribution to the amplitudes are not
available at present. Results from Dρ ↔ D∗π rescattering [50] are used to estimate the
size of the inelastic rescattering effects in B0 → Da1 → D∗a0 to be in the order of a
branching fraction of 10−6.

Three qualitative arguments to why the inelastic rescattering effects should in fact be
larger than this result are made. (A factor ten enhancement of the rescattering amplitude
would lead to a contribution to the branching fraction of order 10−4.) The first is the
larger mass of the a0 and a1 mesons, compared to the π and ρ mesons, allowing more
time for the rescattering process to occur; The second is the smaller energy transfer that
is needed between the D∗/D mesons and the a0/a1 compared to π/ρ meson system; And
the third is the fact that the a0/a1 mesons are from the same quark spin triplet, and
thus are expected to alter the internal angular momentum more easily.

Inelastic rescattering effects to the D+a−
0 final state are even more complicated to

estimate. Contributions could come from B0 → D∗a1 → Da0, similar to rescattering in
K∗ρ ↔ Kπ described by Wirbel [25]. The branching ratio of the decay B0 → D∗a1 is
of the same order as B0 → Da1, (1.30 ± 0.27) · 10−2 versus (6.0 ± 3.3) · 10−3. But the
inelastic soft rescattering between D∗a1 ↔ Da0 is probably smaller than Da1 ↔ D∗a0.
This is because only the zero angular momentum projection of the D∗a1-meson pair
can contribute to form a Da0 meson pair. The contribution to the amplitude in the
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B0→D−a+
0 decay arising from soft inelastic rescattering is expected to be smaller than

the rescattering contribution in the B0→D∗−a+
0 decay amplitude.

Non-resonant B0 → D(∗)−ηπ+ branching ratio

Non-resonant B0 → D(∗)−ηπ+ events had so far not been observed. Theoretical predi-
cation on the branching ratio are not available either.

As for the B0 → D(∗)−a+
0 decay, the diagram where the B decays into a D(∗)± meson

and the weak current couples to an ηπ state is not allowed due to G-parity violation,
as follows from arguments made in Sect. 1.6.2. Other diagrams can contribute. One
example is a diagram where a pion is formed from the weak current and a D(∗)±η
meson is produced in the B0 decay. Two other diagrams exist where the D(∗)± meson
is produced in the weak decay and creates an ηπ± meson pair in the B0 decay. These
contributions are expected to be suppressed compared to the B0 → D(∗)−a+

0 decay,
because they require an additional quark pair created from the vacuum. Additionally,
there are no known excited D+ mesons that decay to a D(∗)+η pair.

Experimental measurements from the similar non-resonant B0 → D∗−π+π0 decay
also suggest this suppression. The branching ratio of the non-resonant B0 → D∗−π+π0

decay is suppressed compared to the resonant B0 → D∗−ρ+ decay amplitude [53].

Measurement of CKM angle γ

The interference of the two diagrams in Fig. 9.1, contributing to the B0 → D(∗)−a+
0

decay, gives access to a measurement of the CKM angle γ. The interference is similar
to the current studies that have been performed on B0 → D∗−π+, B0 → D∗−ρ+ and
B0 → D∗−a1(1260)+.

The sensitivity to the CP asymmetry, and thus to the angle γ can be much larger in
the B0→D−a+

0 and B0→D∗−a+
0 decays compared to the current available studies. This

is because the contributions from two interfering diagrams are predicted to be, more or
less, at the same size.

However, if the predicted branching ratios of the B0 → D(∗)−a+
0 decays are too

small, the extraction of γ in a time-dependent analysis will be impossible due to a lack
of events.

9.2 Summary of branching ratio measurements

The B0→D−a+
0 branching ratio is fitted at

B(B0 → D−a+
0 ) × B(a+

0 → ηπ+) = (−0.11+0.93
−0.67(stat)+0.29

−0.76(sys)) · 10−5, (9.3)

and is consistent with the null-hypothesis. An upper limit was set at

B(B0 → D−a+
0 ) < 2.3 · 10−5@90%CL. (9.4)

The B0→D∗−a+
0 branching ratio is fitted at

B(B0 → D∗−a+
0 ) × B(a+

0 → ηπ+) = (5.93+1.64
−1.48(stat)+2.22

−1.52(sys)) · 10−5. (9.5)

148



9.2 Summary of branching ratio measurements

BR resonant signal
0 2 4 6 8 10 12

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

2

4

6

8

10

12

14

BR resonant signal
0 2 4 6 8 10 12

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

2

4

6

8

10

12

14

BR resonant signal
0 2 4 6 8 10 12

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

2

4

6

8

10

12

14

BR resonant signal
−1.0 −0.8−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

0.2

0.4

0.6

0.8

1.0

BR resonant signal
−1.0 −0.8−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

0.2

0.4

0.6

0.8

1.0

BR resonant signal
−1.0 −0.8−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

0.2

0.4

0.6

0.8

1.0

BR resonant signal
−1.0 −0.8−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

0.2

0.4

0.6

0.8

1.0

BR non−resonant signal
0 10 20 30 40 50 60

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0
5

10

15

20

25

30

35

40

45

BR non−resonant signal
0 10 20 30 40 50 60

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0
5

10

15

20

25

30

35

40

45

BR non−resonant signal
0 10 20 30 40 50 60

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0
5

10

15

20

25

30

35

40

45

BR non−resonant signal
0 5 10 15 20 25

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

2

4

6

8

10

12

BR non−resonant signal
0 5 10 15 20 25

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

2

4

6

8

10

12

BR non−resonant signal
0 5 10 15 20 25

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

2

4

6

8

10

12

BR non−resonant signal
0 5 10 15 20 25

−510×

 lo
g

 li
ke

lih
o

o
d

Δ

0

2

4

6

8

10

12

Figure 9.3: Profile likelihood fits where the delta log likelihood is fitted versus the
branching ratio of the B0→D∗−a+

0 (top-left), the B0→D−a+
0 (top-right)

and the non-resonant B0 → D∗−ηπ+ (bottom-left) and B0 → D−ηπ+

(bottom-right) decay modes. The black curve indicates the profile ob-
tained by the nominal scaling factor and bias offset correction. The
gray area indicates the effect of the different systematic errors.

The significance of this result is determined to be 5.3σ. The B0 → D−ηπ+ branching
ratio fit result gives

B(B0 → D−ηπ+) = (13.41+3.54
−3.25(stat)+2.42

−1.94(sys)) · 10−5, (9.6)

and excludes the null-hypothesis with 4.4σ. The branching ratio of the non-resonant
B0 → D∗−ηπ+ events results in

B(B0 → D∗−ηπ+) = (33.91+5.47
−5.11(stat)+6.86

−5.14(sys)) · 10−5, (9.7)

this measurement excludes the null-hypothesis with 8.2σ.

The profile likelihoods of these measurements are presented Fig. 9.3. The a0 mass
peak in the reconstructed B0→D∗−a+

0 events is presented in Fig. 9.4.

This is the first observation of the B0→D∗−a+
0 and B0 → D∗−ηπ+ decays and the

first evidence for the B0 → D−ηπ+ decay.
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Figure 9.4: Observed distribution in the reconstructed B0 → D∗−ηπ+ candidates
projected in the mηπ observable where the data has been selected
above 5.27 GeV/c2 in mES and between −50 and +50 MeV in ΔE.
The component background p.d.f.’s are accumulated in the following
order: background (short dashed), B0 → D(∗)−D+

s (long dashed), non-
resonant B0 → D−ηπ+ signal (dotted), B0→D−a+

0 signal (solid) curve.

9.3 Interpretation of the results

The measured branching ratio for the B0→D∗−a+
0 decay mode is a factor ten times larger

then expected from theoretical prediction using QCD factorization models. The branch-
ing ratio of the B0→D−a+

0 decay mode, on the other hand, is in full agreement. Both
measured non-resonant signal branching ratios, of B0 → D−ηπ+ and B0 → D∗−ηπ+,
are much larger than expected. We will now discuss the implications of these results.

The resonant signal

First, let us look at possible explanations for a larger B0→D∗−a+
0 branching ratio, within

the QCD factorization model.
In the CKM allowed diagram there are two possible sources. The first is a larger

form factor for the B → D decay. This form factor, however, is accurately known from
many other charmed B decays [20]. The second possibility would arise from a higher
coupling between the weak interaction and the a0 meson. Again, this is unlikely. The
decay is G-parity suppressed and G-parity violating processes have been excluded to a
high level [83, 39]. Also, recent searches for other B decays involving a0 mesons have not
been observed [84], which is in agreement with the suggested suppression mechanisms.

The CKM suppressed diagram also leaves no room for a larger contribution than
expected. The D(∗)± weak decay constant in the CKM suppressed diagram is again very
well known from other charmed B decays. The uncertainty in the B → a0 form factor
is large, but is excluded to be larger than expected by the measurement in the SU(3)

conjugated B0 → D
(∗)+
s a−

0 decay modes [49].

In conclusion, there is no room within the QCD factorization approach for a large
B0→D∗−a+

0 branching.
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9.4 Outlook

The most likely hypothesis that remains is that the D∗±a∓
0 final state is produced

via rescattering processes. We have already shown that this is possible via the B0 →
Da1 → D∗a0 decay. Differences between the B0→D∗−a+

0 and B0→D−a+
0 branching

ratios can be explained. The rescattering process that leads to the D±a∓
0 final state,

B0 → D∗a1 → Da0, is suppressed since only the zero angular momentum projection of
the D∗a1-meson pair can contribute to form a Da0 meson pair.

The possible four-quark meson state of the a0 becomes highly unlikely with the high
measured branching ratio in B0→D∗−a+

0 . There is no scenario that would accommodate
a four-quark state a0 and the size of the measured branching ratio in B0→D∗−a+

0 .

The non-resonant signal

The measured branching ratios of both B0 → D−ηπ+ and B0 → D∗−ηπ+ are larger
than naively expected. At current, no likely scenario is present that could explain this,
other than the presence of an excited D± meson state that decays into D(∗)±η.

9.4 Outlook

The measured branching ratio of the B0→D∗−a+
0 decay is larger than was theoretically

expected. The question now is if we can use this decay to measure sin(2β + γ) in a
time-dependent analysis.

First let us compute the number of B0 → D(∗)−a+
0 events that would currently be

available for a time dependent analysis. We have observed 30 events in the used data
set. The BABAR data sample that is currently available is twice as large as the data
set that is used in this thesis. Extrapolating to the larger data sample would give us
60 events. For a time-dependent analysis we would need B tagging which reduces the
selection efficiency by a factor three. In total, this would leave us about 20 events to
perform the time-dependent fit. The data selection is optimized for an observation of
the branching ratio. Optimizing for a measurement of the CP asymmetry could loosen
some restrictions and increase the signal selection efficiency. However, more than a factor
two is not expected to be gained. At most 40 events are expected to be available in the
present data sample. This is not enough to perform a full time-dependent analysis.

The amplitude ratio between the interfering diagrams was expected to be around
one from the theoretical predictions derived with the factorization approach. If the
high branching ratio in the B0→D∗−a+

0 decay mode indeed originates from rescattering
via the B0 → Da1 → D∗a0 decay, this ratio is altered. The produced B0 → Da1

events are predominantly produced in the CKM favored decay. Let us assume that the
difference between the measured and predicted B0→D∗−a+

0 branching ratio is caused
by rescattering via the CKM favored B0 → Da1 decay mode. In this case the amplitude
ratio between the interfering diagrams is one in ten, still five times larger than the
sensitivity in B0 → D∗−π+, B0 → D∗−ρ+ or B0 → D∗−a1(1260)+ decays.

The number of events present in the currently available BABAR data set is not ex-
pected to be enough. However, the advantage of the high sensitivity to the CKM angle
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γ, compared to other less sensitive decays, remains. And as such, the attempt for a full
time-dependent analysis should be made.
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Summary

This thesis describes the measurement of the branching fractions of the suppressed
charmed B0 → D(∗)−a+

0 decays and the non-resonant B0 → D(∗)−ηπ+ decays in ap-
proximately 230 million Υ (4S) → BB events. The data have been collected with the
BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in
California.

Theoretical predictions of the branching fraction of the B0 → D(∗)−a+
0 decays show

large QCD model dependent uncertainties. Non-factorizing terms, in the naive factor-
ization model, that can be calculated by QCD factorizing models have a large impact on
the branching fraction of these decay modes. The predictions of the branching fractions
are of the order of 10−6. The measurement of the branching fraction gives more insight
into the theoretical models. In general a better understanding of QCD models will be
necessary to conduct weak interaction physics at the next level.

The presence of CP violation in electroweak interactions allows the differentiation
between matter and antimatter in the laws of physics. In the Standard Model, CP
violation is incorporated in the CKM matrix that describes the weak interaction between
quarks. Relations amongst the CKM matrix elements are used to present the two relevant
parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-
constraining of the CKM triangle by experimental measurements is an important test
of the Standard Model. At this moment no stringent direct measurements of the CKM
angle γ, one of the interior angles of the Unitarity Triangle, are available.

The measurement of the angle γ can be performed using the decays of neutral B
mesons. The B0 → D(∗)−a+

0 decay is sensitive to the angle γ and, in comparison to the
current decays that are being employed, could significantly enhance the measurement of
this angle. However, the low expected branching fraction for the B0 → D(∗)−a+

0 decay
channels could severely impact the measurement. A prerequisite of the measurement
of the CKM angle is the observation of the B0 → D(∗)−a+

0 decay on which this thesis
reports.

The BABAR experiment consists of the BABAR detector and the PEP-II e+e− collider.
The design of the experiment has been optimized for the study of CP violation in the
decays of neutral B mesons but is also highly suitable for the search for rare B decays
such as the B0 → D(∗)−a+

0 decay. The PEP-II collider operates at the Υ (4S) resonance
and is a clean source of BB meson pairs.

The B mesons are fully reconstructed in the desired final state B0 → D(∗)−a+
0 where

a+
0 → ηπ+. No restrictions on the a0 meson mass are applied in the reconstruction and

during the first stages the analysis is set up to select B0 → D(∗)−ηπ+ decays. About
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Summary

thirty variables are used to distinguish the signal decays from background decays. The
optimization of the rectangular box cuts on the selection variables is performed simulta-
neously using a dedicated optimization program. After the selection is performed, three
observables are employed in an unbinned maximum likelihood fit to further separate the
signal events from the background and to distinguish the resonant B0 → D(∗)−a+

0 events
from non-resonant B0 → D(∗)−ηπ+ events. Background B0 → D(∗)−D+

s events, where
D+

s → ηπ+, have the same final state and are described with a separate p.d.f. in the
fit. These events are utilized as a control sample and are used to test the validity of the
analysis setup.

From the unbinned maximum likelihood fit, the following branching fractions follow:

B(B0 → D−a+
0 ) × B(a+

0 → ηπ+) = (−0.11+0.93
−0.67

+0.29
−0.76) · 10−5,

B(B0 → D∗−a+
0 ) × B(a+

0 → ηπ+) = (5.93+1.64
−1.48

+2.22
−1.52) · 10−5,

B(B0 → D−ηπ+) = (13.41+3.54
−3.25

+2.42
−1.94) · 10−5,

B(B0 → D∗−ηπ+) = (33.91+5.47
−5.11

+6.86
−5.14) · 10−5,

where the first error is the statistical and the second represents the systematic uncer-
tainty. An upper limit is determined for the branching fraction of B(B0 → D−a+

0 ) at
B(B0 → D−a+

0 ) < 2.3 · 10−5@90%CL. The significance of the observations, including
systematic uncertainties, for the measured branching fractions are 5.3, 4.4 and 8.2σ
respectively and were determined using a profile likelihood.

This is the first reported observation of the B0→D∗−a+
0 and B0 → D∗−ηπ+ decays

and the first evidence for the B0 → D−ηπ+ decay. The observed branching fraction for
the B0→D∗−a+

0 signal is a factor ten larger than the theoretical predictions. At present
no scenario using naive factorization or QCD factorization models can explain the large
observed decay amplitude. A possible scenario is rescattering via the B0 → D−a+

1 →
D∗−a+

0 decay channel.
It is unlikely that the number of B0→D∗−a+

0 events present in the currently available
BABAR dataset is enough for a measurement of the CKM angle γ. However, the advantage
of the potential high sensitivity remains, as such, the attempt for a full time-dependent
analysis should be made.
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Populaire samenvatting

Onderdrukte betoverde B-meson vervallen

In de komende pagina’s zal ik proberen om enige uitleg te geven over dit proefschrift.
Allereerst begin ik met het opzetten van het raamwerk van de elementaire deeltjesfysica.
Hierna zal ik een korte introductie geven van het BABAR experiment. Tenslotte volgen
een samenvatting van de onderzoeksvraag en het onderzoek dat beschreven wordt in dit
proefschrift.

Elementaire deeltjesfysica

Het zal velen bekend zijn dat de wereld om ons heen bestaat uit kleine deeltjes. Op
moleculair niveau wordt bepaald wat voor eigenschappen verschillende stoffen hebben.
De moleculen zelf zijn weer opgebouwd uit atomen, waarvan er op dit moment 112
bekend zijn. Die atomen bestaan op hun beurt uit een kern en elektronen die daaromheen
draaien. Een elektron is een elementair deeltje, dat wil zeggen we kunnen het niet langer
opsplitsen. De atoomkern kan echter nog wel verder worden opgesplitst in zogeheten
protonen en soms ook neutronen. Zowel de protonen als neutronen zijn opgebouwd
uit quarks. Van quarks denken we dat ze elementair zijn, dat we ze niet meer kunnen
opdelen.

Protonen en neutronen zijn allebei opgebouwd uit twee verschillende soorten quarks,
uit ‘op’ en ‘neer’ quarks (up en down in het Engels). Eigenlijk bestaat alles wat we op
aarde hebben uit elektronen en op en neer quarks. We kennen nog vier andere quarks:
tover, vreemd, top en bodem (charm, strange, top, bottom). Deze deeltjes kunnen we
maken in deeltjesversnellers. Deeltjes die een toverquark bevatten noemen we betoverd,
vandaar het woord in de titel.

Een positron is een anti-elektron. Het heeft alle eigenschappen van een elektron,
zoals de massa, maar het deeltje heeft precies de omgekeerde lading. Een elektron heeft
een negatieve lading (−1e) en een positron dus een positieve lading (+1e). Positronen
zijn voor het eerst ontdekt in straling die uit de ruimte komt. We kunnen de lading van
deeltjes bepalen door ze in een magnetisch veld af te buigen. Als we elektronen materie
noemen, dan zijn positronen antimaterie. Positronen zijn geen lang leven beschoren op
aarde, zodra ze in contact komen met materie gaan ze een reactie aan en komt er warmte
en licht vrij.

155



Populaire samenvatting

Figuur 1: De BABAR detector tijdens de opbouwfase.

Er bestaan ook antiquarks. Elk van de 6 soorten quarks heeft een eigen antitype.
Dus we hebben ook een anti-op en een anti-neer quark. Een proton bestaat uit 2 op
quarks en 1 neer quark. Samen geeft dat een positieve lading van +1e. Als we nu elk van
de quarks vervangen door antiquarks krijgen we een deeltje dat veel lijkt op een proton,
maar met precies de omgekeerde lading van −1e. Een antiproton dus! Het grappige is
dat we dit ook kunnen doen met een neutron, ondanks dat deze geen lading draagt. Een
neutron bestaat uit 1 op quark en 2 neer quarks. Als we deze vervangen door antiquarks
worden het antineutronen. Op het eerste gezicht zijn er geen verschillen te zien tussen
het neutron en zijn antideeltje. Maar het is toch mogelijk om ze te onderscheiden.

In het leven van de quarks spelen verschillende krachten een rol. Er is de sterke
kracht, die quarks bij elkaar houdt en ze tot bijvoorbeeld protonen en neutronen vormt.
Dan is er de elektrische kracht die er voor zorgt dat geladen deeltjes elkaar afstoten
of juist aantrekken. De zwaartekracht speelt voor de kleine quarks nauwelijks een rol.
Maar er is ook nog de zwakke kracht. De zwakke kracht kan ervoor zorgen dat quarks
om worden gezet in andere quarks, dus bijvoorbeeld een op quark kan veranderen in
een neer quark. Er wordt dan nog een elementair (geladen) deeltje uitgezonden: een
zogeheten W-boson. Dit boson is niet stabiel en vervalt naar bijvoorbeeld een elektron
met een antineutrino deeltje.

Ook een vrij neutron is instabiel. Het vervalt door de zwakke kracht. Eén van de
twee neer quarks veranderd hierdoor in een op quark. Het neutron verandert dan in een
proton! Bij dit verval wordt vaak een elektron en een antineutrino deeltje uitgezonden.
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Figuur 2: De binnenste detectorlaag van de BABAR detector vlak voordat deze
werd geplaatst. De botsingen vinden plaats binnenin deze detector.

Neutrino’s en hun antideeltjes zijn nogal moeilijk te zien, maar elektronen en positronen
zijn door hun lading en massa gemakkelijk waar te nemen. Het verval kunnen we opschrij-
ven als n → p+e−ve. Door dit verval kunnen we onderscheid maken tussen neutronen
en antineutronen. In een antineutron zou namelijk het antineer quark zijn veranderd in
een anti-op quark en zou het antineutron dus naar een antiproton zijn vervallen. In het
proces was dan niet een elektron maar een positron ontstaan!

Het BABAR experiment

Het BABAR experiment bestaat uit twee onderdelen, de PEPII versneller en de BABAR de-
tector, zie ook figuur 1. Het gehele experiment staat bij de Stanford Universiteit in Menlo
Park in de staat Californië van de Verenigde Staten van Amerika. In de PEPII versneller
worden elektronen en positronen met grote snelheid in botsing gebracht. De energie die
hierbij vrijkomt wordt heel precies afgeregeld op de resonantie van het Υ (4S) deeltje en
bij sommige botsingen wordt er een dergelijk deeltje gemaakt. Het deeltje bestaat uit
een bodem en een antibodem quark. Een deeltje dat uit een quark en antiquark bestaat
noemen we een meson.
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Het Υ (4S) deeltje is niet stabiel en vervalt naar twee B mesonen. Er bestaan geladen
B mesonen (combinatie van antibodem en op) en neutrale B mesonen (antibodem en
neer). Van beide type bestaan ook weer antimesonen. In elk verval wordt precies een van
elk type gemaakt, dus voor elk geproduceerd B meson is er ook een geproduceerd anti-B-
meson. De PEPII versneller is dus eigenlijk een grote B-meson fabriek. Het experiment
heeft meetgegevens verzameld van oktober 1999 tot en met april 2008 en in die tijd zijn
er ongeveer 1 miljard B mesonen gemaakt.

Op de plek waar de botsingen van de versneller plaatsvinden is de BABAR detector
gebouwd. Met de detector kunnen we de botsingen onderzoeken. Het apparaat bestaat
uit verschillende onderdelen. Een van de onderdelen van de detector is afgebeeld in figuur
2. Allereerst hebben we een grote magneet die ervoor zorgt dat we de negatieve van de
positieve deeltjes kunnen onderscheiden. Dan zijn er detectoren waarin de deeltjes sporen
achterlaten als ze er doorheen vliegen. Vervolgens zijn er apparaten die de energie van de
deeltjes meten. Alles bij elkaar kunnen we dan precies bepalen wat voor lading, massa
en energie de deeltjes hebben die door de detector vliegen. Genoeg om precies te weten
wat voor soort deeltjes het zijn.

De onderzoeksvraag

Nu we weten wat voor soort deeltjes er worden gemaakt en hoe we die waarnemen zal
ik vertellen wat we nu eigenlijk precies te weten willen komen.

De geproduceerde B mesonen zijn op hun beurt ook weer instabiel en vervallen
onder invloed van de zwakke kracht weer in andere deeltjes. Met behulp van de B meso-
nen proberen we meer te weten te komen van de werking van de zwakke kracht. In de
natuur lijkt de zwakke kracht onderscheid te maken tussen materie en antimaterie. Dat
wil zeggen dat materie deeltjes iets anders reageren op de zwakke kracht dan antima-
terie deeltjes doen. Tot nu toe is dit de enige plek in de natuurwetten die we kennen
waar er verschillen zijn tussen materie en antimaterie. De andere krachten, zoals de
zwaartekracht en de elektrische kracht, maken bijvoorbeeld geen onderscheid tussen de
geaardheid van materie.

Een B meson kan vervallen naar verschillende combinaties van deeltjes. We kunnen
niet voorspellen naar welke combinatie een enkel B meson zal vervallen. Net als dat we
niet kunnen voorspellen hoeveel ogen je gooit bij een enkele worp van een dobbelsteen.
Dit betekent niet dat de Natuurkunde geen exacte wetenschap meer is. Met behulp van
de kwantummechanica kunnen we wel uitrekenen wat de kans is dat het B meson naar
een bepaalde combinatie vervalt. Bij het uitrekenen van deze kans komt onze kennis over
zowel de sterke als de zwakke kracht kijken.

Zoals ik eerder schreef willen we in het BABAR experiment meer te weten komen
over de zwakke kracht. Maar bij de vervalsprocessen spelen ook sterke krachten een rol.
Dit proefschrift gaat over een meting van een specifiek B-meson verval. Bij dit verval
komen de onderzekerheden die er bestaan over de werking van de sterke kracht extra
naar boven. Je kunt deze meting zien als een test van onze kennis van de rekenmethodes
die we gebruiken om de kansprocessen te voorspellen.

Het soort B-meson verval dat ik onderzoek in dit proefschrift is nog niet eerder
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waargenomen. Onder de werking van de zwakke kracht vervalt het B meson naar twee
andere mesonen. De ene is een D meson, die bestaat uit een tover en een anti-neer quark,
en de andere een a0 meson, die bestaat weer uit een op en anti-neer quark. We schrijven
dit dan als B0 → D(∗)±a∓

0 . Eigenlijk zijn dit twee vervallen, de haakjes geven aan dat we
ook zoeken naar een D∗ meson. Het sterretje geeft aan dat de twee quarks in dit meson
op een bijzondere manier om elkaar heen draaien.

Het verval, B0 → D(∗)±a∓
0 , is sterk onderdrukt, wat betekent dat de kans op het

proces erg klein is. De uitgerekende kans is in de orde van één op een miljoen. Door
precies te meten hoe vaak het verval voorkomt testen we de rekenmethodes. Op hetzelfde
moment is het interessant of we het B-meson verval vaak genoeg zien. Als dit namelijk
het geval is kan er in de toekomst wellicht een erg precieze meting van een eigenschap
van de zwakke wisselwerking mee worden verricht. Andere pogingen om die precieze
eigenschap te meten zijn tot nog toe niet goed gelukt.

Het onderzoek

De B mesonen zelf nemen we niet waar in de detector, wel de deeltjes waar ze naartoe ver-
vallen. We nemen dus eigenlijk de brokstukken waar. Om te zien wat voor brokstukken
we over houden in ons verval moeten we kijken naar de gevormde D en a0 mesonen. Het
a0 meson vervalt naar een zogeheten pion en een eta meson, beide bestaan uit op en neer
quarks. Het pion kunnen we direct waarnemen in de detector. Het eta meson vervalt
naar twee fotonen (lichtdeeltjes). Het D meson kan naar allerlei toestanden vervallen.
We reconstrueren in dit proefschrift 6 verschillende eindtoestanden. Een voorbeeld is
een kaon-pion-pion combinatie (een kaon bestaat uit een antivreemd en een op quark).
De uiteindelijke combinatie van deeltjes die in mijn B-meson verval ontstaan zijn dus:
1 kaon, 2 fotonen en 3 pionen. Dat zijn de deeltjes die we uiteindelijk in de detector
waarnemen. Het lastige is nu dat deze eindtoestand ook kan worden gemaakt door andere
B-meson vervallen die veel vaker voorkomen.

Om ons B0 → D(∗)±a∓
0 verval (‘signaal’) te onderscheiden van de andere vervallen, die

misschien wel duizend keer vaker voorkomen, kijken we naar verschillende eigenschappen.
We bedenken allerlei criteria waar de signalen in de detector aan zouden moeten voldoen.
Eerst kijken we of we kaonen, pionen en fotonen zien in de botsing. Vervolgens of we
van de brokstukken de originele deeltjes kunnen reconstrueren. Bijvoorbeeld of het kaon
en twee van de pionen wel van één plek in de detector afkomen. En zo bedenken we nog
veel meer criteria. Door het toepassen hiervan proberen we zoveel mogelijk botsingen
weg te gooien waar we niet in gëınteresseerd zijn. Maar we verliezen soms toch ook wat
van onze signaalvervallen.

Om nu precies te bepalen hoe de set van criteria werkt, maken we gebruik van
door de computer gesimuleerde botsingen. Zo kunnen we precies zien hoeveel van de
achtergrond botsingen we kwijt raken en hoeveel signaal we overhouden. Een van de
achtergrondvervallen bleek lastig te onderscheiden van de signaalvervallen met behulp
van alleen de set van opgestelde criteria. Het verval heeft exact dezelfde eindtoestand als
het signaalverval. In plaats van dat een pion en twee fotonen van een a0 meson afkwamen,
zijn deze direct ontstaan in het verval: B0 → D(∗)±ηπ∓. Dit probleem hebben we opgelost
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door tegelijkertijd een meting te doen van beide processen, zowel van B0 → D(∗)±a∓
0 als

van B0 → D(∗)±ηπ∓.
Uiteindelijk hebben we de volgende kansen gemeten:

K(B0 → D−a+
0 ) ×K(a+

0 → ηπ+) = (−0.11+0.93
−0.67

+0.29
−0.76) · 10−5,

K(B0 → D∗−a+
0 ) ×K(a+

0 → ηπ+) = (5.93+1.64
−1.48

+2.22
−1.52) · 10−5,

K(B0 → D−ηπ+) = (13.41+3.54
−3.25

+2.42
−1.94) · 10−5,

K(B0 → D∗−ηπ+) = (33.91+5.47
−5.11

+6.86
−5.14) · 10−5,

waarbij K voor kans staat. Zoals je ziet is er voor het verval B0→D−a+
0 geen positieve

kans bepaald. Dit is misschien wat lastig te interpreteren maar het betekent dat we het
verval niet hebben waargenomen. We hebben doorom een bovenlimiet bepaald, met 90%
waarschijnlijkheid, dat de kans op het proces kleiner is dan 2.3 · 10−5. Voor de andere
vervallen, B0→D∗−a+

0 , B0 → D−ηπ+ en B0 → D∗−ηπ+, is dit de eerste keer dat ze zijn
waargenomen.

We hebben uiteindelijk 30 botsingen gevonden waarin we het B0→D∗−a+
0 verval

kunnen reconstrueren. Dit zijn er waarschijnlijk niet genoeg om de interessante meting
te doen van de zwakke kracht. Toch zou dit in de toekomst moeten worden geprobeerd.
Als het wel lukt zou het een belangrijke bijdrage kunenn leveren aan de kennis van de
zwakke kracht.

De gemeten kans in het B0→D∗−a+
0 verval is tien maal hoger dan de voorspelde

kans. Dit is een erg bijzonder resultaat, er zijn op dit moment geen rekenmodellen die
dit kunnen verklaren. Wel zijn er processen te bedenken, waarvan we altijd dachten dat
ze zeer klein waren, die kunnen bijdragen aan de kans. Helaas zijn er op dit moment
geen manieren om precies te berekenen hoe groot deze bijdragen aan de kans zijn.
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Appendix A

Selection variable tables

This appendix summarizes the selection power of the variables used to select the final
data set as is described in Chapter 4.

161



Appendix A Selection variable tables

SigMC NonRes GenB qq
variable R(%) U R(%) U R(%) U R(%) U
mES 14.47 93 19.87 233 35.26 1836 37.32 1197
ΔE 36.94 540 40.58 1157 51.21 4694 50.42 1658
χ2 59.56 523 68.21 1226 91.05 2333 92.53 1369
cos θT 13.70 29 14.00 55 16.49 51 47.21 28
cos θB 3.00 15 3.33 39 4.22 61 4.45 27
cos θS 17.48 41 17.52 64 20.03 62 55.32 38
T 0.14 3 0.16 6 0.16 5 1.19 16
ln(DOCA) 0.41 0 0.25 0 0.15 0 0.24 1
F 48.71 1348 50.61 2874 58.16 2667 87.56 2765
mD± 36.08 197 45.79 392 75.74 722 79.79 566
dlsD 27.64 847 29.29 1874 42.63 2144 47.44 1507
p∗K 6.28 200 3.88 259 6.17 202 12.52 113
p∗π2 0.58 6 0.59 14 1.50 14 1.29 5
mη 41.67 460 47.52 852 67.67 1196 66.56 388
p∗η 5.28 42 18.86 55 37.90 350 27.62 62
mV ETO

π0 22.90 840 29.39 1542 49.18 2692 43.88 826
cos θη 36.42 32 34.43 87 41.40 75 48.08 27
EπB 3.64 22 14.80 151 29.08 183 19.04 79
p∗πB 5.02 18 28.06 441 55.39 1488 38.78 492
θπ 1.54 34 2.10 141 2.07 83 2.49 43
Eγ 42.56 290 43.73 449 56.16 593 59.99 170
L2/L0 12.29 8 12.19 11 12.43 4 55.59 5
fit status 4.06 - 4.73 - 8.14 - 11.43 -
#cand < 30 0.05 - 0.02 - 0.02 - 0.01 -

Table A.1: Rejected candidates, R, for the DchI selection (in %) and the number of
uniquely rejected candidates, U, for different event types. The quoted
number for the variable (#cand < 30) is the percentage of rejected
events.
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SigMC NonRes GenB qq
variable R(%) U R(%) U R(%) U R(%) U
mES 17.28 37 25.68 57 36.76 516 36.78 454
ΔE 39.45 199 43.95 252 51.83 1380 50.63 655
χ2 69.23 324 78.56 490 93.44 2338 93.75 2374
cos θT 6.45 6 7.01 8 8.28 16 24.46 5
cos θB 2.41 4 2.56 5 3.27 22 3.38 16
cos θS 20.30 48 20.79 57 23.97 84 57.45 55
T 2.50 3 1.66 3 2.05 5 29.30 79
ln(DOCA) 7.83 6 6.56 11 6.09 10 8.94 4
F 26.10 82 27.62 104 31.75 163 71.60 267
mD± 18.64 5 24.50 14 35.27 18 36.03 33
dlsD 34.22 289 35.19 431 44.22 662 47.70 678
mK0

S
19.74 5 28.39 3 42.54 21 43.60 27

dlsK0
S

22.10 63 33.43 117 56.08 966 54.13 1212

p∗π1 4.65 49 2.76 39 3.02 63 11.75 67
mη 35.37 29 42.23 36 60.63 143 59.59 50
p∗η 5.06 19 18.68 23 35.00 111 28.65 22
Eη 1.35 1 7.23 4 14.68 19 12.39 8
mV ETO

π0 0.83 3 1.03 5 1.87 24 1.66 12
cos θη 32.64 3 31.47 14 38.80 27 43.70 16
EπB 3.97 3 12.76 18 23.33 27 21.00 11
p∗πB 7.86 4 28.37 67 49.25 420 42.80 205
Eγ 36.85 66 37.09 65 47.53 139 51.34 72
L2/L0 13.57 11 13.59 15 14.53 6 55.16 22
fit status 10.62 - 14.16 - 20.30 - 21.23 -
#cand < 30 0.01 - 0.00 - 0.01 - 0.00 -

Table A.2: Rejected candidates, R, for the DchII selection (in %) and the number of
uniquely rejected candidates, U, for different event types. The quoted
number for the variable (#cand < 30) is the percentage of rejected
events.
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Appendix A Selection variable tables

SigMC NonRes GenB qq
variable R(%) U R(%) U R(%) U R(%) U
mES 11.13 49 15.11 74 29.62 370 37.12 125
ΔE 33.93 242 37.39 380 51.20 1384 51.48 166
χ2 57.25 500 64.56 801 83.55 795 95.21 258
cos θT 0.68 2 0.68 2 0.83 0 3.18 0
cos θB 6.74 35 7.43 64 9.95 93 10.36 9
cos θS 9.60 54 10.56 63 12.85 43 43.43 12
R2 1.08 1 0.95 2 1.35 1 19.28 0
T 1.53 2 1.32 7 1.88 1 24.74 1
ln(DOCA) 4.26 5 3.49 9 2.77 4 5.93 0
F 19.23 120 21.34 223 24.89 161 74.40 143
mD∗± 17.72 27 22.67 46 45.47 33 65.58 12
cos θD∗ 4.59 12 19.74 588 16.92 177 18.51 47
cos θa0 0.45 4 0.50 9 1.04 2 1.34 1
mD0 0.08 0 0.05 0 0.11 1 0.16 0
θD0 0.93 4 1.31 14 2.18 13 3.25 5
dlsD 20.89 60 25.97 77 38.35 66 55.89 7
φK 0.49 5 0.33 8 0.38 7 0.38 1
p∗π1 0.84 5 0.42 3 1.57 2 6.21 7
pSπ 3.16 23 4.41 32 8.69 24 10.73 1
φSπ 0.98 15 1.02 23 0.98 10 1.03 1
mη 28.88 44 34.43 73 53.31 162 52.23 24
p∗η 7.03 31 22.75 37 49.59 201 36.24 16
Eη 2.83 2 11.09 14 25.91 27 18.73 2
mV ETO

π0 32.09 499 38.64 739 64.04 1848 59.67 181
cos θη 38.66 79 37.22 109 42.74 164 48.45 14
EπB 0.56 0 7.60 2 18.15 12 12.87 1
p∗πB 1.60 1 22.94 66 48.90 212 32.14 6
θπ 0.11 0 0.28 6 0.20 4 0.21 1
Eγ 35.43 6 34.68 11 42.74 26 47.54 5
L2/L0 4.78 3 5.73 10 5.86 4 39.51 0
fit status 11.79 - 14.94 - 28.40 - 40.45 -
#cand < 30 0.00 - 0.01 - 0.01 - 0.00 -

Table A.3: Rejected candidates, R, for the DstI selection (in %) and the number of
uniquely rejected candidates, U, for different event types. The quoted
number for the variable (#cand < 30) is the percentage of rejected
events.
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SigMC NonRes GenB qq
variable R(%) U R(%) U R(%) U R(%) U
mES 16.36 35 23.14 66 34.33 384 37.78 142
ΔE 44.11 269 48.71 343 53.48 993 52.61 197
χ2 86.20 1223 92.49 1669 96.91 1811 98.13 606
cos θT 36.00 223 37.99 222 41.62 201 83.12 80
cos θB 17.55 189 19.70 188 21.03 192 21.32 51
cos θS 18.83 12 20.39 24 22.72 21 62.52 6
R2 4.90 12 4.56 13 5.23 6 44.79 8
ln(DOCA) 5.97 14 4.61 6 3.90 6 7.60 6
F 13.66 2 15.30 4 16.66 7 64.39 6
mD∗± 41.58 40 53.72 53 66.31 173 71.65 38
cos θD∗ 13.18 67 31.37 739 28.28 221 28.04 68
cos θa0 7.98 57 12.11 110 20.83 45 23.58 18
mD0 33.18 279 42.96 741 43.71 348 43.48 64
dlsD 35.27 73 39.11 92 41.59 65 46.50 18
p∗π1 0.25 0 0.11 0 0.38 3 0.82 0
p∗π2 5.10 13 4.28 25 4.12 21 3.34 1
pSπ 3.95 30 6.35 33 10.98 53 10.89 8
mη 33.63 60 42.51 65 59.20 154 58.25 15
p∗η 8.25 15 27.82 11 51.19 61 38.88 14
mV ETO

π0 42.30 660 53.05 719 74.68 1698 70.96 246
cos θη 35.36 19 33.66 30 38.33 37 44.77 4
EπB 1.82 0 13.99 4 27.33 4 19.19 2
p∗πB 4.89 6 33.28 66 57.41 195 39.82 19
Eγ 38.26 39 39.25 34 47.81 72 52.41 16
L2/L0 19.35 7 20.70 8 21.99 4 72.26 6
fit status 34.25 - 44.89 - 54.77 - 57.32 -
#cand < 30 1.78 - 1.53 - 1.09 - 0.49 -

Table A.4: Rejected candidates, R, for the DstII selection (in %) and the number of
uniquely rejected candidates, U, for different event types. The quoted
number for the variable (#cand < 30) is the percentage of rejected
events.
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SigMC NonRes GenB qq
variable R(%) U R(%) U R(%) U R(%) U
mES 22.50 23 27.51 76 36.64 418 38.40 103
ΔE 46.77 192 50.40 360 53.57 1290 53.41 156
χ2 91.32 957 96.20 2084 98.57 3494 99.09 689
cos θT 5.53 5 5.81 1 6.34 9 21.22 0
cos θB 8.83 21 10.13 44 10.35 50 10.45 2
cos θS 17.39 8 17.37 22 18.73 23 52.27 2
T 4.07 14 2.73 13 2.59 3 27.77 4
ln(DOCA) 0.91 0 0.64 1 0.41 0 0.83 0
F 49.20 335 52.31 580 55.76 641 89.74 331
mD∗± 49.84 73 56.23 104 65.50 193 68.00 37
cos θD∗ 16.41 42 29.32 725 26.42 245 26.41 57
cos θa0 0.85 6 1.39 11 2.50 7 3.26 1
θD0 2.43 4 3.10 13 4.19 13 5.98 4
dlsD 63.67 76 70.13 119 72.62 148 74.61 15
p∗K 4.71 18 5.74 32 6.46 48 6.69 6
p∗π1 3.45 5 1.37 7 1.69 6 2.90 3
p∗π3 1.07 1 0.94 3 1.04 3 1.13 0
pSπ 5.15 9 8.43 14 14.02 21 14.26 2
mη 36.54 109 45.47 146 62.38 319 61.60 27
p∗η 5.74 7 23.58 4 44.71 47 34.92 8
mV ETO

π0 28.33 278 38.60 408 57.54 1048 53.33 115
cos θη 40.28 364 39.21 591 44.12 2214 50.34 202
p∗πB 7.61 36 36.47 190 60.86 800 43.65 48
L2/L0 8.74 0 8.29 0 7.84 0 46.82 3
fit status 39.59 - 48.30 - 56.00 - 59.09 -
#cand < 30 2.97 - 2.35 - 1.34 - 0.85 -

Table A.5: Rejected candidates, R, for the DstIII selection (in %) and the number
of uniquely rejected candidates, U, for different event types. The quoted
number for the variable (#cand < 30) is the percentage of rejected
events.
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SigMC NonRes GenB qq
variable R(%) U R(%) U R(%) U R(%) U
mES 21.11 8 26.66 22 35.18 123 37.49 48
ΔE 47.28 76 50.17 80 53.04 437 52.66 47
χ2 91.06 153 95.25 231 98.07 279 98.84 76
cos θT 4.36 3 4.07 1 4.63 2 15.88 1
cos θB 15.65 29 17.17 34 17.74 71 17.84 7
cos θS 18.63 24 18.71 24 20.57 29 55.57 11
R2 1.07 4 1.16 3 1.19 1 15.74 0
ln(DOCA) 5.14 2 3.80 4 2.96 4 5.85 0
F 14.42 7 15.31 16 16.16 12 61.22 9
mD∗± 52.66 11 59.38 11 68.67 22 71.77 3
cos θD∗ 10.44 6 20.95 136 19.00 52 19.09 18
mD0 59.99 15 64.97 32 67.86 18 69.03 1
dlsD 56.29 17 61.18 30 63.24 34 66.75 10
mK0

S
39.76 0 43.66 0 46.06 0 47.88 1

dlsK0
S

44.74 32 49.69 121 51.60 135 48.71 39

mη 38.94 50 47.59 67 65.14 197 64.38 31
mV ETO

π0 32.86 130 41.71 164 62.79 540 58.27 68
cos θη 31.11 72 29.42 117 33.29 400 39.47 54
p∗πB 3.26 8 29.28 99 53.05 739 37.18 29
Eγ 2.76 0 2.27 0 2.36 0 3.84 0
L2/L0 9.50 4 9.31 10 9.79 6 50.92 3
fit status 44.32 - 50.17 - 56.82 - 59.28 -
#cand < 30 0.37 - 0.30 - 0.17 - 0.09 -

Table A.6: Rejected candidates, R, for the DstIV selection (in %) and the number
of uniquely rejected candidates, U, for different event types. The quoted
number for the variable (#cand < 30) is the percentage of rejected
events.
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