
REMOTE POLICY ENFORCEMENT

USING JAVA VIRTUAL MACHINE

SRIJITH KRISHNAN NAIR

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.

ASCI dissertation series number 189.

Copyright © 2010 by Srijith Krishnan Nair

VRIJE UNIVERSITEIT

Remote Policy Enforcement

Using Java Virtual Machine

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan

de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus

prof.dr. L.M. Bouter,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de faculteit der Exacte Wetenschappen

op dinsdag 19 januari 2010 om 10.45 uur

in het auditorium van de universiteit,

De Boelelaan 1105

door

Srijith Krishnan Nair

geboren te Trivandrum, India

promotor: prof.dr. A.S. Tanenbaum

copromotor: dr. B. Crispo

to Surya

vi

ACKNOWLEDGEMENTS

A Ph.D. degree can be a journey of delight, discovery, joy, loneliness, frus-

tration and desperation, maybe not in that order. I have been lucky to have

colleagues, friends and family to support and help me through this amazing

voyage and see me through to its end.

First and foremost, I would like to thank my advisors Andrew Tanen-

baum and Bruno Crispo. Andy and Bruno have guided me over the years,

taking in their stride my crazy ideas and letting me explore topics that lay

at the fringes of my research area, while at the same time always steer-

ing me towards a cohesive structure for my dissertation work. Andy has

always been an inspiring advisor, providing constant support and motiva-

tion. His ability to identify the crux of the problem, provide sharp, incisive

and critical comments has helped me throughout the work and I hope I

have imbibed some of those strengths over the years. Bruno has been a

dedicated advisor, teaching me a lot about security, the need for scientific

rigour and the need to consider the whole breadth of the research area. I

owe a lot to them and I thank them both.

Let me also take this opportunity to thank my doctoral committee: Prof.

Frank Piessens, Prof. Sandro Etalle, Prof. Luigi V. Mancini, Dr. Herbert

Bos and Prof. Frances Brazier for their valuable comments and suggestions

on the dissertation work.

My colleagues have been a constant source of support and help through

the years. A big thanks to Patrick for doing the heavy lifting of implement-

ing a lot of the ideas presented in this dissertation. The conversations with

Chandana, Mohammad, Hugo, Jorrit, Melanie, Gabriela, Ben, Thomas,

Martijn and Philip on security issues and beyond have enriched my work

several times over. A big thanks to my room mates Michel, Reza, Maik

and Elzbieta for putting up with me! I would also like to thank Swami,

Spyros, Michal, Bogdan, Daniela, Albana, Guido, Konrad, Vivek, Asia,

Sander, Guillaume, Wilfred, Jan-Mark, Arno, Berry and Elth for making
vii

viii

the workplace fun and enjoyable.

I was fortunate to do a couple of internships during the course of these

years and would like to thank my former colleagues at BT: Theo, Ivan,

Leonid, David, Dinesh and at VMWare: Andy, Tal, Jim, Min, Mark, Swathi,

who hosted me and provided great work environments and welcome break

from Ph.D. work.

I owe this dissertation work to my family: my dad (who did not live

long enough to see it in this form), my mom, my wife and my brother.

My parents have been a constant source of comfort and support over these

years. My brother has been an unquestioning yet constant support. My

wife Surya has been an unflinching support through thick and thin. I know

it has not been an easy few years and I thank you for being there, edging

me along towards the goal. To you all I say–“Thank You!”

Srijith Krishnan Nair

Colchester, UK, November 2009

CONTENTS

ACKNOWLEDGEMENTS vii

1 INTRODUCTION 1

1.1 Trust Model . 2

1.2 Our Approach . 3

1.3 Thesis Contribution . 4

1.4 Structure of Dissertation 5

2 BACKGROUND AND RELATEDWORK 7

2.1 Security Policies . 7

2.1.1 Access Control 8

2.1.2 Usage Control 10

2.2 Information Flow Control 12

2.2.1 Information Flow Problem 13

2.2.2 Managing Information Flow 16

2.2.3 Covert Channel and Noninterference 20

2.3 Java Security . 22

2.4 Trusted Computing . 25

2.4.1 Trusted Platform Module 25

2.5 Summary . 28

3 TRISHUL 31

3.1 Architecture . 31

3.1.1 Design . 32

3.1.2 Handling Indirect Flows 34

3.2 The Policy Enforcement Engine 37

3.2.1 Actions . 39

3.2.2 Abstract actions 40

X CONTENTS

3.2.3 Taint Labels & Patterns 40

3.2.4 Orders . 43

3.2.5 Policy Engine Tree 45

3.2.6 Policy Engine Security 46

3.3 Implementation . 48

3.3.1 Java Architecture 48

3.3.2 Taint Propagation 50

3.3.3 Indirect Flows 52

3.3.4 Manual Taint Propagation 59

3.3.5 Exception Handling 62

3.3.6 Just-in-Time Mode 65

3.3.7 Trishul-P . 71

3.3.8 Platform Integrity 73

3.4 Example Applications . 74

3.4.1 Protecting system password file 75

3.4.2 Multi-Level Security Systems 77

3.5 Performance . 78

3.5.1 Taint Propagation Overhead 79

3.5.2 Load-time Overhead 80

3.5.3 Policy Engine Overhead 81

3.5.4 Optimisations . 83

3.6 Related Work . 85

3.7 Conclusion . 92

4 APPLICATION: DIGITAL RIGHTS MANAGEMENT 95

4.1 Introduction . 95

4.2 Modelling DRM . 99

4.2.1 The UCONABC Model 99

4.3 Trishul-UCON Architecture 101

4.4 Enforcing DRM Policies 107

4.4.1 Pay-per-use . 108

4.4.2 Use N times . 110

4.4.3 Metered payment 111

4.5 Performance . 113

4.6 Trusted System Considerations 115

4.7 Related Work . 117

4.8 Conclusion . 119

CONTENTS XI

5 APPLICATION: WEB SERVICES 121

5.1 Web Services . 122

5.2 Scenario Overview . 126

5.2.1 Policy Classes 126

5.2.2 Threat Model . 127

5.3 Trishul-WS . 128

5.3.1 System Architecture 128

5.3.2 Properties . 130

5.3.3 Functional Requirements 131

5.3.4 Platform Security 132

5.3.5 Implementation 134

5.3.6 Advertising Enforceable Policies 136

5.4 Related Work . 136

5.5 Conclusion . 138

6 SUMMARY AND CONCLUSIONS 141

6.1 Summary . 141

6.2 Conclusions . 143

6.3 Future Work . 144

SAMENVATTING 147

BIBLIOGRAPHY 153

LIST OF CITATIONS 163

INDEX 167

XII CONTENTS

LIST OF FIGURES

2.1 Components of the UCONABC model. 13

2.2 Extending trust from trusted (root of trust) hardware to the

higher level of application code using induction of digest

measurement. 27

3.1 Trishul architecture. 33

3.2 Internal layout of a JVM. 50

3.3 Control-flow graph created from Listing 3.11. 54

3.4 CFG showing initial branch bitmaps. 55

3.5 Details of the variable fields calculated in the CFG. 55

3.6 CFG showing final branch bitmaps and context bitmaps. . 57

3.7 Moving ECX to ESI using SSE registers in 3 operations. . 67

3.8 Kaffe stack frame. 68

3.9 Trishul’s stack frame holding taints, denoted by underlined

names. 69

4.1 Stakeholders involved in a typical DRM setup. 96

4.2 Components of the UCONABC model. 100

4.3 A schematic representation of (a) T-UCON intercepting

application methods calls and (b) various components of

the Trishul-UCON architecture. 102

4.4 Working of the Obligation Module of T-UCON. 107

4.5 Implementing pay-per-use policy using T-UCON. 109

4.6 Implementing the ‘play N times’ policy using T-UCON. . 112

4.7 Implementing metered payment policy using T-UCON. . . 113

5.1 The use of SOAP messages between web service entities. . 123

5.2 WS-Policy definitions. 125

XIV LIST OF FIGURES

5.3 Example scenario providing motivation for the policy en-

forcement architecture. 126

5.4 The architecture of Trishul-WS designed to develop policy

enforcement in web services framework. 129

5.5 Steps involved in the platform attestation process. 133

LIST OF TABLES

2.1 An access control matrix with two subjects (users) and

three objects (files). 8

3.1 Reasoning of how the concept of branch context taint is

used to capture the indirect flow present in Listing 3.1. . . 35

3.2 Reasoning of how the concept of branch context taint is

used to capture the implicit flow present in Listing 3.2. . . 36

3.3 Performance of prime number generator when run in Kaffe

and Trishul JVMs. 80

3.4 Time taken to read and print a 10Mb file when run in Kaffe

and Trishul JVMs. 80

3.5 Runtime overhead due to load-time analysis of an applica-

tion printing a specific date. 81

3.6 Memory overhead due to load-time analysis. 81

3.7 Runtime overhead due to Policy engine. 82

4.1 Performance comparison of T-UCON prototype in pay-per-

view microbenchmark. 114

4.2 Performance comparison of T-UCON prototype in pay-per-

view application run. 114

5.1 Performance comparison of normal web service process-

ing time and that using the T-WS policy enforcement ar-

chitecture for policy in Listing 5.2. 136

XVI LIST OF TABLES

LIST OF LISTINGS

2.1 Explicit indirect flow. 15

2.2 Implicit indirect flow. 15

2.3 Policy object example. 23

2.4 Class Trusted code fragment. 24

3.1 Explicit indirect flow code. 34

3.2 Implicit indirect flow code. 35

3.3 Example of Trishul enforcement engine code expressed us-

ing Trishul-P. 38

3.4 Example of abstract action definition. 41

3.5 Example of InsertOrder usage. 44

3.6 Example of handleResult usage. 44

3.7 Example of loading an engine with no access rights. 45

3.8 C macro that implements iadd. 51

3.9 Modified C macro that implements iadd and propagates the

taint. 52

3.10 Code for CFG example. 54

3.11 Bytecode of Listing 3.10. 54

3.12 C macro that implements iadd modified to propagate the

taints including the context taint. 58

3.13 Native method System.arraycopy modified to propagate taints. 60

3.14 Annotation applied to the String object. 61

3.15 Leaking information through an exception that is not thrown. 64

3.16 Java policy aimed at disabling leak of password file content

into the network. 75

3.17 Trishul-P policy engine to prevent leak of password file

information into the network. 76

3.18 Trishul-P code fragment that implements the enhanced MLS

system. 78

XVIII LIST OF LISTINGS

3.19 Flow that raises false positive in type-based systems. . . . 86

4.1 Example Object policy. 104

5.1 Example of WS-Policy specifying that a WS instance uses

a Kerberos token. 124

5.2 SAML based policy attached to user submitted data for

prototype implementation. 135

CHAPTER 1

Introduction

As the reach and power of the Internet and networked systems widen, and

thanks to the emergence of paradigm shifting technologies and delivery

models like Web Services (WS) and Software as a Service (SaaS), ever

larger numbers of users are sending huge amounts of private data to remote

systems that they do not have any control over. On the other side of the

same technology-coin, commercial digital content distributors are using

the wide reach of the Internet to help disseminate digital content like music,

videos and software to individual client machines, be it generic desktop

machines or consumer appliances like multimedia players.

In general, these data and content providers have a strong interest in

protecting their data from being misused. They would like their data to be

used as specified by them, accessible only to explicitly allowed external

parties and even after said access has been granted, allowing only specific

actions to be performed on the data.

These access and usage specifications are usually expressed in the form

of policies which can then be bundled with the data that they govern and

sent over to the remote machines.

Several previous works have focused on how to express the restrictions

that the policies define at the level of specification languages, while oth-

ers have considered the problem from a more theoretical angle by formally

defining models and classes of the policies that can be enforced based on

various assumptions and capabilities of the system. Fewer works have,

however, investigated the actual system level requirements involved in en-

forcing these policies on the remote machines. This is the angle from which

we approach the problem in this dissertation.

2 INTRODUCTION CHAP. 1

PROBLEM STATEMENT

The broad problem statement that the work reported in this dissertation

addresses can be expressed as follows:

Given a data object that the user wishes to submit to an remote host

and a policy that defines access and usage restrictions on the data object,

design and implement an architecture that enables the enforcement of these

policies at the remote host.

While the development of a fully functional policy enforcement frame-

work would involve several complementary areas of research including the

policy expression language, policy modelling, formal analysis and the sys-

tem architecture development, it is only the last of these research areas that

form the subject of this dissertation. Where possible, existing works in the

other areas are leveraged to fill in the gaps in the rest of the framework.

1.1. TRUST MODEL

In order to clarify and understand the requirements of the system that

needs to be implemented at the remote host and the measure of trust that

the data provider must place on the remote party, a judicious threat model

that captures the interest of the various parties involved is necessary.

While the specifics of the threat model would vary with the different

application scenarios’ environment, like the open or closed nature of the

remote host environment, certain characteristics of the threat model can

still be generalised for most policy enforcement scenarios.

The data that are submitted to the remote host is assumed to be of high

value to the data provider, like financial, personal or similar. Hence the

data provider is trusted to compose the right access and usage policies. At

the same time, the data provider is assumed not to have any direct control

over the working of the remote host.

The entity in charge of the remote host (user or administrator) is as-

sumed to have its own interest at heart when dealing with the data provider

and it is assumed to be untrusted from the data provider’s point of view. It

has varying degree of control over the run-time environment of the remote

host. On open systems like a typical desktop or a server, the entity has

almost full control over the hardware and the software that power the host.

However, in the case of closed application devices like mobile phones or

SEC. 1.2 OUR APPROACH 3

multimedia players like iPod, the entity has limited control over the ma-

chine’s hardware and the software. In general, the remote host is assumed

to be capable of running any application locally and these applications are

not trusted to adhere to the policies defined by the data provider.

The remote host is assumed to run a middleware, developed as part of

this dissertation work, that enable the enforcement of the policies. This

middleware, the operating system and all the hardware below it is assumed

to be trusted to behave as expected. In order for the remote host to obtain

the policy-attached data, it needs to prove to the provider that it is running

this stack of trusted hardware and software layers. However, as mentioned

before, the application is assumed to be untrusted in nature.

Thus a “Trust but verify" mantra sums up the trust relationship of the

provider with the remote host. This ability of the data providers to verify

the environment of the remote system, termed attestation in literature, is a

strong assumption and requirement, which though discussed in detail later

on, is not the primary focus of this work.

1.2. OUR APPROACH

The policy enforcement problem, as defined here, can be approached

from various angles and using various levels of abstraction. Some of the

earlier works and systems consider enforcing policies for specific applica-

tions or classes of applications [Jobs, 2007; Microsoft Corporation, 2009].

In these works the logic required to make enforcement decisions are built

into the application code itself. Others, on the other hand, take a much

lower level approach and consider the problem at the level of the operating

system, exploring intricacies at the level of the operating system processes,

describing which process can communicate with which other processes or

access specific input or output channels [Zeldovich, 2007].

Based on the level at which policy enforcement is performed, the classes

of policies that can be interpreted (and hence enforced) also varies. Oper-

ating system level enforcement limits the enforcement classes to those that

are readily describable at the process and system call level, while those at

the level of specific applications confine themselves to those applications

and their semantics alone.

In this dissertation, we consider the policy enforcement problem from

a data-centric view point, assuming that the policy is attached to the data

4 INTRODUCTION CHAP. 1

that are operated on by the applications. Our work approaches the prob-

lem at the middleware level, with the intention of exploiting the features

of the higher and lower level solutions. This approach allows the architec-

ture to enforce data-specific, and not application specific, policies across

multiple applications while at the same time not running the risk of losing

application-semantic level information that would be valuable in enforcing

a wider variety of policy classes. In particular we consider the enforcement

of policies for applications run in the Java Virtual Machine (JVM) [Gosling

et al., 1996] environment. The rationale for this choice and details of the

design of such an architecture are discussed in detail further on in this dis-

sertation.

One of the key concepts that we leverage in our architecture is that

of Information Flow Control (IFC), which deals with restrictions placed

on how information can be transferred from one entity to another. While

IFC as a research topic can be investigated from various angles, our work

considers it from the perspective of the application’s programming lan-

guage semantics. Works in the area of IFC can be divided into two broad

approaches–compile time and run time. In compile time systems, the in-

formation flow constraints are checked and verified at the time of com-

pilation. Run-time systems, on the other hand, perform these checks dy-

namically during the execution of the application. While each approach

has its pros and cons, our architecture uses a hybrid approach, using the

run-time mechanism enhanced with static control flow analysis, due to two

main considerations: the ability of the enhanced run-time system to work

without having access to the actual source code of the application and the

larger classes of policies that can be enforced using this hybrid run-time

approach.

1.3. THESIS CONTRIBUTION

In this dissertation we present the design, implementation and applica-

tion of a Java Virtual Machine based policy enforcement architecture. The

contributions of this work are as follows:

• We examine in detail the previous work done in the problem space

of policy enforcement and highlight the gaps our work aims to fill.

• We present the design and implementation of a JVM based informa-

SEC. 1.4 STRUCTURE OF DISSERTATION 5

tion flow control based middleware architecture aimed at enforcing

policies associated with data objects.

• The middleware developed is used to implement an application inde-

pendent Digital Rights Management (DRM) system using a widely

studied usage control model as its basis.

• The JVM framework is also used to design a Web Service architec-

ture capable of enforcing usage policies associated with the submit-

ted data, as specified by the data provider.

The results obtained during the course of this work has been published

in several peer-reviewed international journals, conferences and workshop

proceedings.

The initial thoughts on the design of the policy enforcement architec-

ture was presented in a paper in 2006 [Nair et al., 2009] and the preliminary

results of the implementation were discussed in a subsequent international

workshop the same year [Nair, 2006]. This was followed up by a detailed

paper on the implementation of Trishul in REM 07 [Nair et al., 2008b]

which explained in detail the approach we took, as detailed in Chapter 3

of this dissertation, as well the initial set of performance results obtained.

The work done on using Trishul to enforce DRM policies, as presented

in Chapter 4 of the dissertation, was published in ACM DRM 08 [Nair

et al., 2008a]. This approach can be used to implement the Nuovo DRM

Paradiso system aimed at enabling DRM-preserving digital content redis-

tribution, proposed initially in the CEC 05 paper [Nair et al., 2005] and

later expanded in the Fundamentae Informatica journal paper [Dashti et al.,

2009].

1.4. STRUCTURE OF DISSERTATION

The rest of the dissertation is organised as follows.

Chapter 2 introduces the concept of access and usage control and infor-

mation flows and outlines the existing research work in these areas within

the problem space of this dissertation. We highlight the limitations of the

current state of the art and explain the need for the work that this disserta-

tion undertakes.

6 INTRODUCTION CHAP. 1

In Chapter 3 we present the design and implementation of the JVM

based information flow control system, named Trishul, that forms the core

of the dissertation. We explain in details the various design and implemen-

tation choices made during the course of the work and how they influence

the performance of the achieved system, which is investigated in detail us-

ing microbenchmark performance measurements reported in the chapter.

In chapters 4 and 5, we present the applications of the Trishul frame-

work in building policy enforcement systems in various application scenar-

ios:

• In Chapter 4 we present the implementation of a Digital Rights Man-

agement (DRM) system using the theoretical concepts proposed in a

widely researched usage control model, UCONABC, and the Trishul

framework.

• In Chapter 5 we show how Trishul can also be used to implement a

policy enforcement architecture for Web Services, the core compo-

nents of the Service Oriented Architecture paradigm.

Finally, we conclude the dissertation in Chapter 6. There we review

the contributions of the dissertation work, the lessons learnt and point out

directions for future work.

CHAPTER 2

Background and related work

In this chapter we discuss the background work related to the area of se-

curity policy enforcement. We start with an introduction of basic access

control and usage control policies as they form the core of any policy

enforcement system. We then introduce the concept of information flow

control. Information flow control plays an integral part in the systems we

consider in this dissertation as a form of very fine grained abstract access

control policies. We look at various types of systems that enforce these

flow-based policies and discuss their key differences. A discussion on the

security of Java architecture and that of trusted computing systems is also

presented in this chapter.

2.1. SECURITY POLICIES

Broadly defined, security policy is a "statement or set of statements that

partitions the states of the system into a set of authorised, or secure, states

and a set of unauthorised, or insecure, states” [Bishop, 2002] or "a formal

specification of the restrictions to be enforced” [Sterne, 1991].

This definition allows for categorisation of security policies into three:

confidentiality policies which deal with (read) access to restricted informa-

tion, integrity policies which deal with who can alter restricted informa-

tion and how it can be transformed and availability policies which specify

which entities can have access to specific system resources [Bishop, 2002].

In this work, we concentrate on the enforcement of confidentiality and

availability policies and integrity policies are not discussed further on in

8 BACKGROUND AND RELATED WORK CHAP. 2

this dissertation. Interested readers are referred to [Bishop, 2002] for a

systematic analysis of this category of policies.

2.1.1. Access Control

Access control policies, a form of availability policies, define which sub-

jects can gain access to a restricted object, usually files, processes or ma-

chine resources like disk, network and CPU.

An access control matrix model, proposed by Lampson [Lampson,

1971] and later refined by Denning and Graham [Graham and Denning,

1971], provides the simplest framework for such a policy. The framework

describes the rights R of domains over resources using a matrix represen-

tation A, an example of which is shown in Table 2.1. The protected entities

(files in this case) are termed objects O while subjects S denote the set of

active players in the system like users and processes. Each element a[s,o]
∈ A denotes the rights exerted by the subject on the object.

object→
subject ↓ file 1 file 2 process 1

user 1 read, write read, execute execute

user 2 read write -

Table 2.1: An access control matrix with two subjects (users)

and three objects (files).

Access control policies can be divided into two broad categories. In

discretionary access control (DAC) [US DoD, 1985], individual users are

given control over specifying who can access a particular resource they

own. On the other hand, in mandatory access control (MAC) [US DoD,

1985], the system specifies access control restrictions associated with an

object and the individual user is not allowed to change the settings. Mod-

ern operating systems in general enforce DAC, using a set of rules which

describe conditions under which the access is allowed. When the access

constraints are specified in terms of the identity of the subject, these kind

of policies are know as identity based access control (IBAC) policies.

Originator controlled access control (ORCON) [Bishop, 2002] is a hy-

brid form of the DAC and MAC systems proposed to model scenarios

where the originator of the objects retain control over them even after they

SEC. 2.1 SECURITY POLICIES 9

have left the originator. In ORCON, implemented as a decentralised access

control system, the originator1 of an object controls who can access it. In

such a model, the owner of the object cannot override the originator’s set-

tings on the access control restrictions on the object. Thus if the originator

has specified that subject S1 cannot read a particular file, the owner cannot

overrule this and provide S1 with the read rights.

Often, the role played by the subject in an organisation–more than the

identity of the subject–defines the access control rights he or she enjoys.

For example, a company policy could be defined that the CEO of the com-

pany should have access rights to reports marked ‘top-secret’, while the

manager of a group should have access to only reports marked ‘secret.’

Instead of associating the read right to the top-secret to a specific subject

whose identity might change, the right is associated with the role of the

CEO and the subject is then assigned this role. In this way, a change in the

role can be reflected by simply changing the access matrix instead of hav-

ing to re-assign the role to all the subjects. Such a model in which the role

(a set of job functions) of the subject defines the access rights to restricted

objects is termed role-based access control (RBAC). RBAC can be consid-

ered as a form of MAC model with DAC providing further restrictions on

the allowed actions.

Bell-LaPadula [Bell and LaPadula, 1975] is a hybrid MAC-DAC ac-

cess control policy model aimed at enforcing a confidentiality policy in a

military-like environment for subjects, which constitute active components

in the system, and objects, which form the passive entities. In this model, a

set of security clearances is associated with the subjects and security clas-

sifications with the objects. The “need to know” principle is captured using

the concept of categories for each security classification. Objects can be

placed in several of these categories and subjects are given access to power

set of the category set. Each security clearance/security classification and

security category form a security level.

The Bell-LaPadula security model is described using three properties,

the first two specifying MAC policies, while the last being DAC:

• The Simple Security Property states that a subject at a given security

level may read an object at the same or lower security level and if

it has discretionary read access to the object. This property is often

described as the “no read-up.”

1Note that originator need not be the owner of an object.

10 BACKGROUND AND RELATED WORK CHAP. 2

• The *-Property states that a subject at a given security level cannot

write to any object at a lower security level. This is often described

as the “no write-down" property.

• The Discretionary Security Property states that access must be per-

mitted by the access control matrix.

“Unclassified,” “Confidential,” “Secret" and “Top Secret” is one exam-

ple of one such classification. Consider the example of subject S1 with a

clearance of “Top Secret” and S2 with clearance “Secret” and objects O1

with security classification “Top Secret” and O2 with classification “Con-

fidential.” As per the simple security principle, S1 can read both O1 and

O2 while S2 can read only O2. *-property places the restriction that S1 can

write into O1 but not O2 while S2 cannot write into O1 or O2.

However, there are occasions where a subject at a high clearance has

to communicate with a subject with a lower clearance. The Bell-LaPadula

restrictions prevent this from happening. Instead, in order to allow such

a communication, the concept of maximum security level and current se-

curity level are introduced in the model. A subject is given a maximum

security level clearance to which it can raise itself but at the same time is

able to lower his current security level to a lower value than this maximum

in order to communicate with another subject at that lower security level.

Of course, with the current security level, the associated access privilege

will be reduced.

Over the years, several other access control models have been proposed

and studied, including Biba [Biba, 1977], LOMAC [Fraser, 2000], System

Z [Mclean, 1987] etc. These are not discussed here for reasons of brevity.

2.1.2. Usage Control

Since its introduction in early military systems, the use of authorisation has

been a means to limit access to resources. However, researchers have been

coming to the realisation that the traditional classic models are falling short

of serving the needs of the modern distributed computing environment and

associated work-flow management.

Once a subject has been given access to the object, one may still wish to

control the way in which the object is used by the subject. Classically, this

had to do with the time allocated to the access of the object. For example,

a subject which has been granted access to use the network should not

SEC. 2.1 SECURITY POLICIES 11

be allowed to hog the resource in such a way that no other subjects can

gain access to it. In recent years, the use of usage control has expanded

to encompass issues like privacy and intellectual property protection. For

example, a subject who has been granted access to a piece of data should

still be restricted on what operations can be performed on the data. For

example, a policy could state that playing an MP3 file could be allowed

but not more than three times.

One of the more recent and coherent theoretical modelling of the vari-

ous aspects of usage control is that of UCONABC model.

UCONABC Model

The core aspect of the UCONABC model proposed by Park and Sandhu [Park

and Sandhu, 2004] deals with the decision-making aspects of the subjects’

usage of the objects. Subjects and objects are endowed with attributes that

capture the properties and/or capabilities of these components. One of the

main innovative aspects of the UCONABC model is its concept of mutable

attributes of the subjects and objects. While earlier models considered only

immutable attributes that can only be modified by the manual intervention

of an administrator, like the clearance of the subject or the classification

of the object, in this model subject and object attributes can be modified

as a result of the exercise of a right by the subject. This allows the frame-

work to model modern applications like DRM, where the subject attributes

capture variables like credit balance and object attributes the variables like

cost per-use.

Subjects can be either provider subjects, consumer subjects or identifiee

subjects. Provider subjects are the provider of the objects and hold some

limited rights on it while the consumer subjects are the ones that exercise

most usage rights on the objects. The identifiee subjects are those entities

that are identified by the object, for example patients in medical records.

The subjects exercise privileges termed rights. However, unlike the

traditional predefined access matrix based rights, the rights in UCONABC

model are approved/provided in real-time as and when the access is at-

tempted after the evaluation of various constraint conditions. This is sim-

ilar in nature to the task-based authorisation [Thomas and Sandhu, 1998]

model, which was proposed as an extension to the traditional model in

which authorisation decision is made during the completion of the task. In

it, the rights are created and consumed just-in-time and the exercise of a

12 BACKGROUND AND RELATED WORK CHAP. 2

consumable right can in turn enable other rights for different subjects and

objects.

In UCONABC, the decision to allow the exertion of the rights by the

subject on the object are based on—Authorisation (A), oBligation (B) and

Conditions (C).

Authorisation evaluates the rights requested, the subject and the ob-

ject attributes and provides decision on whether to allow it or not. These

authorisation checks could be performed before the rights are granted (pre-

authorisation or preA) or while the rights are being exercised, at periodic

intervals (ongoing-authorisation or onA). Obligations [Park and Sandhu,

2002], an aspect not considered in most traditional access control models,

specify the mandatory requirements that the subjects have to perform be-

fore access is provided (preB) or during the exercise of the rights (onB).

For example, accepting the End User License Agreement is an obligation,

specifically a preB. Conditions capture the system and environment states

that influence the decision to allow a right. Unlike authorisation and obli-

gation evaluations, condition evaluations do not lead to the update of the

subject or object attributes. The associated condition variables are also not

mutable.

The primary components of the framework and their relationships with

each other are illustrated in Figure 2.1.

Denoting the mutability of the attributes by 0 for immutable, 1 for pre-

updates, 2 for ongoing and 3 for post-updates, the core UCONABC models

can be represented as preA0, preA1 and preA3, onA0, onA1, onA2, onA3,

preB0, preB1, preB2, preB3, preC0 and onC0.

UCONABC model has been used in modelling various scenarios like

resource sharing in collaborative computing systems [Zhang et al., 2008a]

and data control in remote platforms [Berthold et al., 2007a]. Work has

also been done in expanding the scope of the model. Katt et al. [Katt et al.,

2008] has extended the original UCONABC model by adding the notion of

post-obligations using a continuity-enhanced usage control enforcement

model and adding continuous usage sessions.

2.2. INFORMATION FLOW CONTROL

When a security policy is associated with a data object, it becomes im-

perative to trace the flow of the data within the system as it is used by

SEC. 2.2 INFORMATION FLOW CONTROL 13

Authorization
 (A)

Obligation

(B)
Condition

(C)

Rights
(R)

Usage Decision
Objects

(O)

Subjects

(S)

Subject Attributes
Object Attributes

Figure 2.1: Components of the UCONABC model.

various applications and that the access to this data object by these appli-

cations be mediated as per the policy restrictions. The field of work related

to information flow control studies this requirement and a brief discussion

on it is presented here.

2.2.1. Information Flow Problem

Information flows from object2 x to object y, denoted x ⇒ y, whenever

information stored in x is transferred to, or used to derive information

transferred to, object y. Denning formally defined a control flow model

FM [Denning, 1976] as

FM = 〈N,P,SC,⊕,→〉

2used here in a broader sense than that of Java objects

14 BACKGROUND AND RELATED WORK CHAP. 2

N denotes a set of storage objects that receive and store data. P is a set

of processes that move information around in the system. SC is defined as a

set of security classes that each object in N is bound to. This security class

also includes L, the lower bound of the security classes which is attached

to objects in N by default. ⊕ is the binary operator that defines the security

class of the result of a binary operation performed on any pair of operand

classes. In most cases it is equivalent to an OR operation. → denotes the

legal can-flow of information from one security class of object to another.

Without losing generality and specifically in the context of this dissertation,

the objects that form N can be considered as program variables, and in

certain instances, as seen later on, blocks of program code.

Many programs perform their computation using one or more variables

as operands and store the resulting values into another variable. For ex-

ample, in the pseudo-code y = x, when the value of x is transferred to y,

information is said to flow from object (variable) x to object (variable) y

and the flow can be denoted as x⇒ y [Denning, 1976].

Flows due to codes like y= x are termed explicit flows, more accurately

explicit direct flows after the convention in [Guernic et al., 2006], because

the flow takes place due to the explicit transfer of a value from x to y. On

the other hand, consider the code shown in Listing 2.1. Even though there

is no direct transfer of value from x to y, once the code is executed, y would

have obtained the value of x.

Listing 2.2 shows another example of a convoluted information flow

causing code fragment. At the end of the execution of this code fragment,

boolean variable b ends up having the same value as boolean a. In tra-

ditional literature these two examples are grouped together as examples of

implicit flows but to differentiate the level of complexity needed to trace in-

formation flow in them, we follow the convention in [Guernic et al., 2006]

and terming the information flow exhibited in Listing 2.1 as explicit indi-

rect flow and that in Listing 2.2 as implicit indirect flow. Thus x⇒ y is an

explicit indirect flow and a⇒ b is an implicit indirect flow.

SEC. 2.2 INFORMATION FLOW CONTROL 15

1 boolean x

2 boolean y

3 i f (x == t rue)

4 y = t rue

5 e l s e

6 y = f a l s e

Listing 2.1: Explicit indirect flow.

1 boolean b = f a l s e

2 boolean c = f a l s e

3 i f (! a)

4 c = t rue

5 i f (! c)

6 b = t rue

Listing 2.2: Implicit indirect flow.

Fenton [Fenton, 1974a] proposed a mechanism to handle implicit in-

formation flow by adding a new security class for the program counter pc.

Whenever a control branch occurs, pc is set to the ⊕ of the class of objects

that form the arguments of the branch decision. Within the branch block,

pc is added to every control flow. Thus in the example illustrated in List-

ing 2.1, when the i f statement is executed, pc is set to x and y is set to

L⊕ pc = x. Thus the implicit information flow from x to y is captured by

the security label y and the process x⇒ pc⇒ y.

However, the proposed solution does not capture the trickier implicit

indirect flow shown in Listing 2.2. When a is true, the first i f fails so c

remains L. The next i f succeeds and b = pc = c = L. Thus, at the end of

the run, b attains the value of a, but b 6= a. The same is true when a is

f alse. The underlying problem is that even though the first branch is not

taken, the very fact that it is not followed contains information, which is

then leaked using the next i f .

A trivial (and ineffective) approach to this problem is to ignore it, as

done by Beres and Dalton [Beres and Dalton, 2003]. Fenton [Fenton, 1973]

and Gat and Saal [Gat and Saal, 1976] proposed a solution which works by

restoring the value and class of objects changed within the branch struc-

ture, back to the value and security class it had before entering the branch.

This however would not work in practice since existing application codes

routinely use similar control structures without paying any consideration

to information flow leaks.

Aries [Brown and King, 2004] takes a more drastic approach wherein

a write to an object within a branch structure is disallowed if its security

class is less than or equal to the security class of the program counter, pc.

Thus, in the previous example if a is f alse, when the program tries to write

to c, the compile time system prevents it from doing so, since c’s security

class L <= pc (= a). This approach works only if the security classes have

an explicit notion of high and low.

Denning [Denning, 1975] proposes a more secure approach whereby

16 BACKGROUND AND RELATED WORK CHAP. 2

the compiler inserts an extra instruction at the end of the i f (!a){c = true}
code block to update c to pc (= a). Thus, irrespective of whether the branch

was followed or not, the class of object acted upon within the branch is

updated to reflect the information flow.

2.2.2. Managing Information Flow

In general, two different approaches have been explored with the aim of

providing information flow control—static and dynamic, each associated

with compile-time and run-time systems.

In the compile-time approach, applications are written in specially de-

signed programming languages in which special annotations are used to

attach security labels and constraints to the objects in the program. At

compile time, the compiler uses these extra labels to ensure the security of

the flow control model. These compile-time checks can thus be viewed as

an augmentation of type checking.

We say that x can flow to y, denoted by x → y, iff information in x is

allowed to flow into y [Denning, 1976]. In the context of information flow,

the necessary and sufficient condition for a system to be considered secure

is that, for all (x, y), x ⇒ y is allowed iff x → y [Denning and Denning,

1977]. When information flow occurs between more than two objects, the

compiler has to verify that each of the flows is allowed. For example, in

the code segment z = x+ y, it is clear that information flows from both x

and y to z. A compiler would, in theory, need to verify x→ z and y→ z. In

general, if b = f (a1,a2 . . .an), each ai → b has to be verified. However for

the sake of simplicity, the compiler computes A = a1 ⊕ a2 . . .an and then

verifies A→ b.

Compile-time information flow analysis was used by Denning [Denning,

1976; Denning and Denning, 1977] as a mechanism to add a certification

mechanism into the compiler analysis phase in order to prove the security

of the system. In JFlow [Myers, 1999], an example of a modern compile-

time system, the Java [Gosling et al., 1996] programming language is ex-

tended in order to let the programmer specify security labels to the objects.

At compile time, a special compiler uses the labels to verify the informa-

tion security model of the system. Once this has been verified, the code

is translated to normal Java code and a normal Java compiler transforms it

into bytecode.

Run-time solutions take a different approach by using the labels as an

SEC. 2.2 INFORMATION FLOW CONTROL 17

extra property of the object and tracking their propagation as the objects

are involved in computation. Instead of verifying x⊕ y → z at compile

time, the system propagates the security class of the information source

into the information receiving object. Thus, the assignment z = x⊕ y oc-

curs. These assignments however only track the flow of information as it

moves through the system. The actual enforcement of security policies is

carried out by another part of the system, termed the “Policy Engine.” It

intercepts all information flows from program objects (such as variables) to

output channels, and allows the flow to proceed only if they are not disal-

lowed by the relevant policies. Examples of such output channels are files,

shared memories, network writes, etc. Whenever an object x tries to write

information into an output channel O, the policy engine checks whether

x→ O is allowed by the specified policy and if not, the flow is disallowed,

by aborting the program or silently returning the failure return value for

that execution.

Pure run-time enforcement systems are, however, unable to distinguish

implicit information flows and hence control them since by definition these

flows exploit execution branches that have not been executed in a particular

run, which hence have not been under the scrutiny of the pure run-time

system. In order to enforce information flow policies on systems that have

implicit flows in it, the policy engine also has to consider the program as a

whole and perform a non-realtime analysis of all execution branches in the

program.

Fenton’s Data Mark Machine [Fenton, 1974a] was one of the earli-

est systems that proposed the use of run-time information flow control to

enforce policies. However the machine was an abstract concept and no

implementation was attempted. The security mechanism proposed by Gat

and Saal [Gat and Saal, 1976] works in a similar fashion. The system

however relies heavily on specialised hardware architecture to trace infor-

mation flow. The RIFLE architecture [Vachharajani et al., 2004] is a more

recent system that implements run-time information flow security with the

aim of providing policy decision choice to the end user. They use a combi-

nation of program binary translation and a hardware architecture modified

specifically to aid information flow tracking. Again, the use of the modified

hardware architecture prevents it from being used on a normal machine.

Beres and Dalton [Beres and Dalton, 2003] use the DynamoRIO [MIT,

2003] dynamic instruction stream modification framework to dynamically

rewrite machine code in order to support dynamic label binding. Taint-

18 BACKGROUND AND RELATED WORK CHAP. 2

Bochs [Chow et al., 2004] uses a similar idea to track flow of information

within a system but with the aim of tracking how ‘tainted’ data flows in

the system. With a similar objective in mind Haldar et al. [Haldar et al.,

2005a] use bytecode instrumentation to track tainted data received from

the network. They also attempt to extend this idea by using bytecode in-

strumentation to perform mandatory access control on Java objects, in or-

der to enforce security policies [Haldar et al., 2005b]. However, the level

of granularity that is considered (objects) is too coarse-grained to be use-

ful in many applications. For instance, they provide as an example a class

method that tries to leak a secret file into a public file [Haldar et al., 2005b].

This is prevented by tagging the whole class instance as ‘secret’ as soon as

the secret file is read and denying access to public channels once this tag

has been set. The coarse nature of this tagging however prevents the class

method from accessing any public channels even if the operation it wishes

to perform is not on the data read from the secret file.

Recent years have seen considerable interest in research of the compile-

time approach towards information flow [Myers, 1999; Sabelfeld and My-

ers, 2003]. One of the reasons for favouring the compile-time approach

is that all such systems are deemed to be secure even before execution of

the program. The belief was that these systems leak only at most one bit

of information per program execution and hence are inherently more se-

cure than run time systems [Myers, 1999]. However, it has been shown

by Vachharajani et al. [Vachharajani et al., 2004] that termination channel

attacks, usually considered the Achilles’ heel of run-time systems, can be

engineered to leak arbitrary number of bits in both compile-time as well as

run-time systems.

One of the most important distinguishing points of the two approaches

is the kinds of policies that can be enforced by them. Compile-time sys-

tems suffer from the important limitation that the policies are bound to the

code in a static manner. There is no easy way to handle scenarios where the

policies are not purely information flow based and where different policies

need to be attached to different runs of the application using different input

data. These system perform policy-code binding early in the lifecycle, pre-

venting their use in application scenarios where the policy is bound, not to

the application but instead, to the data. An example application where such

limitations occur is that of an email system in which each incoming email

has its own specific policy, none of which are constant within the same

or across different application runs or known at compile-time. Compile-

SEC. 2.2 INFORMATION FLOW CONTROL 19

time systems are also limited by the fact that these systems cannot enforce

policies that depend on the dynamic run-time properties of the system and

the user. For example, a policy that states “This application should not

be allowed to send more than 1 MB of data across the network in one

day” cannot be verified at compile time, since the enforcement requires

the maintenance of a state that tracks the network usage of the application

at run-time. While some sophisticated compile-time systems address this

indirectly by checking that the application itself contains the logic to per-

form this enforcement check, such a mechanism cannot be formalised for

a generic class of policies.

Compile-time systems are in general more efficient than run-time sys-

tems in that the verification is done only once, at compile time. At run-

time, these systems can thus confine themselves to checking the proof

of the verification. However, run-time systems perform flow control on

each run of the code, slowing the system. The gain in speed enjoyed by

compile-time systems however is in exchange for the limitation on the

kind of policies that can be enforced. These include policies that depend

on the dynamic run-time properties of the system and the user. Similarly,

compile-time systems cannot ensure the enforcement of system-wide obli-

gations [Park and Sandhu, 2002] that may be stated in the usage policy,

unless they can be expressed at compile-time in a static, immutable man-

ner.

Compile-time systems are written in special languages; hence most ex-

isting applications, written in C, C++, or Java, will have to be rewritten

in these languages before they can be verified. Yet another shortcoming

is that the verification process is performed by the programmer and the

user has to trust the programmer. Although proof carrying codes [Necula,

1997] can be used to enhance the trust, practical use of the concept has not

reached a critical mass.

Inline reference monitors (IRMs) [Erlingsson, 2004] use a hybrid ref-

erence monitor with post-compile-time (but not strictly run-time) code

rewriting approach to the problem of high-level policy enforcement. How-

ever, McLean [McLean, 1990] proved that information flow policies equiv-

alent to noninterference are not trace properties and Schneider [Schneider,

2000] has shown that execution monitors (IRMs being a form of execu-

tion monitors) are only capable of enforcing properties. Information flow,

not being a safety property is thus not enforceable by the use of reference

monitors [Schneider, 2000]. This limitation can be intuitively understood

20 BACKGROUND AND RELATED WORK CHAP. 2

as follows—monitors see executions as a series of executed actions, how-

ever in order to enforce strong information flow constraints as discussed

earlier, the enforcement system must also be aware of actions which were

not evaluated by a given execution, something that monitors are not capa-

ble of.

What this means at the enforcement level is that because they are un-

able to trace information flow within the system, in order to enforce a fine

grained policy like ‘do not allow data accessed from /secret to be sent over

the network,’ IRMs have to resort to enforcing a coarser policy like ‘do not

allow data accessed from anywhere within the local file system to be sent

over the network.’ Hence, while IRMs are able to enforce a policy like ‘do

not allow transmitting on network once data has been read from /secret,’

because they are unable to trace information flow within the system, they

cannot enforce a finer policy like ‘do not allow data accessed from local

file system to be sent over the network.’ In the former, all access to net-

work resources will have to be denied, irrespective of the origin of the data

that are being attempted to be sent, as long as the local file system has been

accessed before the network usage. In the latter, network access will be

denied only if the data that are attempted to be transferred is actually read

from the local file system.

This conservative approach to dealing with the enforcement of infor-

mation control policies is by itself a property of compile-time enforcement

system, due to its inability to use the information available at runtime.

2.2.3. Covert Channel and Noninterference

Covert channels are a form of hidden communication channels that use the

bandwidth of a legitimate channel to leak information about various aspects

of the system. A simple example of such a channel is that of a process that

opens and closes a file, leading to a lock / unlock being placed on the file,

in a timed pattern. This lock on the file can be observed by another process

in the system, which may not, in the first place, be allowed to communicate

with the first process. However, the former process could represent the in-

formation it wants to leak (basically a string of bits) as the timed pattern,

allowing the latter to gain knowledge about the information. The Trusted

Computer Security Evaluation Criteria [US DoD, 1985] defines two gen-

eral forms of covert channels—storage channels where communication is

established by the act of storing or modifying objects, and timing channels

SEC. 2.3 INFORMATION FLOW CONTROL 21

in which relative timing of events is used to convey information.

Covert channel attacks are known to be hard to eliminate by the very

nature of the attacks. Since the channel from which the covert channel

‘steals’ the bandwidth to leak the information is almost always a legitimate

channel and since the subjects have legitimate need and proper authori-

sation to access this channel, the use of this channel is hard to control,

especially given that the timing pattern could be adhoc and dynamic in

nature.

The use of covert channels points to an alternative way of looking at

information flow security—in the form of interference at the system level.

Viewed this way all channels, and not just those which are explicitly de-

signed to conduct information between subjects, need to be controlled for

controlling information flow within a secure system.

Goguen and Meseguer define their notion of noninterference [Goguen

and Meseguer, 1982] as follows:

“commands in A, issued by users in G, are noninterfering with users

in G’ provided that any sequence of commands to the system, given by

any users, produces the same effect for users in G’ as the corresponding

sequence with all commands in A by users in G deleted”

Though modelling security policies as noninterference assertions and

system security as a set of state transitions fulfils strong security require-

ments, the sweeping nature of the model makes it difficult to design and

implement actual generic systems that satisfy the model at the system level.

Hence, in this dissertation, noninterference aspects of security are not con-

sidered at the overall system level. Similarly, covert channels are also not

considered in this dissertation due to this inherent difficulty in building

covert-channel-free as a practical system and its limited usage in the broad

scope of policy enforcement. Furthermore there is a large body of existing

work that investigates various aspects of this problem [Shaffer et al., 2008;

Cabuk et al., 2004].

However, information flow control at the code semantic level as dis-

cussed before can itself be modelled as a noninterference system. A nar-

rower definition of noninterference stated as follows is however used in

these contexts. A process, P is said to be noninterfering if the values of its

public (or low) outputs do not depend on the values of its secret (or high)

inputs. The system presented in this dissertation can be used to enforce/im-

plement such a noninterference policy.

22 BACKGROUND AND RELATED WORK CHAP. 2

2.3. JAVA SECURITY

Since its early days of the 1990s, Java technology has seen wide accep-

tance in the whole spectrum of computer systems, from backend servers to

embedded devices. This was due mainly to the “write once, run anywhere"

cross-platform nature of Java applications as well as to the rich program-

ming language available to application developers. Built-in mechanisms

like type-safe reference casting, automatic garbage collection and struc-

tured memory access make the language inherently more secure than other

commonly used languages. Java Virtual Machine’s (JVM) features like the

class loader architecture and class file verifier further enhance the security

of the execution environment.

The Java security manager is assigned the responsibility of managing

the access control restrictions of the code running inside the JVM to re-

sources external to the JVM. The Java API asks the security manager for

permission to perform potentially unsafe actions by invoking the check-

Permission method. Only if allowed by the manager will the API go ahead

with the execution. If the permission is denied, a security exception is

thrown.

The early implementation used the concept of sandboxing to create

two levels of security environment. This was refined later on (JDK 1.2

and above) to provide more levels of security environments whose security

permission could be specified with a finer granularity [Gong et al., 2003].

Cryptographic signatures are used to bind the application code to the origin

of the code and policies are defined based on the principals (origin) of the

code.

For example, consider an application trying to read the /etc/passwd file.

The Java API would create a java.io.FilePermission object and pass the

strings ‘/etc/passwd’ and ‘read’ to the object’s constructor. It then passes

this Permission object to the checkPermission() method of the java.security.

AccessController object. The AccessController uses the information con-

tained in the protection domains objects (which encapsulates the permis-

sions granted to the code source in the policy file) of classes whose methods

are present in the call stack (using stack inspection [Wallach and Felten,

1998]) to determine whether the action is to be allowed or not.

In Java 2 the use of -Djava.security.manager initiates a concrete Securi-

tyManager class and allows the system administrator to specify the access

policy (used by the security manager to make it decisions) via a policy file.

SEC. 2.3 JAVA SECURITY 23

Policy File

The Java policy file is used to grant permission(s) to class files loaded into

the JVM. Each class file is associated with a code source which indicates

where the code came from. This allows application developers to vouch

for codes they develop using digital certificates and code-signing methods

and users to grant permissions based on their trust on these developers.

1 grant signedBy ` `VU-CA" {

2 permiss ion java . i o . F i lePermiss ion

3 ` ` / e tc / passwd " , ` ` read " ;

4 }

Listing 2.3: Policy object example.

Listing 2.3 shows a sample policy file which grants specific permission

to codes signed by ‘VU-CA.’ A permission object has three parts—type,

name and optional action. The permission class’s name indicates the type,

for example java.io.FilePermission. The name is obtained from the Permis-

sion object, /etc/passwd being the example used above. The action prop-

erty of the Permission object specifies the action requested, for example

read. One or more such Permission objects is associated with a CodeS-

ource and forms a Policy object. The policy file consists of several such

objects.

The current security manager design, even with all the above-mentioned

features, still has limitations. Consider an application that wants read ac-

cess to the /etc/passwd file of an UNIX/Linux system. Such an access

is normal, since information present in the file is used to perform routine

housekeeping operations. However, there is no reason to send the informa-

tion obtained from the file outside the system via the network connection.

An application that tries to do so would, for example, be trying to harvest

system user information in order to perform an efficient brute force pass-

word attack. What is needed is a policy that allows an application to read

the content of the password file but prevents it from sending that infor-

mation out on the network. Current policy architecture does not support

this level of control. In order for it to enforce a similar functionality, the

Security Manager would have to prevent all writes to the network, thus

preventing all network communication capability of the code.

Furthermore a more fundamental issue with the stack based approach

to JVM security has recently been identified. When an application attempts

24 BACKGROUND AND RELATED WORK CHAP. 2

to access a restricted resource, the JVM performs a walk over the execu-

tion stack to verify that all callers currently in the stack have been granted

permission to access that resource [Wallach and Felten, 1998] using the

checkPermission primitive, in order to prevent the Confused Deputy At-

tacks [Hardy, 1988]. However it has been shown [Pistoia et al., 2007] that

the stack-based access control approach is not secure as it allows untrusted

code to influence the execution of trusted code that accesses restricted re-

sources. Consider as example the code fragment in Listing 2.4.

1 p u b l i c c lass Trusted {

2 p u b l i c s t a t i c main vo id (S t r i n g [] args) throws Except ion {

3 Helper h = new Helper () ;

4 S t r i n g fname = h . name () ;

5 Fi leOutputStream f = new Fi leOutputStream (fname) ;

6 } }

7 p u b l i c c lass Helper {

8 p u b l i c S t r i n g name () {

9 r e t u r n ` ` /home / user / sec re t . t x t " ;

10 } }

Listing 2.4: Class Trusted code fragment.

Assume that the class Trusted is provided by a trusted party and is al-

lowed to perform a security sensitive operation like creating a FileOutput-

Stream. However, unknown to the user, the class is using an untrusted

Helper class to supply the name of the FileOutputStream, fname.

When the JVM performs a stack walk, it sees the following callers on

the stack—security.checkPermission, FileOutputStream.<init>(File, bool),

FileOutputStream.<init>(String) and Trusted.main. Since all these callers

have permission as strong as FilePermission “/home/user/secret.txt", “write",

checkPermission will pass. However this allows the class Helper, an un-

trusted code, to influence the execution. Since h.name was not in the stack

when the stack walk was performed, this influence was not captured.

In addition to all this, the current Security Manager architecture is only

capable of enforcing basic credential based access control policies and not

usage control policies. In addition the notion of obligations as a set of

directives that has to be carried out before or after the access/usage is al-

lowed is neither conceptually expressible nor enforceable by the current

Java Security Manager implementation.

SEC. 2.4 TRUSTED COMPUTING 25

2.4. TRUSTED COMPUTING

Trusted computing aims to provide open commodity systems with cer-

tain desirable properties usually associated with high-assurance closed sys-

tems. Cryptographic co-processors [Smith et al., 1998] work as secure

tamper resistant processing units used to perform processing of sensitive

operations, including tamper-proof execution of programs and protection

of secrets. However, due to the high degree of secure functionalities it im-

plements, these processors are very expensive and cannot be cost-effective

for use in large-scale deployment of cheap commodity systems.

One of the fundamental problems that these trusted platforms try to ad-

dress is allowing external parties to measure and evaluate the security of

the platform. Software based solutions that aim at providing such function-

alities can be easily circumvented by basing the attack at a lower level of

the computer architecture than which the solutions work at.

2.4.1. Trusted Platform Module

The Trusted Platform Module (TPM) specifications [Trusted Computing

Group, 2006], defined by the Trusted Computing Group (TCG) [Trusted

Computing Group, 2009], provide a mechanism to implement a cheap

trusted computing architecture. The TPM, implemented as a chip that is

attached to the motherboard of the machine, is aimed at providing a hard-

ware root of trust for, among other functionalities, implementing a founda-

tion for verifying the software processes running on the system.

The chip implements several cryptographic operations, such as random

number generation, asymmetric and symmetric key encryption and decryp-

tion, signing, secure hashing, etc. The architecture uses a combination of

hardware and software features to provide a high-assurance environment.

For this, each TPM has several cryptographic keys either built in or gener-

ated within the chip.

The Storage Root Key (SRK) always resides in the nonvolatile memory

of the TPM and its asymmetric private part never leaves the TPM. When

the TPM generates a new key, it is encrypted by its parent key and SRK

forms the root of this tree, forming the Root of Trust for Storage. Endorse-

ment Key (EK) is used to uniquely identify the TPM. Each TPM manufac-

turer provides a certificate to the EK attesting the compliance of the TPM

to the specifications. The TPM produces Attestation Identity Keys (AIKs)

26 BACKGROUND AND RELATED WORK CHAP. 2

that are linked to the platform using certificates from the EK. The private

AIK never leaves the TPM unless it has been encrypted by the SRK. A

Privacy Certificate Authority uses the certificate issued by the EK and the

manufacturer’s certificate of EK to attest the authenticity of the AIKs.

Remote Attestation

A crucial functionality provided by the TPM is that of remote attestation

that allows for the platform to attest its state in response to a challenge from

an external party. The state of the system is captured in the form of a log

of events, maintained by an integrity measurement architecture (IMA) like

that of IBM IMA [Sailer et al., 2004]. It is the responsibility of the IMA to

produce measurements as requested by the external parties, as follows.

The TPM contains a number of Platform Configuration Registers (PCRs)

that hold the SHA-1 cryptographic hash of the event. Each measurement

is extended into one of the PCRs by hashing the result of the concatena-

tion of the PCR’s current value and the new measurement value: PCRi

= SHA-1(PCRi + m). Thus the PCR value reflects the digest of all the

measurements taken so far as well as the order in which they are taken.

The latest version of the TPMs have at least 24 PCRs. In order to capture

the complete boot sequence of a platform, each step of the boot process

is captured as a hash in the PCR. This starts when the system is booted.

At this point the TPM take control, hashes the BIOS and stores the value

in the PCR@. It then hands control to the BIOS, which in turn computes

the hash of the operating system and extends the PCR with the measured

value and transfers control to the OS. Taking this process further, the IMA

captures details of the various binaries that are being executed by the op-

erating system and stores the hash in the PCR. This process is shown in

Figure 2.2, where CRTM stands for Core Root of Trust for Measurement,

which forms the part of the platform whose integrity is trusted.

When an external party contacts the platform with an attestation re-

quest, the TPM uses its AIK’s private key to sign the content of the re-

quested PCR and sends it to the challenging party. The verifier authenti-

cates the public AIK by validating the AIK’s certificate chain provided by

the Privacy Certification Authority. It then reads the value of the PCR and

decides to trust the integrity of the platform by comparing it against a list

of know ‘safe’ values. In turn, the challenging party must have in place a

policy on how to classify the reported fingerprint values if they turn out to

SEC. 2.4 TRUSTED COMPUTING 27

CRTM Code

OS Code

OS Loader
Code

Application
Code

Execution
Flow

Measurement
Flow

1

Figure 2.2: Extending trust from trusted (root of trust) hard-

ware to the higher level of application code using induction of

digest measurement.

be unknown or untrusted fingerprints.

Sealed Storage

The TPM also provides the functionality of sealed storage by which data

can be encrypted using a key whose private part never leaves the TPM.

In addition, the sealing process can be bound to a particular state of the

platform as specified by the value contained in a specific PCR(s) of the

TPM. Later the TPM performs the decryption operation only if the PCR(s)

contain the same value as it did when the sealing was performed, thus

ensuring that the decryption happens only if the system is in the same state

as when it was performing the decryption.

Dynamic PCRs

TPM specification v1.2 [Trusted Computing Group, 2006] extends the na-

ture of PCRs by introducing dynamic PCRs. In this version, unlike PCRs

1-16 which are reset only when the system reboots, PCRs 17-23 can be

reset to zero dynamically on the receipt of a hardware command from the

CPU. On system reboot these PCRs are reset to the value of -1 to distin-

guish static and dynamic resets of these PCRs.

28 BACKGROUND AND RELATED WORK CHAP. 2

The dynamic sets of the PCR work as follows: AMD’s Secure Virtual

Machine (SVM) extensions allow for the late launch of a Virtual Machine

Monitor (VMM) with built-in protection against software-based attacks. In

order to launch the VMM, the kernel code residing in protection ring 0 of

the CPU invokes the SKINIT instruction3 with a physical memory address

as the only argument. The first two words in the memory at this location,

termed the Secure Loader Block (SLB), are the SLB’s length and entry

point (max of 64KB). In order to protect the SLB launch from software at-

tacks, the CPU disables direct memory access to memory pages composing

the SLB and also disables interrupts to prevent codes that were executing

earlier from regaining control. The processor then enters the 32-bit pro-

tected mode and jumps to the entry point specified.

In order to support attestation of the proper invocation of the SLB, as

a part of the SKINIT instruction the processor resets the dynamic PCRs

values (PCR 17-23) to zero and then sends the content of the (max 64KB)

SLB at the entry point to the TPM. The TPM in turn computes the hash of

the content and extends the value into PCR 17. Future TPM attestation can

then include the value stored in PCR 17, attesting to the invocation of the

SKINIT instruction and the (hash based) identity of the SLB code.

Though the SVM technology’s use of SLBs and dynamic PCRs was

meant for use in the secure late launch of VMMs, the Flicker project by

McCune et al. [McCune et al., 2008] has extended the SKINIT technology

for the execution of other security sensitive application codes in a secure

and isolated environment with support for multiple session runs using the

TPM sealing functionality. They have demonstrated its use in applications

like SSH password authentication, distributed computing applications and

certificate authority application.

We make use of these TPM functionalities to provide attestation assur-

ance for our system.

2.5. SUMMARY

In this chapter, we looked at background work related to various as-

pects of security policies, information flows and Java security. However,

3Intel has a similar GETSEC[SENTER] instruction for its Trusted eXecution Technol-

ogy extension

SEC. 2.5 SUMMARY 29

as evident from the discussion in this chapter, current systems have various

failings and are not engineered towards enforcing comprehensive sets of

policies and there is a need for a JVM based dynamic run-time time policy

enforcement architecture with information flow tracing capability.

In the next chapter we present the design and implementation of such a

system, which forms the core of this dissertation.

It is to be noted that this chapter only provides a basic overview of the

various aspects of security we are interested in. We go into more detailed

analysis of the various related works and associated issues in the chapters

that follow this.

30 BACKGROUND AND RELATED WORK CHAP. 2

CHAPTER 3

Trishul

For a system to be able to enforce policies attached to data, it needs to be

able to trace the data as they are used within the system and then verify

that such usages are allowed by the policy. Therefore one of the important

aspects of a data-oriented policy enforcement system is the information

flow tracing system.

In this section we present the design and implementation of Trishul, a

Java Virtual Machine (JVM) based IFC system. Java was chosen to imple-

ment Trishul on because of its wide use as a mature platform-independent

technology. Furthermore, the interpreted nature of the code execution

within the JVM allows Trishul to interpose itself between the Java appli-

cation and the lower level system on which it is being executed, the details

of which are discussed in this chapter.

The source code of Trishul has been released under the GPL license

and can be obtained from the project’s homepage [Nair, 2009].

3.1. ARCHITECTURE

In this section we provide an introduction to Trishul’s architecture and

discuss various associated design issues. Discussion of implementation

specific issues are left for later parts of the chapter.

32 TRISHUL CHAP. 3

3.1.1. Design

Trishul is designed to be an information flow based policy enforcement ar-

chitecture aimed at providing an application independent platform for en-

forcing policies. Hence, instead of handcrafting it as a specialised system

to solve a specific application’s requirements, Trishul is designed in such

a way as to be generic and extensible to suit various applications’ needs.

With this in mind it is engineered to implement the following features:

• dynamic runtime information flow tracing mechanism that is capable

of introducing and propagating taint labels

• Java method call interpositioning mechanism that allows for exami-

nation of all aspects of the method call

• pluggable modular policy engine that controls various aspects of the

information flow tracing mechanism and makes decision on whether

to allow the method call to proceed or not

In addition to this we also provide a Java-like language to allow the

policy engine developers to write the engines modules for the various ap-

plication scenarios that Trishul can be used in.

Figure 3.1 illustrates Trishul’s architecture and its basic working. It

consists of two parts: the core Trishul JVM system and the pluggable pol-

icy engine module. The core JVM implements information flow tracing

as explained later in this chapter and provides the policy engine the hooks

needed to specify the method calls made by the untrusted application that

it is interested in examining. These hooks allow the policy engine to load

appropriate policy enforcement logic into the Trishul system based on the

policy associated with the data being used by the application and later,

based on the operation being performed on the data by the application, to

decide whether to allow the application’s function call.

The system works as follows. When a Java application is started, the

application is loaded and executed in the JVM as usual. A policy engine

is also loaded into the JVM, based either on the application being run or

via a command-line argument to the JVM. When the application performs

certain actions which introduces data into the JVM that the policy engine

is interested in, for example reading from a local file (step 1 in Figure 3.1)

or receiving data over a network socket, the JVM intercepts the call and

attaches a taint label to the data (step 2). The information flow tracing

SEC. 3.1 ARCHITECTURE 33

Policy EngineD23

1

8

3
Data

D1

Application

5 6

Data

2

4

7

T
rish

u
l V

irtu
al M

ach
in

e

Operating System

Policy

Figure 3.1: Trishul architecture.

functionality of Trishul ensures that, irrespective of what the application

does or where the data are moved in the JVM (step 3), the label remains

associated with the data. When the application tries to act on the data (step

4), for example send it over a socket connection (step 5), Trishul interposes

(step 6) and transfers the control to the policy enforcement engine (step

7). The engine checks with the respective data’s usage policy (step 8) and

decides whether or not to allow the application to proceed. For example,

if the application tries to write the data chunk D2, which originated from

‘Data’ which has an associated policy ‘Do not send over the network,’ to a

network socket, the call will be blocked.

As seen in the figure, the policy enforcement engine is a pluggable

module separate from the core of the Trishul VM. By allowing the engines

to be loaded as pluggable modules, the same framework can be used to

enforce policies based on the logic provided by various trusted third parties.

For example consider a policy ‘play 3 times’ associated with a media file.

A vendor V1 would consider a ‘play’ as having played more than half the

file’s content, while another vendor V2 would consider it a play only if the

whole file is played fully. ThusV1 andV2 would be able to specify different

interpretations of the application semantic of ‘play’ and provide different

engine codes to enforce the policy.

In addition, by design Trishul’s architecture is not bound to the use of

any specific policy specification language for expressing the data’s usage

34 TRISHUL CHAP. 3

policy. It is up to the policy engine writer to decide which sets of pol-

icy specification language he wishes to write the language parser in and

provide the interpretation logic of policy expressions for.

3.1.2. Handling Indirect Flows

In order to capture the explicit and implicit indirect flow of information

discussed earlier in Chapter 2, Trishul introduces the concept of a context

taint, which extends the concept of associating a security class with the

program counter pc, as proposed by Fenton [Fenton, 1974a].

The context taint is used to capture the indirect taint flow associated

with a code branch, for example the case blocks in a switch statement or an

if/else statement, by examining the variables that influence the conditional

branch’s control flow instruction (CFI) and then passing the taint of these

variables into the branch blocks and augmenting the already existing direct

taint flows with this additional direct taints.

1 boolean a

2 boolean b = f a l s e

3 i f (a)

4 b = t rue

Listing 3.1: Explicit indirect flow code.

Consider the code fragment in Listing 3.1 that causes a simple explicit

indirect information flow. The context taint ct is initialised to null at the

beginning of the application run. The CFI is in line 3 and is influenced by

the value of variable a. Trishul captures this influence in the context taint

by adding to it the security/taint label of the variable a. For a CFI like if (a

== 5) && (b == 6), where the value of a and b influences the CFI, ct is

computed as ct = ct ∪ (a∪b), where as before a denotes the security label

associated with the object a and ∪ denotes a union/combination operator

that combines taint labels.

It is to be noted that Trishul taint labels are implemented as binary

bitmaps (more on that later) and hence ∪ operator is equivalent to the bi-

nary ∨ (OR) operator and is used henceforth in the explanations below.

Once the current context taint for a CFI is calculated, Trishul then iden-

tifies all the objects (variables, actual Java objects, its members etc.) whose

values are modified within the taken and non-taken branch blocks. This is

done at the loadtime of the application bytecode into the JVM and exact

mechanism is described further in Section 3.3.3. At run-time, when the

SEC. 3.1 ARCHITECTURE 35

Line Branch a=true, Taint computation a=false, Taint Computation

01 no - -

02 no b = L b = L

03 yes ct_03 = a ct_03 = a

04 no b = ct ∨L = ct_03∨L = a b = ct ∨b = ct_03∨L = a

Table 3.1: Reasoning of how the concept of branch context

taint is used to capture the indirect flow present in Listing 3.1.

conditional CFI is actually executed, the objects that are modified in any of

the possible (taken and non-taken) paths are tainted with the context taint

ct using the following rule:

• If the branch is taken: ob ject = ct ∨ explicit_ f low_in_statement

• If the branch is not taken: ob ject = ct ∨ob ject

This captures the fact that irrespective of whether the branch is taken

or not, the CFI objects influence the value of the objects in these branches

and this influence of the CFI is captured in the taint propagation through

the use of the context taint.

Consider again the code in Listing 3.1. The analysis at load time com-

putes that the ct at line 3 (ct_03) is a. It also computes that the block of

code (just one line in this simple case) 4-4 is modified based on the CFI

branch in line 3. Based on the value of a, this block (line) can either be

executed or skipped. Table 3.1 looks at these cases.

1 boolean b = f a l s e

2 boolean c = f a l s e

3 i f (! a)

4 c = t rue

5 i f (! c)

6 b = t rue

Listing 3.2: Implicit indirect flow code.

Consider again the pseudo-code introduced in Section 2.2 as implicit

indirect flow, reproduced here for convenience as Listing 3.2. The analysis

at load time computes the ct at line 03 (ct_03) as a and ct_05 = c. Consider

a scenario when a = f alse at run time. Table 3.2 shows how the context

taint approach described above correctly identifies implicit flow of infor-

mation from a to b by successfully computing b = a. Assume that lines 1

and 2 when executed set the taint label of the variables b and c to L. Line 3

36 TRISHUL CHAP. 3

Line No. Branch? Taken? Taint computation

01 no - b = L

02 no - c = L

03 yes yes ct_03 = a

04 no - c = ct ∨L = ct_03∨L = a

05 yes yes ct_05 = c

06 no no b = c∨b = ct_05∨b = b∨ c = a

Table 3.2: Reasoning of how the concept of branch context

taint is used to capture the implicit flow present in Listing 3.2.

is a CFI whose associated context taint was already calculated as a at load-

time. Line 4 is executed since a was f alse. As per the rule stated earlier,

taint on the variable c is calculated as ct ∨ explicit_ f low_in_statement.

This calculation leads to c = a. Line 5 is again a CFI whose associated

context taint was calculated as ct_05 = c. Since c is true, line 6 is not ex-

ecuted and hence the taint label of the implied flow into b is calculated as

ct_05∨b, which is equal to a. A similar result is computed when a= true,

the details of which are left as a thought exercise.

In a way, the use of context taint can be thought of as performing a

translation that converts all indirect flows into direct flows using augment

security flow instructions, without actually effecting the execution logic of

the actual instructions.

Simplifying the complexities associated with the objects and arrays and

their use of the heap (we get into them later in section), the interpreted

mode of the JVM can be considered as using a stack oriented approach

wherein which the VM executes the instructions by moving data from local

variable arrays to the operand stack, or vice versa, and performing compu-

tation on these values in the operand stack using it to also store intermediate

values.

In effect Trishul virtual machine extends every slot on the variable ar-

ray as well as the operand stack to store a bitmap based labels. In addition

to performing the traditional bytecode instructions, the Trishul JVM uses

the augmented stack to track the direct information flows by executing in-

structions that store into the stack slot’s taint value the bit-wise ∨ of the

taint values of the stacks involved in the traditional instruction. In order to

track indirect flows, the JVM uses additional security registers to hold the

context taints and instructions to manipulate these security registers and

labels associated with the stacks and arrays. For every instruction ib influ-

SEC. 3.2 THE POLICY ENFORCEMENT ENGINE 37

encing the control flow of the program, the label of the taint label of the

stack slot conditioning the behaviour of ib is stored in security register rb
as the context taint. This label is added to the label of every instruction

which is control dependent on ib. This handles the explicit indirect flows.

In order to take into account implicit indirect flows, the label of the secu-

rity register rb is added to the taint value of every stack slot in which a

value is assigned to the variable array. An important thing to note is that

these additional instructions are performed dynamically at run-time (using

information gained by performing static analysis performed at load-time)

and that the actual bytecode of the compiled Java classes are not modified

at all.

3.2. THE POLICY ENFORCEMENT ENGINE

The policy enforcement engine module of Trishul is responsible for

providing two main kinds of functionality:

• tainting the data as it is introduced into the JVM by the application.

The data of interest are usually those which have an access or usage

policy or similar restrictions associated with them.

• deciding on how the tainted data can be used at a later stage by the

application, in accordance with the policy associated with them.

In order to ease the development of the policy engines, a Java-like lan-

guage named Trishul-P was developed as part of this dissertation work.

The language is used for two main purposes:

• as a mechanism to specify the Java method calls that the policy en-

gine is interested in, so that at run-time, Trishul can transfer the con-

trol to the policy engine when they are invoked

• provide the logic to be used to decide on how to enforce the policies

when these methods are invoked.

Trishul-P has three key abstractions: actions, orders and policies. Ac-

tions allow the engine writer to specify the method calls that are of interest

to the policy engine by abstractly specifying the method calls performed by

38 TRISHUL CHAP. 3

the Java application. Each time an action specified by the engine is about

to be executed by an application, the JVM intercepts it and passes the con-

trol over to the policy engine and queries it for a decision. The decision

is returned in the form of an Order indicating a specific action the JVM

should take, such as disallowing the action, or attaching a taint label to the

data.

Let us consider an example engine code fragment shown in Listing 3.3

for further explanation.

1 public class Tes tAbs t rac tAc t i onPo l i cy extends Engine {

2 public Order query (Act ion a) {

3 private e n g i n e t a i n t { sec re tTa in t , t opsec re tTa in t , pwdFile }

4 aswitch (a) {

5 case <* java . i o . Pr in tSt ream . p r i n t l n (. .) >:

6 return new OKOrder (this , a) ;

7 case <* java . i o . Pr in tSt ream#< secre tTa in t >. p r i n t l n (S t r i n g s#< topsec re tTa in t >)

>:

8 return new Hal tOrder (this , a) ;

9 case <* java . i o . F i le Inpu tS t ream . < i n i t > (. . , F i l e f) >:

10 i f (f . getName () . indexOf (" / e tc / passwd ") >= 0) {

11 return new ObjectTa in tOrder (a . ge tTh isPo in te r () ,# ob jec t : pwdFile) ;

12 case <abstract * t r i s h u l . t e s t . t r i s h u l _ p . Tes tAbs t rac tAc t ion (i n t p1 , S t r i n g p2)

>:

13 System . out . p r i n t (p1 + " : " + p2) ;

14 return new OKOrder (this , a) ;

15 }

16 break ;

17 }

18 return nul l ;

19 }

20 public void handleResul t (Ac t ion act ion , Order s , Object r e s u l t , boolean

i sExcep t ion)

21 {

22 System . out . p r i n t ((i sExcep t ion ? " Except ion " : " Normal ") + r e s u l t) ;

23 }

24 }

Listing 3.3: Example of Trishul enforcement engine code expressed using Trishul-P.

Every policy engine class is defined as an extension of the parent En-

gine class (line 1) and has to provide a definition of the query class method

(line 2), in which the core code for the policy engine is defined. Since the

policy engine provides the reply to the JVM in the form of an Order, the

return type of the query method is specified as an Order (line 2).

Line 3 defines enginetaints that are used in this code segment. engine-

taints are used to assign values to the taint labels and are discussed in detail

in Section 3.2.3. Line 4 marks the beginning of an aswitch block. aswitch,

like the traditional switch statement, is a control statement which allows the

SEC. 3.2 THE POLICY ENFORCEMENT ENGINE 39

value of the action a to control the flow of execution of the decision logic

of the policy engine. The case statements that follow (lines 5, 7, 9 and

12) are presented as action patterns, which are discussed in detail below.

Lines 6, 8, 11 and 14 specifies the return Order for each of the case blocks.

Orders are discussed in detail in Section 3.2.4. As in the case of regular

Java code, further code logic can be added to the case statements (line 10).

handleResult method (lines 20–23) is executed after the execution of

the actual method the application was attempting to execute when it was

intercepted, following a match among one of the case statements for the

earlier aswitch block. Its functionality is also explained further on in this

chapter.

3.2.1. Actions

The method invocations that the policy engine is interested in intercepting

are specified as Action objects within a set of case statements (Listing 3.3)

using the syntax

< modf retTp pkg.class#<thisTaint>.mthd(..#paramTaint)#<contextTaint> >

(3.1)

The action objects are contained within the outer < and > delimiter

characters. The constraints that can be specified for the Java method in-

clude the modifier modf (like public, private, final etc.), the return type of

the method retTp, the calling object’s identity pkg.class, the method’s name

mthd and its parameters. The policy engine distinguishes between different

actions using the aswitch statement. It is similar to Java’s switch statement;

the switch expression being an action and the case labels the action pat-

terns.

Action signatures can also use wildcard patterns: ‘*’ matches any one

constraint and ‘..’ matches zero or more parameter types. For example,

the first case statement in Listing 3.3 (line 5) matches the println method

call defined in the PrintStream Java class file of the java.io package for

zero or more parameters of any type, while the second case statement (line

7) matches a similar method call only if there is only one parameter of

type String. The various Taint matching criteria specified in syntax (3.1),

thisTaint, paramTaint, contextTaint, enclosed using delimiters < >, are ex-

plained further in Section 3.2.3.

40 TRISHUL CHAP. 3

3.2.2. Abstract actions

Consider a policy engine which is interested in any application’s write ac-

cess to a specific output channel. Java provides several different library

methods that can be used to perform this operation. In order to capture

these different methods, a single Order would have several actions asso-

ciated with it. It becomes cumbersome to list each of these actions sepa-

rately. Abstract action makes writing policies in these circumstances easier

by providing a syntax to group several related actions into a single abstract

action and referencing this abstract action in the policy engine code. In

other words, abstract actions summarise a set of application method calls

into a single action statement.

Listing 3.4 shows an example of how an abstract action TestAbstrac-

tAction is defined. Line 5 declares a matches method that returns true or

false based on whether the Action under consideration matches one of the

action patterns specified in the method. As before an aswitch statement is

used to check the various action patterns that constitute the abstract action,

specified in the case statements of lines 7 and 12. Lines 8, 9, 13 and 14 are

used to provide a uniform parameter list of the TestAbstractAction action.

Thus in Listing 3.4, TestAbstractAction is defined to be consisting of two

actions trishul.test.action1(int a1, String a2) and trishul.test.action2(String

a2, int a1), and line 12 of Listing 3.3 shows how the abstract action is used

within a policy engine code.

3.2.3. Taint Labels & Patterns

Taint labels are considered within Trishul as bitmaps whose bits can be set

or unset as a part of the tainting process. The enginetaint keyword is used

to assign values to taints labels, as used in line 3 of Listing 3.3. Taint labels

declared in this way can then also be specified as constraints in the action

pattern. It need to be kept in mind that enginetaint does not introduce any

implicit ordering to the lattice.

In syntax (3.1) thisTaint, enclosed with delimiters < >, specifies the

taint of this pointer of the Java class. paramTaint can be used to match

tainted parameters. It can be specified for individual parameters or ‘..’,

in which case it matches if any of the parameters is tainted. contextTaint,

again enclosed within < >, can be used to match a tainted context. Thus

the case statement in line 7 of Listing 3.3 matches println method only

SEC. 3.2 THE POLICY ENFORCEMENT ENGINE 41

1 public class Tes tAbs t rac tAc t ion extends Abs t rac tAc t i on {

2 private in t param1 ;

3 private S t r i n g param2 ;

4

5 public boolean matches (Act ion a) {

6 aswitch (a) {

7 case <* t r i s h u l . t e s t . ac t ion1 (i n t a1 , S t r i n g a2) >:

8 param1 = a1 ;

9 param2 = a2 ;

10 _ t h i s = a . ge tTh isPo in te r () ;

11 return true ;

12 case <* t r i s h u l . t e s t . ac t ion2 (S t r i n g a2 , i n t a1) >:

13 param1 = a1 ;

14 param2 = a2 ;

15 _ t h i s = a . ge tTh isPo in te r () ;

16 return true ;

17 }

18 return fa lse ;

19 }

20 }

Listing 3.4: Example of abstract action definition.

when the string parameter is tainted with value topsecretTaint and when

the object instance is tainted with secretTaint taint label.

Several additional options are available for matching taints labels in

action patterns. If multiple taint patterns need to be specified, it is possible

to match when any taint match occurs, or only when all the taints matches.

Furthermore, when matching against an object’s taint, either the reference

taint or the object taint can be matched. The following Backus-Naur Form-

like syntax is used for defining these taint patterns

#<[type:]{taint1,taint2,..}[how]> (3.2)

The ‘#’ delimiter is used to separate the pattern from the rest of the

statement, while < > delimiters are used to enclose the pattern. The op-

tional parameters are denoted within the [] characters.

The type is either object, primitive or auto, to match either an object’s

taint, a primitive value’s taint, or an object taint in case of an object and a

primitive taint in case of a value. The main purpose of this flexible syn-

tax is to allow matching against the reference’s taint label when matching

an object, by specifying the primitive keyword. For example, if a String

parameter matching pattern uses:

#<object:secretTaint> (3.3)

42 TRISHUL CHAP. 3

the match will happen only if the String object is tainted. The pattern below

#<primitive:secretTaint> (3.4)

on the other hand provides a match when the reference to the string is

tainted. This provides greater flexibility for an engine writer to identify

taints at greater granularity.

The taint keyword in syntax (3.2) is either an asterisk (*) to specify

any taint value except 0, or a set of comma-separated taint labels, declared

previously using the enginetaint keyword and enclosed in curly brackets

‘{}’, as shown in (3.5).

#<{secretTaint, cryptoTaint} &> (3.5)

how keyword in (3.2) is either an ampersand (&) or pipe symbol (|),
to match either all or any specified taints. For example the pattern in (3.5)

matches if both secretTaint and cryptoTaint taint values are set. On the other

hand (3.6) matches if either or both of the taint values are set.

#<{secretTaint, cryptoTaint} |> (3.6)

This flexibility allows the policy engine writer to enforce various logic

based on circumstances. For example, he could decide to halt the appli-

cation exception if the input channel being read from is labelled both se-

cretTaint and cryptoTaint or just throw an exception if it is tainted only

secretTaint or cryptoTaint.

Just as object and primitive can be specified as pattern matching syntax

for case statements of the aswitch block, they can also be specified when

(un)tainting an object as a result of the Order returned by the policy engine.

In these cases, the taints are specified as named literals of the format

#[type:]taint (3.7)

The type (object or primitive) is optional and specifies whether to (un)taint

the object or the reference. If not specified, object taint is assumed if the

taint applies to an object, and primitive is assumed otherwise. As in taint

patterns, taint specifies the actual taint label. Line 11 of Listing 3.3, ex-

tracted here in (3.8), provides an example of such a tainting, in which the

this object is tainted with the pwdFile label.

#object:pwdFile (3.8)

SEC. 3.2 THE POLICY ENFORCEMENT ENGINE 43

3.2.4. Orders

Once the policy enforcement engine intercepts the application’s method

call specified by the actions, it ascertains the consequence of the action,

decides on the way to handle the action and returns the decision back to

the JVM in the form of an Order object. In order to capture the various

flow control requirements, Trishul-P implements the following subclasses

of this Order object:

– OKOrder: the matched method is allowed to be executed

– InsertOrder: decision is deferred until after some specified code is

executed and evaluated

– ReplaceOrder: instead of executing the method, this Order returns

the value specified in the Order as the return value of the method

execution

– SuppressOrder: suppresses the method execution and throws a Run-

time exception

– HaltOrder: method call is not allowed and the application is termi-

nated

– Param(Un)TaintOrder: (un)taints the specified parameter and then in-

vokes the method

– RetVal(Un)TaintOrder: the return value of method call invocation is

(un)tainted

– Object(Un)TaintOrder: calling object is (un)tainted

– ExceptionOrder: same as SuppressOrder, except that the class of ex-

ception thrown is specified by the policy engine

– CompoundOrder: allows for multiple orders to be combined, as ex-

plained further below

Consider again the example code in Listing 3.3. If the second case

statement (line 7) is matched, line 8 instructs the JVM to terminate the ex-

ecution of the application and exit the JVM by returning a HaltOrder while

the third case statement (line 9) causes the policy enforcement engine to

instruct the JVM to taint the FileInputStream object associated with the file

/etc/passwd with the pwdFile taint label (line 11).

44 TRISHUL CHAP. 3

Listing 3.5 shows an example of how InsertOrder is used. The first

time the println action pattern is matched, InsertOrder specified in line 6 is

executed (since boolean variable first is true) which in turn invokes the test

method call. test sets first to false, preventing further execution of Inser-

tOrder (line 6) when the next instance of the println pattern matches. Once

test is executed, the control is again passed back to line 6. ConcreteAction,

line 6, is used to create actions that can be inserted into the system. It takes

three parameters, the this object, the method name and the parameters for

the method.

1 boolean f i r s t = true ;

2 i n t counter = 1 ;

3 public Order query (Act ion a) {

4 aswitch (a) {

5 case <* * . * . p r i n t l n (. .) >:

6 i f (f i r s t) return new I nse r tOrder (new ConcreteAct ion (this , " t e s t (i n t) " , new

Object [] { counter }) , th is) ;

7 break ;

8 }

9 return nul l ;

10

11 private void t e s t (i n t i) {

12 System . out . p r i n t (i) ;

13 f i r s t = fa lse ;

14 counter ++;

15 }

16 }

Listing 3.5: Example of InsertOrder usage.

Note that Trishul-P also provides for a way to analyse the state of the

system after the method call has been executed. This is done by providing

an implementation of the handleResult interface in the policy engine code,

as shown in lines 20-23 of Listing 3.3 and extracted here in Listing 3.6 for

easy reference.

1 public void handleResul t (Ac t ion act ion , Order s , Object r e s u l t , boolean

2 i sExcep t ion)

3 {

4 System . out . p r i n t ((i sExcep t ion ? " Except ion " : " Normal ") + r e s u l t) ;

5 }

Listing 3.6: Example of handleResult usage.

If the order returned by the query method of the policy engine allows

for the application to execute the matched method call, once the method

is invoked, the handleResult method is executed. This allows the engine

to check whether the system is still in a specific (secure) state after the

SEC. 3.2 THE POLICY ENFORCEMENT ENGINE 45

method has been invoked. In line 1 of Listing 3.6, action is the action

originally passed to the query method, order is the order returned by query

method, result is the action’s result as an object. If the execution of the

action caused an exception, captured with the boolean isException, the ex-

ception is passed in the variable result.

3.2.5. Policy Engine Tree

Trishul allows policy engines to be loaded and unloaded at runtime as well

as to be combined with the existing engines. These new engines can then

load other policy engines, thereby creating a tree of policy engines. This

allows for the creation of a flexible hierarchy of policy decision engines in

a scenario that involves multiple interested parties. For example, a mobile

phone could be shipped with the basic policy engine of the phone man-

ufacturer, which could then be supplemented by the policy engine of the

carrier. Later, when the mobile phone is used to buy and play a multimedia

content, the manufacturer and carrier policy engines can be supplemented

by the content provider’s policy engine to enforce policies specific to the

use of the multimedia content.

The loading is performed by using the addEngine call while the un-

loading is done using the removeEngine function. addEngine takes two

parameters, the class file of the policy engine and the traditional Java pol-

icy file that specifies what access rights are allowed for this newly added

policy engine. The getDisallowEnginePolicy() method loads an engine that

has no access rights. Listing 3.7 is an example of a code fragment which

loads a new policy engine contained in the Java classfile ‘Local.class’ and

sandboxes its privileges with no access rights. Security aspects of the pol-

icy engine is discussed below.

1 private EngineHandle localEngineHandle ;

2 public Order query (Act ion a) {

3 aswitch (a) {

4 case <* * . * . testLoadUnload (boolean b) >:

5 i f (b)

6 localEngineHandle = addEngine (Local . class , ge tD isa l lowEng inePo l i cy ()) ;

7 else {

8 i f (localEngineHandle != nul l)

9 removeEngine (localEngineHandle) ;

10 }

11 break ;

12 }

13 return nul l ;

46 TRISHUL CHAP. 3

14 }

Listing 3.7: Example of loading an engine with no access rights.

With such a tree in place, a very interesting situation rises with regards

to action pattern matching and the execution of the orders as returned by

these engines. In order to preserve the hierarchy of the engines inherent in

the tree, the following logic is used–each engine in the tree is allowed to

match against any action and return any order. However, a child engine’s

order must be at least as restrictive as its parent. Since the default action

as per Trishul-P’s syntax is to allow an action, this restriction means that a

child policy engine cannot allow anything that its parent explicitly forbids.

This is implemented internally using CompoundOrder by placing all

the orders returned by the different policies in the CompoundOrder, which

is then evaluated by the policy engine. In some cases, evaluating the com-

bined orders is straightforward. For example when multiple (un)tainting

orders are combined, they are executed in order. However, when a Halt

and OKOrder are combined the results must be specified explicitly. The

following rules are used to decide on the outcome of multiple orders.

– If any order is a HaltOrder, the program is halted.

– If any of the order is a Suppress or ExceptionOrder, the first one en-

countered (in breadth-first search order through the tree of policies)

is executed.

– If any order is an InsertOrder, it is executed.

– The last ReplaceOrder encountered is executed.

– All taint orders are executed as and when it is encountered.

In general, when there is a conflict, the most restrictive order is exe-

cuted.

3.2.6. Policy Engine Security

Trishul policy engines are executable code in their own right and following

the principle of least privileges, should be run with minimal permissions.

SEC. 3.3 THE POLICY ENFORCEMENT ENGINE 47

The standard Java security model [Gong et al., 2003] is used for this pur-

pose. The policy engine is by default run in a sandbox without any per-

mission. Additional permissions have to explicitly assigned using the Java

policy files by the administrator of the machine. This ensures that the exe-

cution of the policy engine code is as secure as the standard Java security

model.

A separate Java security manager is used to enforce the engine’s per-

missions in Trishul. Whenever the JVM is about to make a call into the

Trishul-P policy, the security manager is installed. When the call returns

the original security manager is restored. The advantage of using a sepa-

rate security manager for the engine code is that it can be stricter than the

application’s security manager, often granting no permissions at all to the

engine.

Permissions are granted to the engine only when strictly required, for

example when it needs to load a secondary engine. In this case, it can

selectively be granted the permission to load the new engine class, not a

blanket permission to load any file or access any network resource. When

a secondary engine is loaded, it will again be initialised with no permis-

sions. Its set of permissions, specified when it is loaded, must not exceed

the permissions that are granted to the parent engine, to avoid permission

escalation loophole. Likewise, the default base policy engine receives no

permissions, unless a set of permissions for it is specified explicitly when

Trishul starts.

For example, if the default policy engine is granted the permission to

read files in the ‘/engine’ directory, and it loads ‘engineA’ from this direc-

tory, it may assign ‘engineA’ the permission to read ‘/engine’, or a sub-

directory of that, but not the permission to read ‘/secret’. If ‘engineA’ is

granted permission to read ‘/engine/A’ and it in turn loads ‘engineB’ , it

may grant ‘engineB’ the permission to read the contents of ‘/engine/A’,

but not of ‘/engine/misc’, as it does not itself have permissions to that di-

rectory.

Now that we have described how the Trishul JVM and the policy en-

gine works and have introduced Trishul-P, the language for writing policy

engines, we go into the actual implementation details of this information

flow tracing system in the next part of this chapter.

48 TRISHUL CHAP. 3

3.3. IMPLEMENTATION

In this section we discuss the details of Trishul’s implementation, with

specific reference to its information flow tracing capability as well as the

policy engine module. Since Trishul is implemented as a Java virtual ma-

chine, we start with with an overview of some salient aspects of Java ar-

chitecture and the JVM’s working.

3.3.1. Java Architecture

The Java architecture comprises of two distinct environments: compile-

time and run-time. In the compile-time environment, programs written in

Java programming language are compiled into machine architecture inde-

pendent bytecodes using the Java compiler and stored in what are called

class files. At runtime an abstract computer called Java Virtual Machine

(JVM) loads these class files and executes the bytecode instructions in

them in a platform-dependent manner. By keeping the bytecode platform

independent and the JVM implementation platform specific, the Java ar-

chitecture is able to support platform-independent applications that can be

compiled once and run everywhere.

The JVM specifications [Lindholm and Yellin, 1999] define the func-

tionality that every virtual machine implementation should support, while

leaving design choices to the individual implementations. This open na-

ture of the specifications has led to the development of several proprietary

as well as open source JVM implementations. Trishul was implemented

as a modification to the existing codebase of the open source Kaffe JVM

version 1.1.7 [Kaffe, 2009]. In the rest of this subsection we describe the

internal design of the JVM that is relevant to the implementation of Tr-

ishul. A detailed treatment of the full design aspects of a JVM is beyond

the scope of this dissertation and interested readers are referred to other

resources [Venners, 2000].

The simplest implementation of the JVM is an interpreter. In the inter-

preted mode the JVM executes each bytecode instruction one at a time. The

drawback of a pure interpreted mode is that the execution is time consum-

ing. Instead, a just-in-time (JIT) compilation mode is often used wherein

which the execution starts off in the interpreted mode but as the lifetime

of the application progresses, the JVM performs profiling of the applica-

tion execution and dynamically converts the frequently run methods from

SEC. 3.3 IMPLEMENTATION 49

bytecode into native machine code which have much faster execution time.

A JIT-based information flow tracing system is however much more dif-

ficult to implement and debug. Hence the initial development of Trishul

was done for the interpreted mode of the JVM and once the core code was

stable, the JIT mode was also implemented.

A JVM interpreter has three distinct parts (1) the class loader, respon-

sible for loading Java classes and interfaces and performing associated se-

curity checks; (2) the execution engine which executes each bytecode in-

struction; and (3) the runtime data area, consisting of a method area, heap,

Java stacks, native method stacks and a program counter (pc) register. Each

Java application is run inside a separate virtual machine. The method area

and the heap are shared across all threads running in a JVM. The method

area holds per-class structures including method data, method code and

runtime constant pool1, while the heap holds all the objects dynamically

instantiated by the VM.

The Java architecture consists of two kinds of methods: Java and na-

tive. Java methods are written in the Java programming language, com-

piled into bytecode, stored in classes, and interpreted by the JVM. Native

methods are typically written in C or C++ and compiled into machine code

and stored as machine architecture specific system libraries. They usually

provide direct access to host resources. Java code can call these native

methods directly from the JVM using the Java Native Interface (JNI). Di-

rect access to these native methods however renders the Java code platform

specific, so their use is discouraged. Instead, Java distributions are pack-

aged with a set of Java classes that abstract away the native method calls

and Java applications are encouraged to call the method in these classes

instead.

Every thread started in the JVM is given a separate Java stack that is

used to maintain the state of all Java methods called by the thread, like

the local variables, intermediate calculations and parameters used for its

invocation. The state of the native methods invoked by a thread is saved

using a separate native method stack, registers and platform specific mem-

ory areas. This internal layout of the JVM is represented in Figure 3.2. If

the thread is executing a Java method, the program counter (pc) register

indicates the next instruction to be executed.

Each Java stack is made up of frames, with each frame containing the

1A runtime constant pool is a per-class or per-interface runtime representation of the

constant_pool table in a class file.

50 TRISHUL CHAP. 3

Method Area Heap Java Stacks pc Registers Native Stack

Runtime Data Areas

Execution Engine Native Method Interface

Native

Libraries
Methods

Figure 3.2: Internal layout of a JVM.

state of a separate Java method invocation. In interpreter mode, Kaffe JVM

uses the variables array to hold the local variable values and the operand

stack to hold intermediate operation results. The VM executes the instruc-

tions by moving data from the local variable array to the operand stack or

vice versa and performing computation on these values in the operand stack

using it also to store intermediate values. In order for the virtual machine

to track the flow of information as the instructions are executed, every slot

on the variable array as well as the operand stack has to be extended to

store the label of the information that is stored in the slot.

In the next section we describe the actual implementation details of

Trishul, starting with how taints for various Java system pieces are stored.

3.3.2. Taint Propagation

Trishul enforces information flow control for access to three types of ap-

plication data: locals, which reside on the stack and in registers; objects,

which reside in the heap; and statics, which reside in a global table.

Taints are implemented as bitmaps in Trishul and the associated join

operator ∨ is implemented as the bit-wise OR of the values. Each lo-

cal variable, parameter, return value and all values that are present in the

JVM’s operand stack have individual taints. Taints are stored in two places:

stacks for local and temporary variables and, the heap for object members

and array elements.

In Trishul, the taints for variables in the stack are stored within the

same stack, implemented by extending the stack-entry structure with a taint

entry. Since the memory allocation for the stack–and hence the stack re-

lated taints–are automatically handled by Kaffe’s stack management sub-

routines, our extension did not have to do it. Object taints are stored di-

rectly in the memory allocated by the JVM for the object while the mem-

SEC. 3.3 IMPLEMENTATION 51

ber taints are stored in specially allocated shadow memory to optimise their

allocation only when the member is assigned an initial value.

Each traditional Java object has a taint, termed the object taint, asso-

ciated with it, while each of the object’s member variables have their own

individual member taints. Whenever an object member is assigned a value,

the value’s taint is included in the object taint. Thus the object taint is the

combination of all the associated member taints.

In order to be efficient, Trishul calculates the object taint in a lazy man-

ner. The taint is not reset automatically when member taints are reset.

Since multiple member taints may have the same taint value, simply sub-

tracting the reset member’s taint value from the object taint bitmap would

not capture the taint update correctly. A full scan and combination oper-

ation of each of the member taints on the object is needed to capture the

object taint and performing this frequently would result in large overheads.

Instead, this scan is performed only when the policy engine explicitly asks

for the object taint’s value.

In addition to the object and member taints, the reference used to access

the object is also tainted. This taint is included whenever a member is read

or written into, along with the context taint.

Since static variables defined in the class are not object members and

there exists only one instance of these variables in a process, only one taint

value is associated with these variables, stored in the variable descriptor

used by the JVM. Array taint and associated element taints work in a

similar way to the object and member taints.

The process of taint propagation is implemented in Trishul in a straight-

forward manner–by extending the macro code implementing the Java byte-

code instructions to combine the taint labels when the values are computed.

For example, consider the iadd instruction, which removes two integers

from the top of the stack, adds them and places the result on the top of the

stack. This is a simple case of explicit flow of information from the vari-

able containing the two integers to the variable containing the result. Inter-

nally the iadd instruction was realised by Kaffe using the C macro shown

in Listing 3.8 (tint is the internal datatype representing integers and v is the

C struct for the slots). In Trishul this macro was extended to propagate the

taint label’s value of the operands, as shown in Listing 3.9.

1 #define add_in t (t , f1 , f2) (t) [0] . v . t i n t = ((f1) [0] . v . t i n t) + ((f2) [0] . v . t i n t)

Listing 3.8: C macro that implements iadd.

52 TRISHUL CHAP. 3

1 #define t a i n t 2 (t , f1 , f2) (t) [0] . t a i n t = ta in tMerge2 ((f1) [0] . t a i n t , (f2) [0] . t a i n t)

2 #define ta in tMerge2 (t1 , t2) ((t a i n t _ t) ((t1) | (t2)))

3

4 #define add_in t (t , f1 , f2) (t a i n t 2 (t , f1 , f2) , (t) [0] . v . t i n t = ((f1) [0] . v . t i n t) +

((f2) [0] . v . t i n t)

Listing 3.9: Modified C macro that implements iadd and propagates the taint.

3.3.3. Indirect Flows

As described earlier in this chapter Trishul uses the concept of context taint

to capture the indirect flow introduced by control flow branches. In order

to capture the context taint Trishul performs a postdominator data flow

analysis [Aho et al., 2006] using a two-stage process. It is implemented

as a hybrid of the static and dynamic information flow control systems by

using a combination of static analysis and run-time enforcement.

The static load-time analysis captures the indirect flow contained in the

Java bytecode instructions while the runtime enforcement part allows for

the late binding of policies to the system at runtime instead of compile

time.

Load-time Static Analysis

The static analysis is performed during the initialisation/loading phase of

the application. However, in order to be efficient, instead of performing

the whole analysis at the load time of the class, it is deferred until the first

time each method is invoked by the application. This allows the process

to skip the analysis of those methods that are defined in the class but not

used by the application. In the first stage of the analysis, when a method

is invoked for the first time, its control-flow graphs (CFGs) [Aho et al.,

2006] with branch bitmaps are computed to detect context blocks. In the

second stage, these CFGs and branch bitmaps are summarised into context

bitmaps. These processes are explained in details below.

Creating the CFGs The CFGs are used to determine the conditional flow

instructions (CFI) that control the execution of a statement. Even though

the bytecode verifier of the Kaffe JVM already creates a CFG for its inter-

nal use, the produced graph is not in a readily useful format for analysing

context taints. Hence in this implementation of Trishul, a separate CFG is

calculated.

SEC. 3.3 IMPLEMENTATION 53

The CFG is created using a single forward pass over the method’s code

with a node for each basic block. A basic block is a sequence of instruc-

tions with a single point of entry (the first instruction) and a single point

of exit (the last instruction). A CFI always forms the last instruction of

a basic block. Directed edges represent transitions between basic blocks,

either caused by the normal flow of instructions or by a CFI.

A basic block with a goto instruction or one without any CFI has an

outward edge leading to another block, while that with if-statements have

edges to two other blocks and those with switch instructions lead to any

number of other blocks. The basic block containing the last instruction in a

method has an outward edge leading to a special exit block. CFIs that exit

the current method (return and throw instructions) are linked to the exit

block ensuring that all blocks (other than the exit block) will have at least

one outward edge.

The CFI’s targets are checked to ensure that each basic block has a

single point of entry. If the target is before the current program counter

(i.e. a backward branch) and it branches into the middle of a basic block,

the target basic block is split so that the target instruction is the starting

point of its block. In the case of a forward branch, a new basic block

is created starting at the target instruction, which is initially empty. This

block is stored in a forward list, which is checked when a new basic block

is created. Later, when the basic block that includes the target instruction

(identified earlier in the forward branch) needs to be created, the basic

block from the forward list is used. If the target instruction is not the first

instruction of the new basic block, this block is split as required.

Consider the Java code in Listing 3.10 and the corresponding Java byte-

code in Listing 3.11. Figure 3.3 shows the CFG generated for this opcode

using the process explained above. The ‘?’ symbol in front of the bytecode

in Figure 3.3 denotes a CFI.

54 TRISHUL CHAP. 3

1 p u b l i c s t a t i c vo id

2 main (S t r i n g args []) {

3 boolean a = t rue ;

4 boolean b ;

5 i f (a)

6 {

7 b = t rue ;

8 }

9 else

10 {

11 b = f a l s e ;

12 }

13 }

Listing 3.10: Code for CFG example.

00: icons t_1

01: i s t o re_1

02: i load_1

03: i f e q 11

06: icons t_1

07: i s t o re_2

08: goto 13

11: icons t_0

12: i s t o re_2

13: r e t u r n

Listing 3.11: Bytecode of

Listing 3.10.

iconst_0

istore_2

iconst_1

?ifeq
iload_1

iconst_1
istore_1

EXIT

?return

istore_2
?goto

Figure 3.3: Control-flow graph created from Listing 3.11.

Branch bitmaps Once the basic block of the CFG is calculated, a branch

bitmap is associated with each of the blocks. It contains a number of bits

for each conditional CFI, one bit representing each possible target of the

CFI. In the case of an if-statement there are two bits: one representing

SEC. 3.3 IMPLEMENTATION 55

10 iconst_0

istore_2
01

iconst_1
istore_2
?goto

[00]

?ifeq

0−5

iload_1

6−10

iconst_1
istore_1

11−12

13−13
?return

EXIT

00

00

Figure 3.4: CFG showing initial branch bitmaps.

[00]

iconst_1

istore_1

iload_1

?ifeq[0]

0−5Instruction address

Context bitmap

Branch bitmap Java opcode

Figure 3.5: Details of the variable fields calculated in the CFG.

the case when the branch is taken, and one representing the case when the

branch is not taken. A switch instruction has one bit per case, and possibly

one bit for the default case.

The branch bitmaps are shown in the centre-left field in each node of

Figure 3.4, which is the same CFG as Figure 3.3. The rest of the numbers

shown in the left hand column of the block are explained in Figure 3.5.

The bitmap consists of two bits, both referring to the if-statement in the

top-most basic block. The fact that these bits represent the if-statement at

the end of the block is indicated by the ‘[]’ that enclose these bits.

At the start, the branch bitmaps are initialised to zero. Bits that repre-

56 TRISHUL CHAP. 3

sent a branch target are initialised to 1 in the basic block containing that

instruction. Thus the bitmap in basic block <11 12> (indicating the pro-

gram counters in the top-left field) is initialised to 10, because block <0

5> branches into this block. Likewise, block <6 10> is initialised to 01.

Block <13 13> is initialised to 00, as the earlier branch instruction does

not branch directly into it. These are recorded in Figure 3.4.

Once all bitmaps have been thus initialised, they are then recursively

updated until each bitmap satisfies the condition that each bit that is set

in any block that precedes the block in question is also set in the current

bitmap. In other words, each bit that is set in a block, flows into every block

following it. Thus the bitmaps in <13 13> are updated from 00 to 11, as

shown in Figure 3.6. Once this is done, the bits controlled by a specific CFI

can be in one of two states: all bits have the same value (00,11), or they

have different values (01,10). In the first case, each possible path starting

at the CFI includes the basic block (11), or no path includes the basic block

(00). Either way, the execution of the basic block is not influenced by the

CFI anymore. When the bits have different values, only some of the paths

starting at the CFI reach the basic block, therefore the execution of the

block is influenced by the CFI. This is captured by a context bitmap.

Context bitmaps Context bitmaps summarise the information stored in

branch bitmaps. The bitmap contains a single bit per CFI. The bit is set

to 0 if all the bits in the branch bitmap are the same, else it is set to 1.

Thus the bit is set if the basic block is controlled by the CFI represented by

that bit. Context bitmaps are shown in Figure 3.6 in the bottom-left fields.

Again, rectangular brackets are used to show which bit represents the CFI

in a basic block. The basic blocks <6 10> and <11 12> are controlled

by the ifeq instruction in block <0 5> and ends up being calculated as 1,

while block <13 13> is not and its context bitmap is set to 0.

The context bitmaps are stored in a list, sorted on the program counter

of the first instruction in the basic block and passed to the run-time system

for use in updating the context taint accordingly.

Run-time analysis

Context taint At runtime the stack frame of each method contains an

array of partial context taints. This array contains an entry per conditional

CFI, and thus has as many entries as the context bitmap has bits. When a

SEC. 3.3 IMPLEMENTATION 57

10 iconst_0

istore_2
01

iconst_1
istore_2
?goto

[00]

?ifeq

0−5

iload_1

6−10

iconst_1
istore_1

11−12

13−13
?return

EXIT

[0]

11

1 1

11

0

Figure 3.6: CFG showing final branch bitmaps and context

bitmaps.

58 TRISHUL CHAP. 3

conditional CFI is executed, the condition’s taints are stored in the appro-

priate array entry. When a new basic block is entered, either through the

execution of a CFI or when the program counter advance beyond the cur-

rent basic block, the context taint is updated by combining the partial con-

text taints of all conditional CFIs whose bits are set in the context bitmap.

The code in Listing 3.9 which showed how Kaffe’s C macro was extended

to capture the taint propagation is further extended as shown in Listing 3.12

to capture the effect of the context taint. The way in which partial context

taints and context bitmaps are stored differ between the interpreted and JIT

modes of Trishul and is explained in detail later in the chapter.

1 #define t a i n t 2 (t , f1 , f2) (t) [0] . t a i n t = ta in tMerge3 ((f1) [0] . t a i n t , (f2) [0] . t a i n t ,

c u r r e n t _ c o n t e x t _ t a i n t)

2 #define ta in tMerge3 (t1 , t2 , t3) ((t a i n t _ t) ((t1) | (t2) | (t3)))

3

4 #define add_in t (t , f1 , f2) (t a i n t 2 (t , f1 , f2) , (t) [0] . v . t i n t = ((f1) [0] . v . t i n t) +

((f2) [0] . v . t i n t)

Listing 3.12: C macro that implements iadd modified to propagate the taints including the

context taint.

Method call Java methods by themselves do not have taints but as they

can be invoked at any point during the execution of the Java code, espe-

cially within a context that is tainted, it is instrumented to inherit an initial

context taint that captures the context taint (0 for the main method) at the

call point, and that of the this-pointer when an object method is invoked.

This initial context taint is then included in the method’s own context taint,

ensuring that invoking a new method call does not let the execution escape

the context taint in the caller’s execution context. When the method call

returns, the context taint of the caller code is updated to the value it was

before the method call.

The parameters passed to the method call preserve their existing taints

and their use within the method results in the propagation of these taints.

Non-taken branches As explained earlier, in order to capture indirect

flows, it is necessary that even those variables that are present in the non-

taken branches of a conditional CFI be tainted with the context taint. For

this, a list of all variables that are modified in each basic block of the CFG

is maintained. This list is then extended by including lists of any basic

blocks that are accessed through method calls. At runtime, even when a

branch basic block is not executed, the taints of the variables in the list

SEC. 3.3 IMPLEMENTATION 59

are extended with the current context taint, since the decision to not exe-

cute the block is (potentially) influenced by the variables of the CFI whose

taints make up the context taint.

However, in some cases it may not be possible to create a complete list

of variables modified in the block until the branch is actually executed, be-

cause of dependence on information available only at runtime or because

the analysis is not rigorous enough. In order to ensure that this limitation

does not lead to the leakage of information, Trishul provides an optional

fallback taint termed the global context taint that can be disabled or en-

abled as per the system administrator’s requirement. Once it is enabled,

whenever the list of modified variables cannot be accurately determined,

the current branch context taint is added to the global context taint. Then,

by ensuring that this global context taint is always included in the currently

active context taint all through the execution of the application, Trishul

ensures that any later use of the undetermined variables in the non-taken

branch block will be tainted indirectly with the earlier branch’s context

taint.

However, since this global taint cannot be reset or untainted automati-

cally, it is up to the policy engine writer to decide on how to control it. It is

possible to disable it when the JVM is first invoked or it could be untainted

manually using the policy engine syntax made available by Trishul-P or

using the concept of annotations discussed below. The use of the global

context taint allows the system administrator to be very conservative in

approaching the tainting problem at the expense of taint creep (the phe-

nomenon of taints spreading uncontrollably throughout the system), ren-

dering the application unusable if the policy enforcement is strictly ad-

hered to. In our non-exhaustive analysis, Trishul was able to identify the

complete list of modified variables in a basic block 96% of the time across

various applications and did not have to report to using the global context

taint. However, in the 4% of the cases where the global context taint was

used, it did lead to extensive taint creep when manual untainting was not

performed.

3.3.4. Manual Taint Propagation

While most taints are propagated automatically as described in earlier sec-

tions, native method invocations necessitate manual taint propagation. Since

these methods also create and move values, they would also be creating

60 TRISHUL CHAP. 3

and propagating taints. However, as these methods are executed outside

the JVM’s control (see Section 3.3.1), the tainting has to be implemented

either as modification to the native code by adding taint propagation code

(see Listing 3.13 for an example of System.arraycopy native method that

has been modified to propagate the taint this way) or by using the anno-

tation propagation method provided by Trishul. While the modification of

the native code provides better performance compared to the annotation

method, the permanent hardcoded nature makes it harder to maintain the

native method codebase.

1 i n = $src [srcpos] ;

2 i n T a i n t =src - > member_taint ; / * added * /

3 out = &dst [dstpos] ;

4 ou tTa in t = dst - > member_taint ; / * added * /

5

6 for (; len > 0; len - -)

7 {

8 * out++ = * i n ++;

9 * ou tTa in t ++ = * i n T a i n t ++; / * added * /

10 }

Listing 3.13: Native method System.arraycopy modified to propagate taints.

Annotations are Java classes that contain policy writer specified hook

methods for existing classes’ methods. When the original method is in-

voked by a Java application, control is transferred to the hook method

instead, which then adjusts taints before and after invoking the original

method.

Annotations can also be used to let the policy engine writer manipulate

the taints at a level higher than the implementation unit of objects and

variables that Trishul supports. For example, consider the String class.

Since a String is conceptually made up of a sequence of characters, it would

be natural to assume that any tainted character would taint the string as a

whole. However, in practice, the String class is implemented as an array

of characters. If one of the characters is tainted, it causes the array to be

tainted but not the String object. Annotations can be used to carry this

taint from the array to the object. Trishul’s code base is already supplied

with several of such annotations that ensure parity between the logical and

practical way of tainting the Java units.

Listing 3.14 shows how the String object annotation (trishultaint String)

is implemented in Trishul. Two hook methods are specified in the listing,

one for the String Java method and the other for the hashCode method. In

the former, the array’s taint is applied to the String object while in the latter,

SEC. 3.3 IMPLEMENTATION 61

the integer returned by the invocation of the hashCode method is tainted

with the taint of the String object.

1 package java . lang ;

2

3 t r i s h u l t a i n t S t r i n g {

4 n o t r i s h u l t a i n t i n t hash ;

5

6 p u b l i c S t r i n g (byte [] b , i n t o f f s e t , i n t l en)

7 {

8 se tOb jec tTa in t (t h i s , ge tAr rayTa in t (b)) ;

9 super (b , o f f s e t , len) ;

10 }

11

12 p u b l i c i n t hashCode ()

13 {

14 i n t h = super () ;

15 t a i n t (h , ge tOb jec tTa in t (t h i s)) ;

16 return h ;

17 }

18 }

Listing 3.14: Annotation applied to the String object.

Annotations can also be defined to specify that some variable do not

propagate taint values using the notrishultaint label as used in line 4 of

Listing 3.14. This is a clear security violation and a potential security hole,

but can be necessary in some cases to avoid taint creep. It can be used

securely if it can be guaranteed that the further use of the variable does

not transfer information, as can be the case if the variable is used for, say,

caching. A similar method is available to allow methods to be invoked

without a context taint, again to handle problems in certain application

scenarios.

In order to ensure security of the implemented annotations, they have

to be delivered alongside the Java-library and included in the library’s sig-

nature, making it impossible to load the core Java library without the asso-

ciated annotations or being able to add new unapproved annotations to the

system. For this, all annotations are stored in a single signed jar file, which

is loaded at start up and if its signature is invalid, the system refuses to start,

thus preventing non-administrative users and potential unsafe code from

adding security compromising annotations into the system. Since Kaffe

does not support verification of JAR signatures, this feature was added.

Furthermore, in order to ensure that all native functions are properly

annotated, a list of the allowed native libraries that are approved for use is

stored in Trishul along with the digest of these libraries. Thus any unau-

thorised library is prevented from being loaded and native methods defined

62 TRISHUL CHAP. 3

in it are prevented from being invoked by Java programs.

3.3.5. Exception Handling

There are two kinds of exceptions found in Java: checked and unchecked

runtime exceptions. A checked exception must be handled explicitly when

the code is being written, either by containing the offending throw instruc-

tion in an appropriate catch block, or by declaring it as part of the method’s

signature. If declared as part of the method’s signature, the exception will

cause the current method call to be terminated and transfer the control to

the caller. If the caller contains an appropriate catch block, that will be

invoked. Otherwise, the process is repeated until a method with an appro-

priate catch block is reached, which must be present in the main function,

since Java main methods do not allow exceptions to be declared. Run-time

exceptions, on the other hand, are not declared. They are used by the JVM

to signal internal errors that may not be recoverable, such as dereferencing

a null pointer or division by zero.

As exceptions cause changes in the flow of control, they require spe-

cial handling to avoid information leaks. Exception handling in the JVM

is identical for normal and run-time exceptions. However the fact that run-

time exceptions are not declared makes their analysis harder, as does the

fact that most Java instructions can cause some form of run-time excep-

tion. Because these runtime exception causing instructions are so common

and the likelihood of them happening is low, tainted run-time exceptions

may be treated as rare abnormal events that causes the program to ter-

minate. Hence, they are disregarded during the exception analysis of the

taint propagation system in Trishul. Doing so does allow an application

to leak information. However, since runtime unchecked exceptions invari-

ably cause the application to terminate, the amount of information leaked

is very limited, mostly as little as 1 bit per exception.

In a checked Java exception, the throw statement transfers control to

the appropriate catch block, much like a goto statement, with the differ-

ence that in the case of exceptions, the target address may be in a different

method if the throw statement is not inside an appropriate try/catch block.

Also, unlike a goto statement which always has a fixed target address, the

target of a throw statement may not be known before runtime. This is due

to the fact that an exception that is thrown is just a normal object that re-

sides on the heap, the parameter to the throw instruction being a reference

SEC. 3.3 IMPLEMENTATION 63

to that object. Before run-time only the static type of the reference can be

determined. The actual type of the exception object may be a subclass of

that type. As the catch block that is invoked depends on the actual type of

the exception object, the catch block may not be known before the throw

statement is actually executed. Also note that if the exception is thrown to

a different method, it is generally not possible to determine the catch block

before runtime, since that would require knowledge of each possible call

site.

In Trishul we aim to determine the run-time type of the exception object

by finding the instruction that places the reference to the exception on the

stack. If this is a new instruction (which it frequently is), the run-time type

is known. With the run-time type being known and there being an appro-

priate catch block, an edge is added in the CFG from the throw statement to

the catch block. In other cases, an edge is added to the method’s exit block.

This errs on the side of caution by assuming that no catch block will be ex-

ecuted and hence all the variables written in any of the catch blocks need to

be tainted, possibly triggering the global context taint fallback mechanism.

This is mostly not necessary as almost all non-malicious (more that 97%)

occurrences of exceptions are analysed judiciously by Trishul’s algorithm.

Method invocations also require special care in the light of exceptions.

If a method can throw an exception, the flow of control will not necessarily

pass to the instruction following the method invocation, but may instead

pass to a catch block or the caller of the method. This turns a method into

a conditional CFI. If run-time exceptions are treated as normal exceptions,

each instruction that can cause a run-time exception also becomes a con-

ditional CFI. In Trishul, when the CFG is being calculated, a method that

can throw an exception is treated as a CFI with an edge to the next basic

block, as well as an edge to each catch block that may be invoked, or the

exit block if a catch block cannot be determined. There can be multiple

such edges, as a method may declare different distinct exception types.

If an exception is thrown, the current context taint and the exceptions

taint are stored. At the catch block, this taint is included in the context

taint; each catch block has a bit in the context bitmap and thus an entry

in the context taint for this purpose. If the catch block is not in the same

method as the throw instruction, the call stack will be unwound. Each

method invocation on the stack is treated as a conditional CFI and requires

tainting of the variables that are written to in the current stack frame, since

the instructions following the method invocation are analogous to a control

64 TRISHUL CHAP. 3

path that is not executed. As the stack will be unwound anyway, tainting

local variables and stack elements is not required. The entire unwinding

of the stack can be skipped if neither the exception nor the context were

tainted.

Information can be leaked if a method that declares an exception does

not end up throwing such an exception, much like an if statement can leak

information by not executing a certain control path. Consider the following

example in Listing 3.15

1 boolean b = t rue ;

2 t r y

3 {

4 leak (sec re t) ;

5 b = f a l s e ;

6 }

7 catch (Except ion e) { }

8

9 vo id leak (boolean secre t) throws Except ion

10 {

11 i f (sec re t) throw new Except ion () ;

12 }

Listing 3.15: Leaking information through an exception that is not thrown.

In this case, if an exception is not thrown, it conveys the fact that secret

is false, which is captured in the variable b. In order to capture this infor-

mation flow, the assignment to b must also be tainted. This is handled by

maintaining in the leak function a taint of exceptions that are not thrown.

When the method executes, each conditional CFI that skips executing of

a throw statement causes the context taint to be included in this taint. As

the invocation of leak is considered to be a conditional CFI, it has a bit in

the context bitmap and an entry in the context taint. This entry is set to

leak’s non-thrown taint, which will ensure the assignment to b is tainted.

Note that after the catch block, the control paths merge, so the context is

untainted.

Finally blocks, which are executed when leaving a try/catch block re-

gardless of whether an exception is thrown, are implemented in Java as

catch blocks for any type of exception. The case when no exception is

thrown is handled by an explicit jump into the finally block. Therefore

these blocks are handled automatically in Trishul.

SEC. 3.3 IMPLEMENTATION 65

3.3.6. Just-in-Time Mode

In order to improve the performance of the bytecode execution, the Just-

In-Time (JIT) compiler of a JVM compiles sections of the often used plat-

form independent Java bytecode to machine specific lower level code. Im-

plementing Trishul’s taint propagation and policy engine hooks in such a

system presented various challenges. The corresponding design decisions

made for such an implementation are discussed here.

In Kaffe, the JIT compiler mode is setup as follows. The Kaffe com-

piler generates and places short segments of code called trampolines [Inaba,

1998] at the address of the actual method. When an attempt is made to

invoke the method, the trampoline is invoked instead, as it occupies the

method’s address. The trampoline in turn invokes the JIT compiler to gen-

erate the method’s actual machine code and in the process replaces the

trampoline. Finally, the generated code is invoked. The next time around

when the method is invoked, the method’s native code in invoked directly

as the trampoline is no longer present.

In the JIT mode, Kaffe generates functions with this layout:

1. Load locals and parameters into registers

2. Perform calculations on registers

3. Store registers into locals and return value

Thus, there is no direct connection between the locals in steps 1 and 3,

except through the registers used in step 2. In order to ensure that the taints

on the locals and parameters are propagated properly, the JIT compiler

was modified so that each instruction generated in step 2 that operates on

registers also generates instructions to modify the associated taint registers

in order to track the taint flow.

In Trishul’s current implementation, each normal register used by Kaffe

has an associated (part of an) Streaming SIMD2 Extensions (SSE) register

that holds the corresponding taint value for that register. So the layout is

modified to:

1. Load locals and parameters into registers and corresponding taint

values into SSE register

2SIMD stands for Single Instruction, Multiple Data, colloquially, “vector instruc-

tions”.

66 TRISHUL CHAP. 3

2. Perform calculations on registers and associated taint registers

3. Store registers into locals and return value and SSE registers into

taint values

This process is explained in detail below.

Register Taints

The IA-32 architecture provides three sets of registers: eight 32-bit general

registers, eight 80-bit floating point registers and eight 128-bit Streaming

SIMD Extensions (SSE) registers. The program counter is a 32- bit register

known as the Extended Instruction Pointer (EIP).

The general registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP and

ESP) are used for most integer calculations and control flow instructions.

Operations are generally performed on two operands: one or two input

operands and one output operand. Both operands may be registers, or one

may be a memory location. The floating point registers (FP0-FP7) are

organised into a stack, with FP0 being the initial top element. Floating

point operations are performed between two stack elements, or between

the top of the stack and a memory location. The result is always left on top

of the stack.

The SSE registers are not used by Kaffe and hence can be used by

Trishul to hold the taints of values stored in the registers. Each of the

eight 128-bit SSE registers (XMM0-XMM7) are made up of four 32-bit

parts. However in Trishul, each SSE register is used to hold only three

32-bit taints, leaving the last 32-bit part free for computations. This is to

overcome the limitation of the SSE instruction set that it does not have an

operation to move a part of the register into another part of another register,

only supporting shuffle operations that combine different parts of a single

register into another register.

Hence, in order to move, for example, the taint of register ECX to the

taint of ESI, three operations are needed: the destination part is cleared, the

source part is moved into the correct position in a temporary register, and

this temporary register is OR-ed into the destination register. As only the

destination part must be affected, the remainder of the temporary register

must be zeroed. Since the SSE instruction set does not provide an operation

to clear a specific part of a register, the highest 32-bit part is always kept to

0, allowing a shuffle operation to copy that 0 into one or more specific parts

SEC. 3.3 IMPLEMENTATION 67

0

0

0 0 0 0

0

OR

0 Dst

Dst

Dst

Tmp

Src EDX ECX EAX ESI EDI EBX

ECX

ECX EDI EBX

EDI EBX

Figure 3.7: Moving ECX to ESI using SSE registers in 3 oper-

ations.

in a single operation and also move the source part to the correct position.

Figure 3.7 illustrates these steps.

Variable and Argument Taints

Trishul stores variable and argument taints on the stack. The layout of a

typical Kaffe stack is shown in Figure 3.8. The call instruction pushes the

arguments to the method on to the stack before storing the return address3.

In the prologue of the newly invoked method, the previous frame pointer

is then stored and the base pointer register EBP is made to point to the cur-

rent top of the stack. The local and temporary variables are stored below

that. Since it is known at compile time how many temporary variables are

required, Kaffe is able to reference them using addresses relative to EBP,

just like local variables. The stack pointer register ESP is used only when

a new stack frame must be created.

Figure 3.9 shows the layout of the modified stack frame in Trishul,

holding the taint values represented by the underlined names. All the taint

values for the method’s arguments are pushed onto the stack before the

arguments. This requires that the list of arguments be iterated twice. Had

the arguments and taint values been pushed as 〈argument, taint〉 tuples, the

3Remember that the stack grows downwards.

68 TRISHUL CHAP. 3

Argument 0

Return address

...

Previous frame pointer

Local variable 0

Local variable n

Temporary 0

Temporary n

...

Argument n

...

Next stack frames

Previous stack frames

EBP

ESP

Top of memory

Figure 3.8: Kaffe stack frame.

SEC. 3.3 IMPLEMENTATION 69

Previous stack frames

Argument n

Argument 0

Argument 0

Argument n

Return address

Previous frame pointer

Local 0

Local 0

Local n

Temporary 0

Temporary n

Context 0

Local n

Temporary 0

Temporary n

Context n

...

...

...

...

...

EBP

ESP

Next stack frames

Top of memory

Figure 3.9: Trishul’s stack frame holding taints, denoted by

underlined names.

70 TRISHUL CHAP. 3

list would only have to be iterated once, but that would cause problems for

native methods, which expect arguments to be pushed using the C’s calling

convention (which expects them to be pushed one after the other in reverse

order). It would also pose problems for double-sized values, which occupy

two consecutive fixed-sized argument slots.

The argument stack pointer, stored in a global variable, points to the

taint values. This allows native methods to access the taint values. The

taint values are pushed onto the stack in the opposite order from the argu-

ment values, allowing the taint values to be accessed using the index of the

formal parameter as it appears in the C code, whereas the argument values

are pushed in the opposite order, as required by C.

Taint values for local and temporary variables are stored as tuples of

the form 〈argument,taint〉. Because it is not known how many temporary

variables will be required before the full method’s code is generated, it is

not possible to determine the offset of a taint storage location if the taint

values are stored following the variables. This would require two passes of

the JIT compiler: one to generate the code and one to fix the offsets of taint

values. Using the tuple approach, only one pass is needed, but, as with

arguments, double-sized variables present a problem, as they require two

consecutive slots. To handle this, the order of variable and taint values are

reversed, so that two consecutive slots are used for the value and two for

the taint values. Two slots are used for the taint value for a double-sized

variable to make accessing slots easier. If a single slot was used instead,

finding the proper slot for a variable would require scanning the list of

variables to see if any double-sized variables precede the variable.

Context Taints

The Kaffe JIT compiler uses only six of the general registers present in

IA-32 architecture to hold program values. As all floating point operations

are implemented as register-to-memory operations, only FP0 floating point

register is used by Kaffe. Both EBP and ESP registers are used only for

bookkeeping and not for actual operations. Thus Kaffe needs to store only

7 register taint values (for the six general registers and FP0), each of which

can be stored in a full SSE register. The one remaining SSE register is thus

free to be used for storing the context taint, which can be thought of as the

taint for EIP register.

The different parts that make up the context taint are stored in the stack

SEC. 3.3 IMPLEMENTATION 71

frame, as shown in Figure 3.9. Because the number of local and temporary

variables is known at compile time, the offset of the context taint parts (rel-

ative to EBP) is known at compile time and can be fixed in the generated

code. Entry and exit of basic blocks can be detected when code is gen-

erated by comparing the address of the instruction being generated to the

addresses in the current basic block. If it is detected that a different basic

block is entered, code to update the context taint is emitted.

Exception handling

The JIT compiler taints the required objects when an exception is thrown

at the time the stack is unwound to locate the exception handler. Tainting

these values is complicated by the fact that the code to handle nontaken

branches is invoked at JIT-compilation time which generates machine code

to handle tainting. The exception code is invoked at run-time, and must

taint values directly. To this end, it uses information in the exception’s

stack trace to locate the run-time information generated by the load-time

analysis and the locations of values that must be tainted. When the excep-

tion handler is invoked, the runtime simply jumps to the correct address,

without an opportunity to initialise the partial context taint array with the

exception’s taint correctly. Therefore, this is handled when the last stack

frame is unwound.

To handle non-thrown exception taint, an unused SSE register is used

as a special taint register, allowing easy update of the taint value. When

a method that may throw an exception is invoked, the current value of the

taint register is stored on the stack and the register is cleared. When the

method returns, the current taint value is stored in the partial context taint

array and the original value is restored from the stack. As the instruction

could throw an exception, it is treated as a conditional control flow instruc-

tion and the context taint is rebuilt before the next instruction is executed.

3.3.7. Trishul-P

The Trishul-P code compiler was implemented using a modified Java Com-

piler Compiler [JavaCC, 2009] and the policy engine was implemented to

run within the JVM, allowing it to compare and match static properties

of the method call, like the signature, and the dynamic taints of objects,

parameters and context taints.

72 TRISHUL CHAP. 3

To match against run-time information as efficiently as possible, a two-

stage matching strategy was used. During the first stage, which is invoked

only when matching against a specific action for the first time or when the

policy changes, the static information is matched. The result of this match

is stored and reused whenever the action is executed again. The second

stage matching, that compares the dynamic information of taints, is per-

formed only when the first stage match is successful. This stage needs to

be executed every time the action is executed. For example, when match-

ing:

void java.io.PrintStream#<secretTaint>.println(String s)

the package, class, method names and parameter and return types are checked

in stage one, since they are the same for every invocation of the method.

However, as the taint values may be different for each invocation, it must

be rechecked every time the method is invoked.

To handle loading and unloading of policy engines, a global iteration

counter is maintained. This is initially set to 0 and increased every time

an engine is loaded or unloaded. When a first-stage match is executed, the

current iteration counter is stored with the match result. When an action

is executed, the stored value is compared against the global value. A mis-

match indicates that a new policy engine has been loaded or unloaded and

the first-stage match must be executed again.

When a method is invoked, Trishul-P passes information on this ac-

tion, including the values of actual parameters passed to the method, to the

engine. This information is copied into the Action object passed to the en-

gine, possibly converting primitive values to objects to allow them all to be

stored in a single array. As an optimisation, the parameters are now only

retrieved when they are accessed. To this end, a handle is passed in the

Action object. The first time any parameter’s value is accessed, the handle

is used to create the array containing the value for actual parameters. How

this is done differs between the interpreter and JIT compiler.

In the interpreted mode, as the interpreter has direct access to the ob-

jects that represent methods and variables at runtime, the matching is per-

formed directly on the method object passed to the method call function.

This object always represents the actual method that is invoked, which

may not be the declared method in the case of polymorphism, making the

matching process a simple case of comparing values. The actual parame-

ters and the location used to store the return value that are passed when a

SEC. 3.3 IMPLEMENTATION 73

method is invoked, exist as simple objects on the interpreter’s stack, as do

the associated taint values. Therefore, they can be inspected and modified

as required, to handle inspection of parameter values and replacement of

the return value, as indicated by Trishul-P’s Orders.

In order to perform matching in the JIT implementation, the object

representing that method is required, as it contains the values that must be

compared in the Trishul-P matching process. When a polymorphic method

is invoked, this is not known, as only the address of the method’s code

retrieved from an object’s dispatch table is known. The code layout was

modified slightly in order to retrieve the method object correctly. When

Kaffe generates code for a method, it generates a method header (which

includes a pointer to the method object), followed by a variable length

constant pool, followed by the actual code. This has been rearranged in

Trishul so that the constant pool now follows the code. Thus a pointer

to the method object is always available at a fixed offset before the code

address.

A potential problem to this approach is the use of trampolines men-

tioned earlier–when a code address which is the target of a method invoca-

tion might actually contain a trampoline. Luckily, the trampoline already

contains a pointer to the method’s object, so this can still be retrieved.

However, an extra check must be made to see if an address points to a code

segment or a trampoline. This can be accomplished since a trampoline al-

ways starts with a jump instruction and a code segment always starts with

a push instruction.

The actual parameters and taint values can be accessed using the argu-

ment stack pointer, as described earlier. The return value and taint value

can be accessed since the register in which they are stored is known. To

allow compatibility with the interpreter, the parameters and return values

are copied into objects used by the interpreter if they are accessed.

3.3.8. Platform Integrity

The enforcement of policies using an architecture like that of Trishul in-

volves the assumption first and foremost that Trishul is installed on the

designated machine and that the install’s integrity is protected.

The problem of ensuring that the software is installed on the machine

and that the data to which the policy is attached is accessible only within

the Trishul-based JVM is easier to solve in an application specific manner

74 TRISHUL CHAP. 3

than as a generic solution. Such a solution would be able to exploit the

nuances of the application: closed or open systems, end-user or server-

backend applications, etc. Examples of such solutions will be described

in the next chapters. In general, these solutions would involve the use of

trusted computing technology presented earlier in Section 2.4, exploiting

the functionality provided by features like sealing and attestation.

Trishul has also been designed to make it hard for the attackers to com-

promise the integrity of the installation. As explained earlier, the effective-

ness of the system depends on the application’s inability to invoke native

methods that have not been approved and packaged with the installation of

Trishul. For this, a list of all allowed native libraries and its SHA-1 digests

are stored securely in Trishul. Any attempt to load any native libraries not

present in this list is denied. Furthermore, if the attacker tries to substitute

one of the approved libraries with an unsafe one, the digest of this fake li-

brary would not match the digest stored in Trishul and any attempt to load

it will also be denied.

Trishul is also designed to load a default policy enforcement engine

that can be chosen by the system administrator. This default engine is then

allowed to load others as and when required. In order to ensure that this

engine, endowed with large privileges, is not subverted by an attacker, dur-

ing the compile process of the JVM (when the engine’s identity is specified

by the administrator), the SHA-1 hash of the engine is also securely stored

inside Trishul. At the start of every JVM instance, this hash is integrity

checked to ensure that the default policy engine has not been removed or

tampered with.

Now that we have introduced Trishul-P and explained in detail how Tr-

ishul is implemented in the interpreted and JIT modes of the JVM, let us

look at some simple applications that provide examples of how Trishul-P

is used and at the same time showcase the power of Trishul’s functional-

ities discussed earlier. Larger application scenarios are discussed in later

chapters of the dissertation.

3.4. EXAMPLE APPLICATIONS

Now that Trishul’s architecture and the policy engine language has been

covered, in this section we consider some examples of how Trishul can be

used to solve policy enforcement problems that the current JVMs cannot.

SEC. 3.4 EXAMPLE APPLICATIONS 75

3.4.1. Protecting system password file

Consider the scenario where an application wants read access to the /etc/-

passwd file of a UNIX/Linux system. Such an access request is normal and

mostly legitimate, since information present in the file is used to perform

several routine housekeeping operations in these systems. Since the actual

passwords are not stored in plaintext in the file, the read operation by itself

is not dangerous. However, consider an application trying to send out the

information read from this file via the network to a remote party. There is

almost always no reason why the information obtained from the file needs

to be sent out into the network. An application which tries to do so could,

for example, be trying to harvest user information in order to perform an

efficient brute force password attack using known user names.

1 grant signedBy ` `VU -CA" {

2 permiss ion java . i o . F i lePermiss ion ` ` / e tc / passwd " , ` ` read " ;

3 }

4 grant codeBase ` ` f i l e : / usr / share / java / r e p o s i t o r y / - " {

5 permiss ion java . s e c u r i t y . A l lPermiss ion ;

6 }

Listing 3.16: Java policy aimed at disabling leak of password file content into the network.

What is required is a policy setting that allows an application to read the

content of the password file but prevents it from sending that information

out into the network. Policies expressed in the form of currently supported

Java Policy objects do not support this level of control. For example, if

the policy in Listing 3.16 is used, it will allow read access to the password

file but prevent the application from creating a socket connection to a host.

But this is too broad a denial as it will also prevent the application from

ever sending anything over the network, irrespective of the actual content

that the application is trying to send. This is due primarily to the JVM’s

inability to trace the flow of information in the system and take access

control decision at the flow level.

In order to prevent this, the enforcement system needs to ensure that

the data read from the /etc/passwd file is (1) tainted with a label (2) the

label is propagated within the system alongside the data and (3) when at-

tempt is made to send the data via the network, it is prevented. This can be

done using Trishul with relative ease. Listing 3.17 shows the fragment of

a Trishul-P code used to write such an access control engine.

76 TRISHUL CHAP. 3

1 p r i v a t e p o l i c y t a i n t {

2 pwdF , netC

3 }

4 aswi tch (a) {

5 case <* java . i o . F i le Inpu tS t ream . < i n i t > (. . , F i l e f) >:

6 i f (f . getName () . indexOf (" / e tc / passwd ") >= 0) {

7 r e t u r n new ObjectTa in tOrder (a . ge tTh isPo in te r () ,# ob jec t : { pwdF }) ;

8 }

9 r e t u r n n u l l ;

10 case <* * . Socket . getOutputStream (. .) >:

11 r e t u r n new RetValTaintOrder (# auto : { netC }) ;

12 case <* * . Pr in tSt ream #<{ netC } > . w r i t e (. . # <{ pwdF } >) >:

13 r e t u r n new Except ionOrder (new java . lang . RuntimeException (" Leak ! ")) ;

14 }

15 r e t u r n n u l l ;

Listing 3.17: Trishul-P policy engine to prevent leak of password file information into the

network.

It works as follows. The first action and associated Order (lines 5-7)

taints the FileInputStream object with a label pwdF if the file being used

for initialisation is /etc/passwd while the second case statement (line 10-

11) intercepts and returns a network socket with taint label netC. Trishul’s

underlying taint propagation mechanism would then ensure that any object

that uses this socket would be tainted with the netC label while any data

read from the FileInputStream object would be tainted with pwdF label.

The third action in the policy engine file (line 12) checks for a call to the

write method of a PrintStream object tainted with the netC label, which

uses pwdF tainted data as argument. If the application invokes the method

within these taint constraints, it is trying to send the data obtained from

the ‘/etc/passwd’ file via a socket to an external host. As a response Tr-

ishul returns an ExceptionOrder which in turn causes the JVM to throw a

java.lang.RuntimeException exception.

A couple of things have to be noted with regards to the example men-

tioned above. In Listing 3.17, the name of the password file is fixed to

make the code easier to read. In a real system, a SELinux [National Se-

curity Agency, 2009]-like policy structure would exist for every file that

has a usage policy associated with it. The Trishul engine would query the

related policy file first and then, based on the policy specified in that file,

would perform the engine logic. Attacks like copying the password file to

a new file and then reading this new file to perform network actions could

be stopped in two ways (1) disabling the writing of the file’s content into

a new file or (2) carrying the policy of the original file to the new file.

These are not shown in the listing above in order to keep the example code

SEC. 3.4 EXAMPLE APPLICATIONS 77

simple. Canonical attacks targeted at the path filename of the file are not

considered in this code fragment but a full policy engine would have to

defend against them using well-know counter-measures.

It should also be noted that PrintStream.write() is only one of the possi-

ble methods that an application can invoke to write data to network. A com-

prehensive policy engine would use an abstract action that encompasses all

possible methods that perform similar writes.

3.4.2. Multi-Level Security Systems

Multi-Level security (MLS) systems take inspiration from the defense com-

munity’s security classification system. Most MLS computer systems use

the Bell-LaPadula model [Bell and LaPadula, 1975] introduced earlier in

Chapter 2, that proposes two main mandatory access control security prop-

erties. The no read-up property states that a subject at a given security level

may not read an object at a higher security level, while the no write-down

property states that a subject at a given security level must not write to any

object at a lower security level.

Consider a CEO who has ‘Top-Secret’ security clearance. He has two

files, one with classification of Top-Secret and another with classification

Public, both of which he wants to write into. Current MLS system would

require that the CEO open the Top-Secret file, edit it, close the application

and change his current security level to Public by logging out of the system

and logging in again with the lower clearance. Only then would he be able

to open and edit the Public file. This is needed to prevent the CEO from

copying content from the Top-Secret file and writing it into the Public file,

which could then be read by anyone.

An MLS system implemented using Trishul JVM can avoid the need

for the manual change of the current security level without compromising

the security of the system. Trishul achieves this by preventing writes to an

object only if its classification (Public) is lower than that of the content that

is being written (Top-Secret). Thus the CEO is able to open and edit the

Top-Secret file and the Public file simultaneously and even copy content

from the Public file into the Top-Secret file but will be prevented from

copying the data from the Top-Secret file to the Public file.

Listing 3.18 shows a portion of the Trishul-P engine code that was used

to prototype such an enhanced MLS system in Trishul JVM. When an ap-

plication tries to access a protected file on behalf of a subject, the invoked

78 TRISHUL CHAP. 3

method call (say java.io.FileInputStream) is intercepted and the control is

transferred to the policy enforcement engine. The engine checks the clear-

ance of the subject to access the file and if cleared, it labels the input stream

with the security classification of the object (specified in a global system

configuration file). Trishul then taints any data originating from this input

stream with the stream’s label and propagates the taint as the data gets used

in the system. Later when the application tries to write data into an out-

put channel (OutputStreamWriter), the engine throws a RuntimeException

using ExceptionOrder if the output channel’s security level label is lower

than that of the data being written (confidential > public). Note that in

the process above, only the specific instance of FileInputStream is tainted

and a new FileInputStream created later will remain untainted, preventing

taint spread. While our prototype system uses a custom configuration file

to specify the clearance of the subjects and objects, a production system

could use the information provided by a SELinux-like system file.

1 case <* java . i o . F i le Inpu tS t ream . < i n i t > S t r i n g path , . .) >:

2 oLabel = ob jec tLeve l (path) ;

3 swi tch (oLabel) { / / c o n f i d e n t i a l =5 , p u b l i c = 1 . . .

4 case 5:

5 r e t u r n new ObjectTa in tOrder (a . ge tTh isPo in te r () ,# ob jec t : { c o n f i d e n t i a l } , t h i s , a) ;

6

7 }

8 case <* * . OutputStreamWriter #<{ p u b l i c l a b e l } > . w r i t e (. . # <{ c o n f i d e n t i a l } >) >:

9 r e t u r n new Except ionOrder (new java . lang . RuntimeException (` ` Disal lowed ' ') , t h i s

,a) ;

Listing 3.18: Trishul-P code fragment that implements the enhanced MLS system.

Note in this example that since Trishul’s taint label system supports

arbitrary lattice structure, it becomes necessary to explicitly code the logic

of the structure within the policy engine. This is abstracted away here as

a function in line 2. While this may seem cumbersome, the flexibility of

an unstructured lattice allows the policy engine writer to support arbitrary

decision logic, even those that do not use a lattice structure.

3.5. PERFORMANCE

As evident from the discussion on the implementation of Trishul-P, a

lot of work goes into the creation of the CFGs, calculation of the context

taint as well as the actual propagation of the taint labels. All these create

SEC. 3.5 PERFORMANCE 79

overheads when using the Trishul system. We investigate this additional

overhead added by various parts of the Trishul system in this section.

Since Trishul itself is application independent, instead of comparing

the performance of Trishul and Kaffe when running a specific application,

in this section we concentrate on using microbenchmarks to compare the

two. All tests were performed on single node of a four-node AMD Opteron

system (model 852, 1Mb cache, 2593 MHz), with 1.5 GB of RAM. All

performance measurements were taken using the JIT version in a release

configuration and were compared against a standard Kaffe-1.1.7 release

built using the same compiler options.

The overhead introduced by Trishul architecture can be categorised

into three main components: (1) that due to the actual taint propagation

mechanism as well as the dynamic calculation of context taints etc. (2)

that incurred during the analysis of the bytecode to obtains CFGs, context

bitmaps etc. and (3) that introduced by the hooks needed to examine the

JVM’s method invocations to intercept method of interest to the policy en-

gine. The performance measurements were performed in such a way as to

isolate these overheads.

3.5.1. Taint Propagation Overhead

The run-time overhead due to taint propagation was measured by observ-

ing the execution times of the inner loops of a prime number sieve and

a file reader program. In order to measure only the runtime of the taint

propagation mechanism and not the load-time analysis, the inner loop was

executed twice and measured only the second time. The first execution

ensures that all the required classes have already been verified and anal-

ysed. No policy engine is used for these benchmark applications to avoid

the overhead introduced by the policy enforcement engine module.

Prime Number Generator

A prime number generator Java was used to test the performance of a CPU-

bound application. It loops over the first 16384 integers and determines

whether they are prime or not. As Table 3.3 shows, an overhead of 167%

was observed when Trishul’s performance was compared to that of the un-

modified Kaffe. Most of the overhead can be attributed to the repeated re-

calculation of the context taint due to the tight for loops in the algorithm. In

80 TRISHUL CHAP. 3

Kaffe Trishul Increase

685ms 1828ms 167%

Table 3.3: Performance of prime number generator when run

in Kaffe and Trishul JVMs.

Kaffe Trishul Increase

7.7ms 7.8ms 1%

Table 3.4: Time taken to read and print a 10Mb file when run

in Kaffe and Trishul JVMs.

this example, for each outer loop (n = 2 to n = 16,384), an inner loop from

i = 2 to i=sqrt(n) is calculated, leading to around 230000 (re)calculations

of the context taints at the CFIs. We have identified ways to decrease this

overhead, as discussed later in this section; but the implementation has

been left as future work.

File Reader

This benchmark application measured the performance of I/O-bound appli-

cations. The application read a 10Mb file with randomly generated content,

into a 64Kb buffer. The data is then printed to standard output, which is

redirected to /dev/null. As Table 3.4 shows, a very low overhead of 1% was

measured for this benchmark application. In this I/O application, major

part of the run-time is spent on the actual reading of the content from the

file as well as the writing onto the standard output. The time taken to do

this dwarfs the extra overhead introduced by the taint propagation mech-

anism of the Trishul JVM, leading to an overall low overhead when the

application is run inside Trishul.

Since typical real-world applications are likely to be neither fully CPU-

bound nor fully I/O-bound, it is expected that the taint-propagation over-

head for these applications will be somewhere in between these measures.

3.5.2. Load-time Overhead

In order to measure the overhead due to the load-time analysis, an applica-

tion that prints a fixed date (1/1/1970) was executed in Trishul JVM. This

application was chosen because it was noticed that its invocation forced a

SEC. 3.5 PERFORMANCE 81

Kaffe Trishul Increase

1052ms 1188ms 12.9%

Table 3.5: Runtime overhead due to load-time analysis of an

application printing a specific date.

Context 254800 bytes

Non-taken branches 1668928 bytes

Total 1923728 bytes

No. of methods 986

Bytes per method 1951 bytes

Table 3.6: Memory overhead due to load-time analysis.

large part of the Java library to be loaded and therefore a large number of

analysis to be performed and this is a good candidate for measuring the

load-time overhead. For example, this specific application run caused 986

methods to be analysed.

Table 3.5 shows that Trishul’s load-time analysis incurred a 12.9%

overhead compared to Kaffe. Table 3.6 shows the memory that was re-

quired to transfer information from the load-time analysis to the run-time

system. It was measured by recording all allocations of the objects that are

used to pass this information; these objects are used exclusively for this

purpose alone. On an average, 1951 bytes are required to hold all required

information for a single method, the main part being the information on

non-taken branches, i.e. the lists of variables that are modified in a CFI

branch. Some optimisations that may reduce the size of these lists are dis-

cussed further on.

3.5.3. Policy Engine Overhead

A microbenchmark application that invoked a specific method 200,000

times repeatedly was used to measure the overhead introduced by Trishul-

P’s hooks. The run-time taken to execute actions specified in various policy

engines were recorded. Table 3.7 summarises these measurements.

The first case statement in the policy engine code ‘never matched,

static’ specified a method that was not invoked by the application at all. It

also did not contain any taint comparison requirements and was discarded

purely based on static properties of the method’s signature. The second

82 TRISHUL CHAP. 3

Policy Run-time (ms)

None 4.5

Never matched, static 4.6

Never matched, dynamic 31933

Matched, static 212842

Matched, dynamic 212245

Matched, dynamic, order 216000

Table 3.7: Runtime overhead due to Policy engine.

policy ‘never matched, dynamic’ specified a method which though was in-

voked by the application, was not matched due to the specified object taint

being different at run-time. While in the first case the overhead was just

2%, the second matching process performed by the engine increased the

runtime by 7100 times. This big increase is due to the fact that the dynamic

properties are checked during the second phase of the two-stage matching

process described in Section 3.3.7. In other words, the taint value needs to

be rechecked every time the method is invoked, 200,000 times in this case.

Matching on parameter taints and context taints show similar performance

results.

The next two policies ‘matched, static’ and ‘matched, dynamic’ matches

the method, either the static properties or the dynamic taint values. The

larger overhead observed is caused by the work needed to hook into the

policy engine: creating objects and arrays expected by the policy engine,

installing the security engine for the policy engine, etc.

The last policy ‘matched, dynamic, order’ also returns a taint order and

is used to capture the overhead of handling an order. When compared to

the case where no order is returned (matched, dynamic), this increases the

runtime by less than 1%. This shows that hooking into the policy incurs

a lot of overhead, regardless of the amount of work done inside the policy

engine.

The performance measurement suggests that the most efficient policies

are the ones that hook into the policy engine as little as possible, and per-

form as much work as possible whenever such a hook is eventually made.

Note however, that the performance reported here records a worst-case sce-

nario. Such high overhead is not expected of normal applications, since,

unlike the microbenchmark application which performs a very tight loop

for 200,000 times with only one method being called in the body of the

CFI block, they would spend more time calling other methods that may

SEC. 3.5 PERFORMANCE 83

not be of interest to the policy engine, and performing IO processes in its

lifetime, decreasing the overall impact of Trishul-P’s hooks.

3.5.4. Optimisations

The prototype implementation of Trishul, though as stable as Kaffe, has

not been optimised due to lack of time and resources. Several possible

optimisation and fine tuning of the prototype implementation has however

been identified. Some of these are discussed here.

Currently the CFGs and context bitmaps of each method used by the

application are generated at normal verification time of the bytecode. This

overhead can be reduced by storing the calculated bitmaps and related in-

formation of the Java system libraries in a secure, integrity protected man-

ner and reusing it the next time. Along similar lines, as of now Trishul

creates its own CFG separate from the CFG used by the JVM’s bytecode

verifier due to earlier developmental constraints. However it is theoreti-

cally feasible to reuse the JVM’s own internally calculated CFG, thereby

decreasing runtime as well as memory overheads.

Some optimisation is also possible in the process of creating the lists

of variables and objects that are modified in nontaken branches needed to

handle indirect flows. For example, locations that are modified in each

branch do not need to be tainted explicitly, nor do locations that are mod-

ified in the branch that is actually executed. Additionally, locations may

appear in the lists multiple times; they of course need to be tainted only

once. These optimisations would not only benefit the run time of the taint

propagator, but also reduce the amount of memory required to perform the

propagation steps.

As seen in Table 3.3, Trishul suffers a large overhead in the pres-

ence of tight loops found in CPU-bound mathematically intense applica-

tion codes. As mentioned earlier, this overhead is mainly due to the re-

peated (re)calculation of the context taint for each run of the conditional

branching involved in the code. This overhead can be reduced by exploit-

ing the observation that if the arguments involved in the calculation of the

context taint (i.e., the CFI’s argument) have not changed their taint value

in either the taken or the non-taken conditional branches, the context taint

would also not have changed and hence need not be re-calculated. For ex-

ample in the calculation of the prime number generator, the variables used

with the CFI (n and i) are modified only once in the block where their val-

84 TRISHUL CHAP. 3

ues are incremented by 1 for each loop (i.e., n++ and i++). Since these

operations do not change the values of taint labels n and i, there is no need

to re-calculate the context taint introduced by the CFI and hence can be

skipped, saving over 230,000 re-calculations, reducing the overhead.

A re-examination of the way registers are used for storing taints could

provide further optimisation in the JIT mode implementation of Trishul.

Due to the nature of the SSE instruction set, currently chosen to hold reg-

ister taints, accessing of individual elements is a slow process. Storing a

single taint per register could provide an improvement over this. In addi-

tion, unused MMX registers (Kaffe uses only one for floating point calcula-

tions) can also be used to store the taints. Additional low level instructions

available for manipulating these registers may make them more suitable

for storing the taints.

The global context taint used in Trishul is an imprecise part of Tr-

ishul’s architecture. The use of a better reaching-definition analysis al-

gorithm should be able to reduce the number of times the global context

taint fallback is invoked. In addition, several ways to automatically reduce

the scope of the taint can be studied as future work. For example, if it is

determined that all the variables that are control-dependent on the branch

are assigned new values before the method returns, the global context taint

needs to be increased only for that methods and can be reset after that

method has returned. Similarly, if the effected variables are all members of

a single object, the fallback taint could be limited to methods in that object.

As of now, the code to handle Trishul-P matches during method in-

vocations is generated for each method. Every time a method is invoked,

it must be checked if the policy engine’s list of actions have changed, in

which case the match must be performed again. If the list of actions change

infrequently (i.e. no dynamic addition or removal of policy enforcement

engines), it might be more efficient to use a different logic to regenerate

the method hooks whenever the policy engine tree changes, thus removing

the need to check if the tree has changed whenever a method is invoked.

This would lead to quicker method invocations. Methods that are not in-

spected by the policy enforcement engine would incur only the overhead of

regenerating the code, which in turn can be reduced further by regenerating

only when the method is used again, which might not happen at all.

SEC. 3.6 RELATED WORK 85

3.6. RELATEDWORK

In order to certify software as complying to a static security policy,

Denning proposed a compile-time approach to solve the implicit informa-

tion flow problem [Denning, 1975]. In her system the compiler added extra

instructions to the existing instructions of the application such that, irre-

spective of whether the CFI branch is followed or not, the class of object

acted upon within the branch is updated to reflect the information flow. The

approach relies on the properties of a lattice structure among the security

classes and assumes that this structure is known to the compiler at the com-

pile time, like in a typical confinement problem [Lampson, 1973; Lipner,

1975]. This restricts the class of security properties that such a system can

be used to enforce. The wide range of security policies that current ap-

plication scenarios present go beyond these static lattice confinement and

confidentiality policies.

Volpano et al. [Volpano et al., 1996] later formalised Denning’s work as

a type system for which well typed programs respect the non-interference

property. A type system is a set of rules used to check if a typing envi-

ronment is compatible with a given program. These works have however

been proposed as models or as a purely theoretical system whose proposed

implementation depended on the use of specialised ‘tagging’ supported

hardware for supporting tracing. Trishul is a practical system that does not

rely on uncommon hardware support for its information flow control.

The system proposed by Andrews and Reitman [Andrews and Reitman,

1980] uses correctness proofs to establish the correctness of information

flow constraints. This allows security classes to change at run-time, but

is not applicable to practical systems as it is required that a program can

be analysed as a single entity, whereas most software is developed as a

set of modules. This approach can be extended to modular systems, as

demonstrated by Mizuno and Schmidt [Mizuno and Schmidt, 1992] where

they overcome this limitation by extending the work to work on modular

systems by using a link-time algorithm to combine multiple modules.

Jif [Jif, 2009], the successor to JFlow [Myers, 1999] implements a com-

pile time system by extending the Java type system to include security in-

formation. Jif introduces two new concepts into Java for information flow

security: the labelled type and the switch label statement. A labelled type is

a Java type annotated with an extended security class. A custom compiler

then ensures that no information flow violation occurs by validating the

86 TRISHUL CHAP. 3

labels when values are assigned to the types. Generic labels may be used

to write code that works irrespective of the actual security class, much like

generics or templates allow code to work on variables of different types.

The switch label statement allows a program to inspect a variable’s actual

label, allowing security decisions to be made. JFlow includes some dy-

namic features through the use of the decentralised label model [Myers

and Liskov, 1997]. In this model, variables can be of type label. Value of

this type can be used as near first-class values or as a label for other values.

However they are only partially dynamic since variables of type label are

immutable after initialisation.

Sabelfeld and Myers [Sabelfeld and Myers, 2003] survey several com-

pile time static analysis IFC system, most of which are based on non-

standard type systems like Jif. Type-based analysis in general are not flow,

context or object sensitive, leading to higher false alarm. For example,

consider the Listing 3.19. It is deemed unsafe by type-based systems be-

cause of the potential flow of information from confidential to public in the

if. . . else block. The system does not capture the fact that any potential in-

formation flow is killed by the last assignment.

1 i f (c o n f i d e n t i a l ==1)

2 p u b l i c = 42;

3 else

4 p u b l i c = 17;

5 p u b l i c = 0 ;

Listing 3.19: Flow that raises false positive in type-based systems.

The approach of using program dependence graph (PDG) in combina-

tion with constraint solving proposed by Hammer et al. [Hammer et al.,

2006] in order to perform static analysis of Java program codes produce a

graph similar in functionality to the one produced by our CFG approach.

Our system however does not have the ‘high’ and ‘low’ levels built into the

analysis, being lattice structure independent, and is thus more generic than

theirs. As is the case with other compile-time approach systems, Hammer

et al.’s system accepts or rejects a program based on whether information is

allowed to leak from high to low level security classes. It does not support

any run-time analysis, which means that like other purely static analysis

system, the system gives judgement for all executions of a program as a

whole and not for a single execution alone.

Fenton’s Data Mark Machine [Fenton, 1974a] was one of the earliest

systems that used the concept of run-time information flow control to en-

SEC. 3.6 RELATED WORK 87

force policies. It adds data marks (fixed except for the program counter’s

data mark) to the abstract computer model of Minsky [Minsky, 1967]. It

introduced the concept of adding a security class to the program counter

(pc) to handle indirect flows. When storing a value v to a fixed data mark

storage location l, the machine checks whether the data mark of l is higher

or equal to the upper bound of the data mark of v and the one of the program

counters. If it is not, the operation is considered as a NOP. When storing

v to a dynamic data mark location dl, the machine updates the data mark

of dl to the least upper bound of data mark of v and that of the program

counter, allowing for the program counter’s data mark to monotonically

increase at each conditional jump.

However, it has been shown [Fenton, 1974b; Guernic, 2007] that the

proposed system is not able to handle implicit indirect flows like in List-

ing 2.2 when destination of flow has a dynamic mark, as the machine is

not able to see the operation causing the flow and make necessary updates

to the data mark of the dl. Since Trishul uses a combination of static and

run-time analysis for handling indirect flows, the JVM is able to analyse

the operation causing the flow, even in the presence of implicit indirect

flows. Furthermore, as in Denning’s system, the machine was considered

as a purely abstract concept and no implementation was ever attempted.

The security mechanism proposed by Gat and Saal [Gat and Saal, 1976]

tries to handle the indirect implicit flow but ends up preventing reuse of

procedures due to its inability to store output of procedures in dynamic

storage. Brown and King [Brown and King, 2004] proposes a similar sys-

tem but it too has been shown to be unsafe for handling implicit indirect

flows, see Section 2.2.1 of [Guernic, 2007].

Beres and Dalton [Beres and Dalton, 2003] use the DynamoRIO [MIT,

2003] framework to dynamically rewrite machine code in order to support

dynamic label binding. The underlying concept behind the architecture of

our system Trishul resembles that of this system with an important prac-

tical difference: instead of using a separate code modification framework,

we make use of the interpreted nature of Java’s bytecode instructions to

perform dynamic tracing at runtime. Their system has the limitation that

since it works at the machine code level, there is limited support for im-

plicit information flows and it also assumes the existences of certain en-

hanced hardware support in order to perform the label tracing. Trishul

has the advantage that because it operates at the Java bytecode level, the

control flow and hence the information flow can be modelled much more

88 TRISHUL CHAP. 3

precisely. In their approach to non-taken branches the system either aborts

the program or uses an approach similar to Trishul’s global context taint

mechanism. Since it is implemented completely in the JVM, Trishul re-

quires no changes to the operating system kernel. Working at the low level

of machine code also means that the system is not suitable for enforcing

security policies that are rich in application semantic level restrictions.

The RIFLE architecture [Vachharajani et al., 2004] was proposed as a

system that implements run-time information flow security with the aim of

providing policy decision choice to the end user. They use a combination

of program binary translation and a hardware architecture modified specif-

ically to aid information flow tracking. Their work uses security registers

to address explicit indirect flows, by capturing the data mark of registers

conditioning the behaviour of the CFI and using it in addition to existing

data marks for every instructions which is control-dependent on the CFI.

This is very similar in concept to the use of context taint within Trishul.

The difference between RIFLE and Trishul occurs in the way implicit

indirect flows are handled by the systems. In Trishul, the context taint is

added to taint of all the instructions along the non-taken path of a branch.

However, in order to prevent memory redirection problems inherent in the

way instrumentation is performed in RIFLE at the binary level, the secu-

rity register value is appended to the label of all instructions that poten-

tially use values defined by instructions control-dependent on the branch.

While this means that the append action is performed when the label is

used rather than when it is defined (as in the case of Trishul), the strat-

egy is proven to be safe [Vachharajani et al., 2004]. However the inherent

truncation automata-like [Ligatti, 2006] behavior of dealing with insecure

outputs create a new information flow that is not considered in their frame-

work [Guernic, 2007]. Trishul-P’s use of an edit automata-like[Ligatti,

2006] policy engine framework prevents such leaks by allowing the engine

writer to handle such occurrences using SuppresOrder and InsertOrder. RI-

FLE also requires enhanced hardware architecture support for the binary-

level information flow security instructions that need to be performed and

hence can only be run using a simulator environment.

Chandra [Chandra, 2006] proposed a hybrid taint propagation approach

for Java, similar to Trishul’s but by instrumenting the bytecode with taint

propagation code. One interesting aspect of the system is that the non-

taken branch is not tainted until the context taint is untainted. Until the

untainting of context taint happens any reference to the variables will al-

SEC. 3.6 RELATED WORK 89

ways include the correct taint due to the inclusion of the context taint in

the taint propagation process. The assumption is that untainting of con-

text taint will happen infrequently, thus providing an optimisation over the

process of tainting the non-taken branch every time, like in Trishul.

However, the approach used by Chandra has several shortcomings. For

example, when considering native methods the return value of the native

method is tainted with the method parameters’ taints. This works only if

the native methods are referentially transparent–the return value depends

only on the parameters. In reality this is most often not the case. Further-

more the native methods can modify any value in the system and hence a

more radical approach like the manual annotation system used by Trishul

is required to fully capture the information flow in them. Exceptions are

also handled incorrectly in their system–though throw statements are cor-

rectly identified as a form of goto, they ignore the effect of stack unwind-

ing caused due to exceptions and the fact that method invocations can turn

into conditional statements, leading to control flow attacks as explained in

Section 3.3.6. Their work also does not implement any policy engine ex-

pression framework like Trishul-P nor is the architecture flexible enough

to implement the range of policies that Trishul can.

Newsome and Song [Newsome and Song, 2005], Argos [Portokalidis

et al., 2006], TaintBoch [Chow et al., 2004] and Haldar et al. [Haldar et al.,

2005a] use taint tracing to track the use of untrusted data from poten-

tially unsafe input channels, like networks. Haldar et al. [Haldar et al.,

2005b] also attempt to extend this idea by using bytecode instrumentation

to perform mandatory access control on Java objects, in order to enforce

security policies. The level of granularity that is considered [Haldar et al.,

2005a, b]–objects–is however too coarse-grained to be useful in many ap-

plications. For instance, they provide as an example a class method that

tries to leak a secret file into a public file [Haldar et al., 2005b]. This is pre-

vented by tagging the whole class instance as ‘secret’ as soon as the secret

file is read and denying access to public channels once this tag has been set.

The coarse nature of this tagging however prevents the class method from

accessing any public channels even if the operation it wishes to perform

is not on the data read from the secret file. Furthermore these systems are

designed in general to solve specific application problems and do not con-

sider the enforcement of general access and usage policies like Trishul nor

provide any mechanism like Trishul-P to write policy enforcement engines

for using the system in other application scenarios.

90 TRISHUL CHAP. 3

Le Guernic et al. consider an automaton-based dynamic monitoring

of information flow for a single execution of a sequential [Guernic et al.,

2006] and concurrent [Guernic, 2007] program. Like in our system, the

mechanism is proposed as a combination of dynamic and static analysis

allowing or rejecting a single execution of the program without doing the

same for all other executions, unlike pure static system. The automaton is

used to guarantee confidentiality of secret data and takes into account ex-

plicit and implicit flows. However, the work is purely theoretical in nature

and while interesting theoretical results have been derived, no implemen-

tation has been attempted. Our IFC system can be seen as a generic imple-

mentation of this work. Instead of confining to a binary high-low system,

our system allows for propagation of arbitrary taint labels which the policy

enforcement engine can then use to implement the required guarantee. It is

not far-fetched to assert that the policy enforcement engine of our system

can be programmed to enforce the confidentiality high-low policy.

Le Guernic’s work can thus be thought of as a theoretical treatment of a

simplified version of Trishul. While formalisation and soundness proof of

Trishul was not part of the work covered in this dissertation, Le Guernic’s

work provides a good starting point for such an effort.

Information-Based Access Control (IBAC) [Pistoia et al., 2007] has

been proposed as an alternative to the traditional stack-based and history-

based access control for ensuring that all codes that influence a security

sensitive action is sufficiently authorised. The work also presents a mech-

anism to convert an access-control policy into an implicit integrity policy

in order for IBAC to enforce it. While the work proposes the use of static

as well as dynamic enforcement of IBAC using PDGs, no implementa-

tion is reported. Unlike our system, the proposed IBAC system addresses

the specific problem of code security in Java and .Net Common Language

Runtime and does not provide a generic policy enforcement system.

Xu, Bhatkar and Sekar [Xu et al., 2006] use a notion of taints, similar

to taint mode in Perl [Wall, 1987], to track dangerous data that originate

from user in order to prevent execution of bad data and prevent attacks like

SQL injection. Their source code analysis of C takes into consideration

direct flows and some indirect explicit flows but do not consider indirect

implicit flows as they assume that such an analysis is not necessary for the

kind of attacks they aim to prevent. Lam and Chiueh [Lam and Chiueh,

2006] proposed another similar framework for dynamic taint analyses but

again does not take any indirect flows into consideration.

SEC. 3.6 RELATED WORK 91

Polymer [Bauer et al., 2005] is a general purpose policy engine for

Java that rewrites the application bytecode as well as instruments the sys-

tem libraries to enforce security policies. While Trishul-P’s language syn-

tax is inspired by Polymer, the implementation is a complete rewrite since

Polymer worked as a Java-Java compiler system that rewrote the system

libraries independently of the specification of the security policy and ap-

plication bytecode as per the policy specification, both permanently. Pol-

icy enforcement engines written in Trishul-P on the other hand is compiled

into Java code and then into Java bytecode, which in turn uses the hooks in

place in the Trishul JVM system to interposition itself between the method

calls at runtime. One consequence is that the system libraries need not be

instrumented outside the run of the JVM against a static set of method calls

specified in Polymer’s action declaration file. Furthermore, Trishul-P also

supports the ability to introduce taint labels into the system (the various

taint Orders), something which was not considered at all in the Polymer

system. Polymer, being an execution monitor, also does not address the in-

formation flow problem inherent in process of enforcing security policies.

The side-effect of using a Polymer-like structure for Trishul-P is that

the policy engine can be informally thought of as an edit automata based

monitor, which is proven to enforce a much wider class of properties [Ligatti,

2006].

Viega et al. [Viega et al., 2001] has proposed the use of aspect oriented

programming to security by using an aspect language to specify security

transformations on a program. At compile-time, their language takes any

specified aspects along with regular C program and weaves them into a

single C program which is then compiled. The aspect language is similar

to Trishul in that it supports wildcards, allows for insertion of code before

or after point of interest or replace the code at the given point of interest.

The aspect language is more similar to Polymer than Trishul as it does not

support for specifying taint labels or introduction of these taints into the

system. In fact information flow is not at all considered in the system.

One aspect that has not been considered in the design and implemen-

tation of Trishul is that of multi-threading in programs. Enforcing infor-

mation flow control when dealing with synchronisation and concurrency

issues brought on by threading can lead to subtle information flow chan-

nels that are difficult to capture. Synchronisation commands may prevent

some output sequence from occurring and when the execution of such a

synchronisation command is conditioned by a tainted data, the value of

92 TRISHUL CHAP. 3

the data may be revealed whenever the program outputs a sequence which

cannot occur if synchronisation command is executed. Compile-time so-

lutions to the problem has been proposed [Barthe et al., 2007; Roy et al.,

2009] but a dynamic runtime monitor-based solution has not been imple-

mented as of yet. That being said, the theoretical treatment of the problem

for runtime monitors presented in [Guernic, 2007], even though restricted

to high-low lattice systems, offer a possible route towards implementing

such a solution.

There have been several work done in designing system call interposi-

tioning architectures. It has been used in recent years for addressing both

the confinement problem [Acharya and Raje, 2000; Goldberg et al., 1996]

and intrusion detection [Wespi et al., 2000]. Janus, for example, originally

prototyped by Goldberg et al. [Goldberg et al., 1996] and later implemented

as a loadable kernel module, provides one such mechanism to restrict the

application’s interaction with the underlying operation system at the level

of the system method calls performed by the application. However, hardly

any of these dynamic systems have been built with the intention of sup-

porting information flow control. That said, the lessons learnt [Garfinkel,

2003] from building such interpositioning systems, like protecting against

canonical attacks, can be equally applied in the implementation of the de-

cision logic within Trishul’s enforcement engine.

3.7. CONCLUSION

In this chapter we presented the design and implementation of Trishul,

the information flow based policy enforcement architecture that forms the

core of this dissertation work. In particular we discussed in detail the

Trishul-P language syntax which can be used to write modular policy en-

forcement engines and the Trishul Java Virtual Machine capable of sup-

porting tracing of information flow caused by both direct and indirect flows.

Design decisions to handle complications arising from control flow instruc-

tions, exceptions and native methods are also discussed.

In order to have a better idea of how the system works, we then looked

at how Trishul can be used in solving some small application scenarios

like protecting the password file of a Unix platform and implementing an

enhanced Multi-Level Security (MLS) system.

We then demonstrated through performance measurements that Trishul,

SEC. 3.7 CONCLUSION 93

though burdened by the extra effort involved in the load-time analysis and

the run-time taint propagation mechanism, is still a practically usable sys-

tem. The measurements helped us identify that the major overhead is intro-

duced by the taint pattern matching steps associated with the enforcement

engine hooks, in particular those that deal with dynamic taint label patterns.

Finally, we also presented various optimisations that have been identi-

fied which could potentially improve the performance of the Trishul system

by a large factor. These form part of future work along with considering

other possible optimisation avenues.

In the next two chapters we consider the use of Trishul in implementing

larger applications in order to prove its usability in more real life scenarios.

94 TRISHUL CHAP. 3

CHAPTER 4

Application: Digital Rights

Management

Now that the design and implementation of Trishul has been presented, we

consider an application scenario for the architecture.

In this chapter we present Trishul-UCON (T-UCON), an implementa-

tion of a Digital Rights Management (DRM) system based on the UCONABC

usage control model, built using the Trishul system. T-UCON is designed

to be capable of enforcing not only application-specific policies, as most

existing software-based DRM solutions do, but also DRM policies across

applications. This is achieved by binding the DRM policy only to the con-

tent it protects with no relation to the application(s) which will use this

content. Since T-UCON is implemented as a JVM-based middleware that

mediates the usage requests of any Java application to the protected con-

tent, it can be used to enforce the guarantee that the usage policy is continu-

ously enforced. Each request is granted or denied as per the rules laid down

by the usage policy of the content. We illustrate the unique features of T-

UCON by using typical examples of DRM policies such as the pay-per-use

and the use only N times scenarios. Preliminary results on the overhead of

our solution are also provided.

4.1. INTRODUCTION

As more and more digital content is being distributed online, the own-

ers of this content are increasingly relying on digital rights management

96 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

Device Manufacurer

Producers Producers

Publisher Publisher

Consumer

Device Manufacurer

Licensing Organsation

Consumer

Consumer

Flow of digital contentFlow of license

Figure 4.1: Stakeholders involved in a typical DRM setup.

systems to help in monetising the content. These systems manage the var-

ious usage aspects of the content. For example the content could be re-

stricted as to how many times it can be played or in the case of digital

redistribution, how many times the content can be resold.

After being in the news for some years now, DRM is currently ap-

proaching a more mature phase, gradually attracting a steadier research

community. This trend is partially reflected in the industry too. Despite

less emphasis compared to the early heady days, there are still many com-

panies [Jobs, 2007] and industry alliances [OMA, 2009] highly interested

in flexible, cheap and secure DRM technologies. This is motivated by the

indisputable fact that an increasing amount of digital content is produced

everyday and there is an overwhelming desire to protect both its distribu-

tion and consumption.

A generic DRM setup is composed of three prominent stakeholders and

two less prominent ones as shown in Figure 4.1.

SEC. 4.1 INTRODUCTION 97

The three prominent stakeholders are:

– Producers: The producers are the entities that own the rights to the

content. They form the starting point of the DRM chain and heavily

influence the business model associated with the content. They could

be individual artists, bands or record labels (like EMI, Sony, Time

Warner etc.)

– Consumers: The consumers occupy the other end of the DRM chain

and are made up of individual users who wish to obtain the digital

content and consume them as per the restrictions laid down by the

producers. It is assumed that the consumers can access protected

digital content only by means of compliant devices. Compliant de-

vices, by definition, enforce the policies set by the producers.

– Publishers: The publishers are responsible for managing and run-

ning the DRM network used to distribute the digital content to the

consumers. They form the middleman between the producers and

the consumers. iTunes is an example of a publisher.

The two less prominent stakeholders involved in the framework are:

– Device manufacturers: These are the manufacturers of certified com-

pliant devices. It is assumed that there exists a industry-wide set of

specifications that define the minimum capability of these devices,

much like the specifications of the Open Mobile Alliance [OMA,

2009].

– Licensing organisation: This central entity is responsible for testing

the devices made by the manufacturers and (digitally) certifying the

manufacturers as complying to the industry-wide set of specifica-

tions. It is trusted by all parties involved in the system and its public

key is embedded in all compliant devices and forms the root of trust

for digital certificate chains. It is also responsible for certifying pub-

lishers as being part of the DRM system.

While a lot of work has been done at the cryptographic protocol level

defining the interaction of the various players with respect to each other,

less work has been done in examining the actual enforcement of the DRM

policies at the consumer side, on the compliant devices. In this chapter

98 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

we try to address this shortcoming by considering the design of a policy

enforcement architecture for the DRM system.

Broadly speaking, existing DRM solutions can be classified as hardware-

based and software-based. Trying to determine which one is better in terms

of security alone could be misleading since each of them serves different

needs. In practice the main discriminant between the two is the business

model of the distribution system rather than their actual security strength.

Hardware-based solutions (e.g. Zune, iPod, etc.) present closed sys-

tems consisting of compliant devices that are, by construction, made to

conform to the DRM specifications. The security of these systems rely on

the impossibility to fake a compliant device and on the admission control

protocol that allows only compliant devices to interact with other compliant

devices. An advantage of these solutions is the simplicity of the design, but

the disadvantage is the cost of the device and the infrastructure. Building

devices impossible or hard to fake or break is expensive. Thus in prac-

tise an acceptable compromise between manufacturing costs and estimated

loss of revenue due to DRM failure is often considered in deciding which

approach to implement.

On the other hand, software-based solutions, like iTunes Fairplay, are

cheaper and more flexible since they do not require special hardware and

they can share a computer with other non-DRM applications. These so-

lutions build a software-protected environment (e.g. player, reader, etc.)

within which (and only within which) the protected content can be con-

sumed. Other applications cannot access the protected content since it is

typically encrypted with a decryption key embedded in the protected en-

vironment. Software-based solutions are secure, assuming the operating

system is trustworthy and that it is hard to extract the encryption key em-

bedded in the software. These software-based solutions are the best choice

in all those scenarios where the content provider does not have control

over the hardware used by the consumers, but it is still in its own interest

to make the DRM content available to as many users as possible.

Despite being more flexible than hardware-based systems, current soft-

ware based solutions still suffer from many drawbacks that limit the type of

DRM policies they enforce. Due to their design, existing solutions cannot,

for example, implement cross-application DRM policies. Thus typical use

only N times policies like ‘play the song “Imagine" no more than 5 times’

cannot be enforced. Rather, what is now enforced are policies like ‘play

the song “Imagine" no more than 5 times using ‘ThisPlayer’,’ thus bind-

SEC. 4.2 MODELLING DRM 99

ing the policy to a specific application. Similarly, pay-per-use policies like

‘the cost of playing the song “Imagine” is 50 cents the first 10 times, then 5

cents for the next 10 times and 1 cent for the next 100 times’ are impossible

to implement if one tries to enforce them at the song level rather than for a

specific application.

While there has been previous work done on modelling DRM archi-

tectures and associated policy languages [OMA, 2009; Park and Sandhu,

2004], there are fewer implementations of such systems. In this chapter we

present the design and implementation of T-UCON, an open and generic

software-based architecture that enforces DRM policies. In particular, we

will show how T-UCON can be used to enforce DRM policies both appli-

cation specific and more importantly across applications. After providing

solutions for the two examples mentioned above we show that T-UCON

also enforces DRM policies that use obligations. Preliminary performance

tests confirm the feasibility of our approach.

4.2. MODELLING DRM

A formal model for the DRM system goes a long way in ensuring that

all the various usage restrictions that can be specified as part of DRM poli-

cies can be captured correctly. It has been argued that the notion of DRM

is more than a set of enabling technologies and that it overlaps a lot with

the notion of access control and usage decision models [LaMacchia, 2002].

At the same time, traditional access control models (MAC, RBAC etc.) do

not capture the requirements of modern DRM application scenarios.

The UCONABC model [Park and Sandhu, 2004] provides such a model.

In this section we briefly recap this model, first introduced in Chapter 2,

and explain how it can be used to model various DRM scenarios.

4.2.1. The UCONABC Model

Historically the UCONABC model was introduced as an extension of the

traditional access control model in order to take into consideration various

missing requirements needed to model the wide range of usage restrictions

seen in real-life scenarios.

The main components of the UCONABC model, as shown in Figure 4.2,

are the Subjects, which wishes to assert various Rights over certain Objects.

100 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

Rights (R)

Subjects

(S)

Obligations

(B)

Conditions

(C)

Authoriza

tions (A)

Usage

Decisions

Objects

(O)

Object Attributes (OA)Subject Attributes (SA)

Figure 4.2: Components of the UCONABC model.

Subjects and objects are endowed with Attributes that capture the proper-

ties and/or capabilities of these components.

The usage decision on the requested rights by the subject on the object

is made based on 3 factors: Authorisation (A) where attributes of subjects

and objects are checked in order to make decisions on whether the sub-

ject is authorised to access the object, oBligation (B) where checks are

performed to ensure that certain actions are performed by the subject and

Conditions (C) where environmental (system) attributes are checked to see

if they are in a predefined secure state.

The generality required by complex usage control scenarios is achieved

by adding the notion of decision continuity and subject and object attribute

mutability to the model. The continuity property is added to the decision

phase by allowing the decision to be made before the usage is permitted

(pre) or during the usage session (on), while the attributes mutability is

supported by allowing them to be updated before (pre), during (on) or after

(post) the usage has been granted. These notions of usage decision conti-

nuity and attribute mutability addressed by UCONABC enable it to meet the

requirements of the generic DRM model laid down by Erickson [Erickson,

2003]:

SEC. 4.3 TRISHUL-UCON ARCHITECTURE 101

– Use of information resource by user: this forms the very premise of

usage control models

– Implementation of control: while [Erickson, 2003] considers authen-

tication, metadata and proprietary infrastructures for data distribu-

tion, identification and cryptography, the UCONABC model (being a

generic system model) does not cover in specific detail how to ad-

dress these issues. However, it does provide basic control mecha-

nisms to achieve control based on the various forms of checks and

attribute updates

– Set of policies for controlling use of resources: In both the DRM

model and UCONABC every action on a resource is governed by a

corresponding set of checks which form one or more policies

– Fixed or built-in policies: refers to how policies are attached to the

content they are protecting. Neither UCONABC nor DRM models

address this issue, but in both cases the aim is to cryptographically

ensure that the policy is inseparable from the object being protected.

4.3. TRISHUL-UCON ARCHITECTURE

Trishul-UCON was designed and implemented on top of the Java Vir-

tual Machine architecture provided by Trishul and hence can work for all

Java applications. Unlike traditional DRM solutions that restrict policy

enforcement to specific applications, T-UCON is therefore capable of en-

forcing policies independent of and across Java applications. This is done

by associating the DRM policies to objects, mediating any access to these

policy-restricted contents using the T-UCON system and by capturing the

state of the system across application runs in the object and subject at-

tributes.

Figure 4.3 provides a high level overview of the various components of

T-UCON and their relationship with each other. The Policy Enforcement

Point (PEP) intercepts Java method calls made by the applications that are

of interest to the DRM system. Once the relevant calls are intercepted, the

control is passed to the Policy Decision Point (PDP). It is the responsibility

of the PDP to decide whether the application call can be allowed to proceed

or not. To make this decision, the PDP consults the policy associated with

102 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

OAM SAM HM CM

PDP

PEP

Allow?

(a)

OM

(b)

Application

T−UCON

Application

OKOrder/SuppressOrder

Figure 4.3: A schematic representation of (a) T-UCON inter-

cepting application methods calls and (b) various components

of the Trishul-UCON architecture.

the object through the Object Attribute Module (OAM). The OAM also

provides an interface to query and update the object attributes. The Subject

Attribute Module (SAM) provides an interface for querying and updating

the subject attributes, while the Condition Module (CM) provides a similar

functionality for the system attributes. Once a decision has been made by

the PDP on whether to allow the action, it is communicated to the PEP.

The PEP forwards this decision to the JVM, which then halts the action by

throwing an exception, if needed. The Obligation Module (OM) is tasked

with enforcing obligations in the policies while the History Module (HM)

provides logging and log querying capability to the system.

In the rest of this section, we look at each of these components in detail.

Policy Enforcement Point (PEP)

The Policy Enforcement Point is the central point where the application

and the policy enforcement mechanism of T-UCON intersect.

When T-UCON is launched, the PEP registers all the Java method calls

SEC. 4.3 TRISHUL-UCON ARCHITECTURE 103

(actions) that are of interest to the DRM system. For generic DRM sce-

narios, these include the file open and read method calls which need to be

mediated and any network based calls which are denied by default.

When an application tries to execute any of the restricted methods, the

PEP intercepts it and passes control to the PDP, sending along all the avail-

able information regarding the method call. Once the PDP makes a deci-

sion on whether to allow the call or not, the decision is passed to the PEP,

which enforces the decision by letting the application call to proceed or by

terminating the application run.

The PEP is implemented using a combination of the Trishul JVM hooks

that intercept the method calls at runtime and Trishul-P language based en-

forcement engine that lists the signature of these method calls. Exploit-

ing the flexible engine hierarchy inherently provided by Trishul, T-UCON

starts off with a default policy enforcement engine which can be extended

by loading additional engines as the need arises.

Policy Decision Point (PDP)

Once an action is intercepted by the PEP, it is passed on to the PDP. The

PDP implements the core of the decision logic of the decision engine and

is responsible for ensuring that the required authorisations, obligations and

conditions are met for the method call to proceed and if they are not, to

disallow the action.

The PDP is responsible for interpreting the object policy and enforc-

ing the various constraints associated with the usage of the object. T-

UCON by design does not support one specific Rights Expression Lan-

guage (REL) for expressing the object policy, instead it allows the PDP to

load individual expression language parsers to support any standard RELs

like XACML [OASIS, 2008], and ODRL [ODRL, 2002] or even propri-

etary ones.

The PDP is written in Java and uses the Trishul-P Order object to pass

back the decision to the PEP. Since the SuppressOrder and ExceptionOrder

are implemented in Trishul as Java exceptions, a T-UCON aware applica-

tion, knowing that a method call it is invoking is a restricted call, like open-

ing an MP3 file, could be written in such a way as to catch and handle the

exception. A T-UCON unaware application on the other hand is terminated

when SuppressOrder and ExceptionOrder is received. Since HaltOrder is

handled by Trishul as an exit call which halts the application and does not

104 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

allow the application to recover, it should be used only in extreme circum-

stances.

The rest of the helper modules of T-UCON: OAM, SAM, OM, HM and

the CM, are implemented as normal Java classes and invoked by the PDP

as required in the normal Java style, in order to handle the various DRM

policy scenarios.

Object Attribute Module (OAM)

The OAM provides an interface to query and update object attributes. The

OAM can be independently called by the PDP and the OM as both these

modules need access to the object attributes. This modular design allows

the OAM to rely on the PDP and the OM to initiate the pre/ongoing/post

updates to the attributes while freeing them from having to interpret the

syntax of the attribute specification.

As the policy associated with the object is considered as an object at-

tribute, the OAM is also designed to query this information. It should be

noted however that the OAM itself is not responsible for interpreting the

policy nor the state of the object as stored in the attributes. These are still

the responsibility of the PDP. For the current prototype implementation

the object policy is assumed to be placed at a fixed location /etc/tucon/ob-

ject_id.xml where object_id is a unique identifier of the DRM object. The

policy is expressed in an ad-hoc XML format, an example of which is

shown in Listing 4.1, though support for other formats can be easily added.

1 < o b j A t t r i >

2 <song>

3 < c l a s s i f i c a t i o n > l e v e l 2< / c l a s s i f i c a t i o n >

4 < v a l u e >15< / v a l u e >

5 <usageNum>3< / usageNum>

6 < r o l e >pRole < / r o l e >

7 < / song>

8 < / o b j A t t r i >

Listing 4.1: Example Object policy.

Subject Attribute Module (SAM)

The SAM provides a similar functionality to query and update the subject

attributes. These are again invoked by the PDP and the OM when they need

to perform pre/ongoing/post attribute updates. In the current implementa-

SEC. 4.3 TRISHUL-UCON ARCHITECTURE 105

tion, the attributes implemented are those required by the pay per-use, use

n-times and metered payment DRM scenarios, as explained in detail later.

Condition Module (CM)

System attributes are queried using the CM. These include the date, time

and other system variables that can be considered as conditions in the

UCONABC model. The CM contains platform dependent codes that pro-

vide the relevant system information to the query. Since system attributes

should not in general be changed, the CM does not provide the functional-

ity to update these attributes.

History Module (HM)

Many DRM policies require history based decisions, since they typically

span across several usage sessions of the object. Such history based de-

cisions are often associated with obligation policies that could potentially

need to check if particular actions were performed by the subject before

certain rights are allowed. We implement the history by associating with

each object a state that is global with respect to the applications and time.

The History Module provides two distinct functionalities: a convenient

mechanism to log events/actions that have occurred and an efficient mech-

anism to query these logged events. As seen from Figure 4.3, the HM is

called from the PDP as well as the OM to log and query actions, associated

decisions as well as any other relevant checks performed prior to making

the decision.

In order to provide an efficient service, the current implementation of

the HM logs only the essential details including a timestamp, the action

identified by the intercepted method’s name and parameters, the identity

of the logging entity (PDP/OM), the decision returned (in case of PDP),

the state of obligation requirement (in case of OM) and the identity of the

object. The query functionality accepts queries based on the action name,

while additional constraints can be specified on the parameters, logging en-

tity as well as the time period. The query response contains the timestamp

of the matched query, the decision returned as well as the identity of the

object.

106 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

Obligation Module (OM)

In the model, obligations are actions that are required to be performed by

the subject before, during or after the usage of an object (e.g. subject must

accept the license agreement before using the software application).

While most of the authorisation and condition requirements are suffi-

ciently straightforward for the PDP to check and enforce by itself, the com-

plicated nature of obligation requirements warrants a dedicated enforce-

ment module: the Obligation Module (OM). When the PDP encounters an

obligation requirement (e.g. user needs to accept the license agreement) in

the object policy passed to it by the OAM, it passes the obligation part of

the check to the OM for handling. The OM implements all the logic needed

to enforce the obligations requirement. Such a modular architecture allows

all the logic required to interpret, check and enforce the obligations to be

completely contained within the OM.

Currently, we have only implemented a subset of possible obligation

types. In particular, we do not deal with obligations that require calls ex-

ternal to the applications. For example, if a service requires that the subject

has a digital certificate, the system does not proactively make the external

call to obtain the certificate. Rather it checks if the certificate is present in

the system and if not, disallows the access.

Figure 4.4 provides an overview of the obligation enforcement process.

The PDP, on encountering an obligation in the usage policy invokes the OM

to handle the obligation, passing it the associated policy fragment. The OM

first checks whether the obligation has already been fulfilled by querying

the HM. If it has, the OM returns a true value to the PDP which then con-

tinues to process the rest of the usage policy restrictions. If the HM query

turns up f alse, the OM interprets, checks and enforces the requirements

of the obligation and sends back the result of the enforcement action back

to the PDP. Based on whether the enforcement by the OM was successful

or not, the PDP continues with the rest of the restrictions or terminates the

resource usage.

If the policy specifies an ongoing obligation, the OM registers a timer

with the PDP, associating it with a unique identifier to identify the specific

obligation. When the timer fires, the PDP passes the control back to the

OM to check for the obligation compliance.

SEC. 4.4 ENFORCING DRM POLICIES 107

PDP OM

handleObligation()

interpretObligation()

checkObligation()

enforceObligation()

HM

IsObligationFulfilled()

isObligationFulfilled: boolean

if (obligationFulfilled == true) return Result

return ObligationEnforcementResult

checkHistory()

A.

B.

A. prior-to-usage obligation checking

B. prior-to-usage attribute update added to case A., by calling attribute modules

Figure 4.4: Working of the Obligation Module of T-UCON.

4.4. ENFORCING DRM POLICIES

In this section we look at some typical DRM scenarios and explain how

the architecture has been used to develop prototypes that implement such

scenarios.

As with the generic UCONABC model, a DRM system consists of two

main entities: subjects and objects. Subjects are users or applications (e.g.

a multimedia player) being executed on behalf of the user. Objects are

content files, such as music or video files, whose access and use are subject

to various restrictions (when, where or how they can be used).

Subject attributes are properties and capabilities associated with the

user that allow him/her to exercise rights over objects. Attributes relevant

to DRM systems include credit card details, prepaid credit balance and sim-

ilar financial details of the user. Object attributes are properties associated

with object’s usage, like the cost of the media file, meta-data, like artist

name, bitrate of the MP3 file, etc. Properties like the remaining play count

and age of the file are also considered as object attributes in our system.

Conditions are used to express environment variables (e.g., date, time) that

could be used to evaluate DRM policies. As in the original model obliga-

108 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

tions express actions that must be executed to use the object (e.g., accept

the license first).

4.4.1. Pay-per-use

Conceptually a pay-per-use service is one of the simplest DRM scenar-

ios. An object (o) has a value associated with it, which forms its attribute

ATT (o). The subject’s (s) credits form his attribute ATT (s). The policy

associated with the object states that every use right (R) (say view) of the

object requires the value of the object to be decremented from the credit

balance of the user. In order to implement this scenario the authorisation

for use of the object is checked before the usage is allowed and the muta-

ble subject attribute is updated as a pre-update process. Using UCONABC,

a generic pay-per-use policy can be modelled, using the notation in [Park

and Sandhu, 2004], as:

M is a set of monetary amounts

credit : S→M

value : O×R→M

ATT (S) : credit

ATT (O,R) : value

allowed(s,o,r) ⇒ credit(s) ≥ value(o,r)
disallowed(s,o,r) ⇒ credit(s) < value(o,r)
preU pdate(credit(s)) : credit(s)− value(o,r)

The value(o,r), specified as its object attribute, could be a static value

like $0.50 per play or could change over usage, being 50 cents for the first

10 times, 10 cents for the next 10 and 1 cent from then on.

When the application, on behalf of the user, tries to perform a file-open

operation on the object, the PEP–in the form of Trishul–hooks intercepts

the action for mediation in order to enforce the policy. The intercepted

action is then forwarded to the PDP, which then queries the OAM to check

the exact policy associated with the object. After interpreting the policy,

the PDP queries the OAM again to read object attribute value and the SAM

for the subject attribute credit. It then decides on the authorisation based

on the the value of credit and value. Figure 4.5 shows the details of the

steps involved in the process.

SEC. 4.4 ENFORCING DRM POLICIES 109

A
p
p
lic

a
ti
o
n

P
E

P
P

D
P

O
A

M

re
a
d
(O

b
je

c
t)

h
a
n
d
le

(r
e
a
d
,
o
b

je
c
t,
 a

p
p
lic

a
ti
o
n
)

re
tr

ie
v
e
P

o
lic

y
(o

b
je

c
t)

S
A

M

re
a
d
S

u
b
je

c
tC

re
d
it
(s

u
b
je

c
t)

re
a
d
O

b
je

c
tV

a
lu

e
(o

b
je

c
t)

in
te

rp
re

tP
o
lic

y
()

If
 (

s
u
b
je

c
t
h

a
s
 e

n
o
u
g
h
 c

re
d
it

n
o
w

)
A

llo
w

 e
ls

e
 D

e
n
y

p
re

U
p
d
a
te

A
tt
ri
b
u

te
(s

u
b
je

c
t)

H
M

lo
g
E

v
e
n
t(

a
c
ti
o
n
,
o
b
je

c
t,
 s

u
b
je

c
t)

A
llo

w
/D

e
n
y

if
 a

llo
w

e
d

th
e
n

 r
e
a
d

Figure 4.5: Implementing pay-per-use policy using T-UCON.

110 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

4.4.2. Use N times

Next, let us consider the often-discussed DRM policy of ‘use only N times’.

Of course, the semantic of ‘use’ is application dependent. In our example

it is “play.” This scenario can be complicated by the practice followed by

many content providers of letting anybody play a certain percentage (say

50%) of the song as a means of advertising the song for free. We support

this feature too in our model. So a “play” action counts as such only if at

least 50% of the song has been played (read from the file). In UCONABC

such a policy can be expressed as:

B is number of bytes

N is an integer

size : S→ B

played : S→ B

plays_le f t : O→ N

allowed(s,o,r1) ⇒ plays_le f t > 0

disallowed(s,o,r1) ⇒ plays_le f t ≤ 0

allowed(s,o,r2) ⇒ true

postU pdate(played(s),r2) : played(s)+ read

postU pdate(plays_le f t(o),r2) : plays_le f t(o)−1; if played(s)> size(o)/2

Where r1 is the open right and r2 the read right and in this example O is an

audio file. The last line of the listing is the one which decreases the count

of plays left if the amount of file read is more than half the size of the file.

On interpreting the policy, the PDP queries the OAM for the objects’

use_le f t attribute. The action is allowed if this value if greater than 0.

This implementation has the limitation however that once the use_le f t has

reached 0, the object can never be opened, even for providing a preview of

the content. If such an access is to be allowed, the following logic is used

instead:

allow(s,o,r2) ⇒ use_le f t > 0∨ read(s) < size(o)/2

disallow(s,o,r2) ⇒ use_le f t ≤ 0∧ read(s) > size(o)/2

The process-flow involved in implementing this modified policy using

T-UCON is shown in Figure 4.6. As these steps show, T-UCON performs

an update of plays_le f t object attribute irrespective of which application

SEC. 4.5 ENFORCING DRM POLICIES 111

is playing the file, ensuring that the the object policy is enforced across

different applications and application runs.

4.4.3. Metered payment

A membership-based metered payment DRM system presents a slightly

different scenario. In such a system, the subject needs to be a valid mem-

ber possessing an expense account to access the object and the expense

associated with the usage is dependent on the usage duration. Thus the

membership is the object attribute while the subject attributes is the cost of

usage per unit time. The DRM scenario usage control can be expressed as:

M is monetary amount

IDmem is a set of membership IDs

Time is a current usage unit of time

expense : S→M

usage : S→ Time

member : S→ IDmem

valuet(o,r) : O×R→M, cost of usage right per unit time

ATT (S) : member,expense,usage
ATT (O,R) : valuet
allowed(s,o,r) ⇒ member(s) 6= φ

disallowed(s,o,r) ⇒ member(s) = φ

postU pdate(expense(s)) : expense(s)+ valuet(o,r)×usage(s)

As the formalisation above shows, the key subject attributes are its

membership ID, the total expense and the current usage time while the

object attribute is its usage value in unit time. What exactly constitutes the

action/rights (R) is scenario dependent. For example, in our implementa-

tion, a simple read of the object is used as R.

On parsing the policy and noting the metered payment restriction, the

PDP asks the OAM to look up the object attribute. At the same time,

the subject attributes are queried using the SAM. The PDP then performs

the necessary authorisation checks, the results of which are used to decide

whether to allow the rights or not. Once the method call has been executed,

the PDP then performs the post update on the subject attribute expense by

calling the SAM, as shown in Figure 4.7.

112 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

A
p
p
lic

a
ti
o
n

P
E

P
P

D
P

O
A

M

re
a
d
(o

b
je

c
t)

h
a
n
d
le

(r
e
a

d
,
o
b
je

c
t,
 a

p
p
lic

a
ti
o
n
)

re
tr

ie
v
e
P

o
lic

y
(o

b
je

c
t)

in
te

rp
re

tP
o
lic

y
(O

b
je

c
t:
:P
o
lic
y
)

A
llo
w
 /
 d
e
n
y

P
o
s
tU
p
d
a
te
F
la
g
 =
 t
ru
e

A
m
o
u
n
tO
fD
a
ta
R
e
a
d
(o
b
je
c
t)

d
o
 P
o
s
tU
p
d
a
te
()

u
p
d
a
te
S
u
b
je
c
tA
tt
ri
b
u
te
s
()

u
p
d
a
te
O
b
je
c
tA
tt
ri
b
u
te
s
()

A
tt
ri
b
u
te
s
U
p
d
a
te
d
 =
 t
ru
e

re
a
d
O
b
je
c
tA
tt
ri
b
u
te
s
()

S
A
M

re
a
d
S
u
b
je
c
tA
tt
ri
b
u
te
s
()

if
 (
u
s
e
_
le
ft
 >
 0
 o
r
to
ta
lA
m
o
u
n
t
<
 1
/2

O
b
je
c
tS
iz
e
)
A
llo
w
 e
ls
e
 D
e
n
y

if
 A
llo
w
e
d

re
a
d
(o
b
je
c
t)

Figure 4.6: Implementing the ‘play N times’ policy using T-

UCON.

SEC. 4.5 PERFORMANCE 113

Application PEP PDP OAM SAM

read(Object)

handle(read, object, application)

retrievePolicy(object)

interpretPolicy(policy)

getObjectAttributes(object)

getSubjectAttributes(application)

checkSubjectID()
if ID==valid Allow else

Deny

HM

logDecision()
setPostUpdateFlag()

Allow/Deny

if (postUpdateFlag == true) updateAttributes

if Allow

read

Figure 4.7: Implementing metered payment policy using T-

UCON.

4.5. PERFORMANCE

The T-UCON architecture is designed with the conscious aim of being

modular and generic enough to implement a wide range of DRM policies in

an application-independent manner. Such a design however has the down-

side of introducing performance overhead. In this section we perform an

empirical study of these overheads by examining the results of performance

measurements conducted using our prototype implementation of T-UCON.

The measurements were performed on an Intel Core 2 Duo 2 GHz machine

with 2 GB RAM running Ubuntu 7.10 with a 2.6.22 Linux kernel.

We consider the specific example of pay-per-use policy discussed ear-

lier, specifically to a music player application playing an MP3 file. The

open access to an MP3 file is allowed only if the credit remaining for the

user is more than the per-use value of the file and the appropriate object

attribute is updated after the decision to allow the read is made.

In the first set of measurements, the time taken between the application

invoking the file open command and the actual creation of the file object is

measured. When an unmodified JVM is used, with no policy enforced, the

application was able to start reading from the MP3 file in just over 1 ms.

114 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

Environment time (ms)

Unmodified JVM, no policy 1

T-UCON, no policy 10

T-UCON, pay-per-use (XML) 1783

T-UCON, pay-per-use (txt) 241

Table 4.1: Performance comparison of T-UCON prototype in

pay-per-view microbenchmark.

Environment time (s)

Unmodified JVM, no policy 303

Unmodified JVM, SM policy 303

T-UCON, no policy 304

T-UCON, pay-per-use (XML) 311

T-UCON, pay-per-use (txt) 308

Table 4.2: Performance comparison of T-UCON prototype in

pay-per-view application run.

In the second case the application was inside the T-UCON enabled

JVM but the setup was done in such a way that the PDP invokes the OAM,

which instead of returning the object policy, returns a null string and the

PDP in turn returns an OKOrder. This set of experiments was intended to

measure the overhead due to interception process and the loading of the

basic T-UCON modules. It was observed that a high extra overhead of 9

ms, 9 times the original value, was introduced.

In the next experiment, the pay-per-use policy was enforced using T-

UCON. With the subject and object attributes being represented using

XML, to simulate the use of an XACML [OASIS, 2008]-like REL lan-

guage, resulting in an observable overhead of 1780 ms. This includes the

time taken to read the policy, the object and subject attributes, the execu-

tion of the decision logic and return of the decision to the JVM from the

PEP. Closer analysis revealed that more than 75% of this overhead is in-

troduced by the process of reading, parsing and updating the XML files. In

order to estimate a less biased overhead, simple text files were used next

to represent the attributes of the subject and the object. The overhead re-

duced to a lower value of 240 ms. Table 4.1 summarises the results of

the measurements. The lower overhead observed in the second and last

set of experiments when compared to the overhead observed when using

SEC. 4.6 TRUSTED SYSTEM CONSIDERATIONS 115

XML shows that the system overhead is dependent on the complexity of

the policy checks involved and on the way the policy and attributes are

represented and as such cannot be attributed solely to the architecture.

Furthermore once the action is allowed and the necessary object up-

dates have been carried out, T-UCON does not have to perform any further

mediation and hence the overall overhead should be small when the appli-

cation run is considered in its entirety. To verify this, we next considered

the case of playing a 5.6 MB, 4.56 minute long MP3 file, again subject to

the pay-per-use policy. Table 4.2 shows the time required to play the file

for various test cases, averaged over 5 runs. The base measurements was

performed on an unmodified Kaffe JVM as noted in row one of the table.

The second row denotes the time taken for the unmodified JVM to play the

file when a simple grant read permission policy is specified by the Java Se-

curity Manager, while the rest of the rows of test cases are similar to those

in Table 4.1. It is worth noting that the current Security Manager supports

only simple access control policies and not usage control restrictions. The

low overhead figures observed when using T-UCON supports our claim

regarding the practicality of using our architecture.

4.6. TRUSTED SYSTEM CONSIDERATIONS

The T-UCON architecture proposed here, being a pure software based

solution, does not rely on any hardware functionality to perform policy en-

forcement. However, a software-only solution to DRM policy enforcement

on open platforms is hard, since it is susceptible to attacks from the owner

of the platform who might attempt to circumvent even sophisticated soft-

ware protection by trying to replace the middleware, or even the underlying

operating system. Thus, in order to ensure the integrity of the architecture,

it is imperative to leverage on security provided by trusted hardware tech-

nologies.

While integrity measurement architectures [Sailer et al., 2004] provide

a mechanism by which TPM-based hardware can endorse the configuration

of the system’s boot process and the libraries loaded in the system to a third

party, this by itself does not prevent a malicious replacement of the DRM

architecture by the user or the attempt to play the DRM enabled content by

an application that does not reply on the T-UCON middleware, basically

non-Java based applications.

116 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

The basic functionality required to prevent such exploitation by com-

pletely replacing the middleware or circumventing its invocation is to en-

sure that applications do not get access to the DRM content if it is not

accessed within the T-UCON middleware setup. The ‘seal’ functionality

of the TPM [Trusted Computing Group, 2006] is the key to implementing

this restriction. McCune et al. took the first step in this direction in the

Flicker [McCune et al., 2008] project whereby the dynamic root of trust

of the TPM and the secure kernel hardware support (SKINIT instruction)

of modern CPU architectures is used to provide an isolated execution en-

vironment for a Piece of Application Logic (PAL). This combined with

the TPM-based sealed storage functionality allows for maintaining state

across multiple Flicker sessions. They have demonstrated the use of this

architecture in protecting SSH password authentication mechanism on the

server side by implementing part of it as a PAL and also in protecting the

private key of a certificate authority server. While such work shows the

potential of using the TPM’s dynamic root of trust in association with the

CPU features to provide a sealed environment for running T-UCON, the

size of T-UCON, a whole JVM implementation, would be a big hurdle in

protecting it using a similar approach.

One way of assuring integrity of the T-UCON architecture is through

the deployment of a trusted subsystem similar to the one proposed by

Zhang et al. in [Zhang et al., 2008b]. Using such a system, a TPM’s seal-

ing and trust chain based attestation functionality are used to ensure that

the objects can be accessed only by applications running inside T-UCON.

The concept of trusted channel introduced by Sadeghi et al. [Sadeghi

et al., 2007] provides the most feasible mechanism to provide the TPM-

sealed environment required for protecting the T-UCON setup. A trusted

channel is defined as a secure channel that can validate the configuration

of the other endpoint of the compartment and bind the data to this con-

figuration such that only the compartment with the specified configuration

can access the data. The compartment configuration in their architecture

maps to a hash value of the software binary (T-UCON in our case) and all

the initialisation information including the default policy enforcement en-

gine. The trusted channel is powered by the trust manager that abstracts

the trusted computing services and the storage manager that provides per-

sistent storage while preserving integrity, confidentiality and authenticity.

In the proposed architecture, very similar to the one in [Sadeghi et al.,

2007], the publishers verify the bootstrapping of the trusted computing

SEC. 4.7 RELATED WORK 117

base and once accepted, asks the trust manager on the DRM device to cal-

culate the configuration of the compartment running T-UCON. If this con-

figuration matches the globally known and approved configuration value,

the publisher, using a protocol similar to the one proposed in [Sadeghi

et al., 2007] ships off the DRM content and the license (policy) encrypted

in such a way as to be sealed against the verified configuration value. The

DRM content, in the encrypted state, is not useful outside the compart-

ment. An application that tries to access it outside the scope of a compart-

ment running T-UCON will not be able to get to the unencrypted content

as the storage manager part of the trusted computing base would refuse to

decrypt the DRM content to any compartment that does not match up to the

same configuration as what was used to seal the content. When the com-

partment with T-UCON running in it attempts to access the DRM content

and the configuration integrity check has been passed, the storage manager

goes ahead and decrypts the contents and passes it to the T-UCON com-

partment for its use within the compartment. The vitalisation layer of the

architecture ensures strong isolation between the compartments.

4.7. RELATEDWORK

The financial incentive involved in developing an architecture for en-

forcing the usage restriction of digital content has seen the development of

several DRM systems.

Most of the work has however been in the form of proprietary systems.

Windows Media DRM [Microsoft Corporation, 2009] (WMDRM) from

Microsoft allows protected audio and video to be played on Windows PCs

and portable devices. The WMDRM provides the full infrastructure of the

DRM structure including the content packaging, distribution and licensing

as well as restricted playback. The Open Mobile Alliance [OMA, 2009]

provides one of the few open specifications for a DRM system, specifically

for mobile service providers and device manufacturers. But even in these

specifications, the actual mechanism for policy enforcement is left as an

open problem for the device manufacturers. In that respect the work we

have reported in this chapter compliments these specifications and DRM

systems.

Jamkhedkar and Heileman [Jamkhedkar and Heileman, 2004], taking

inspiration from the OSI layer framework, propose a generic layered ar-

118 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

chitecture for DRM systems. The upper layer made up of application and

negotiation layer are the end-to-end layers that create services that are used

by the applications that involve DRM. In the middle, the rights expression

layer provides the minimal support for the management of the digital rights

while the lower layer is concerned with the actual enforcement of rights re-

strictions. This layer is itself divided into upper category layer, responsible

for handling content according to its type and then lower category layer

which is responsible for ensuring that no low-level illegal access to the

DRM program are allowed. T-UCON system sits somewhere in between

the upper and lower category layers, providing a middleware based DRM

enforcement system.

Michiels et al. [Michiels et al., 2005] extends the work of [Jamkhedkar

and Heileman, 2004] by extracting the high level usage scenarios accord-

ing to the functionality of the players, the content producers, publishers

and consumers. Though they claim to present the "next step towards a soft-

ware architecture that supports reuse and co-operation of multiple domain-

specific DRM technologies and standards," the discussion is confined to

the higher framework level and the actual enforcement mechanism is not

considered.

Recent years have seen an increased interest in the area of enforcing

usage control policies in distributed systems. Considering this area as a su-

perset of the DRM enforcement studies, here we take a look at the existing

proposals and highlight their differences compared to our approach.

Berthold et al. [Berthold et al., 2007a], tackle the enforcement of usage

control requirements in Service Oriented Architectures. The paper sug-

gests a client-side architecture which is able to support domain separation

and policy enforcement for various Java services or objects. The granu-

larity of usage decisions supported by their architecture is at the level of

applications, while T-UCON provides a very fine-grained control at the

level of Java method calls. Furthermore in T-UCON, applications are not

assumed to be trusted.

The client-side enforcement approach proposed by Schaefer [Schaefer,

2007] considers the use of a reference monitor to enforce usage policies

on the objects of interest. Although the architecture is similar to that of T-

UCON, in their approach the monitor on the client side needs to be contin-

uously updated with the information on a usage control server. Moreover,

the work is purely theoretical in nature, while in this thesis work we present

the design and implementation of a practical enforcement architecture.

SEC. 4.8 CONCLUSION 119

A slightly different approach is taken by Zhang et al. [Zhang et al.,

2008a] where they propose an authorisation enforcement architecture for

collaborative systems. While their focus is on the general collaborative

systems, ours concerns enforcement on the consumer-side. Although typ-

ical UCONABC mechanisms like attribute updates and obligation checks

are dealt with in detail, the proposed solution commits to the study of au-

thorisations rather than usage control and hence among others, ongoing

obligations are not considered. Trusted computing in usage control is ap-

proached in [Zhang et al., 2008b], and while the suggested architecture

is similar to [Zhang et al., 2008a], the focus is on the integrity of inner

security modules and details of specific enforcement scenarios are not pre-

sented.

Katt et al. [Katt et al., 2008] extends the original UCONABC model by

adding the notion of post-obligations. Focusing on obligations from the

point of view of subject, object and fulfilment time, the paper stresses an

enforcement framework incorporating these aspects. However, in their ar-

chitecture the PEP is embedded with the target application. This prevents

policies from being enforced across applications and assumes a trusted ap-

plication or the existence of a mechanism to safely direct application ac-

tions, neither of which are explained in detail in the paper. T-UCON, on the

other hand, is firmly based on the premises of controlling untrusted appli-

cations and allows the policies to be associated with objects and enforced

across applications.

Jamkhedkar and Heileman draws inspiration from the UCONABC model

to propose a formal conceptual model for rights statements that aims to re-

duce interoperability complexity between various RELs [Jamkhedkar and

Heileman, 2008]. T-UCON’s OAM would be able to handle such a formal

expression model equally well, if a suitable parser is available.

4.8. CONCLUSION

In this chapter we have presented the design and implementation of

T-UCON, a generic software-based Digital Rights Management architec-

ture using Trishul framework. Being a middleware solution, unlike other

DRM solutions T-UCON is able to enforce policies associated with DRM

objects across multiple applications and application runs. Performance re-

sults show that while the checks associated with the DRM logic have the

120 APPLICATION: DIGITAL RIGHTS MANAGEMENT CHAP. 4

potential to introduce larger overheads, the framework in itself adds a small

amount of overhead.

CHAPTER 5

Application: Web Services

Over the years business operations of various organisations have used ad-

hoc setups to interact with each other over the Internet. This has, how-

ever, lead to the emergence of a large number of incompatible frameworks.

In order to tackle this problem the Web service (WS) technology [W3C,

2009] along with associated specifications have been developed to provide

a standards-based open framework for application-to-application interac-

tion.

In its current form, WS technologies have been widely used to imple-

ment the Service Oriented Architecture (SOA) paradigm by which mono-

lithic standalone systems are decomposed into smaller loosely coupled

modular systems that can then be used in an on-demand fashion to compose

larger service offerings in a heterogeneous environment by various organi-

sations. This allows for business processes to be composed of these smaller

services that could even span across organisational boundaries. This also

allows a service provider to offer the user, be it an individual or an or-

ganisation, a standard public endpoint for accessing a particular service

while at the same time allowing it to compose the service internally us-

ing various sub-component services, while hiding the complexity from the

user. All aspects of the service discovery as well as inter-service interac-

tions and communications are structured using open standards allowing for

maximum interoperability.

With more and more users relying on the WS platform for their needs,

the question of data integrity, confidentiality and equally importantly the

user’s ability to impose specific usage restrictions on the data, are be-

coming big issues. Recent work like WS-Policy [W3C, 2006c] and WS-

122 APPLICATION: WEB SERVICES CHAP. 5

ABAC [Shen and Hong, 2006] have allowed users to specify basic autho-

risation rules for accessing a service and/or the data used by the service.

Most of the existing work has, however, concentrated on protecting the

web service, specifying and enforcing policies that define who can access

the service and how it can be used. However, much less has been done

on specifying and enforcing access and usage policies as defined by the

data provider. In general the provider would like to ensure that the data it

had provided to a remote WS is being used only by services it trusts and

has explicitly allowed and in ways specifically allowed by policies it has

defined.

In this chapter we describe an architectural framework that exploits the

capabilities of Trishul to implement a policy enforcement architecture for

user-defined policies in a Web Service environment.

5.1. WEB SERVICES

Service Oriented Architecture (SOA) paradigm promises simple, fast,

secure and interoperable integration of services, enabling the creation of

large business processes and service using a collection of smaller self-

contained components. By allowing the overall service to be accessed at a

publicly addressable service endpoint, the individual component services

that make up the service are hidden from the view of the service user.

At present, Web Services (WS) are the only concrete technology that

is used in implementing an SOA framework. These technologies in turn

use various XML-based open standards to implement such services. In

this section we provide a brief introduction to the main standards used in

most WS systems. While the actual process of forming and using Web

Services use a top-down approach, expressing the business process first

and then implementing and expressing various aspects of the process using

different services, in this discussion we use a bottom-up approach in order

to describe the various technologies involved.

Simple Object Access Protocol (SOAP) [W3C, 2007] is an XML-based

protocol that aims to standardise the communication aspect of the WS tech-

nology. It is used for messaging and remote procedure calls between ser-

vice components as well as the user and the service endpoint, as shown in

Figure 5.1. At the transport level, SOAP reuses the existing HTTP proto-

col to carry the message, which, when stripped to its essentials, is an XML

SEC. 5.1 WEB SERVICES 123

document containing a header and a body. The header section contains

metadata associated with the message while the body contains the actual

payload of the SOAP message. WS-Security [OASIS, 2006] specification

provides protocol level security by specifying means of supporting encryp-

tion and digital signing of SOAP messages.

Business
Logic Processing

Message Message Business
LogicProcessing

Service Requestor Service Provider

Request
SOAP

SOAP
Reply

Figure 5.1: The use of SOAP messages between web service

entities.

The Web Service Description Language (WSDL) [W3C, 2006a] pro-

vides a way to formally describe the service being offered at the WS end

point as well as the structure of the expected client-service interactions. It

allows for specification of the vocabulary of the message, the interaction

of the application-level abstract interface as well as the protocol-dependent

details that the user must follow to access the service. A WSDL document

consists of two parts: logical and physical. The logical part defines types of

data being carried, message representing the input and output parameters

associated with an operation, the actual operation, which defines an actual

action performed by the service and portType, which defines an abstract

set of operations supported by the service. The physical part of WSDL

describes more concrete aspects of the service including binding associ-

ating a concrete protocol and message format to operations and message

defined within a particular portType, the port that associates the endpoint

with a physical network address and service that contains one or more port

elements representing related endpoints.

Universal Description, Discovery and Integration (UDDI) specifica-

tion [OASIS, 2004] provides potential users a unified and centralised way

to find service providers. It specifies the definition of how to define infor-

mation about the service as well as the query and update APIs for accessing

and updating this information from/at the centralised listing.

124 APPLICATION: WEB SERVICES CHAP. 5

Once all the services required to implement an SOA has been imple-

mented, it needs to be brought together. The most common way to do

that is using Web Service Business Process Execution Language (WS-

BPEL) [OASIS, 2007], a language used to create orchestrations, which

are composite, controller services defining how the services being con-

sumed will interoperate to provide the SOA functionality. At the core, it

is an XML-based programming specification that is used to describe high

level business processes as interactions between different businesses fash-

ioned as Web Services. An alternative to Web Services Orchestration is

Web Services Choreography and its associated specification Web Services

Choreography Description Language (WS-CDL) [W3C, 2005] which de-

fines a more descriptive process-less service-service relationship between

various WS endpoints.

Yet another XML-based specification, WS-Policy [W3C, 2006c], is

used to express the capabilities, requirements and characteristics of Web

Services involved in a SOA framework. A policy is composed of pol-

icy alternatives, each of which is a collection of policy assertions. An

assertion is defined as “an individual preference, requirement, capability

or other property." Examples of policy assertions include authentication

schemes, privacy policy, QoS guarantees etc. WS-Policy provides a com-

mon fine-grained syntax for specifying these different kinds of assertions

in a consistent manner. An example of a WS-Policy document is shown

in Listing 5.1. It describes a web service instance invocation which uses

a ‘SecurityToken’ assertion of the type ‘Kerberos’ [Kerberos Consortium,

2009].

1 <wsp : Po l icy >

2 <wsp : ExactlyOne >

3 <wsse : Securi tyToken >

4 <wsse : TokenType>wsse : Kerberosv5GTGTS </wsse : TokenType>

5 </wsse : Securi tyToken >

6 </wsp : ExactlyOne >

7 </wsp : Po l icy >

Listing 5.1: Example of WS-Policy specifying that a WS instance uses a Kerberos token.

As there are several entities involved in the life-cycle of a Web Ser-

vice, it follows that these actors would be interested in specifying their

own policies at various phases in the service life-cycle. Figure 5.2 shows

these actors and the various policies they define.

Service policies are defined by the developers of the web services as

SEC. 5.2 WEB SERVICES 125

Web Service

policy

policy policy

Application
Server

Service User

policy

policy

invokes

Service

Effective

Requested

SupportedServer

Figure 5.2: WS-Policy definitions.

properties that must hold true for all instances of the web service irrespec-

tive of the hosting environment. Server policies on the other hand are de-

fined by the hosting providers and specify the features that are supported

by a specific application server on which the service is instantiated. Sup-

ported policies are formed by the intersection of these two policies and

represent the effective policy of a WS running on a specific hosting infras-

tructure. The WS user is also able to state the features of the services it

would like to invoke, to support. These policies are called the requested

policies. The intersection of the supported policies and requested policies

form the effective policies of the Web Service instance. Approaches to pol-

icy intersections are discussed in [Mukhi and Plebani, 2004; Verma et al.,

2005].

WS-Policy by itself does not provide all the functionalities required for

using policies in web services. For example, while it can be used to specify

service policies, it does not concern itself with how the policies are attached

to a web service. Yet another specification, WS-PolicyAttachment [W3C,

2006b], defines the required mechanism. Specifically, it defines a mecha-

nism to reference policies from a WSDL document, associate them with a

specific instance of a WSDL service as well as with UDDI entities.

While the specifications discussed above provide a standards based

framework for enforcing policies, the actual design and implementation

of a policy enforcement architecture has been less common. In this chapter

we consider the use of Trishul in designing such an architecture.

126 APPLICATION: WEB SERVICES CHAP. 5

5.2. SCENARIO OVERVIEW

WS EP

1 2II

R
WS 2

2

WS
1

1 2< D , D >

R

C
< D >2

Figure 5.3: Example scenario providing motivation for the pol-

icy enforcement architecture.

Consider the example scenario shown in Figure 5.3 in which an entity

I1 provides a web service WS1 at the publicly addressable endpoint WSEP.

The service offered at WSEP is internally fulfilled by using the capability of

the local WS1 and another Web Service WS2 provided by an external entity

I2. A client C wishing to use the service provided by I1 sends the required

confidential input data D to WSEP for processing. Assume that the data

consists of two independent segments: D1 and D2, each to be used by I1

and I2 respectively. On receiving the input data, WS1 sends D2 to WS2

for processing and uses the response R2 obtained from WS2 along with the

user-submitted data piece D1 to compute R, and sends the response to the

user.

The client C wishes to associate policies (these policies are discussed

below) P1 and P2 to the data segments D1 and D2 respectively. It would

like to ensure that D2 is sent to I2 alone and that the policies specified by

the client and attached to the data are enforced at WS1 and WS2.

5.2.1. Policy Classes

The classes of policies that a WS client would like to see enforced remotely

on the submitted data can be broadly divided into two – access control and

usage control.

Previous studies on access control policies in the context of web ser-

vices [van Bemmel et al., 2005; Shen and Hong, 2006] have concentrated

on issues related to allowing the services to define and control who invokes

SEC. 5.3 SCENARIO OVERVIEW 127

it or on allowing the user to specify the requested policies to form the ef-

fective policy of the web service instance. In this work, we extend this

by allowing the clients to specify the identity of the web services that can

access the confidential client data as well as specify the conditions under

which such access can be provided.

Usage control policies on the other hand specify how input data can be

used by the web service components once access rights have been granted

to it, either unconditionally or after a specified policy requirement has been

fulfilled. Such policies could span a wide range of functional restrictions.

For example, C could specify that the data D2 should not be stored in the

remote WS’s permanent storage device but rather be used for processing

entirely in the memory. Another possible policy could be that the data

should not be sent outside the WS host unless encrypted beforehand or that

all network communication using the data should use secure end-to-end

encryption protocol TLS 1.2 or higher.

5.2.2. Threat Model

In a traditional web service setup the resource provided by the service com-

ponents are considered to be the asset to be protected from attackers who

might be interested in exploiting the setup to gain unauthorised or unac-

counted access to them. However, in our scenario, the user data is the

protected asset while the web service components are assumed to be un-

trusted. They cannot be trusted to enforce the policies on their own, that

is, the remote service component may be able to violate the usage control

requirements that data provider has imposed on the data.

We also assume that since the remote platform on which the service

is running is not directly under the control of the data provider, it cannot

be blindly trusted to enforce the policies specified by the provider. Further

steps need to be taken in order to ascertain the integrity and functional state

of the software stack that is running on the remote side before such trust

can be placed.

In the next section we introduce Trishul-WS, an architecture proposed

to implement a policy enforcement framework in a Web Service framework

using Trishul.

128 APPLICATION: WEB SERVICES CHAP. 5

5.3. TRISHUL-WS

As discussed before, the WS architecture provides a framework for

user-submitted data to be processed by the various component services

that make up the WS. However, the problem of ensuring that the poli-

cies associated with the submitted data is enforced at these services has

largely remained unresolved. Trishul-WS architecture aims to fill this gap

in research by implementing a middleware-based WS policy enforcement

architecture.

5.3.1. System Architecture

The proposed architecture of Trishul-WS is shown in Figure 5.4.

Let us consider the various components involved in the system by fol-

lowing the data as it traverses the system. Before the service user sends any

data to the web service instance, it invokes the Attestation Service Module

(ASM) of the WS to check for its compliance with the policy enforcement

architectural requirements (1). The detailed working of ASM is discussed

in Section 5.3.4.

Once the compliance check is successfully completed, the user sends

the data to the WS at the endpoint advertised in the UDDI document (2).

When this 〈data, policy〉 packet is received at the remote endpoint, the

Access Policy Enforcement Point (PEPA) enforces any access control re-

strictions specified in the policy of the user of the WS. For this, it invokes

the Policy Decision Point (PDP) (3) to check whether the conditions for

access have been met.

The PDP is internally assisted by the various helper modules in its de-

cision making process, making the architecture extensible. The detailed

working of these modules are not explicitly defined in the architecture it-

self since they depend on the specific policies that would be enforced at the

WS, allowing for the architecture to support various classes of access con-

trol and usage policies. For example, all system specific attribute checks

(“Java version should be Sun Java ≥ 1.5") could be provided by a ‘System

Attribute Module’ which could then be queried by the PDP during the de-

cision process to check whether Sun Java is installed and if so, whether the

version is ≥ 1.5.

The decision is sent back to the PEPA (4), which forwards the data to

the service component if access restrictions are met (5). Once the data has

SEC. 5.3 TRISHUL-WS 129

A
S

M

P
IP

d
at

a
+

p
o
li

cy

S
er

v
ic

e
C

o
m

p
o
n
en

t
S

er
v
ic

e
U

se
r

T
ri

sh
u
l−

W
S

W
S

 U
se

r

P
D

P

H
el

p
er

 m
o
d
u
le

s

 s

er
v
ic

e

9
b
:

Y
E

S
 −

 s

en
t

b
ac

k

1
:

C
h
ec

k
 c

o
m

p
li

an
ce

2
:

R
ec

ei
v
e

3
:

A
ll

o
w

 a
cc

es
s?

4
:

D
ec

is
io

n5
:

F
o
rw

ar
d
 d

at
a

7
:

A
ll

o
w

?

8
:

D
ec

is
io

n

9
a:

 N
O

 −
 d

ec
is

io
n

S
en

d

6
:

A
ct

io
n
 o

f

A
ct

io
n
 e

x
ec

u
te

d

D
at

a
+

 p
o
li

cy
P

E
P

P
E

P

A

 U

Figure 5.4: The architecture of Trishul-WS designed to de-

velop policy enforcement in web services framework.

130 APPLICATION: WEB SERVICES CHAP. 5

been passed on to the service, every action performed on it is subject to

usage restrictions specified by the user requested policy. To enforce this,

each action that involves the use of the policy-tagged data is intercepted

by the Usage Policy Enforcement Point (PEPU) of the middleware (6) and

passed on to the PDP (7) to make a decision on whether it should be al-

lowed to be executed as per the (usage) policy attached to the data. The

decision made by the PDP is conveyed to the PEPU (8) which then informs

the application of the negative decision (9a) or lets the application’s action

through (9b).

One special action that needs to be handled differently is that of writing

the data to a network socket. When a data segment leaves the system for an

entity other than the service user, it has to be re-tagged with the effective

policy that is currently associated with the data. This data segment under

consideration need not be the user provided data as such but rather any data

that has been tainted explicitly or implicitly by information flow from the

user provided data. This process of data re-tagging is handled by the Policy

Insertion Point (PIP).

5.3.2. Properties

The architecture described above is designed with the following properties

in mind:

– Modular: the functionality provided by the various components are

compartmentalised in such a way as to make the system very modu-

lar.

– Policy language agnostic: the architecture does not specify or depend

on a specific policy specification language that C needs to use. WS-

Policy [W3C, 2006c] and its extensions like WS-CoL [Baresi et al.,

2006] and other similar expressive languages can be used to specify

the policy as long as the PDP has the equivalent interpreter engine to

parse the policy and understand the specification syntax.

– Message passing independence: the architecture is not tied down to

any specific message passing specification, allowing for the use of

SOAP-like XML based message passing protocol which is normally

used in web services framework or any other markup language that

might be used in other SOAs.

SEC. 5.3 TRISHUL-WS 131

– Extendable: extra helper modules can be added to the architecture

and invoked by the PDP to help enforce a wider range of policies.

– Technology independence: the architecture does not explicitly de-

pend on or use specific technology properties in its design. This

means that in principle, a implementation of the architecture could

be realised using Java, .Net or any other technologies. However, the

system-base used for implementation does need to provide certain

functionalities, as described below, for the actualisation of the archi-

tecture.

5.3.3. Functional Requirements

While the proposed architecture is independent of any implementation tech-

nology, the platform choice for implementation of such a system should be

made with the following requirements in mind:

– Interception capability: when a service uses a policy-tagged data in

an operation, the PEP has to intercept the action and pass the control

to the PDP. Whether this interception is done at application level

(harder to implement but easier to express and interpret the policy)

or at a lower level, for example at the Java method calls level, (easier

to implement but harder to translate high level semantics to low level

calls) is implementation dependent.

– Information flow tracing: the ability to associate a policy with the

data and robustly trace the flow of the data within the system is a

crucial requirement of the architecture, without which the (untrusted)

application could try and disassociate the policy from the data, in an

effort to circumvent the policy enforcement.

Furthermore, as the web service components work on the data, the

policies associated with the data can change. For example, consider

the following operation performed by the service on two data pieces

it received:

Dtemp = D1 + D2

As per the information flow principles [Denning, 1975], the policy

associated with Dtemp should effectively be P1∪ P2, that is the poli-

cies P1 and P2. This means that when the service use Dtemp in later

132 APPLICATION: WEB SERVICES CHAP. 5

stages, the PDP needs to ensure that both P1 and P2 are adhered to.

Similarly if the service is trying to send the data to an external party,

the PIP should tag Dtemp with these two policies and the tuple sent

into the network should be 〈Dtemp, P1, P2〉.

In short, the implementation should be able to handle both normal

and malicious explicit and implicit flow tracing problems described

in earlier chapters of the dissertation.

5.3.4. Platform Security

For the proposed architecture to be able to enforce client-specified policies,

every WS component involved in providing the service has to implement

the middleware platform and run its component service on top of this mid-

dleware.

Since the assurance of policy enforcement depends on the existence of

the middleware at the remote web service, C needs some form of check

to ensure that the policy enforcing middleware is indeed running on the

remote system before it can safely send the data to the WSEP of WS1.

Furthermore, access to the data should be prevented if the middleware

is found not to be running, in order to protect it against the untrusted plat-

form owner. In a similar manner, WS1’s middleware needs to ensure that

the WS2 is also running the expected middleware before sending the data

across.

In our architecture, this is implemented by the use of the Trusted Plat-

form Module (TPM) [Trusted Computing Group, 2006] hardware. TPM

provides the technology to confirm that a remote machine is in a specific

(trusted) state using the core root of trust for measurement and the process

of remote attestation [Trusted Computing Group, 2006]. It also provides

a functionality called secure sealing that enables data to be encrypted to

a specific state of the machine in such a way that decryption can be per-

formed successfully only if the machine is in the same state for which it

was encrypted for. These functionalities are used in our architecture to

provide platform security.

At startup, the state of each of the components of the layers below the

middleware – the BIOS, the boot record and the operating system – is cap-

tured by binary hashing and stored in a Platform Configuration Register

(PCR) of the TPM. The OS, or a dedicated kernel module [Sailer et al.,

2004], can in turn capture the state of all the code running in the system,

SEC. 5.3 TRISHUL-WS 133

including the Trishul-WS middleware, and again binary hash it and store

the new value by extending the PCR value. Whenever a remote party, like

the service users, wishes to validate the state of the software stack running

on the system, it can initiate an attestation challenge to the TPM which will

report the value of the stored PCR value, signed with a hardware-protected

Attestation Identity Key (AIK). A certificate from a mutually-trusted Cer-

tification Authority can in turn bind the AIK to a specific legitimate TPM.

Semantic Remote Attestation [Haldar, 2006] has been proposed to help

the attestation process capture the dynamic state of the application running

on top of the middleware. All these functionalities are provided by the

Attestation and Security Module (ASM) of our middleware shown in Fig-

ure 5.4.

Once the remote system is verified to be in a state that is known to be

trusted, data can be sent to it encrypted such that it can be decrypted only

if the machine is in the same trusted state.

Client WS1

Attestation Response

<D1,P1,D2,P2>

WS2

<D2, P2>

Attestation Response

Attestation Challenge

Attestation Challenge

Figure 5.5: Steps involved in the platform attestation process.

Figure 5.5 provides an overview of the attestation process. The client

C kick-starts the process by issuing an attestation challenge to WS1 and

only if the attested value matches a known trusted value would it submit

the data to the WSEP. Similarly, the middleware on WS1 would issue an

attestation challenge to a remote component service WS2 before a policy-

tagged data is sent to it. This is a typical implementation of the attestation

procedure proposed by the TCG. In fact, the attestation process described

here is similar in nature to the WS-Attestation [Yoshihama et al., 2005]

specification.

134 APPLICATION: WEB SERVICES CHAP. 5

Recent advances in technology in the form of support for Secure Vir-

tual Machine (SVM) [Strongin, 2005] extensions in modern CPUs have

provided a more dynamic way to ensure the integrity of the platform and

confidentiality of the submitted data. McCune et al. [McCune et al., 2008]

have developed Flicker architecture that allows a piece of code to execute

in isolation by disabling direct memory access (DMA) and interrupts. In

our architecture the Flicker code can be fashioned to run the ASM.

On its first run, the ASM creates a private-key public-key pair pair and

seals the private key using the TPM such that no other code can gain access

to the key. The attestation of this step can assure the remote client that a

trusted ASM was run to generate the key. The public key is then made

widely available. When the client needs to send any data over to the remote

host, it can be encrypted with the public key of the ASM.

When the ASM receives the encrypted data, it uses TPM unsealing

functionality to retrieve the private key and use it to decrypt the data. This

decrypted data is used by the rest of the middleware for processing. As

long as the PDP prevents the data from being stored locally, any untrusted

application will be unable to circumvent the policy enforcement specifica-

tion associated with the data.

5.3.5. Implementation

The Trishul framework is well suited for implementing the WS policy en-

forcement architecture proposed earlier in this chapter due to its support

for information flow tracing and the ability to perform method call inter-

ception needed to monitor the web service actions.

The PEPA is implemented by extending the Axis2 [Apache Software

Foundation, 2009] SOAP engine as it anyway needs to interact with the

SOAP engine of the already existing WS framework. The PEPU interface

is implemented using the Trishul JVM hooks that intercept the method

calls invoked by the web service components. In the current prototype

implementation, it is assumed that the identity of these method calls that

need to be trapped are known in advance.

In the simplified prototype developed to demonstrate the feasibility of

using Trishul to implement the Web Service policy enforcement frame-

work, we consider a simple WS system which accepts two strings as input

data, concatenate them and return the resulting string back to the user. An

extension of the SAML [OASIS, 2005] condition element in an SAML as-

SEC. 5.3 TRISHUL-WS 135

sertion was used to specify the user restriction attached to the use of the

data supplied to the web service. WS-PolicyAttachment is used to attach

the policy to the user supplied data.

In the example policy in Listing 5.2, the input data is associated with

the policy that the data can be used only if the JVM version is at least 1.5

and that the data cannot be sent to any other third party over the network.

1 <Asser t ion Asser t ion ID=" 3425 ">

2 <Condi t ions NotOnOrAfter= " 2009 -01 -12 T09:03:187 ">

3 < p o l i c y Co n d i t i o n >

4 < p o l i c y xmlns=" h t t p : / /www. s r i j i t h . net / t -ws">

5 <appl iesTo s e r v i c e I d ="T-WS Example ">

6 <URL> h t t p : / / s r i j i t h . net / t - ws1< /URL>

7 < / appl iesTo>

8 < p a r t y I d >TWS1< / p a r t y I d >

9 <JVMVersionMin>1.5< / JVMVersionMin>

10 < t h i r d p a r t y >

11 <a l low>No< / a l low>

12 < / t h i r d p a r t y >

13 < / p o l i c y >

14 < / p o l i c y Co n d i t i o n >

15 < / Condi t ions>

16 < / Asser t ion>

Listing 5.2: SAML based policy attached to user submitted data for prototype

implementation.

The enforcement of the policies using the Trishul-WS architecture ob-

viously impacts the performance of the Web Service infrastructure. In or-

der to gauge this performance overhead of the prototype implementation

of Trishul-WS, a number of measurements were performed, comparing the

enforcement architecture prototype performance with that of the normal

setup. All tests were performed with the Web Service component imple-

mented on a single node of a four-node AMD Opteron system (model 852,

1Mb cache, 2593 MHz) with 1.5 GB of RAM. Table 5.1 lists the measure-

ment results of the processing time between the instance the input data is

received at the WS and the instance the result data is sent to the user.

In the case where Trishul-WS is used, the web service is executed in a

policy complying environment, i.e. JVM version 1.5 is used and the com-

ponent does not attempt network access. As the measurements in Table 5.1

show, the use of the policy enforcement T-WS architecture introduces a

processing overhead of 97%. Given the overhead introduced by the Tr-

ishul framework as seen in the microbenchmark reported in Chapter 3, this

finding is not surprising.

136 APPLICATION: WEB SERVICES CHAP. 5

Setup Processing time (ms) Overhead

Normal WS 39 -

T-WS 75 97.4%

Table 5.1: Performance comparison of normal web service pro-

cessing time and that using the T-WS policy enforcement archi-

tecture for policy in Listing 5.2.

5.3.6. Advertising Enforceable Policies

The set of policies that a Web Service can enforce at its end can be con-

sidered as description of services that is offered to the client. Hence, just

like in the case of typical Web Services properties, it should be able to ad-

vertise the types of policies that are available for the user to attach to the

submitted data. Just as WSDL is used to describe the services offered, a

similar extension of the XML-based specification language may be used

to describe the set of policies the WS can enforce at its end. This is not

considered as within the scope of this work.

In order for the client to specify which parts of the data can be accessed

by which specific internal components of a WS setup, the identity of all

components that make up the service must be advertised to the user. For

example, C should know that the service at WSEP is composed of two

individual services WS1 and WS2. With this knowledge, C could then

specify the access control policy that WS2 can have access to say, only D2.

Again, support for this is not considered as essential part of current work

and is deferred for further research.

5.4. RELATEDWORK

Some of the works done in the area of Web Services security has been

in providing protocol level integrity and confidentiality assurance, for ex-

ample WS-Security [OASIS, 2006]. They mainly deal with specifications

on how to use cryptographic primitives to protect the SOAP messages sent

between the different components of the Web Service. Our proposal on the

other hand is an architectural solution to the problem of enforcing user-

specified policies for the data provided by them. In fact solutions like

WS-Security can be used within our architecture, just like in the normal

WS setup.

SEC. 5.4 RELATED WORK 137

WS-Policy [W3C, 2006c] and WS-PolicyAttachment [W3C, 2006b]

specifications provide a framework to define and attach policies (capabil-

ities, requirements etc.) to various entities associated with a WS based

system. Unlike our proposed architecture however, they do not specify the

actual system design needed to ensure the enforcement of the associated

policies. Our architecture uses these specifications to define the policies

that the data provider would like to attach to the data submitted to the Web

Services.

van Bemmel, Wegdam and Lagerberg have proposed 3PAC, an en-

forcement architecture for credential-based access policies for Web Ser-

vices [van Bemmel et al., 2005]. Similar in concept to the working of

Kerberos [Kerberos Consortium, 2009], but for Web Services, the 3PAC

architecture provides a signed token-based system for controlling access

to Web Service resources. Other than access control decisions based on

tokens, 3PAC does not support any other policy restrictions, specifically

usage control restrictions. In fact the actual implementation of the 3PAC

access control engine at the Web Service can be implemented using the

Trishul-WS architecture proposed in this chapter as a modular helper mod-

ule to the PDP.

Attribute-based access control (WS-ABAC) [Shen and Hong, 2006]

was proposed as an alternative to the identity-based access control model

for Web Services in order to address the administrative scalability and con-

trol granularity of the identity-based approach. XACML [OASIS, 2008] is

used as the policy specification language. The implementation architecture

is similar in design to that of Trishul-WS, with a SOAP handler, PEP, PDP

among others to implement the access control model.

Baresi, Guinea and Plebani have proposed a monitoring framework and

a language named WS-CoL for letting the user specify requirements on the

execution of Web Service composition in WS-BPEL processes in [Baresi

et al., 2006]. However, their work in itself is mainly concerned with re-

strictions to be placed on execution of composed Web Services, i.e. the

WS-BPEL process. This is done by instrumenting the original WS-BPEL

specification such that at all locations specified in the policy, the invocation

of the WS-BPEL activity is substituted by a call to the monitor manager.

The policy restrictions specified in WS-CoL can, in theory, be supported by

Trishul-WS by writing a suitable parser and decision engine logic, while

the monitor manager is similar in design to the Trishul-WS architecture.

The policies supported in their work can be considered as a subset of the

138 APPLICATION: WEB SERVICES CHAP. 5

policies that can be implemented using Trishul-WS. One main difference

between their work and Trishul-WS is that in our work, the policies can

be attached to the data in a very secure manner using the information flow

tracing functionality while in their work the policies are specified for busi-

ness processes between Web Service compositions.

Berthold et al. have proposed an approach to model usage control re-

quirements on remote clients in Service Oriented Architectures [Berthold

et al., 2007b]. While in some way this is similar to our approach, their work

is aimed at providing, for example, a secure client environment in which

confidential data can be used. More importantly, their approach assumes

that the applications at the client side are trusted to behave according to

the policy specification. Our proposed solution explicitly assumes that the

service running on the remote WS host is untrusted and proposes a middle-

ware based solution that works at the granularity of the Java method calls

to enforce the policies associated with the data these applications/services

use.

In Entropia [Chien et al., 2003], the authors propose an architecture

similar to [Berthold et al., 2007b] but in context of desktop grid systems

where the data to be processed is sent to the desktop of the client in a secure

way and the client is trusted to use the data only in the correct way. Their

architecture does not consider generic usage policies and the only overlap

with our work is its ability to provide an encryption mechanism protocol

to ensure the integrity of the data on the desktop grid.

5.5. CONCLUSION

In this chapter of the dissertation we have presented Trishul-WS, a

generic middleware based architecture for the enforcement of user spec-

ified data-centric policies in WS and SOA frameworks, making use of the

information flow tracing and method call interpositioning capability of Tr-

ishul.

Through the use of TPM technologies, the user (and the middleware)

ensures that the remote machine is indeed running the trusted middleware

and only then is the data sent to the endpoint. Once the data is received,

the information flow tracing property of the middleware ensures not only

that the data and policy cannot be separated but also that the application’s

operation on the data will preserve the correct policy requirements as per

SEC. 5.5 CONCLUSION 139

the information flow principles. The middleware also enables the intercep-

tion of application action performed on the data and ensures that these are

allowed as per the policies specified by the data provider.

Performance measurements performed on an unoptimised prototype

implementation of the architecture showed a high overhead. While this is

not surprising given the performance overhead measured for Trishul frame-

work in the earlier chapter, this means that Trishul-WS would need a lot

more work before it can be considered for use within production environ-

ments of Web Services.

140 APPLICATION: WEB SERVICES CHAP. 5

CHAPTER 6

Summary and Conclusions

This last chapter concludes the dissertation and is organised as follows:

Section 6.1 summarises the previous chapters, in Section 6.2 we present

our conclusions and lessons learnt from this research work and in Sec-

tion 6.3 we discuss future directions for research.

6.1. SUMMARY

In Chapter 1, we introduced the research issues motivating this disser-

tation, namely the need for an architecture that enables the enforcement of

various classes of policies that are attached to sensitive data submitted by

external parties and processed by the end system. Our proposal was to de-

sign and implement a Java middleware based security architecture in order

to realise this requirement.

Chapter 2 presented some of the background work related to this disser-

tation. We discussed some basic access control and usage control models

that are usually used to specify restrictions on when access can be allowed

to a protected resource and once this access has been given, what restric-

tions can be placed on the actual usage of that resource. The need for

information flow tracing and its control was also discussed in this chapter

with references to previous works done in this area. The stack based Java

security model was shown to be inadequate in helping us implement the

envisioned policy enforcement architecture. In the last part of this chapter

we discuss the trusted computing technology, in particular the functionality

provided by the TPM in the form of remote attestation and sealed storage.

142 SUMMARY AND CONCLUSIONS CHAP. 6

In Chapter 3 we introduced Trishul, the Java based policy enforcement

architecture that forms a major part of this dissertation work. Explaining

the design of the system, we looked at the two main design techniques used

by Trishul: information flow tracing and Java method call interception.

Trishul-P was also introduced as a Java-like language that helps policy en-

gine writers specify the method calls that Trishul should intercept and also

as a way to introduce taints into the system that helps in information flow

tracing. In the section on implementation of Trishul we explained in detail

how Trishul performs information flow tracing accurately using a hybrid

load-time and run-time analysis process. The implementation description

covered both interpreted as well as just-in-time modes of the Trishul Java

Virtual Machine. To get a better understanding of how Trishul works we

then looked at couple of example applications where Trishul’s generic pol-

icy enforcement framework has been used to enforce basic access control

policies.

Microbenchmark performance measurements conducted to infer the

overhead introduced by interception and information flow tracing function-

ality of Trishul were reported. The measurements showed that the method

call pattern matching and interception module incurred heavy overheads

while the hybrid load-time and run-time process used to perform correct

taint propagation introduced moderate overhead into the Trishul system.

Possible design and implementation optimisations that have been identi-

fied were also mentioned in this chapter. A comprehensive review of the

related works in the area of information flow control, which forms the ma-

jor part of Trishul, and policy enforcement, is presented at the end of the

chapter.

In chapters 4 and 5 we presented the application scenarios where the

Trishul policy enforcement architecture is used in solving the problem of

digital rights management and the enforcement of policy attached to user-

supplied data in Web Services systems.

In Chapter 4 we looked at how Trishul can be used to implement a

DRM solution based on the UCONABC usage control model. We described

the various functional components of the resulting T-UCON system and

how Trishul’s functionalities can be exploited to implement them. Then

we showed how T-UCON could be used to enforce three kinds of DRM

scenarios. Performance measurements, reported in the chapter, showed

that T-UCON incurs only marginal overhead in exchange for being able to

enforce common DRM policies.

SEC. 6.2 CONCLUSIONS 143

In Chapter 5 we considered the problem of policy enforcement in a

Web Services framework. Departing from the usual model of considering

the offered service as the restricted resource and the need to control who

can access to it, the application scenario considered in the chapter assumes

that the data submitted by the service user to the web service is the valued

commodity. The policies, specified by the data provider, that govern this

data’s access and usage need to be enforced at the Web Service component

levels. We then described the design of a system architecture that can be

used to enforce such policies in a WS setup. After noting that Trishul’s

framework would suit the implementation of such a system, we went on

to describe the prototype implementation of Trishul-WS for a simple Web

Service application scenario and examine its overhead.

The purpose of this last chapter is to summarise the work reported in

this dissertation, the conclusions of this research and to point out directions

for future research work.

6.2. CONCLUSIONS

This dissertation presented, discussed and evaluated the main ideas be-

hind the design and implementation of a Java Virtual Machine based policy

enforcement framework named Trishul. The goal of the research presented

in this dissertation was to examine whether it was possible to develop a

generic policy enforcement architecture, in which the policy was attached

to the data that were being operated on and which defined the access and

usage restrictions on that data. To answer this question we analysed the

shortcomings of the policy enforcement mechanisms available currently,

especially with respect to the Java architecture. We then went on to pro-

pose a new policy enforcement architecture as an extension of the normal

Java Virtual Machine that was more powerful and flexible than the current

available solutions.

One of the key functionalities introduced into this new JVM framework

was that of information flow control, which allowed for very precise track-

ing of the data as they are used within the system as well as very flexible

control over how the data can be used within the system. We also proposed

a Java-like language for developing the core decision engine of Trishul.

The microbenchmark performance analysis performed on the just-in-

time mode implementation of Trishul revealed areas of high overhead in

144 SUMMARY AND CONCLUSIONS CHAP. 6

the system. Subsequent analysis revealed design and implementation choices

that could potentially decrease these overheads, which can be considered

for potential future work. The inevitable overhead present in pure run-time

policy enforcement systems like Trishul (remember that Trishul performs

the traditional static analysis steps at load-time of the application) suggests

that any analysis that can be done offline in a secure manner, say of the sys-

tem libraries, should be done so. The analysis also showed that Trishul is

not the best system to enforce policies for computation heavy applications.

In order to highlight the power and flexibility of the developed Trishul

system, and to demonstrate that the system does indeed help in enforcing

data-attached policies, we then used it as the building block of a policy

enforcement architecture for two different application scenarios. In the

first scenario, we designed and implemented a Digital Rights Management

(DRM) system that was capable of enforcing several typical DRM policies

attached to the multimedia content rendered by DRM applications running

on top of the enforcement architecture. In the second application scenario,

the Trishul framework was used to build a policy enforcement architecture

for Web Services (WS), in which policies attached to the user data submit-

ted to the WS were enforced by all the component services that make up

the WS.

By verifying that the various component services run on top of the pro-

posed enforcement architecture and in turn by designing and implementing

the policy enforcement architecture using Trishul in a secure and extend-

able (modular) manner, we achieved the set objective of demonstrating the

power and flexibility of the Trishul framework.

6.3. FUTUREWORK

There are a number of possible directions for future work, among oth-

ers, open issues that have been identified.

The prototype implementation of Trishul, while ideal for showcasing

the power and flexibility of the system to be used in various application

scenarios, is far from an efficient implementation. As discussed in Sec-

tion 3.5.4, several points of improvements have been identified, the imple-

mentation of which could constitute a direction for future work. Reusing

JVM’s internally calculated control flow graph, omitting tainting of vari-

ables and objects that are modified in each branch of a CFI, completely

SEC. 6.3 FUTURE WORK 145

skipping recalculation of context taint if the variables that influence its

value has not been modified in the branches of the CFGs and the offline

computation and storage of CFGs for system libraries are some of them.

We have developed the Java-like Trishul-P language to allow policy en-

gine writers to express the logic of the decision engines and hook it to the

Trishul framework in an efficient manner. While the Java-like nature of the

language lowers the barriers to adaptation of the system as well as makes

it a powerful development tool, this same property makes it harder to theo-

retically analyse the expressibility of the language and the overall power of

the enforcement system in terms of the classes of policies that can be en-

forced by it. As referred earlier in Section 3.6, several works have analysed

the power of dynamic monitoring systems whose internal decision engine

logic are expressed as automaton-based process steps. The structured and

logical expression of these systems make them ideal for structured anal-

ysis in comparison to the Turing-complete nature of Java-like languages.

In fact the work done by Le Guernic et al. [Guernic et al., 2006; Guernic,

2007] in analysing information flow based dynamic systems is very similar

to the internal working of Trishul, except for the fact that in their work, the

decision engine logic is expressed as automaton transitions.

Hence, a different direction of work would be to investigate either the

implementation of Trishul-P with an automaton-based internal engine or

the development of a front-end to the Trishul-P interface in the form of

an automaton-based system. In the latter architecture, the policy engine

writer would define the engine logic in the form of automaton transitions

of allowed and disallowed states, which would then be transformed into

Trishul-P code that, as before, can be compiled into loadable Java classes

for use within Trishul. This allows for a more structured analysis of the

power of Trishul architecture while at the same time making the develop-

ment easier by reusing the existing solutions.

Trishul does not consider or address the impact of multi-threading in

information flow or in application execution. As discussed earlier, multi-

threading introduces a set of new challenges [Guernic, 2007] and handling

them could form a direction for future work.

In our work we have leveraged on trusted computing technologies to

attest the integrity of the platform in order to ensure that the remote com-

puting environment is what it is supposed to be. However, more works

needs to be done in ironing out the specific details of how this will be im-

plemented in practice, in particular to ensure that the policies associated

146 SUMMARY AND CONCLUSIONS CHAP. 6

with the data are neither separated from the data nor tampered with. While

this dissertation proposed some basic mechanisms to enforce such a ‘sticky

policy’ functionality [Karjoth et al., 2002], further work needs to be done

and latest developments [Tang, 2008] need to be investigated to make it

more secure. This could also thus form part of future work.

SAMENVATTING

Nu het bereik en mogelijkheden van Internet en genetwerkte systemen

steeds groter worden en dankzij de opkomst van paradigma verschuiven-

de technologieën als Web Services (WS) en Software as a Service (SaaS)

sturen steeds grotere aantallen gebruikers enorme hoeveelheden privé ge-

gevens naar externe systemen waar zij geen controle over hebben. Aan de

andere kant van dezelfde technologie-munt gebruiken commerciële aan-

bieders van digitale informatie het grote bereik van het Internet om pro-

ducten zoals muziek, video’s en software te verspreiden naar individuele

computers van cliënten, zijnde generieke desktop machines of consumen-

tenelectronica zoals multimediaspelers.

Over het algemeen hechten deze gegevensaanbieders groot belang aan

het beschermen van hun gegevens tegen misbruik. Zij willen graag dat

hun gegevens alleen gebruikt worden zoals zij dat gespecificeerd hebben,

en alleen toegankelijk zijn voor expliciet toegestane externe partijen. Ster-

ker nog, zelfs nadat toegang verleend is mogen slechts bepaalde specifieke

acties op de gegevens uitgevoerd worden.

Deze toegangs- en gebruiksregels worden gewoonlijk uitgedrukt in de

vorm van voorwaarden, welke dan gebundeld kunnen worden met de ge-

gevens wier toegang zij reguleren, en vervolgens samen verstuurd naar de

externe machines.

Een aantal eerdere onderzoeken heeft zich gericht op hoe de beperkin-

gen in de voorwaarden uitgedrukt kunnen worden op het niveau van spe-

cificatietalen, terwijl andere onderzoeken het probleem vanuit een meer

theoretische hoek benaderden door het formeel definiëren van modellen en

klassen van voorwaarden die gehandhaafd kunnen worden gebaseerd op

verscheidene aannamen en mogelijkheden van het systeem. Veel minder

onderzoeken hebben echter de vereisten op systeemniveau onderzocht die

daadwerkelijk nodig zijn voor het handhaven van de voorwaarden op de

externe machines. Dit is de invalshoek van waaruit wij dit probleem bena-

deren in deze dissertatie.

148 SAMENVATTING

PROBLEEMBESCHRIJVING

Het globale probleem dat aangepakt wordt in deze dissertatie kan als

volgt worden uitgedrukt:

Gegeven een dataobject dat een gebruiker wenst op te sturen naar een

externe computer en voorwaarden die toegangs- en gebruiksregels specifi-

ceren op het dataobject, ontwerp en implementeer een architectuur die het

handhaven van deze voorwaarden op de externe computer mogelijk maakt.

Bij het ontwikkelen van een volledig functioneel raamwerk voor het

handhaven van voorwaarden zijn meerdere complementaire onderzoeks-

gebieden betrokken zijn, waaronder talen voor voorwaarden, modellering

van voorwaarden, formele analyse en systeemarchitectuur ontwikkeling.

Deze dissertatie gaat alleen in op het laatste onderzoeksgebied. Waar mo-

gelijk wordt bestaand werk in de andere gebieden benut om de ontbrekende

delen in het raamwerk op te vullen.

ONZE AANPAK

Het probleem van het handhaven van voorwaarden, zoals hier gede-

finiëerd, kan vanuit verschillende invalshoeken benaderd worden en op

verschillende niveaus van abstractie. Een aantal eerdere werken en sys-

temen richten zich op handhaving van voorwaarden voor specifieke appli-

caties of klassen van applicaties. In deze werken is de logica die vereist

is om de handhavings-besluiten te maken ingebouwd in de applicatiecode

zelf. Anderen pakken het probleem aan op het lage niveau van het bestu-

ringssysteem en verkennen de complexiteit op het niveau van processen in

het besturingssysteem en bepalen welk proces met welk ander proces mag

communiceren of toegang heeft tot specifieke invoer- en uitvoerkanalen.

De klassen van voorwaarden die geïnterpreteerd (en dus gehandhaafd)

kunnen worden hangen af van het niveau waarop voorwaarden worden ge-

handhaafd. Handhaving op het niveau van het besturingssysteem beperkt

de klassen tot die welke direct te beschrijven zijn op proces- en system

call niveau, terwijl handhaving op het niveau van specifieke applicaties de

klassen beperkt tot die van applicaties en hun semantiek.

In deze dissertatie beschouwen we het probleem van handhaving van

voorwaarden vanuit een gegevens-centrisch oogpunt, waarbij aangenomen

wordt dat de voorwaarden gebundeld zijn met de gegevens waarop de ap-

SAMENVATTING 149

plicaties werken. Ons werk benadert het probleem op middleware niveau,

met de intentie om de mogelijkheden van de oplossingen op hoger en la-

ger niveau te exploiteren. Deze aanpak stelt de architectuur in staat om

gegevens-specifieke en niet applicatie-specifieke gebruiksvoorwaarden te

handhaven over meerdere applicaties. Dit echter zonder het risico dat in-

formatie op het niveau van de applicatiesemantiek verloren gaat, welke

waardevol is bij handhaving van een grotere verscheidenheid aan klassen

van voorwaarden. In het bijzonder beschouwen wij de handhaving van

voorwaarden voor applicaties die in de Java Virtual Machine (JVM) omge-

ving draaien. De reden voor deze keuze en de details van het ontwerp van

zo’n architectuur worden in deze dissertatie in detail beschreven.

Eén van de sleutelconcepten waarop wij bouwen in onze architectuur

is Information Flow Control (IFC), wat zich bezig houdt met beperkin-

gen op hoe informatie overgedragen kan worden van één entiteit naar een

andere. Hoewel IFC als onderzoeksonderwerp vanuit verscheidene invals-

hoeken onderzocht kan worden, bekijken wij het vanuit het perspectief van

de semantiek van de programmeertaal van de applicatie. Onderzoek op het

gebied van IFC kan grofweg onderverdeeld worden in twee verschillende

categorieën: compile time en run time. In compile-time systemen worden

de restricties op informatiestromen gecontroleerd en geverifiëerd ten tijde

van het compileren. Run-time systemen, aan de andere kant, voeren deze

controles dynamisch uit tijdens de uitvoering van de applicatie. Hoewel

beide aanpakken hun voor- en nadelen hebben gebruikt onze architectuur

een hybride aanpak, waarbij het run-time mechanisme wordt versterkt met

statische control flow analyse. Hiervoor zijn twee hoofdafwegingen: het

versterkte run-time systeem kan werken zonder toegang te hebben tot de

daadwerkelijke broncode van de applicatie en deze hybride run-time aan-

pak kan een groter aantal klassen van voorwaarden handhaven.

BIJDRAGEN

In deze dissertatie presenteren wij het ontwerp, de implementatie en

de toepassing van een architectuur voor het handhaven van voorwaarden

gebaseerd op een Java Virtual Machine. De bijdragen van dit werk zijn als

volgt:

– Wij onderzoeken in detail het eerdere werk gedaan op het gebied

150 SAMENVATTING

van het handhaven van voorwaarden en identificeren de gaten die

ons werk tot doel heeft te vullen.

– We presenteren het ontwerp en de implementatie van een op een

JVM-gebaseerde middleware architectuur, genaamd Trishul, gericht

op het handhaven van voorwaarden dat geassociëerd is met dataob-

jecten.

– De ontwikkelde middleware wordt gebruikt om een applicatie onaf-

hankelijk Digital Rights Management (DRM) systeem te implemen-

teren met als basis een veel gebruikt model voor de beheersing van

gebruik.

– Het JVM-raamwerk wordt ook gebruikt om een Web Service archi-

tectuur te ontwerpen die in staat is om gebruiksvoorwaarden te hand-

haven dat geassociëerd is met aangeleverde gegevens, zoals gespeci-

ficeerd door de gegevens-aanbieder.

Eén van de sleutelfunctionaliteiten geïntroduceerd in dit nieuwe JVM-

raamwerk was dat van Information Flow Control, welke het mogelijk maak-

te om zeer precies de gegevens te volgen terwijl deze in het systeem ge-

bruikt werden, en welke ook zeer flexibele controle gaf over hoe de gege-

vens gebruikt konden worden in het systeem. We hebben ook een Java-

achtige taal voorgesteld voor het ontwikkelen van de core decision engine

van Trishul.

De prestatieanalyse d.m.v. microbenchmarks van de implementatie van

Trishul in just-in-time modus bracht enkele delen van het systeem met hoge

overhead aan het licht. Verdere analyse leverde ontwerp- en implementa-

tiekeuzen op die deze overhead mogelijkerwijs kunnen verminderen. Deze

keuzen kunnen beschouwd worden als toekomstig werk.

Om de kracht en flexibiliteit van het ontwikkelde Trishul systeem te

laten zien en om aan te tonen dat het systeem inderdaad helpt bij het hand-

haven van aan gegevens verbonden voorwaarden, hebben we het als bouw-

steen gebruikt voor een architectuur voor het handhaven van voorwaarden

voor twee verschillende applicatiescenario’s. In het eerste scenario ontwor-

pen en implementeerden we een Digital Rights Management systeem dat

in staat was meerdere typische voorbeelden van DRM-voorwaarden af te

dwingen, geassociëerd met de multimediabestanden die weergegeven wer-

den door de DRM applicaties die draaiden bovenop deze architectuur. In

SAMENVATTING 151

het tweede scenario werd het Trishul raamwerk gebruikt om een architec-

tuur voor het handhaven van voorwaarden voor Web Services te bouwen.

Hierin werden de voorwaarden die door de gebruiker verbonden was met

de gegevens en vervolgens opgestuurd naar de Web Service gehandhaafd

in alle componentdiensten waaruit de Web Service opgebouwd was.

We hebben geverifiëerd dat de verschillende componentdiensten bo-

venop de voorgestelde uitvoeringsarchitectuur draaien en, vervolgens, heb-

ben we de architectuur voor het handhaven van voorwaarden ontworpen

m.b.v. Trishul op een veilige en uitbreidbare (modulaire) manier. Hiermee

hebben we onze doelstelling van het aantonen van de kracht en flexibiliteit

van het Trishul raamwerk bereikt.

TOEKOMSTIG WERK

Er zijn een aantal verschillende richtingen voor toekomstig werk, onder

meer, open vragen die zijn geïdentificeerd.

De prototype-implementatie van Trishul, die ideaal is voor het tonen

van de kracht en flexibiliteit van het systeem voor verschillende applicatie-

scenario’s, is verre van efficiënt. Zoals besproken in Sectie 3.5.4 hebben

we verschillende verbeterpunten geïdentificeerd. Het implementeren van

die verbeterpunten zou als een richting voor toekomstig werk kunnen wor-

den beschouwd.

We hebben een Java-achtige Trishul-P taal ontwikkeld om de ontwik-

kelaars van de voorwaarden engine in staat te stellen de logica van de deci-

sion engines uit te drukken, en deze op een efficiënte manier in het Trishul

raamwerk te hangen. Hoewel de gelijkenis van de taal met Java de adoptie

van het systeem makkelijker maakt, maakt dit het tegelijkertijd ook moei-

lijker om de uitdrukkingskracht van de taal en de algehele kracht van het

handhavingssysteem met betrekking tot de klassen van de gehandhaafde

gebruiksvoorwaarden te analyseren. De gestructureerde en logische be-

schrijving van systemen wiens interne decision engines beschreven wor-

den als automaat-gebaseerde processtappen zijn ideaal voor gestructureer-

de analyse in vergelijking met de Turing-complete aard van Java-achtige

talen.

Een andere onderzoeksrichting zou daarom ook zijn het onderzoeken

van de implementatie van Trishul-P met een interne automaat-gebaseerde

engine of de ontwikkeling van een front-end voor de Trishul-P interface in

152 SAMENVATTING

de vorm van een automaat-gebaseerd systeem. In de laatste architectuur

zou de schrijver van een voorwaarden engine de logica van de engine defi-

niëren in de vorm van automaat transities van toegestane en niet-toegestane

toestanden, die dan vervolgens, zoals eerder, gecompileerd zouden worden

naar laadbare Java klassen voor gebruik in Trishul. Dit maakt een meer

gestructureerde analyse van de kracht van de Trishul architectuur mogelijk

en maakt tevens het ontwikkelen ervan makkelijker door bestaande oplos-

singen te hergebruiken.

Trishul laat zich niet uit over de invloed van multi-threading op infor-

matiestromen of op de uitvoering van de applicatie. Multi-threading intro-

duceert een nieuwe verzameling uitdagingen die in de toekomst aangepakt

zouden kunnen worden.

In ons werk hebben we trusted computing technologieën benut om de

integriteit van het platform te garanderen zodat zeker is dat de externe re-

kenomgeving is wat deze zou moeten zijn. Echter, het uitwerken van de

details hoe dit in de praktijk te brengen is, vergt nog meer werk, in het bij-

zonder om te zorgen dat de gebruiksvoorwaarden onlosmakelijk verbonden

blijven met de gegevens en niet ongewild veranderd kunnen worden. Hoe-

wel deze dissertatie een aantal basale mechanismen voorstelt om ‘klevende

voorwaarden’ te dwingen blijft toekomstig werk noodzakelijk om dit ver-

der te beveiligen.

BIBLIOGRAPHY

Acharya, A. and Raje, M. (2000). MAPbox: using parameterized behavior

classes to confine untrusted applications. In SSYM’00: Proceedings of the 9th

conference on USENIX Security Symposium, pages 1–17, Berkeley, CA, USA.

USENIX Association.

Aho, A. V., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles, Tech-

niques, and Tools. Addison Wesley, Massachusetts, USA, 2nd edition.

Andrews, G. R. and Reitman, R. P. (1980). An Axiomatic Approach to Informa-

tion Flow in Programs. ACM Trans. Program. Lang. Syst., 2(1):56–76.

Apache Software Foundation (2009). Apache Axis2. http://ws.apache.org/axis2/.

Baresi, L., Guinea, S., and Plebani, P. (2006). WS-Policy for service monitoring.

In Proceedings of International Workshop on Technologies for E-Services, pages

72–83.

Barthe, G., Rezk, T., Russo, A., and Sabelfeld, A. (2007). Security of multi-

threaded programs by compilation. In ESORICS, pages 2–18.

Bauer, L., Ligatti, J. A., and Walker, D. (2005). Composing security policies with

polymer. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 305–314, New York,

NY, USA. ACM.

Bell, D. E. and LaPadula, L. J. (1975). Computer Security Model: Unified

Exposition and Multics Interpretation. Technical Report ESD-TR-75-306, The

MITRE Corporation, Bedford, MA, USA.

Beres, Y. and Dalton, C. I. (2003). Dynamic Label Binding at Run-time. In

NSPW ’03: Proceedings of the 2003 Workshop on New Security Paradigms,

pages 39–46, New York, NY, USA. ACM.

154 BIBLIOGRAPHY

Berthold, A., Alam, M., Breu, R., Hafner, M., Pretschner, A., Seifert, J.-P., and

Zhang, X. (2007a). A technical architecture for enforcing usage control require-

ments in service-oriented architectures. In SWS ’07: Proceedings of the 2007

ACM workshop on Secure web services, pages 18–25, New York, NY, USA.

ACM.

Berthold, A., Alam, M., Breu, R., Hafner, M., Pretschner, A., Seifert, J.-P., and

Zhang, X. (2007b). A technical architecture for enforcing usage control require-

ments in service-oriented architectures. In SWS ’07: Proceedings of the 2007

ACM workshop on Secure web services, pages 18–25, New York, NY, USA.

ACM.

Biba, K. J. (1977). Integrity considerations for secure computer systems. Tech-

nical Report ESD-TR 76-372, The MITRE Corporation, Bedford, MA, USA.

Bishop, M. (2002). Computer Security: Art and Science. Addison-Wesley Pro-

fessional, Massachusetts, USA, 1st edition.

Brown, J. and King, T. F. (2004). A Minimal Trusted Computing Base for Dy-

namically Ensuring Secure Information Flow. Technical Report ARIES-TM-

015, Massachusetts Institute of Technology, Cambridge, MA, USA.

Cabuk, S., Brodley, C. E., and Shields, C. (2004). IP Covert Timing Channels:

Design and Detection. In CCS ’04: Proceedings of the 11th ACM conference on

Computer and communications security, pages 178–187, New York, NY, USA.

ACM.

Chandra, D. (2006). Information flow analysis and enforcement in Java byte-

code. PhD thesis, University of California, Irvine.

Chien, A. A., Calder, B., Elbert, S., and Bhatia, K. (2003). Entropia: architec-

ture and performance of an enterprise desktop grid system. J. Parallel Distrib.

Comput., 63(5):597–610.

Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., and Rosenblum, M. (2004).

Understanding data lifetime via whole system simulation. In SSYM’04: Pro-

ceedings of the 13th conference on USENIX Security Symposium, pages 22–22,

Berkeley, CA, USA. USENIX Association.

Dashti, M. T., Nair, S. K., and Jonker, H. (2009). Nuovo DRM Paradiso: Design-

ing a Secure, Verified, Fair Exchange DRM Scheme. Fundam. Inf., 89(4):393–

417.

Denning, D. E. (1975). Secure Information Flow in Computer Systems. PhD

thesis, Purdue Uinversity.

BIBLIOGRAPHY 155

Denning, D. E. (1976). A lattice model of secure information flow. Commun.

ACM, 19(5):236–243.

Denning, D. E. and Denning, P. J. (1977). Certification of programs for secure

information flow. Commun. ACM, 20(7):504–513.

Erickson, J. S. (2003). Fair use, DRM, and trusted computing. Commun. ACM,

46(4):34–39.

Erlingsson, U. (2004). The Inlined Reference Monitor Approach to Security

Policy Enforcement. PhD thesis, Cornell University.

Fenton, J. S. (1973). Information Protection Systems. PhD thesis, University of

Cambridge.

Fenton, J. S. (1974a). An abstract computer model demonstrating directional

information flow. University of Cambridge.

Fenton, J. S. (1974b). Memoryless subsystem. Computer Journal, 17(2):143–

147.

Fraser, T. (2000). LOMAC: Low Water-Mark Integrity Protection for COTS

Environments. Security and Privacy, IEEE Symposium on, 0:230–245.

Garfinkel, T. (2003). Traps and pitfalls: Practical problems in system call in-

terposition based security tools. In NDSS’03: Proceedings of Network and Dis-

tributed Systems Security Symposium, pages 163–176.

Gat, I. and Saal, H. J. (1976). Memoryless Execution: A Programmer’s View-

point. Software: Practice and Experience, 6(4):463–471.

Goguen, J. A. and Meseguer, J. (1982). Security Policies and Security Models.

In IEEE Symposium on Security and Privacy, pages 11–20.

Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A. (1996). A secure

environment for untrusted helper applications: Confining the wily hacker. In

SSYM’96: Proceedings of the 6th conference on USENIX Security Symposium,

Berkeley, CA, USA. USENIX Association.

Gong, L., Ellison, G., and Dageforde, M. (2003). Java 2 Platform Security:

Architecture, API Design, and Implementation. Addison Wesley, Massachusetts,

USA, 2nd edition.

Gosling, J., Joy, B., and Steele, G. L. (1996). The Java Language Specification.

Addison Wesley Publishing Company, Massachusetts, USA, 3rd edition.

156 BIBLIOGRAPHY

Graham, G. S. and Denning, P. J. (1971). Protection: Principles and Practice.

In AFIPS ’71 (Fall): Proceedings of the November 16-18,1971, Fall Joint Com-

puter Conference, pages 417–429, New York, NY, USA. ACM.

Guernic, G. L. (2007). Confidentiality Enforcement Using Dynamic Information

Flow Analyses. PhD thesis, Kansas State University.

Guernic, G. L., Banerjee, A., Jensen, T., and Schmidt, D. A. (2006). Automata-

Based Confidentiality Monitoring . In Annual Asian Computing Science Confer-

ence ASIAN 2006, pages 75–89. Springer Berlin / Heidelberg.

Haldar, V. (2006). Semantic Remote Attestation. PhD thesis, University of Cali-

fornia, Irvine, California, USA.

Haldar, V., Chandra, D., and Franz, M. (2005a). Dynamic Taint Propagation for

Java. In ACSAC ’05: Proceedings of the 21st Annual Computer Security Ap-

plications Conference, pages 303–311, Washington, DC, USA. IEEE Computer

Society.

Haldar, V., Chandra, D., and Franz, M. (2005b). Practical, Dynamic Informa-

tion Flow for Virtual Machines. Technical Report UCI-ICS-TR-05-02, Irvine,

California, USA.

Hammer, C., Krinke, J., and Snelting, G. (2006). Information Flow Control for

Java Based on Path Conditions in Dependence Graphs. In ISSSE ’06: Proceed-

ings of IEEE International Symposium on Secure Software Engineering, pages

87–96.

Hardy, N. (1988). The Confused Deputy: (or why capabilities might have been

invented). SIGOPS Oper. Syst. Rev., 22(4):36–38.

Inaba, K. (1998). What is trampoline code in Kaffe? http://www2.biglobe.ne.jp/

~inaba/trampolines.html.

Jamkhedkar, P. A. and Heileman, G. L. (2004). DRM as a layered system. In

DRM ’04: Proceedings of the 4th ACM workshop on Digital rights management,

pages 11–21, New York, NY, USA. ACM.

Jamkhedkar, P. A. and Heileman, G. L. (2008). A formal conceptual model for

rights. In DRM ’08: Proceedings of the 8th ACM workshop on Digital rights

management, pages 29–38, New York, NY, USA. ACM.

JavaCC (2009). JavaCC. https://javacc.dev.java.net/.

Jif (2009). Jif: Java + information flow. http://www.cs.cornell.edu/jif/.

BIBLIOGRAPHY 157

Jobs, S. (2007). Thoughts on Music. http://apple.com/hotnews/thoughtsonmusic.

Kaffe (2009). Kaffe.Org. http://www.kaffe.org.

Karjoth, G., Schunter, M., and Waidner, M. (2002). Platform for enterprise pri-

vacy practices: Privacy-enabled management of customer data. In Privacy En-

hancing Technologies, pages 69–84.

Katt, B., Zhang, X., Breu, R., Hafner, M., and Seifert, J.-P. (2008). A general

obligation model and continuity: enhanced policy enforcement engine for usage

control. In SACMAT ’08: Proceedings of the 13th ACM symposium on Access

control models and technologies, pages 123–132, New York, NY, USA. ACM.

Kerberos Consortium (2009). Kerberos consortium. http://www.kerberos.org/.

Lam, L. C. and Chiueh, T. (2006). A General Dynamic Information Flow Track-

ing Framework for Security Applications. pages 463–472.

LaMacchia, B. A. (2002). Key challenges in DRM: An industry perspective. In

DRM’02: Proceedings of Digital Rights Management Workshop, pages 51–60.

Springer.

Lampson, B. W. (1971). Protection. In Proceedings of the Fifth Princeton Sym-

posium on Information Sciences and Systems, pages 437–443, Princeton, New

Jersey, USA.

Lampson, B. W. (1973). A note on the confinement problem. Commun. ACM,

16(10):613–615.

Ligatti, J. A. (2006). Policy enforcement via program monitoring. PhD thesis,

Princeton University.

Lindholm, T. and Yellin, F. (1999). The Java Virtual Machine Specification.

Prentice Hall, New Jersey, USA, 2nd edition.

Lipner, S. B. (1975). A comment on the confinement problem. In SOSP ’75:

Proceedings of the fifth ACM symposium on Operating systems principles, pages

192–196, New York, NY, USA. ACM.

McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., and Isozaki, H. (2008).

Flicker: An Execution Infrastructure for TCB Minimization. In Proceedings of

the ACM European Conference in Computer Systems (EuroSys), pages 315–328,

New York, NY, USA. ACM.

158 BIBLIOGRAPHY

Mclean, J. (1987). Reasoning About Security Models. In IEEE Symposium on

Security and Privacy, pages 123–131, Los Alamitos, CA, USA. IEEE Computer

Society.

McLean, J. (1990). Security models and information flow. pages 180–187.

Michiels, S., Verslype, K., Joosen, W., and Decker, B. D. (2005). Towards a soft-

ware architecture for DRM. In DRM ’05: Proceedings of the 5th ACM workshop

on Digital rights management, pages 65–74, New York, NY, USA. ACM.

Microsoft Corporation (2009). Digital Rights Management. http://www.

microsoft.com/windows/windowsmedia/forpros/drm/default.mspx.

Minsky, M. L. (1967). Computation: Finite and Infinite Machines. Prentice Hall,

New Jersey, USA, 1st edition.

MIT (2003). The DynamoRIO Collaboration. http://www.cag.lcs.mit.edu/

dynamorio/.

Mizuno, M. and Schmidt, D. A. (1992). A Security Flow Control Algo-

rithm and Its Denotational Semantics Correctness Proof. Formal Asp. Comput.,

4(6A):727–754.

Mukhi, N. K. and Plebani, P. (2004). Supporting policy-driven behaviors in

web services: experiences and issues. In ICSOC ’04: Proceedings of the 2nd

international conference on Service oriented computing, pages 322–328, New

York, NY, USA. ACM.

Myers, A. C. (1999). JFlow: practical mostly-static information flow control.

In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 228–241, New York, NY, USA.

ACM.

Myers, A. C. and Liskov, B. (1997). A decentralized model for information

flow control. In SOSP ’97: Proceedings of the sixteenth ACM symposium on

Operating systems principles, pages 129–142, New York, NY, USA. ACM.

Nair, S. K. (2006). Policy Binding and Enforcement in Java. In Proceedings of

Workshop on Run-time Software Integrity and Authenticity.

Nair, S. K. (2009). Trishul. http://purl.org/skn/trishul/.

Nair, S. K., Crispo, B., and Tanenbaum, A. S. (2009). Towards a Secure

Application-Semantic Aware Policy Enforcement Architecture. In Security Pro-

tocols: 14th International Workshop, 2006, volume 5087 of Lecture Notes in

Computer Science, pages 26–31. Springer.

BIBLIOGRAPHY 159

Nair, S. K., Gheorghe, G., Crispo, B., and Tanenbaum, A. S. (2008a). Enforcing

DRM Policies Across Applications. In DRM ’08: Proceedings of the 8th ACM

workshop on Digital Rights Management, pages 87–94, New York, NY, USA.

ACM.

Nair, S. K., Popescu, B. C., Gamage, C., Crispo, B., and Tanenbaum, A. S.

(2005). Enabling DRM-Preserving Digital Content Redistribution. In Proceed-

ings of Seventh IEEE International Conference on E-Commerce Technology,

pages 151–158, Los Alamitos, CA, USA. IEEE Computer Society.

Nair, S. K., Simpson, P. N. D., Crispo, B., and Tanenbaum, A. S. (2008b). A Vir-

tual Machine Based Information Flow Control System for Policy Enforcement.

Electron. Notes Theor. Comput. Sci., 197(1):3–16.

National Security Agency (2009). Security-Enhanced Linux. http://www.nsa.

gov/research/selinux/index.shtml.

Necula, G. C. (1997). Proof-carrying code. In POPL ’97: Proceedings of the

24th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 106–119, New York, NY, USA. ACM.

Newsome, J. and Song, D. X. (2005). Dynamic Taint Analysis for Automatic

Detection, Analysis, and Signature Generation of Exploits on Commodity Soft-

ware. In NDSS ’05: Proceedings of 12th Network and Distributed System Secu-

rity Symposium.

OASIS (2004). UDDI Version 3.0.2. Organization for the Advancement of Struc-

tured Information Standards. http://uddi.org/pubs/uddi_v3.htm.

OASIS (2005). Assertions and Protocols for the OASIS Security Assertion

Markup Language. Organization for the Advancement of Structured Information

Standards. http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

OASIS (2006). Web Services Security: SOAP Message Security

1.1. Organization for the Advancement of Structured Information

Standards. http://www.oasis-open.org/committees/download.php/16790/wss-v1.

1-spec-os-SOAPMessageSecurity.pdf.

OASIS (2007). Web Services Business Process Execution Language Version

2.0. Organization for the Advancement of Structured Information Standards.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

OASIS (2008). OASIS eXtensible Access Control Markup Language. http://

www.oasis-open.org/committees/xacml/.

160 BIBLIOGRAPHY

ODRL (2002). Open Digital Rights Language (ODRL) Version 1.1. http://www.

w3.org/TR/odrl/.

OMA (2009). Open Mobile Alliance. http://www.openmobilealliance.org/.

Park, J. and Sandhu, R. (2002). Towards Usage Control Models: Beyond Tra-

ditional Access Control. In SACMAT ’02: Proceedings of the seventh ACM

symposium on Access control models and technologies, pages 57–64, New York,

NY, USA. ACM.

Park, J. and Sandhu, R. S. (2004). The UCONABC Usage Control Model. ACM

Trans. Inf. Syst. Secur., 7(1):128–174.

Pistoia, M., Banerjee, A., and Naumann, D. A. (2007). Beyond Stack Inspection:

A Unified Access-Control and Information-Flow Security Model. In SP ’07:

Proceedings of the 2007 IEEE Symposium on Security and Privacy, pages 149–

163, Washington, DC, USA. IEEE Computer Society.

Portokalidis, G., Slowinska, A., and Bos, H. (2006). Argos: an emulator for fin-

gerprinting zero-day attacks for advertised honeypots with automatic signature

generation. SIGOPS Oper. Syst. Rev., 40(4):15–27.

Roy, I., Porter, D. E., Bond, M. D., McKinley, K. S., and Witchel, E. (2009).

Laminar: practical fine-grained decentralized information flow control. In PLDI

’09: Proceedings of the 2009 ACM SIGPLAN conference on Programming lan-

guage design and implementation, pages 63–74, New York, NY, USA. ACM.

Sabelfeld, A. and Myers, A. C. (2003). Language-Based Information-Flow Se-

curity. IEEE Journal on Selected Areas in Communications, 21(1):5–19.

Sadeghi, A.-R., Wolf, M., Stüble, C., Asokan, N., and Ekberg, J.-E. (2007).

Enabling fairer digital rights management with trusted computing. In ISC’07:

Proceedings of 10th Information Security Conference, pages 53–70. Springer.

Sailer, R., Zhang, X., Jaeger, T., and van Doorn, L. (2004). Design and Imple-

mentation of a TCG-based Integrity Measurement Architecture. In SSYM’04:

Proceedings of the 13th conference on USENIX Security Symposium, pages 16–

16, Berkeley, CA, USA. USENIX Association.

Schaefer, C. (2007). Usage control reference monitor architecture. pages 13–18.

Schneider, F. B. (2000). Enforceable Security Policies. ACM Trans. Inf. Syst.

Secur., 3(1):30–50.

BIBLIOGRAPHY 161

Shaffer, A. B., Auguston, M., Irvine, C. E., and Levin, T. E. (2008). A Se-

curity Domain Model to Assess Software for Exploitable Covert Channels. In

PLAS ’08: Proceedings of the third ACM SIGPLAN workshop on Programming

languages and analysis for security, pages 45–56, New York, NY, USA. ACM.

Shen, H. and Hong, F. (2006). An attribute-based access control model for web

services. In PDCAT ’06: Proceedings of the Seventh International Conference

on Parallel and Distributed Computing, Applications and Technologies, pages

74–79, Washington, DC, USA. IEEE Computer Society.

Smith, S. W., Palmer, E. R., and Weingart, S. (1998). Using a High-Performance,

Programmable Secure Coprocessor. In FC ’98: Proceedings of the Second In-

ternational Conference on Financial Cryptography, pages 73–89, London, UK.

Springer-Verlag.

Sterne, D. F. (1991). On the buzzword ‘security policy’. In Proceedings of 1991

IEEE Computer Society Symposium on Research in Security and Privacy, pages

219–230.

Strongin, G. (2005). Trusted computing using AMD “Pacifica" and “Presidio"

secure virtual machine technology. Information Security Technical Report,

10(2):120–132.

Tang, Q. (2008). On using encryption techniques to enhance sticky policies en-

forcement. Technical Report TR-CTIT-08-64, University of Twente, Enschede.

Thomas, R. K. and Sandhu, R. S. (1998). Task-based authorization controls

(TBAC): A family of models for active and enterprise-oriented autorization man-

agement. In Proceedings of the IFIP TC11 WG11.3 Eleventh International Con-

ference on Database Securty XI, pages 166–181, London, UK, UK. Chapman &

Hall, Ltd.

Trusted Computing Group (2006). TPM Specification Version 1.2 Revision 103:

Part 1 - 3. http://www.trustedcomputinggroup.org/resources/tpm_specification_

version_12_revision_103_part_1__3.

Trusted Computing Group (2009). Trusted Computing Group. http://www.

trustedcomputinggroup.org.

US DoD (1985). Dep. Defense Trusted Computer System Evaluation Criteria.

STD Document 5200.28-STD, U.S. Dep. of Defense.

Vachharajani, N., Bridges, M. J., Chang, J., Rangan, R., Ottoni, G., Blome,

J. A., Reis, G. A., Vachharajani, M., and August, D. I. (2004). RIFLE: An

162 BIBLIOGRAPHY

Architectural Framework for User-Centric Information-Flow Security. In MI-

CRO 37: Proceedings of the 37th annual IEEE/ACM International Symposium

on Microarchitecture, pages 243–254, Washington, DC, USA. IEEE Computer

Society.

van Bemmel, J., Wegdam, M., and Lagerberg, K. (2005). 3PAC: Enforcing ac-

cess policies for web services. In ICWS ’05: Proceedings of the IEEE Inter-

national Conference on Web Services, pages 589–596, Washington, DC, USA.

IEEE Computer Society.

Venners, B. (2000). Inside The Java Virtual Machine. McGraw-Hill Companies,

Ohio, USA, 2nd edition.

Verma, K., Akkiraju, R., and Goodwin, R. (2005). Semantic match-

ing of web service policies. http://lsdis.cs.uga.edu/~kunal/publications/

SemanticPolicy-SWDP-final.pdf.

Viega, J., Bloch, J. T., and Chandra, P. (2001). Applying Aspect-Oriented Pro-

gramming to Security. Cutter IT Journal, 14(2):31–39.

Volpano, D., Irvine, C., and Smith, G. (1996). A sound type system for secure

flow analysis. Journal of Computer Security, 4(2-3):167–187.

W3C (2005). Web Services Choreography Description Language Version 1.0.

World Wide Web Consortium. http://www.w3.org/TR/ws-cdl-10/.

W3C (2006a). Web Services Description Language (WSDL) 1.1. World Wide

Web Consortium. http://www.w3.org/TR/wsdl.

W3C (2006b). Web Services Policy 1.2 - Attachment (WS-PolicyAttachment).

World Wide Web Consortium. http://www.w3.org/Submission/

WS-PolicyAttachment/.

W3C (2006c). Web Services Policy 1.2 - Framework (WS-Policy). World Wide

Web Consortium. http://www.w3.org/Submission/WS-Policy/.

W3C (2007). SOAP Version 1.2. World Wide Web Consortium. http://www.w3.

org/TR/soap12/.

W3C (2009). Web Services @ W3C. http://www.w3.org/2002/ws/.

Wall, L. (1987). Perl security. http://perldoc.perl.org/perlsec.html.

Wallach, D. S. and Felten, E. W. (1998). Understanding Java Stack Inspection.

pages 52–63.

BIBLIOGRAPHY 163

Wespi, A., Dacier, M., and Debar, H. (2000). Intrusion detection using variable-

length audit trail patterns. In RAID ’00: Proceedings of the Third International

Workshop on Recent Advances in Intrusion Detection, pages 110–129, London,

UK. Springer-Verlag.

Xu, W., Bhatkar, S., and Sekar, R. (2006). Taint-enhanced policy enforcement:

a practical approach to defeat a wide range of attacks. In USENIX-SS’06: Pro-

ceedings of the 15th conference on USENIX Security Symposium, Berkeley, CA,

USA. USENIX Association.

Yoshihama, S., Ebringer, T., Nakamura, M., Munetoh, S., and Maruyama, H.

(2005). WS-Attestation: Efficient and fine-grained remote attestation on web

services. In ICWS ’05: Proceedings of the IEEE International Conference on

Web Services, pages 743–750, Washington, DC, USA. IEEE Computer Society.

Zeldovich, N. (2007). Securing Untrustworthy Software Using Information Flow

Control. PhD thesis, Stanford University, California, USA.

Zhang, X., Nakae, M., Covington, M. J., and Sandhu, R. (2008a). Toward

a usage-based security framework for collaborative computing systems. ACM

Trans. Inf. Syst. Secur., 11(1):1–36.

Zhang, X., Seifert, J.-P., and Sandhu, R. (2008b). Security enforcement model

for distributed usage control. In SUTC ’08: Proceedings of the 2008 IEEE In-

ternational Conference on Sensor Networks, Ubiquitous, and Trustworthy Com-

puting, pages 10–18, Washington, DC, USA. IEEE Computer Society.

LIST OF CITATIONS

Acharya and Raje [2000], 92

Aho et al. [2006], 52

Andrews and Reitman [1980], 85

Apache Software Foundation [2009],

134

Baresi et al. [2006], 130, 137

Barthe et al. [2007], 92

Bauer et al. [2005], 91

Bell and LaPadula [1975], 9, 77

Beres and Dalton [2003], 15, 17,

87

Berthold et al. [2007a], 12, 118

Berthold et al. [2007b], 138

Biba [1977], 10

Bishop [2002], 7, 8

Brown and King [2004], 15, 87

Cabuk et al. [2004], 21

Chandra [2006], 88

Chien et al. [2003], 138

Chow et al. [2004], 18, 89

Dashti et al. [2009], 5

Denning and Denning [1977], 16

Denning [1975], 15, 85, 131

Denning [1976], 13, 14, 16

Erickson [2003], 100, 101

Erlingsson [2004], 19

Fenton [1973], 15

Fenton [1974a], 15, 17, 34, 86

Fenton [1974b], 87

Fraser [2000], 10

Garfinkel [2003], 92

Gat and Saal [1976], 15, 17, 87

Goguen and Meseguer [1982], 21

Goldberg et al. [1996], 92

Gong et al. [2003], 22, 47

Gosling et al. [1996], 4, 16

Graham and Denning [1971], 8

Guernic et al. [2006], 14, 90, 145

Guernic [2007], 87, 88, 90, 92,

145

Haldar et al. [2005a], 18, 89

Haldar et al. [2005b], 18, 89

Haldar [2006], 133

Hammer et al. [2006], 86

Hardy [1988], 24

Inaba [1998], 65

Jamkhedkar and Heileman [2004],

117, 118

Jamkhedkar and Heileman [2008],

119

JavaCC [2009], 71

Jif [2009], 85

Jobs [2007], 3, 96

Kaffe [2009], 48

Karjoth et al. [2002], 146

Katt et al. [2008], 12, 119

Kerberos Consortium [2009], 124,

137

LaMacchia [2002], 99

Lam and Chiueh [2006], 90

LIST OF CITATIONS 165

Lampson [1971], 8

Lampson [1973], 85

Ligatti [2006], 88, 91

Lindholm and Yellin [1999], 48

Lipner [1975], 85

MIT [2003], 17, 87

McLean [1990], 19

Mclean [1987], 10

McCune et al. [2008], 28, 116, 134

Michiels et al. [2005], 118

Microsoft Corporation [2009], 3,

117

Minsky [1967], 87

Mizuno and Schmidt [1992], 85

Mukhi and Plebani [2004], 125

Myers and Liskov [1997], 86

Myers [1999], 16, 18, 85

Nair et al. [2005], 5

Nair et al. [2008a], 5

Nair et al. [2008b], 5

Nair et al. [2009], 5

Nair [2006], 5

Nair [2009], 31

National Security Agency [2009],

76

Necula [1997], 19

Newsome and Song [2005], 89

OASIS [2004], 123

OASIS [2005], 134

OASIS [2006], 123, 136

OASIS [2007], 124

OASIS [2008], 103, 114, 137

ODRL [2002], 103

OMA [2009], 96, 97, 99, 117

Park and Sandhu [2002], 12, 19

Park and Sandhu [2004], 11, 99,

108

Pistoia et al. [2007], 24, 90

Portokalidis et al. [2006], 89

Roy et al. [2009], 92

Sabelfeld and Myers [2003], 18,

86

Sadeghi et al. [2007], 116, 117

Sailer et al. [2004], 26, 115, 132

Schaefer [2007], 118

Schneider [2000], 19

Shaffer et al. [2008], 21

Shen and Hong [2006], 122, 126,

137

Smith et al. [1998], 25

Sterne [1991], 7

Strongin [2005], 134

Tang [2008], 146

Thomas and Sandhu [1998], 11

Trusted Computing Group [2006],

25, 27, 116, 132

Trusted Computing Group [2009],

25

US DoD [1985], 8, 20

Vachharajani et al. [2004], 17, 18,

88

Venners [2000], 48

Verma et al. [2005], 125

Viega et al. [2001], 91

Volpano et al. [1996], 85

W3C [2005], 124

W3C [2006a], 123

W3C [2006b], 125, 137

W3C [2006c], 121, 124, 130, 137

W3C [2007], 122

W3C [2009], 121

Wallach and Felten [1998], 22, 24

Wall [1987], 90

Wespi et al. [2000], 92

Xu et al. [2006], 90

Yoshihama et al. [2005], 133

166 LIST OF CITATIONS

Zeldovich [2007], 3

Zhang et al. [2008a], 12, 119

Zhang et al. [2008b], 116, 119

van Bemmel et al. [2005], 126,

137

